6. Les instructions simples

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

simple_stmt ::=  expression_stmt
                 | assert_stmt
                 | assignment_stmt
                 | augmented_assignment_stmt
                 | pass_stmt
                 | del_stmt
                 | print_stmt
                 | return_stmt
                 | yield_stmt
                 | raise_stmt
                 | break_stmt
                 | continue_stmt
                 | import_stmt
                 | global_stmt
                 | exec_stmt

6.1. Les expressions

Les expressions sont utilisées (généralement de manière interactive) comme instructions pour calculer et écrire des valeurs, appeler une procédure (une fonction dont le résultat renvoyé n’a pas d’importance ; en Python, les procédures renvoient la valeur None). D’autres utilisations des expressions sont autorisées et parfois utiles. La syntaxe pour une expression en tant qu’instruction est :

expression_stmt ::=  expression_list

Ce genre d’instruction évalue la liste d’expressions (qui peut se limiter à une seule expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and the resulting string is written to standard output (see section The print statement) on a line by itself. (Expression statements yielding None are not written, so that procedure calls do not cause any output.)

6.2. Les assignations

Les assignations sont utilisées pour lier ou relier des noms à des valeurs et modifier des attributs ou des éléments d’objets muables :

assignment_stmt ::=  (target_list "=")+ (expression_list | yield_expression)
target_list     ::=  target ("," target)* [","]
target          ::=  identifier
                     | "(" target_list ")"
                     | "[" [target_list] "]"
                     | attributeref
                     | subscription
                     | slicing

(See section Primaires for the syntax definitions for the last three symbols.)

Une assignation évalue la liste d’expressions (gardez en mémoire que ce peut être une simple expression ou une liste dont les éléments sont séparés par des virgules, cette dernière produisant un n-uplet) et assigne l’unique objet résultant à chaque liste cible, de la gauche vers la droite.

Une assignation est définie récursivement en fonction de la forme de la cible (une liste). Quand la cible est une partie d’un objet muable (une référence à un attribut, une sélection ou une tranche), l’objet muable doit effectuer l’assignation au final et décider de sa validité, voire lever une exception si l’assignation n’est pas acceptable. Les règles suivies par les différents types et les exceptions levées sont données dans les définitions des types d’objets (voir la section Hiérarchie des types standards).

Assignment of an object to a target list is recursively defined as follows.

  • If the target list is a single target: The object is assigned to that target.
  • If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

L’assignation d’un objet vers une cible unique est définie récursivement comme suit.

  • Si la cible est une variable (un nom) :

    • If the name does not occur in a global statement in the current code block: the name is bound to the object in the current local namespace.
    • Otherwise: the name is bound to the object in the current global namespace.

    Le lien du nom est modifié si le nom était déjà lié. Ceci peut faire que le compteur de références de l’objet auquel le nom était précédemment lié tombe à zéro, entrainant la dé-allocation de l’objet et l’appel de son destructeur (s’il existe).

  • If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the same number of items as there are targets in the target list, and its items are assigned, from left to right, to the corresponding targets.

  • Si la cible est une référence à un attribut : l’expression primaire de la référence est évaluée. Elle doit produire un objet avec des attributs que l’on peut assigner : si ce n’est pas le cas, une TypeError est levée. Python demande alors à cet objet d’assigner l’attribut donné ; si ce n’est pas possible, une exception est levée (habituellement, mais pas nécessairement, AttributeError).

    Note : si l’objet est une instance de classe et que la référence à l’attribut apparaît des deux côtés de l’opérateur d’assignation, l’expression « à droite », a.x peut accéder soit à l’attribut d’instance ou (si cet attribut d’instance n’existe pas) à l’attribut de classe. L’expression cible « à gauche » a.x est toujours définie comme un attribut d’instance, en le créant si nécessaire. Ainsi, les deux occurrences de a.x ne font pas nécessairement référence au même attribut : si l’expression « à droite » fait référence à un attribut de classe, l’expression « à gauche » crée un nouvel attribut d’instance comme cible de l’assignation :

    class Cls:
        x = 3             # class variable
    inst = Cls()
    inst.x = inst.x + 1   # writes inst.x as 4 leaving Cls.x as 3
    

    Cette description ne s’applique pas nécessairement aux attributs des descripteurs, telles que les propriétés créées avec property().

  • If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

    If the primary is a mutable sequence object (such as a list), the subscript must yield a plain integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

    Si la primaire est un objet tableau de correspondances (tel qu’un dictionnaire), la sélection doit être d’un type compatible avec le type des clés ; Python demande alors au tableau de correspondances de créer un couple clé-valeur qui associe la sélection à l’objet assigné. Ceci peut remplacer une correspondance déjà existante pour une clé donnée ou insérer un nouveau couple clé-valeur.

  • If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

Dans l’implémentation actuelle, la syntaxe pour les cibles est similaire à celle des expressions. Toute syntaxe invalide est rejetée pendant la phase de génération de code, ce qui produit des messages d’erreurs moins détaillés.

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are “safe” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables are not safe! For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.2.1. Les assignations augmentées

Une assignation augmentée est la combinaison, dans une seule instruction, d’une opération binaire et d’une assignation :

augmented_assignment_stmt ::=  augtarget augop (expression_list | yield_expression)
augtarget                 ::=  identifier | attributeref | subscription | slicing
augop                     ::=  "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="
                               | ">>=" | "<<=" | "&=" | "^=" | "|="

(See section Primaires for the syntax definitions for the last three symbols.)

Une assignation augmentée évalue la cible (qui, au contraire des assignations normales, ne peut pas être un dépaquetage) et la liste d’expressions, effectue l’opération binaire (spécifique au type d’assignation) sur les deux opérandes et assigne le résultat à la cible originale. La cible n’est évaluée qu’une seule fois.

Une assignation augmentée comme x += 1 peut être ré-écrite en x = x + 1 pour obtenir un effet similaire, mais pas exactement équivalent. Dans la version augmentée. x n’est évalué qu’une seule fois. Aussi, lorsque c’est possible, l’opération concrète est effectuée sur place, c’est-à-dire que plutôt que de créer un nouvel objet et l’assigner à la cible, c’est le vieil objet qui est modifié.

À l’exception de l’assignation de tuples et de cibles multiples dans une seule instruction, l’assignation effectuée par une assignation augmentée est traitée de la même manière qu’une assignation normale. De même, à l’exception du comportement possible sur place, l’opération binaire effectuée par assignation augmentée est la même que les opérations binaires normales.

Pour les cibles qui sont des références à des attributs, la même mise en garde sur les attributs de classe et d’instances s’applique que pour les assignations normales.

6.3. L’instruction assert

Les instructions assert sont une manière pratique d’insérer des tests de débogage au sein d’un programme :

assert_stmt ::=  "assert" expression ["," expression]

La forme la plus simple, assert expression, est équivalente à :

if __debug__:
    if not expression: raise AssertionError

La forme étendue, assert expression1, expression2, est équivalente à :

if __debug__:
    if not expression1: raise AssertionError(expression2)

Ces équivalences supposent que __debug__ et AssertionError font référence aux variables natives ainsi nommées. Dans l’implémentation actuelle, la variable native __debug__ vaut True dans des circonstances normales, False quand les optimisations sont demandées (ligne de commande avec l’option -O). Le générateur de code actuel ne produit aucun code pour une instruction assert quand vous demandez les optimisations à la compilation. Notez qu’il est superflu d’inclure le code source dans le message d’erreur pour l’expression qui a échoué : il est affiché dans la pile d’appels.

Assigner vers __debug__ est illégal. La valeur de cette variable native est déterminée au moment où l’interpréteur démarre.

6.4. L’instruction pass

pass_stmt ::=  "pass"

pass est une opération vide — quand elle est exécutée, rien ne se passe. Elle est utile comme bouche-trou lorsqu’une instruction est syntaxiquement requise mais qu’aucun code ne doit être exécuté. Par exemple :

def f(arg): pass    # a function that does nothing (yet)

class C: pass       # a class with no methods (yet)

6.5. L’instruction del

del_stmt ::=  "del" target_list

La suppression est récursivement définie de la même manière que l’assignation. Plutôt que de détailler cela de manière approfondie, voici quelques indices.

La suppression d’une liste cible (target_list dans la grammaire ci-dessus) supprime récursivement chaque cible, de la gauche vers la droite.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

La suppression d’une référence à un attribut, une sélection ou une tranche est passée à l’objet primaire concerné : la suppression d’une tranche est en général équivalente à l’assignation d’une tranche vide du type adéquat (mais ceci est au final déterminé par l’objet que l’on tranche).

6.6. The print statement

print_stmt ::=  "print" ([expression ("," expression)* [","]]
                | ">>" expression [("," expression)+ [","]])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is then written. A space is written before each object is (converted and) written, unless the output system believes it is positioned at the beginning of a line. This is the case (1) when no characters have yet been written to standard output, (2) when the last character written to standard output is a whitespace character except ' ', or (3) when the last write operation on standard output was not a print statement. (In some cases it may be functional to write an empty string to standard output for this reason.)

Note

Objects which act like file objects but which are not the built-in file objects often do not properly emulate this aspect of the file object’s behavior, so it is best not to rely on this.

A '\n' character is written at the end, unless the print statement ends with a comma. This is the only action if the statement contains just the keyword print.

Standard output is defined as the file object named stdout in the built-in module sys. If no such object exists, or if it does not have a write() method, a RuntimeError exception is raised.

print also has an extended form, defined by the second portion of the syntax described above. This form is sometimes referred to as « print chevron. » In this form, the first expression after the >> must evaluate to a « file-like » object, specifically an object that has a write() method as described above. With this extended form, the subsequent expressions are printed to this file object. If the first expression evaluates to None, then sys.stdout is used as the file for output.

6.7. L’instruction return

return_stmt ::=  "return" [expression_list]

return ne peut être placée qu’à l’intérieur d’une définition de fonction, pas à l’intérieur d’une définition de classe.

Si une liste d’expressions (expression_list dans la grammaire ci-dessus) est présente, elle est évaluée, sinon None est utilisée comme valeur par défaut.

return quitte l’appel à la fonction courante avec la liste d’expressions (ou None) comme valeur de retour.

Quand return fait sortir d’une instruction try avec une clause finally, cette clause finally est exécutée avant de réellement quitter la fonction.

In a generator function, the return statement is not allowed to include an expression_list. In that context, a bare return indicates that the generator is done and will cause StopIteration to be raised.

6.8. L’instruction yield

yield_stmt ::=  yield_expression

The yield statement is only used when defining a generator function, and is only used in the body of the generator function. Using a yield statement in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator. The body of the generator function is executed by calling the generator’s next() method repeatedly until it raises an exception.

When a yield statement is executed, the state of the generator is frozen and the value of expression_list is returned to next()”s caller. By « frozen » we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time next() is invoked, the function can proceed exactly as if the yield statement were just another external call.

As of Python version 2.5, the yield statement is now allowed in the try clause of a tryfinally construct. If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.

Pour tous les détails sur la sémantique de yield, reportez-vous à la section Expressions yield.

Note

In Python 2.2, the yield statement was only allowed when the generators feature has been enabled. This __future__ import statement was used to enable the feature:

from __future__ import generators

Voir aussi

PEP 255: Générateurs simples
La proposition d’ajouter à Python des générateurs et l’instruction yield.
PEP 342 – Coroutines via des générateurs améliorés
The proposal that, among other generator enhancements, proposed allowing yield to appear inside a tryfinally block.

6.9. L’instruction raise

raise_stmt ::=  "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is active in the current scope, a TypeError exception is raised indicating that this is an error (if running under IDLE, a Queue.Empty exception is raised instead).

Otherwise, raise evaluates the expressions to get three objects, using None as the value of omitted expressions. The first two objects are used to determine the type and value of the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value, and the second object must be None.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is used as the argument list for the class constructor; if it is None, an empty argument list is used, and any other object is treated as a single argument to the constructor. The instance so created by calling the constructor is used as the exception value.

If a third object is present and not None, it must be a traceback object (see section Hiérarchie des types standards), and it is substituted instead of the current location as the place where the exception occurred. If the third object is present and not a traceback object or None, a TypeError exception is raised. The three-expression form of raise is useful to re-raise an exception transparently in an except clause, but raise with no expressions should be preferred if the exception to be re-raised was the most recently active exception in the current scope.

Des informations complémentaires sur les exceptions sont disponibles dans la section Exceptions et sur la gestion des exceptions dans la section L’instruction try.

6.10. L’instruction break

break_stmt ::=  "break"

Une instruction break ne peut apparaître qu’à l’intérieur d’une boucle for ou while, mais pas dans une définition de fonction ou de classe à l’intérieur de cette boucle.

Elle termine la boucle la plus imbriquée, shuntant l’éventuelle clause else de la boucle.

Si une boucle for est terminée par un break, la cible qui contrôle la boucle garde sa valeur.

Quand break passe le contrôle en dehors d’une instruction try qui comporte une clause finally, cette clause finally est exécutée avant de quitter la boucle.

6.11. L’instruction continue

continue_stmt ::=  "continue"

L’instruction continue ne peut apparaître qu’à l’intérieur d’une boucle for ou while, mais pas dans une définition de fonction ou de classe ni dans une clause finally, à l’intérieur de cette boucle. Elle fait continuer le flot d’exécution au prochain cycle de la boucle la plus imbriquée.

Quand continue passe le contrôle en dehors d’une instruction try qui comporte une clause finally, cette clause finally est exécutée avant de commencer le cycle suivant de la boucle.

6.12. L’instruction import

import_stmt     ::=  "import" module ["as" name] ( "," module ["as" name] )*
                     | "from" relative_module "import" identifier ["as" name]
                     ( "," identifier ["as" name] )*
                     | "from" relative_module "import" "(" identifier ["as" name]
                     ( "," identifier ["as" name] )* [","] ")"
                     | "from" module "import" "*"
module          ::=  (identifier ".")* identifier
relative_module ::=  "."* module | "."+
name            ::=  identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names in the local namespace (of the scope where the import statement occurs). The statement comes in two forms differing on whether it uses the from keyword. The first form (without from) repeats these steps for each identifier in the list. The form with from performs step (1) once, and then performs step (2) repeatedly.

To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain other packages and modules while modules cannot contain other modules or packages. From a file system perspective, packages are directories and modules are files.

Once the name of the module is known (unless otherwise specified, the term « module » will refer to both packages and modules), searching for the module or package can begin. The first place checked is sys.modules, the cache of all modules that have been imported previously. If the module is found there then it is used in step (2) of import.

If the module is not found in the cache, then sys.meta_path is searched (the specification for sys.meta_path can be found in PEP 302). The object is a list of finder objects which are queried in order as to whether they know how to load the module by calling their find_module() method with the name of the module. If the module happens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to find_module() is given as the value of the __path__ attribute from the parent package (everything up to the last dot in the name of the module being imported). If a finder can find the module it returns a loader (discussed later) or returns None.

If none of the finders on sys.meta_path are able to find the module then some implicitly defined finders are queried. Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one that handles sys.path_hooks, sys.path_importer_cache, and sys.path.

The implicit finder searches for the requested module in the « paths » specified in one of two places (« paths » do not have to be file system paths). If the module being imported is supposed to be contained within a package then the second argument passed to find_module(), __path__ on the parent package, is used as the source of paths. If the module is not contained in a package then sys.path is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at sys.path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder cached then sys.path_hooks is searched by calling each object in the list with a single argument of the path, returning a finder or raises ImportError. If a finder is returned then it is cached in sys.path_importer_cache and then used for that path entry. If no finder can be found but the path exists then a value of None is stored in sys.path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individual files should be used for that path. If the path does not exist then a finder which always returns None is placed in the cache for the path.

If no finder can find the module then ImportError is raised. Otherwise some finder returned a loader whose load_module() method is called with the name of the module to load (see PEP 302 for the original definition of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in sys.modules (a possibility if the loader is called outside of the import machinery) then it is to use that module for initialization and not a new module. But if the module does not exist in sys.modules then it is to be added to that dict before initialization begins. If an error occurs during loading of the module and it was added to sys.modules it is to be removed from the dict. If an error occurs but the module was already in sys.modules it is left in the dict.

The loader must set several attributes on the module. __name__ is to be set to the name of the module. __file__ is to be the « path » to the file unless the module is built-in (and thus listed in sys.builtin_module_names) in which case the attribute is not set. If what is being imported is a package then __path__ is to be set to a list of paths to be searched when looking for modules and packages contained within the package being imported. __package__ is optional but should be set to the name of package that contains the module or package (the empty string is used for module not contained in a package). __loader__ is also optional but should be set to the loader object that is loading the module.

If an error occurs during loading then the loader raises ImportError if some other exception is not already being propagated. Otherwise the loader returns the module that was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local namespace to the module object, and then goes on to import the next identifier, if any. If the module name is followed by as, the name following as is used as the local name for the module.

The from form does not bind the module name: it goes through the list of identifiers, looks each one of them up in the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first form of import, an alternate local name can be supplied by specifying « as localname ». If a name is not found, ImportError is raised. If the list of identifiers is replaced by a star ('*'), all public names defined in the module are bound in the local namespace of the import statement..

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ('_'). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The from form with * may only occur in a module scope. If the wild card form of import — import * — is used in a function and the function contains or is a nested block with free variables, the compiler will raise a SyntaxError.

Quand vous spécifiez les modules à importer, vous n’avez pas besoin de spécifier les noms absolus des modules. Quand un module ou un paquet est contenu dans un autre paquet, il est possible d’effectuer une importation relative à l’intérieur du même paquet de plus haut niveau sans avoir à mentionner le nom du paquet. En utilisant des points en entête du module ou du paquet spécifié après from, vous pouvez spécifier combien de niveaux vous souhaitez remonter dans la hiérarchie du paquet courant sans spécifier de nom exact. Un seul point en tête signifie le paquet courant où se situe le module qui effectue l’importation. Deux points signifient de remonter d’un niveau. Trois points, remonter de deux niveaux et ainsi de suite. Ainsi, si vous exécutez from . import mod dans un module du paquet pkg, vous importez finalement pkg.mod. Et si vous exécutez from ..souspkg2 import mod depuis pkg.souspkg1, vous importez finalement pkg.souspkg2.mod. La spécification des importations relatives se situe dans la PEP 328.

importlib.import_module() is provided to support applications that determine which modules need to be loaded dynamically.

6.12.1. L’instruction future

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python. The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

future_statement ::=  "from" "__future__" "import" feature ["as" name]
                      ("," feature ["as" name])*
                      | "from" "__future__" "import" "(" feature ["as" name]
                      ("," feature ["as" name])* [","] ")"
feature          ::=  identifier
name             ::=  identifier

Une instruction future doit apparaître en haut du module. Les seules lignes autorisées avant une instruction future sont :

  • la chaîne de documentation du module (si elle existe),
  • des commentaires,
  • des lignes vides et
  • d’autres instructions future.

The features recognized by Python 2.6 are unicode_literals, print_function, absolute_import, division, generators, nested_scopes and with_statement. generators, with_statement, nested_scopes are redundant in Python version 2.6 and above because they are always enabled.

Une instruction future est reconnue et traitée spécialement au moment de la compilation : les modifications à la sémantique des constructions de base sont souvent implémentées en générant un code différent. Il peut même arriver qu’une nouvelle fonctionnalité ait une syntaxe incompatible (tel qu’un nouveau mot réservé) ; dans ce cas, le compilateur a besoin d’analyser le module de manière différente. De telles décisions ne peuvent pas être différées au moment de l’exécution.

Pour une version donnée, le compilateur sait quelles fonctionnalités ont été définies et lève une erreur à la compilation si une instruction future contient une fonctionnalité qui lui est inconnue.

La sémantique à l’exécution est la même que pour toute autre instruction d’importation : il existe un module standard __future__, décrit plus loin, qui est importé comme les autres au moment ou l’instruction future est exécutée.

La sémantique particulière à l’exécution dépend des fonctionnalités apportées par l’instruction future.

Notez que l’instruction suivante est tout à fait normale :

import __future__ [as name]

Ce n’est pas une instruction future ; c’est une instruction d’importation ordinaire qui n’a aucune sémantique particulière ou restriction de syntaxe.

Code compiled by an exec statement or calls to the built-in functions compile() and execfile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can, starting with Python 2.2 be controlled by optional arguments to compile() — see the documentation of that function for details.

Une instruction future entrée à l’invite de l’interpréteur interactif est effective pour le reste de la session de l’interpréteur. Si l’interpréteur est démarré avec l’option -i, qu’un nom de script est passé pour être exécuté et que ce script contient une instruction future, elle est effective pour la session interactive qui démarre après l’exécution du script.

Voir aussi

PEP 236 – retour vers le __future__
La proposition originale pour le mécanisme de __future__.

6.13. L’instruction global

global_stmt ::=  "global" identifier ("," identifier)*

L’instruction global est une déclaration qui couvre l’ensemble du bloc de code courant. Elle signifie que les noms (identifier dans la grammaire ci-dessus) listés doivent être interprétés comme globaux. Il est impossible d’assigner une variable globale sans global, mais rappelez-vous que les variables libres peuvent faire référence à des variables globales sans avoir été déclarées en tant que telles.

Les noms listés dans l’instruction global ne doivent pas être utilisés, dans le même bloc de code, avant l’instruction global.

Names listed in a global statement must not be defined as formal parameters or in a for loop control target, class definition, function definition, or import statement.

CPython implementation detail: The current implementation does not enforce the latter two restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in an exec statement does not affect the code block containing the exec statement, and code contained in an exec statement is unaffected by global statements in the code containing the exec statement. The same applies to the eval(), execfile() and compile() functions.

6.14. The exec statement

exec_stmt ::=  "exec" or_expr ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a Unicode string, a Latin-1 encoded string, an open file object, a code object, or a tuple. If it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs). [1] If it is an open file, the file is parsed until EOF and executed. If it is a code object, it is simply executed. For the interpretation of a tuple, see below. In all cases, the code that’s executed is expected to be valid as file input (see section Fichier d’entrée). Be aware that the return and yield statements may not be used outside of function definitions even within the context of code passed to the exec statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression after in is specified, it should be a dictionary, which will be used for both the global and the local variables. If two expressions are given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object. Remember that at module level, globals and locals are the same dictionary. If two separate objects are given as globals and locals, the code will be executed as if it were embedded in a class definition.

The first expression may also be a tuple of length 2 or 3. In this case, the optional parts must be omitted. The form exec(expr, globals) is equivalent to exec expr in globals, while the form exec(expr, globals, locals) is equivalent to exec expr in globals, locals. The tuple form of exec provides compatibility with Python 3, where exec is a function rather than a statement.

Modifié dans la version 2.4: Formerly, locals was required to be a dictionary.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding to variable names set by the executed code. For example, the current implementation may add a reference to the dictionary of the built-in module __builtin__ under the key __builtins__ (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval(). The built-in functions globals() and locals() return the current global and local dictionary, respectively, which may be useful to pass around for use by exec.

Notes

[1]Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal newlines mode to convert Windows or Mac-style newlines.