6. Expressões

Este capítulo explica o significado dos elementos das expressões em Python.

Notas de sintaxe: Neste e nos capítulos seguintes, a notação BNF estendida será usada para descrever a sintaxe, não a análise lexical. Quando (uma alternativa de) uma regra de sintaxe tem a forma

name ::=  othername

e nenhuma semântica é fornecida, a semântica desta forma de name é a mesma que para othername.

6.1. Conversões aritméticas

Quando uma descrição de um operador aritmético abaixo usa a frase “os argumentos numéricos são convertidos em um tipo comum”, isso significa que a implementação do operador para tipos embutidos funciona da seguinte maneira:

  • Se um dos argumentos for um número complexo, o outro será convertido em complexo;

  • caso contrário, se um dos argumentos for um número de ponto flutuante, o outro será convertido em ponto flutuante;

  • caso contrário, ambos devem ser inteiros e nenhuma conversão é necessária.

Algumas regras adicionais se aplicam a certos operadores (por exemplo, uma string como um argumento à esquerda para o operador ‘%’). As extensões devem definir seu próprio comportamento de conversão.

6.2. Átomos

Os átomos são os elementos mais básicos das expressões. Os átomos mais simples são identificadores ou literais. As formas entre parênteses, colchetes ou chaves também são categorizadas sintaticamente como átomos. A sintaxe para átomos é:

atom      ::=  identifier | literal | enclosure
enclosure ::=  parenth_form | list_display | dict_display | set_display
               | generator_expression | yield_atom

6.2.1. Identificadores (Nomes)

Um identificador que ocorre como um átomo é um nome. Veja a seção Identificadores e palavras-chave para a definição lexical e a seção Nomeação e ligação para documentação de nomenclatura e ligação.

Quando o nome está vinculado a um objeto, a avaliação do átomo produz esse objeto. Quando um nome não está vinculado, uma tentativa de avaliá-lo levanta uma exceção NameError.

Mangling de nome privado: Quando um identificador que ocorre textualmente em uma definição de classe começa com dois ou mais caracteres de sublinhado e não termina em dois ou mais sublinhados, ele é considerado um nome privado dessa classe. Os nomes privados são transformados em um formato mais longo antes que o código seja gerado para eles. A transformação insere o nome da classe, com sublinhados à esquerda removidos e um único sublinhado inserido na frente do nome. Por exemplo, o identificador __spam que ocorre em uma classe chamada Ham será transformado em _Ham__spam. Essa transformação é independente do contexto sintático em que o identificador é usado. Se o nome transformado for extremamente longo (mais de 255 caracteres), poderá ocorrer truncamento definido pela implementação. Se o nome da classe consistir apenas em sublinhados, nenhuma transformação será feita.

6.2.2. Literais

Python oferece suporte a strings e bytes literais e vários literais numéricos:

literal ::=  stringliteral | bytesliteral
             | integer | floatnumber | imagnumber

A avaliação de um literal produz um objeto do tipo fornecido (string, bytes, inteiro, número de ponto flutuante, número complexo) com o valor fornecido. O valor pode ser aproximado no caso de ponto flutuante e literais imaginários (complexos). Veja a seção Literais para detalhes.

Todos os literais correspondem a tipos de dados imutáveis e, portanto, a identidade do objeto é menos importante que seu valor. Múltiplas avaliações de literais com o mesmo valor (seja a mesma ocorrência no texto do programa ou uma ocorrência diferente) podem obter o mesmo objeto ou um objeto diferente com o mesmo valor.

6.2.3. Formas de parênteses

Um formulário entre parênteses é uma lista de expressões opcional entre parênteses:

parenth_form ::=  "(" [starred_expression] ")"

Uma lista de expressões entre parênteses produz tudo o que aquela lista de expressões produz: se a lista contiver pelo menos uma vírgula, ela produzirá uma tupla; caso contrário, produz a única expressão que compõe a lista de expressões.

Um par de parênteses vazio produz um objeto de tupla vazio. Como as tuplas são imutáveis, aplicam-se as mesmas regras dos literais (isto é, duas ocorrências da tupla vazia podem ou não produzir o mesmo objeto).

Observe que as tuplas não são formadas pelos parênteses, mas sim pelo uso da vírgula. A exceção é a tupla vazia, para a qual os parênteses são obrigatórios – permitir “nada” sem parênteses em expressões causaria ambiguidades e permitiria que erros de digitação comuns passassem sem serem detectados.

6.2.4. Sintaxe de criação de listas, conjuntos e dicionários

Para construir uma lista, um conjunto ou um dicionário, o Python fornece uma sintaxe especial chamada “sintaxes de criação” (em inglês, displays), cada uma delas em dois tipos:

  • o conteúdo do contêiner é listado explicitamente ou

  • eles são calculados por meio de um conjunto de instruções de laço e filtragem, chamado de compreensão.

Elementos de sintaxe comuns para compreensões são:

comprehension ::=  assignment_expression comp_for
comp_for      ::=  ["async"] "for" target_list "in" or_test [comp_iter]
comp_iter     ::=  comp_for | comp_if
comp_if       ::=  "if" or_test [comp_iter]

A compreensão consiste em uma única expressão seguida por pelo menos uma cláusula for e zero ou mais cláusulas for ou if. Neste caso, os elementos do novo contêiner são aqueles que seriam produzidos considerando cada uma das cláusulas for ou if de um bloco, aninhando da esquerda para a direita, e avaliando a expressão para produzir um elemento cada vez que o bloco mais interno é alcançado.

No entanto, além da expressão iterável na cláusula for mais à esquerda, a compreensão é executada em um escopo aninhado implicitamente separado. Isso garante que os nomes atribuídos na lista de destino não “vazem” para o escopo delimitador.

A expressão iterável na cláusula for mais à esquerda é avaliada diretamente no escopo envolvente e então passada como um argumento para o escopo aninhado implicitamente. Cláusulas for subsequentes e qualquer condição de filtro na cláusula for mais à esquerda não podem ser avaliadas no escopo delimitador, pois podem depender dos valores obtidos do iterável mais à esquerda. Por exemplo: [x*y for x in range(10) for y in range(x, x+10)].

Para garantir que a compreensão sempre resulte em um contêiner do tipo apropriado, as expressões yield e yield from são proibidas no escopo aninhado implicitamente.

Desde o Python 3.6, em uma função async def, uma cláusula async for pode ser usada para iterar sobre um iterador assíncrono. Uma compreensão em uma função async def pode consistir em uma cláusula for ou async for seguindo a expressão principal, pode conter for ou cláusulas async for, e também pode usar expressões await. Se uma compreensão contém cláusulas async for ou expressões await ou outras compreensões assíncronas, ela é chamada de compreensão assíncrona. Uma compreensão assíncrona pode suspender a execução da função de corrotina na qual ela aparece. Veja também a PEP 530.

Novo na versão 3.6: Compreensões assíncronas foram introduzidas.

Alterado na versão 3.8: yield e yield from proibidos no escopo aninhado implícito.

Alterado na versão 3.11: Compreensões assíncronas agora são permitidas dentro de compreensões em funções assíncronas. As compreensões externas tornam-se implicitamente assíncronas.

6.2.5. Sintaxes de criação de lista

Uma sintaxe de criação de lista é uma série possivelmente vazia de expressões entre colchetes:

list_display ::=  "[" [starred_list | comprehension] "]"

Uma sintaxe de criação de lista produz um novo objeto de lista, sendo o conteúdo especificado por uma lista de expressões ou uma compreensão. Quando uma lista de expressões separadas por vírgulas é fornecida, seus elementos são avaliados da esquerda para a direita e colocados no objeto de lista nessa ordem. Quando uma compreensão é fornecida, a lista é construída a partir dos elementos resultantes da compreensão.

6.2.6. Sintaxes de criação de conjunto

Uma sintaxe de criação definida é denotada por chaves e distinguível de sintaxes de criação de dicionário pela falta de caractere de dois pontos separando chaves e valores:

set_display ::=  "{" (starred_list | comprehension) "}"

Uma sintaxe de criação de conjunto produz um novo objeto de conjunto mutável, sendo o conteúdo especificado por uma sequência de expressões ou uma compreensão. Quando uma lista de expressões separadas por vírgula é fornecida, seus elementos são avaliados da esquerda para a direita e adicionados ao objeto definido. Quando uma compreensão é fornecida, o conjunto é construído a partir dos elementos resultantes da compreensão.

Um conjunto vazio não pode ser construído com {}; este literal constrói um dicionário vazio.

6.2.7. Sintaxes de criação de dicionário

Uma sintaxe de criação de dicionário é uma série possivelmente vazia de itens de dicionário (pares chave/valor) envolto entre chaves:

dict_display       ::=  "{" [dict_item_list | dict_comprehension] "}"
dict_item_list     ::=  dict_item ("," dict_item)* [","]
dict_item          ::=  expression ":" expression | "**" or_expr
dict_comprehension ::=  expression ":" expression comp_for

Uma sintaxe de criação de dicionário produz um novo objeto dicionário.

Se for fornecida uma sequência separada por vírgulas de itens de dicionário, eles são avaliados da esquerda para a direita para definir as entradas do dicionário: cada objeto chave é usado como uma chave no dicionário para armazenar o valor correspondente. Isso significa que você pode especificar a mesma chave várias vezes na lista de itens de dicionário, e o valor final do dicionário para essa chave será o último dado.

Um asterisco duplo ** denota desempacotamento do dicionário. Seu operando deve ser um mapeamento. Cada item de mapeamento é adicionado ao novo dicionário. Os valores posteriores substituem os valores já definidos por itens de dicionário anteriores e desempacotamentos de dicionário anteriores.

Novo na versão 3.5: Descompactando em sintaxes de criação de dicionário, originalmente proposto pela PEP 448.

Uma compreensão de dict, em contraste com as compreensões de lista e conjunto, precisa de duas expressões separadas por dois pontos, seguidas pelas cláusulas usuais “for” e “if”. Quando a compreensão é executada, os elementos chave e valor resultantes são inseridos no novo dicionário na ordem em que são produzidos.

Restrições nos tipos de valores de chave são listadas anteriormente na seção A hierarquia de tipos padrão. (Para resumir, o tipo de chave deve ser hasheável, que exclui todos os objetos mutáveis.) Não são detectadas colisões entre chaves duplicadas; o último valor (textualmente mais à direita na sintaxe de criação) armazenado para um determinado valor de chave prevalece.

Alterado na versão 3.8: Antes do Python 3.8, em compreensões de dict, a ordem de avaliação de chave e valor não era bem definida. No CPython, o valor foi avaliado antes da chave. A partir de 3.8, a chave é avaliada antes do valor, conforme proposto pela PEP 572.

6.2.8. Expressões geradoras

Uma expressão geradora é uma notação geradora compacta entre parênteses:

generator_expression ::=  "(" expression comp_for ")"

Uma expressão geradora produz um novo objeto gerador. Sua sintaxe é a mesma das compreensões, exceto pelo fato de estar entre parênteses em vez de colchetes ou chaves.

As variáveis usadas na expressão geradora são avaliadas lentamente quando o método __next__() é chamado para o objeto gerador (da mesma forma que os geradores normais). No entanto, a expressão iterável na cláusula for mais à esquerda é avaliada imediatamente, de modo que um erro produzido por ela será emitido no ponto em que a expressão do gerador é definida, em vez de no ponto em que o primeiro valor é recuperado. Cláusulas for subsequentes e qualquer condição de filtro na cláusula for mais à esquerda não podem ser avaliadas no escopo delimitador, pois podem depender dos valores obtidos do iterável mais à esquerda. Por exemplo: (x*y for x in range(10) for y in range(x, x+10)).

Os parênteses podem ser omitidos em chamadas com apenas um argumento. Veja a seção Chamadas para detalhes.

Para evitar interferir com a operação esperada da própria expressão geradora, as expressões yield e yield from são proibidas no gerador definido implicitamente.

Se uma expressão geradora contém cláusulas async for ou expressões await, ela é chamada de expressão geradora assíncrona. Uma expressão geradora assíncrona retorna um novo objeto gerador assíncrono, que é um iterador assíncrono (consulte Iteradores assíncronos).

Novo na versão 3.6: Expressões geradoras assíncronas foram introduzidas.

Alterado na versão 3.7: Antes do Python 3.7, as expressões geradoras assíncronas só podiam aparecer em corrotinas async def. A partir da versão 3.7, qualquer função pode usar expressões geradoras assíncronas.

Alterado na versão 3.8: yield e yield from proibidos no escopo aninhado implícito.

6.2.9. Expressões yield

yield_atom       ::=  "(" yield_expression ")"
yield_from       ::=  "yield" "from" expression
yield_expression ::=  "yield" expression_list | yield_from

A expressão yield é usada ao definir uma função generadora ou uma função geradora assíncrona e, portanto, só pode ser usada no corpo de uma definição de função. Usar uma expressão yield no corpo de uma função faz com que essa função seja uma função geradora, e usá-la no corpo de uma função async def faz com que essa função de corrotina seja uma função geradora assíncrona. Por exemplo:

def gen():  # defines a generator function
    yield 123

async def agen(): # defines an asynchronous generator function
    yield 123

Devido a seus efeitos colaterais no escopo recipiente, as expressões yield não são permitidas como parte dos escopos definidos implicitamente usados para implementar compreensões e expressões geradoras.

Alterado na versão 3.8: Expressões yield proibidas nos escopos aninhados implicitamente usados para implementar compreensões e expressões geradoras.

As funções geradoras são descritas abaixo, enquanto as funções geradoras assíncronas são descritas separadamente na seção Funções geradoras assíncronas

Quando uma função geradora é chamada, ela retorna um iterador conhecido como gerador. Esse gerador então controla a execução da função geradora. A execução começa quando um dos métodos do gerador é chamado. Nesse momento, a execução segue para a primeira expressão yield, onde é suspensa novamente, retornando o valor de expression_list ao chamador do gerador, ou None se expression_list é omitido. Por suspenso, queremos dizer que todo o estado local é retido, incluindo as chamadas atuais de variáveis locais, o ponteiro de instrução, a pilha de avaliação interna e o estado de qualquer tratamento de exceção. Quando a execução é retomada chamando um dos métodos do gerador, a função pode prosseguir exatamente como se a expressão yield fosse apenas outra chamada externa. O valor da expressão yield após a retomada depende do método que retomou a execução. Se __next__() for usado (tipicamente através de uma for ou do next() embutido) então o resultado será None. Caso contrário, se send() for usado, o resultado será o valor passado para esse método.

Tudo isso torna as funções geradoras bastante semelhantes às corrotinas; cedem múltiplas vezes, possuem mais de um ponto de entrada e sua execução pode ser suspensa. A única diferença é que uma função geradora não pode controlar onde a execução deve continuar após o seu rendimento; o controle é sempre transferido para o chamador do gerador.

Expressões yield são permitidas em qualquer lugar em uma construção try. Se o gerador não for retomado antes de ser finalizado (ao atingir uma contagem de referências zero ou ao ser coletado como lixo), o método close() do iterador de gerador será chamado, permitindo que quaisquer cláusulas finally pendentes sejam executadas.

Quando yield from <expr> é usado, a expressão fornecida deve ser iterável. Os valores produzidos pela iteração desse iterável são passados diretamente para o chamador dos métodos do gerador atual. Quaisquer valores passados com send() e quaisquer exceções passadas com throw() são passados para o iterador subjacente se ele tiver os métodos apropriados. Se este não for o caso, então send() irá levantar AttributeError ou TypeError, enquanto throw() irá apenas levantar a exceção passada imediatamente.

Quando o iterador subjacente estiver completo, o atributo value da instância StopIteration gerada torna-se o valor da expressão yield. Ele pode ser definido explicitamente ao levantar StopIteration ou automaticamente quando o subiterador é um gerador (retornando um valor do subgerador).

Alterado na versão 3.3: Adicionado yield from <expr> para delegar o fluxo de controle a um subiterador.

Os parênteses podem ser omitidos quando a expressão yield é a única expressão no lado direito de uma instrução de atribuição.

Ver também

PEP 255 - Geradores simples

A proposta para adicionar geradores e a instrução yield ao Python.

PEP 342 - Corrotinas via Geradores Aprimorados

A proposta de aprimorar a API e a sintaxe dos geradores, tornando-os utilizáveis como simples corrotinas.

PEP 380 - Sintaxe para Delegar a um Subgerador

A proposta de introduzir a sintaxe yield_from, facilitando a delegação a subgeradores.

PEP 525 - Geradores assíncronos

A proposta que se expandiu em PEP 492 adicionando recursos de gerador a funções de corrotina.

6.2.9.1. Métodos de iterador gerador

Esta subseção descreve os métodos de um iterador gerador. Eles podem ser usados para controlar a execução de uma função geradora.

Observe que chamar qualquer um dos métodos do gerador abaixo quando o gerador já estiver em execução levanta uma exceção ValueError.

generator.__next__()

Inicia a execução de uma função geradora ou a retoma na última expressão yield executada. Quando uma função geradora é retomada com um método __next__(), a expressão yield atual sempre é avaliada como None. A execução então continua para a próxima expressão yield, onde o gerador é suspenso novamente, e o valor de expression_list é retornado para o chamador de __next__(). Se o gerador sair sem produzir outro valor, uma exceção StopIteration será levantada.

Este método é normalmente chamado implicitamente, por exemplo por um laço for, ou pela função embutida next().

generator.send(value)

Retoma a execução e “envia” um valor para a função geradora. O argumento value torna-se o resultado da expressão yield atual. O método send() retorna o próximo valor gerado pelo gerador, ou levanta StopIteration se o gerador sair sem produzir outro valor. Quando send() é chamado para iniciar o gerador, ele deve ser chamado com None como argumento, porque não há nenhuma expressão yield que possa receber o valor.

generator.throw(value)
generator.throw(type[, value[, traceback]])

Levanta uma exceção no ponto em que o gerador foi pausado e retorna o próximo valor gerado pela função geradora. Se o gerador sair sem gerar outro valor, uma exceção StopIteration será levantada. Se a função geradora não detectar a exceção passada ou levanta uma exceção diferente, essa exceção se propagará para o chamador.

Em uso típico, isso é chamado com uma única instância de exceção semelhante à forma como a palavra reservada raise é usada.

Para compatibilidade com versões anteriores, no entanto, a segunda assinatura é suportada, seguindo uma convenção de versões mais antigas do Python. O argumento type deve ser uma classe de exceção e value deve ser uma instância de exceção. Se o valor não for fornecido, o construtor tipo será chamado para obter uma instância. Se traceback for fornecido, ele será definido na exceção, caso contrário, qualquer atributo __traceback__ existente armazenado em value poderá ser limpo.

Alterado na versão 3.12: A segunda assinatura (tipo[, valor[, traceback]]) foi descontinuada e pode ser removida em uma versão futura do Python.

generator.close()

Levanta GeneratorExit no ponto onde a função geradora foi pausada. Se a função geradora sair normalmente, já estiver fechada ou levantar GeneratorExit (por não capturar a exceção), “close” retornará ao seu chamador. Se o gerador produzir um valor, um RuntimeError é levantado. Se o gerador levantar qualquer outra exceção, ela será propagada para o chamador. close() não faz nada se o gerador já saiu devido a uma exceção ou saída normal.

6.2.9.2. Exemplos

Aqui está um exemplo simples que demonstra o comportamento de geradores e funções geradoras:

>>> def echo(value=None):
...     print("Execution starts when 'next()' is called for the first time.")
...     try:
...         while True:
...             try:
...                 value = (yield value)
...             except Exception as e:
...                 value = e
...     finally:
...         print("Don't forget to clean up when 'close()' is called.")
...
>>> generator = echo(1)
>>> print(next(generator))
Execution starts when 'next()' is called for the first time.
1
>>> print(next(generator))
None
>>> print(generator.send(2))
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

Para exemplos usando yield from, consulte a PEP 380: Syntax for Delegating to a Subgenerator em “O que há de novo no Python.”

6.2.9.3. Funções geradoras assíncronas

A presença de uma expressão yield em uma função ou método definido usando a async def define ainda mais a função como uma função geradora assíncrona.

Quando uma função geradora assíncrona é chamada, ela retorna um iterador assíncrono conhecido como objeto gerador assíncrono. Esse objeto controla a execução da função geradora. Um objeto gerador assíncrono é normalmente usado em uma instrução async for em uma função de corrotina de forma análoga a como um objeto gerador seria usado em uma instrução for.

A chamada de um dos métodos do gerador assíncrono retorna um objeto aguardável, e a execução começa quando esse objeto é aguardado. Nesse momento, a execução prossegue até a primeira expressão yield, onde é suspensa novamente, retornando o valor de expression_list para a corrotina em aguardo. Assim como ocorre com um gerador, a suspensão significa que todo o estado local é mantido, inclusive as ligações atuais das variáveis locais, o ponteiro de instruções, a pilha de avaliação interna e o estado de qualquer tratamento de exceção. Quando a execução é retomada, aguardando o próximo objeto retornado pelos métodos do gerador assíncrono, a função pode prosseguir exatamente como se a expressão de rendimento fosse apenas outra chamada externa. O valor da expressão yield após a retomada depende do método que retomou a execução. Se __anext__() for usado, o resultado será None. Caso contrário, se asend() for usado, o resultado será o valor passado para esse método.

Se um gerador assíncrono encerrar mais cedo por break, pela tarefa que fez sua chamada ser cancelada ou por outras exceções, o código de limpeza assíncrona do gerador será executado e possivelmente levantará alguma exceção ou acessará as variáveis de contexto em um contexto inesperado – talvez após o tempo de vida das tarefas das quais ele depende, ou durante o laço de eventos de encerramento quando o gancho de coleta de lixo do gerador assíncrono for chamado. Para prevenir isso, o chamador deve encerrar explicitamente o gerador assíncrono chamando o método aclose() para finalizar o gerador e, por fim, desconectá-lo do laço de eventos.

Em uma função geradora assíncrona, expressões de yield são permitidas em qualquer lugar em uma construção try. No entanto, se um gerador assíncrono não for retomado antes de ser finalizado (alcançando uma contagem de referência zero ou sendo coletado pelo coletor de lixo), então uma expressão de yield dentro de um construção try pode resultar em uma falha na execução das cláusulas pendentes de finally. Nesse caso, é responsabilidade do laço de eventos ou escalonador que executa o gerador assíncrono chamar o método aclose() do gerador iterador assíncrono e executar o objeto corrotina resultante, permitindo assim que quaisquer cláusulas pendentes de finally sejam executadas.

Para cuidar da finalização após o término do laço de eventos, um laço de eventos deve definir uma função finalizer que recebe um gerador assíncrono e provavelmente chama aclose() e executa a corrotina. Este finalizer pode ser registrado chamando sys.set_asyncgen_hooks(). Quando iterado pela primeira vez, um gerador assíncrono armazenará o finalizer registrado para ser chamado na finalização. Para um exemplo de referência de um método finalizer, consulte a implementação de asyncio.Loop.shutdown_asyncgens em Lib/asyncio/base_events.py.

O expressão yield from <expr> é um erro de sintaxe quando usado em uma função geradora assíncrona.

6.2.9.4. Métodos geradores-iteradores assíncronos

Esta subseção descreve os métodos de um iterador gerador assíncrono, que são usados para controlar a execução de uma função geradora.

coroutine agen.__anext__()

Retorna um objeto aguardável que, quando executado, começa a executar o gerador assíncrono ou o retoma na última expressão yield executada. Quando uma função geradora assíncrona é retomada com o método __anext__(), a expressão yield atual sempre avalia para None no objeto aguardável retornado, que, quando executado, continuará para a próxima expressão yield. O valor de expression_list da expressão yield é o valor da exceção StopIteration levantada pela corrotina em conclusão. Se o gerador assíncrono sair sem produzir outro valor, o objeto aguardável em vez disso levanta uma exceção StopAsyncIteration, sinalizando que a iteração assíncrona foi concluída.

Este método é normalmente chamado implicitamente por um laço async for.

coroutine agen.asend(value)

Retorna um objeto aguardável que, quando executado, retoma a execução do gerador assíncrono. Assim como o método send() para um gerador, isso “envia” um valor para a função geradora assíncrona, e o argumento value se torna o resultado da expressão de yield atual. O objeto aguardável retornado pelo método asend() retornará o próximo valor produzido pelo gerador como o valor da exceção StopIteration levantada, ou lança StopAsyncIteration se o gerador assíncrono sair sem produzir outro valor. Quando asend() é chamado para iniciar o gerador assíncrono, ele deve ser chamado com None como argumento, pois não há expressão yield que possa receber o valor.

coroutine agen.athrow(value)
coroutine agen.athrow(type[, value[, traceback]])

Retorna um objeto aguardável que gera uma exceção do tipo type no ponto em que o gerador assíncrono foi pausado, e retorna o próximo valor produzido pela função geradora como o valor da exceção StopIteration levantada. Se o gerador assíncrono terminar sem produzir outro valor, uma exceção StopAsyncIteration é levantada pelo objeto aguardável. Se a função geradora não capturar a exceção passada ou gerar uma exceção diferente, então quando o objeto aguardável for executado, essa exceção se propagará para o chamador do objeto aguardável.

Alterado na versão 3.12: A segunda assinatura (tipo[, valor[, traceback]]) foi descontinuada e pode ser removida em uma versão futura do Python.

coroutine agen.aclose()

Retorna um objeto aguardável que, quando executado, levantará uma GeneratorExit na função geradora assíncrona no ponto em que foi pausada. Se a função geradora assíncrona sair de forma normal, se estiver já estiver fechada ou levantar GeneratorExit (não capturando a exceção), então o objeto aguardável retornado levantará uma exceção StopIteration. Quaisquer outros objetos aguardáveis retornados por chamadas subsequentes à função geradora assíncrona levantarão uma exceção StopAsyncIteration. Se a função geradora assíncrona levantar um valor, um RuntimeError será lançado pelo objeto aguardável. Se a função geradora assíncrona levantar qualquer outra exceção, ela será propagada para o chamador do objeto aguardável. Se a função geradora assíncrona já tiver saído devido a uma exceção ou saída normal, então chamadas posteriores ao método aclose() retornarão um objeto aguardável que não faz nada.

6.3. Primárias

Primárias representam as operações mais fortemente vinculadas da linguagem. Sua sintaxe é:

primary ::=  atom | attributeref | subscription | slicing | call

6.3.1. Referências de atributo

Uma referência de atributo é um primário seguido de um ponto e um nome.

attributeref ::=  primary "." identifier

A primária deve avaliar para um objeto de um tipo que tem suporte a referências de atributo, o que a maioria dos objetos faz. Este objeto é então solicitado a produzir o atributo cujo nome é o identificador. O tipo e o valor produzido são determinados pelo objeto. Várias avaliações da mesma referência de atributo podem produzir diferentes objetos.

Esta produção pode ser personalizada substituindo o método __getattribute__() ou o método __getattr__(). O método __getattribute__() é chamado primeiro e retorna um valor ou levanta uma AttributeError se o atributo não estiver disponível.

Se for levantada uma AttributeError e o objeto tiver um método __getattr__(), esse método será chamado como alternativa.

6.3.2. Subscrições

A subscrição de uma instância de uma classe de classe de contêiner geralmente selecionará um elemento do contêiner. A subscrição de uma classe genérica geralmente retornará um objeto GenericAlias.

subscription ::=  primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining one or both of __getitem__() and __class_getitem__(). When the primary is subscripted, the evaluated result of the expression list will be passed to one of these methods. For more details on when __class_getitem__ is called instead of __getitem__, see __class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__():

  1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of a builtin mapping class is the dict class.

  2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in the following section). Examples of builtin sequence classes include the str, list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that, for example, x[-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a string of exactly one character.

6.3.3. Fatiamentos

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or as targets in assignment or del statements. The syntax for a slicing:

slicing      ::=  primary "[" slice_list "]"
slice_list   ::=  slice_item ("," slice_item)* [","]
slice_item   ::=  expression | proper_slice
proper_slice ::=  [lower_bound] ":" [upper_bound] [ ":" [stride] ]
lower_bound  ::=  expression
upper_bound  ::=  expression
stride       ::=  expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see section A hierarquia de tipos padrão) whose start, stop and step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4. Chamadas

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call                 ::=  primary "(" [argument_list [","] | comprehension] ")"
argument_list        ::=  positional_arguments ["," starred_and_keywords]
                            ["," keywords_arguments]
                          | starred_and_keywords ["," keywords_arguments]
                          | keywords_arguments
positional_arguments ::=  positional_item ("," positional_item)*
positional_item      ::=  assignment_expression | "*" expression
starred_and_keywords ::=  ("*" expression | keyword_item)
                          ("," "*" expression | "," keyword_item)*
keywords_arguments   ::=  (keyword_item | "**" expression)
                          ("," keyword_item | "," "**" expression)*
keyword_item         ::=  identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class objects, methods of class instances, and all objects having a __call__() method are callable). All argument expressions are evaluated before the call is attempted. Please refer to section Definições de função for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Detalhes da implementação do CPython: An implementation may provide built-in functions whose positional parameters do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4), if y evaluates to a sequence y1, …, yM, this is equivalent to a call with M+4 positional arguments x1, x2, y1, …, yM, x3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is processed before the keyword arguments (and any **expression arguments – see below). So:

>>> def f(a, b):
...     print(a, b)
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots or as keyword argument names.

Alterado na versão 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (**). Originally proposed by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on the type of the callable object.

Se for—

uma função definida por usuário:

The code block for the function is executed, passing it the argument list. The first thing the code block will do is bind the formal parameters to the arguments; this is described in section Definições de função. When the code block executes a return statement, this specifies the return value of the function call.

a built-in function or method:

The result is up to the interpreter; see Funções embutidas for the descriptions of built-in functions and methods.

um objeto classe:

A new instance of that class is returned.

a class instance method:

The corresponding user-defined function is called, with an argument list that is one longer than the argument list of the call: the instance becomes the first argument.

a class instance:

The class must define a __call__() method; the effect is then the same as if that method was called.

6.4. Expressão await

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr ::=  "await" primary

Novo na versão 3.5.

6.5. O operador de potência

O operador de potência vincula-se com mais força do que os operadores unários à sua esquerda; ele se vincula com menos força do que os operadores unários à sua direita. A sintaxe é:

power ::=  (await_expr | primary) ["**" u_expr]

Assim, em uma sequência sem parênteses de operadores de potência e unários, os operadores são avaliados da direita para a esquerda (isso não restringe a ordem de avaliação dos operandos): -1**2 resulta em -1 .

O operador de potência tem a mesma semântica que a função embutida pow(), quando chamado com dois argumentos: ele produz seu argumento esquerdo elevado à potência de seu argumento direito. Os argumentos numéricos são primeiro convertidos em um tipo comum e o resultado é desse tipo.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01.

Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__() method.

6.6. Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::=  power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the __neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the __pos__() special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined as -(x+1). It only applies to integral numbers or to custom objects that override the __invert__() special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7. Binary arithmetic operations

As operações aritméticas binárias possuem os níveis de prioridade convencionais. Observe que algumas dessas operações também se aplicam a determinados tipos não numéricos. Além do operador potência, existem apenas dois níveis, um para operadores multiplicativos e outro para operadores aditivos:

m_expr ::=  u_expr | m_expr "*" u_expr | m_expr "@" m_expr |
            m_expr "//" u_expr | m_expr "/" u_expr |
            m_expr "%" u_expr
a_expr ::=  m_expr | a_expr "+" m_expr | a_expr "-" m_expr

O operador * (multiplicação) produz o produto de seus argumentos. Os argumentos devem ser números ou um argumento deve ser um número inteiro e o outro deve ser uma sequência. No primeiro caso, os números são convertidos para um tipo comum e depois multiplicados. Neste último caso, é realizada a repetição da sequência; um fator de repetição negativo produz uma sequência vazia.

This operation can be customized using the special __mul__() and __rmul__() methods.

O operador @ (arroba) deve ser usado para multiplicação de matrizes. Nenhum tipo embutido do Python implementa este operador.

Novo na versão 3.5.

Os operadores / (divisão) e // (divisão pelo piso) produzem o quociente de seus argumentos. Os argumentos numéricos são primeiro convertidos em um tipo comum. A divisão de inteiros produz um ponto flutuante, enquanto a divisão pelo piso de inteiros resulta em um inteiro; o resultado é o da divisão matemática com a função ‘floor’ aplicada ao resultado. A divisão por zero levanta a exceção ZeroDivisionError.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

O operador % (módulo) produz o restante da divisão do primeiro argumento pelo segundo. Os argumentos numéricos são primeiro convertidos em um tipo comum. Um argumento zero à direita levanta a exceção ZeroDivisionError. Os argumentos podem ser números de ponto flutuante, por exemplo, 3.14%0.7 é igual a 0.34 (já que 3.14 é igual a 4*0.7 + 0.34.) O operador módulo sempre produz um resultado com o mesmo sinal do seu segundo operando (ou zero); o valor absoluto do resultado é estritamente menor que o valor absoluto do segundo operando [1].

Os operadores de divisão pelo piso e módulo são conectados pela seguinte identidade: x == (x//y)*y + (x%y). A divisão pelo piso e o módulo também estão conectados com a função embutida divmod(): divmod(x, y) == (x//y, x%y). [2].

Além de realizar a operação de módulo em números, o operador % também é sobrecarregado por objetos string para realizar a formatação de string no estilo antigo (também conhecida como interpolação). A sintaxe para formatação de string é descrita na Referência da Biblioteca Python, seção Formatação de String no Formato no estilo printf.

The modulo operation can be customized using the special __mod__() method.

O operador de divisão pelo piso, o operador de módulo e a função divmod() não são definidos para números complexos. Em vez disso, converta para um número de ponto flutuante usando a função abs() se apropriado.

O operador + (adição) produz a soma de seus argumentos. Os argumentos devem ser números ou sequências do mesmo tipo. No primeiro caso, os números são convertidos para um tipo comum e depois somados. Neste último caso, as sequências são concatenadas.

This operation can be customized using the special __add__() and __radd__() methods.

O operador - (subtração) produz a diferença de seus argumentos. Os argumentos numéricos são primeiro convertidos em um tipo comum.

This operation can be customized using the special __sub__() method.

6.8. Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::=  a_expr | shift_expr ("<<" | ">>") a_expr

Esses operadores aceitam números inteiros como argumentos. Eles deslocam o primeiro argumento para a esquerda ou para a direita pelo número de bits fornecido pelo segundo argumento.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n). A left shift by n bits is defined as multiplication with pow(2,n).

6.9. Operações binárias bit a bit

Each of the three bitwise operations has a different priority level:

and_expr ::=  shift_expr | and_expr "&" shift_expr
xor_expr ::=  and_expr | xor_expr "^" and_expr
or_expr  ::=  xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a custom object overriding __or__() or __ror__() special methods.

6.10. Comparações

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in mathematics:

comparison    ::=  or_expr (comp_operator or_expr)*
comp_operator ::=  "<" | ">" | "==" | ">=" | "<=" | "!="
                   | "is" ["not"] | ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values. In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formalmente, se a, b, c, …, y, z são expressões e op1, op2, …, opN são operadores de comparação, então a op1 b op2 c ... y opN z é equivalente a a op1 b e b op2 c e ... y opN z, exceto que cada expressão é avaliada no máximo uma vez.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > z is perfectly legal (though perhaps not pretty).

6.10.1. Comparações de valor

Os operadores <, >, ==, >=, <= e != comparam os valores de dois objetos. Os objetos não precisam ser do mesmo tipo.

Chapter Objetos, valores e tipos states that objects have a value (in addition to type and identity). The value of an object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from object. Types can customize their comparison behavior by implementing rich comparison methods like __lt__(), described in Personalização básica.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality comparison of instances with the same identity results in equality, and equality comparison of instances with different identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y implies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

  • Numbers of built-in numeric types (Tipos numéricos — int, float, complex) and of the standard library types fractions.Fraction and decimal.Decimal can be compared within and across their types, with the restriction that complex numbers do not support order comparison. Within the limits of the types involved, they compare mathematically (algorithmically) correct without loss of precision.

    The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values are not equal to themselves. For example, if x = float('NaN'), 3 < x, x < 3 and x == x are all false, while x != x is true. This behavior is compliant with IEEE 754.

  • None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always be done with is or is not, never the equality operators.

  • Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They compare lexicographically using the numeric values of their elements.

  • Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the built-in function ord()) of their characters. [3]

    Strings and binary sequences cannot be directly compared.

  • Sequences (instances of tuple, list, or range) can be compared only within each of their types, with the restriction that ranges do not support order comparison. Equality comparison across these types results in inequality, and ordering comparison across these types raises TypeError.

    Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to improve performance and to maintain their internal invariants.

    Lexicographical comparison between built-in collections works as follows:

    • For two collections to compare equal, they must be of the same type, have the same length, and each pair of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is not the same).

    • Collections that support order comparison are ordered the same as their first unequal elements (for example, [1,2,x] <= [1,2,y] has the same value as x <= y). If a corresponding element does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

  • Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality comparison of the keys and values enforces reflexivity.

    Order comparisons (<, >, <=, and >=) raise TypeError.

  • Sets (instances of set or frozenset) can be compared within and across their types.

    They define order comparison operators to mean subset and superset tests. Those relations do not define total orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for example, min(), max(), and sorted() produce undefined results given a list of sets as inputs).

    Comparison of sets enforces reflexivity of its elements.

  • Most other built-in types have no comparison methods implemented, so they inherit the default comparison behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

  • Equality comparison should be reflexive. In other words, identical objects should compare equal:

    x is y implies x == y

  • Comparison should be symmetric. In other words, the following expressions should have the same result:

    x == y and y == x

    x != y and y != x

    x < y and y > x

    x <= y and y >= x

  • Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

    x > y and y > z implies x > z

    x < y and y <= z implies x < z

  • Inverse comparison should result in the boolean negation. In other words, the following expressions should have the same result:

    x == y and not x != y

    x < y and not x >= y (for total ordering)

    x > y and not x <= y (for total ordering)

    The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See also the total_ordering() decorator.

  • The hash() result should be consistent with equality. Objects that are equal should either have the same hash value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these rules.

6.10.2. Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y).

For the string and bytes types, x in y is True if and only if x is a substring of y. An equivalent test is y.find(x) != -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the __contains__() method, x in y returns True if y.__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__(), x in y is True if some value z, for which the expression x is z or x == z is true, is produced while iterating over y. If an exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is True if and only if there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in.

6.10.3. Comparações de identidade

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object. An Object’s identity is determined using the id() function. x is not y yields the inverse truth value. [4]

6.11. Operações booleanas

or_test  ::=  and_test | or_test "or" and_test
and_test ::=  not_test | and_test "and" not_test
not_test ::=  comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting value is returned.

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

6.12. Expressões de atribuição

assignment_expression ::=  [identifier ":="] expression

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
    do_something(matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
    process(chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert, with, and assignment statements. In all other places where they can be used, parentheses are not required, including in if and while statements.

Novo na versão 3.8: See PEP 572 for more details about assignment expressions.

6.13. Expressões condicionais

conditional_expression ::=  or_test ["if" or_test "else" expression]
expression             ::=  conditional_expression | lambda_expr

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x. If C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14. Lambdas

lambda_expr ::=  "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda parameters: expression yields a function object. The unnamed object behaves like a function object defined with:

def <lambda>(parameters):
    return expression

See section Definições de função for the syntax of parameter lists. Note that functions created with lambda expressions cannot contain statements or annotations.

6.15. Listas de expressões

expression_list    ::=  expression ("," expression)* [","]
starred_list       ::=  starred_item ("," starred_item)* [","]
starred_expression ::=  expression | (starred_item ",")* [starred_item]
starred_item       ::=  assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Novo na versão 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1,; it is optional in all other cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of parentheses: ().)

6.16. Ordem de avaliação

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

6.17. Precedência de operadores

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining feature as described in the Comparações section.

Operador

Descrição

(expressions...),

[expressions...], {key: value...}, {expressions...}

Binding or parenthesized expression, list display, dictionary display, set display

x[index], x[index:index], x(arguments...), x.attribute

Subscription, slicing, call, attribute reference

await x

Expressão await

**

Exponenciação [5]

+x, -x, ~x

Positive, negative, bitwise NOT

*, @, /, //, %

Multiplication, matrix multiplication, division, floor division, remainder [6]

+, -

Addition and subtraction

<<, >>

Shifts

&

E (AND) bit a bit

^

OU EXCLUSIVO (XOR) bit a bit

|

OR bit a bit

in, not in, is, is not, <, <=, >, >=, !=, ==

Comparisons, including membership tests and identity tests

not x

Booleano NEGAÇÃO (NOT)

and

Booleano E (AND)

or

Booleano OU (OR)

ifelse

Expressão condicional

lambda

Expressão lambda

:=

Expressão de atribuição

Notas de rodapé