2. Analyse lexicale

Un programme Python est lu par un analyseur syntaxique (parser en anglais). En entrée de cet analyseur syntaxique, nous trouvons des lexèmes (tokens en anglais), produits par un analyseur lexical. Ce chapitre décrit comment l’analyseur lexical découpe le fichier en lexèmes.

Python uses the 7-bit ASCII character set for program text.

Nouveau dans la version 2.3: An encoding declaration can be used to indicate that string literals and comments use an encoding different from ASCII.

For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the source character set and the run-time character set.

2.1. Structure des lignes

Un programme en Python est divisé en lignes logiques.

2.1.1. Lignes logiques

La fin d’une ligne logique est représentée par le lexème NEWLINE. Les instructions ne peuvent pas traverser les limites des lignes logiques, sauf quand NEWLINE est autorisé par la syntaxe (par exemple, entre les instructions des instructions composées). Une ligne logique est constituée d’une ou plusieurs lignes physiques en fonction des règles, explicites ou implicites, de continuation de ligne.

2.1.2. Lignes physiques

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit terminator for the final physical line.

Lorsque vous encapsulez Python, les chaînes de code source doivent être passées à l’API Python en utilisant les conventions du C standard pour les caractères de fin de ligne : le caractère \n, dont le code ASCII est LF.

2.1.3. Commentaires

Un commentaire commence par le caractère croisillon (#, hash en anglais et qui ressemble au symbole musical dièse, c’est pourquoi il est souvent improprement appelé caractère dièse) situé en dehors d’une chaine de caractères littérale et se termine à la fin de la ligne physique. Un commentaire signifie la fin de la ligne logique à moins qu’une règle de continuation de ligne implicite ne s’applique. Les commentaires sont ignorés au niveau syntaxique, ce ne sont pas des lexèmes.

2.1.4. Déclaration d’encodage

Si un commentaire placé sur la première ou deuxième ligne du script Python correspond à l’expression rationnelle coding[=:]\s*([-\w.]+), ce commentaire est analysé comme une déclaration d’encodage ; le premier groupe de cette expression désigne l’encodage du fichier source. Cette déclaration d’encodage doit être seule sur sa ligne et, si elle est sur la deuxième ligne, la première ligne doit aussi être une ligne composée uniquement d’un commentaire. Les formes recommandées pour l’expression de l’encodage sont :

# -*- coding: <encoding-name> -*-

qui est reconnue aussi par GNU Emacs et :

# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark ('\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts.

2.1.5. Continuation de ligne explicite

Deux lignes physiques, ou plus, peuvent être jointes pour former une seule ligne logique en utilisant la barre oblique inversée (\) selon la règle suivante : quand la ligne physique se termine par une barre oblique inversée qui ne fait pas partie d’une chaine de caractères ou d’un commentaire, la ligne immédiatement suivante lui est adjointe pour former une seule ligne logique, en supprimant la barre oblique inversée et le caractère de fin de ligne. Par exemple :

if 1900 < year < 2100 and 1 <= month <= 12 \
   and 1 <= day <= 31 and 0 <= hour < 24 \
   and 0 <= minute < 60 and 0 <= second < 60:   # Looks like a valid date
        return 1

Une ligne que se termine par une barre oblique inversée ne peut pas avoir de commentaire. La barre oblique inversée ne permet pas de continuer un commentaire. La barre oblique inversée ne permet pas de continuer un lexème, sauf s’il s’agit d’une chaîne de caractères (par exemple, les lexèmes autres que les chaînes de caractères ne peuvent pas être répartis sur plusieurs lignes en utilisant une barre oblique inversée). La barre oblique inversée n’est pas autorisée ailleurs sur la ligne, en dehors d’une chaîne de caractères.

2.1.6. Continuation de ligne implicite

Les expressions entre parenthèses, crochets ou accolades peuvent être réparties sur plusieurs lignes sans utiliser de barre oblique inversée. Par exemple :

month_names = ['Januari', 'Februari', 'Maart',      # These are the
               'April',   'Mei',      'Juni',       # Dutch names
               'Juli',    'Augustus', 'September',  # for the months
               'Oktober', 'November', 'December']   # of the year

Les lignes continuées implicitement peuvent avoir des commentaires. L’indentation des lignes de continuation n’est pas importante. Une ligne blanche est autorisée comme ligne de continuation. Il ne doit pas y avoir de lexème NEWLINE entre des lignes implicitement continuées. Les lignes continuées implicitement peuvent être utilisées dans des chaînes entre triples guillemets (voir ci-dessous) ; dans ce cas, elles ne peuvent pas avoir de commentaires.

2.1.7. Lignes vierges

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is generated). During interactive input of statements, handling of a blank line may differ depending on the implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8. Indentation

Des espaces ou tabulations au début d’une ligne logique sont utilisées pour connaître le niveau d’indentation de la ligne, qui est ensuite utilisé pour déterminer comment les instructions sont groupées.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Note de compatibilité entre les plateformes : en raison de la nature des éditeurs de texte sur les plateformes non Unix, il n’est pas judicieux d’utiliser un mélange d’espaces et de tabulations pour l’indentation dans un seul fichier source. Il convient également de noter que des plateformes peuvent explicitement limiter le niveau d’indentation maximal.

Un caractère de saut de page peut être présent au début de la ligne ; il est ignoré pour les calculs d’indentation ci-dessus. Les caractères de saut de page se trouvant ailleurs avec les espaces en tête de ligne ont un effet indéfini (par exemple, ils peuvent remettre à zéro le nombre d’espaces).

Les niveaux d’indentation de lignes consécutives sont utilisés pour générer les lexèmes INDENT et DEDENT, en utilisant une pile, de cette façon :

Avant que la première ligne du fichier ne soit lue, un « zéro » est posé sur la pile ; il ne sera plus jamais enlevé. Les nombres empilés sont toujours strictement croissants de bas en haut. Au début de chaque ligne logique, le niveau d’indentation de la ligne est comparé au sommet de la pile. S’ils sont égaux, il ne se passe rien. S’il est plus grand, il est empilé et un lexème INDENT est produit. S’il est plus petit, il doit être l’un des nombres présents dans la pile ; tous les nombres de la pile qui sont plus grands sont retirés et, pour chaque nombre retiré, un lexème DEDENT est produit. À la fin du fichier, un lexème DEDENT est produit pour chaque nombre supérieur à zéro restant sur la pile.

Voici un exemple de code Python correctement indenté (bien que très confus) :

def perm(l):
        # Compute the list of all permutations of l
    if len(l) <= 1:
                  return [l]
    r = []
    for i in range(len(l)):
             s = l[:i] + l[i+1:]
             p = perm(s)
             for x in p:
              r.append(l[i:i+1] + x)
    return r

L’exemple suivant montre plusieurs erreurs d’indentation :

 def perm(l):                       # error: first line indented
for i in range(len(l)):             # error: not indented
    s = l[:i] + l[i+1:]
        p = perm(l[:i] + l[i+1:])   # error: unexpected indent
        for x in p:
                r.append(l[i:i+1] + x)
            return r                # error: inconsistent dedent

En fait, les trois premières erreurs sont détectées par l’analyseur syntaxique ; seule la dernière erreur est trouvée par l’analyseur lexical (l’indentation de return r ne correspond à aucun niveau dans la pile).

2.1.9. Espaces entre lexèmes

Sauf au début d’une ligne logique ou dans les chaînes de caractères, les caractères « blancs » espace, tabulation et saut de page peuvent être utilisés de manière interchangeable pour séparer les lexèmes. Un blanc n’est nécessaire entre deux lexèmes que si leur concaténation pourrait être interprétée comme un lexème différent (par exemple, ab est un lexème, mais a b comporte deux lexèmes).

2.2. Autres lexèmes

Outre NEWLINE, INDENT et DEDENT, il existe les catégories de lexèmes suivantes : identifiants, mots clés, littéraux, opérateurs et délimiteurs. Les blancs (autres que les fins de lignes, vus auparavant) ne sont pas des lexèmes mais servent à délimiter les lexèmes. Quand une ambiguïté existe, le lexème correspond à la plus grande chaîne possible qui forme un lexème licite, en lisant de la gauche vers la droite.

2.3. Identifiants et mots-clés

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier ::=  (letter|"_") (letter | digit | "_")*
letter     ::=  lowercase | uppercase
lowercase  ::=  "a"..."z"
uppercase  ::=  "A"..."Z"
digit      ::=  "0"..."9"

Les identifiants n’ont pas de limite de longueur. La casse est prise en compte.

2.3.1. Mots-clés

Les identifiants suivants sont des mots réservés par le langage et ne peuvent pas être utilisés en tant qu’identifiants normaux. Ils doivent être écrits exactement comme ci-dessous :

and       del       from      not       while
as        elif      global    or        with
assert    else      if        pass      yield
break     except    import    print
class     exec      in        raise
continue  finally   is        return
def       for       lambda    try

Modifié dans la version 2.4: None became a constant and is now recognized by the compiler as a name for the built-in object None. Although it is not a keyword, you cannot assign a different object to it.

Modifié dans la version 2.5: Using as and with as identifiers triggers a warning. To use them as keywords, enable the with_statement future feature .

Modifié dans la version 2.6: as and with are full keywords.

2.3.2. Classes réservées pour les identifiants

Certaines classes d’identifiants (outre les mots-clés) ont une signification particulière. Ces classes se reconnaissent par des caractères de soulignement en tête et en queue d’identifiant :

_*

Not imported by from module import *. The special identifier _ is used in the interactive interpreter to store the result of the last evaluation; it is stored in the __builtin__ module. When not in interactive mode, _ has no special meaning and is not defined. See section L’instruction import.

Note

Le nom _ est souvent utilisé pour internationaliser l’affichage ; reportez-vous à la documentation du module gettext pour plus d’informations sur cette convention.

__*__

Noms définis par le système. Ces noms sont définis par l’interpréteur et son implémentation (y compris la bibliothèque standard). Les noms actuels définis par le système sont abordés dans la section Méthodes spéciales, mais aussi ailleurs. D’autres noms seront probablement définis dans les futures versions de Python. Toute utilisation de noms de la forme __*__, dans n’importe quel contexte, qui n’est pas conforme à ce qu’indique explicitement la documentation, est sujette à des mauvaises surprises sans avertissement.

__*

Noms privés pour une classe. Les noms de cette forme, lorsqu’ils sont utilisés dans le contexte d’une définition de classe, sont réécrits sous une forme modifiée pour éviter les conflits de noms entre les attributs « privés » des classes de base et les classes dérivées. Voir la section Identifiants (noms).

2.4. Littéraux

Les littéraux sont des notations pour indiquer des valeurs constantes de certains types natifs.

2.4.1. String literals

Les chaînes de caractères littérales sont définies par les définitions lexicales suivantes :

stringliteral   ::=  [stringprefix](shortstring | longstring)
stringprefix    ::=  "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"
                     | "b" | "B" | "br" | "Br" | "bR" | "BR"
shortstring     ::=  "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring      ::=  "'''" longstringitem* "'''"
                     | '"""' longstringitem* '"""'
shortstringitem ::=  shortstringchar | escapeseq
longstringitem  ::=  longstringchar | escapeseq
shortstringchar ::=  <any source character except "\" or newline or the quote>
longstringchar  ::=  <any source character except "\">
escapeseq       ::=  "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration; it is ASCII if no encoding declaration is given in the source file; see section Déclaration d’encodage.

In plain English: String literals can be enclosed in matching single quotes (') or double quotes ("). They can also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash itself, or the quote character. String literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called raw strings and use different rules for interpreting backslash escape sequences. A prefix of 'u' or 'U' makes the string a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646. Some additional escape sequences, described below, are available in Unicode strings. A prefix of 'b' or 'B' is ignored in Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted with 2to3). A 'u' or 'b' prefix may be followed by an 'r' prefix.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes in a row terminate the string. (A « quote » is the character used to open the string, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in strings are interpreted according to rules similar to those used by Standard C. The recognized escape sequences are:

Séquence d’échappement

Signification

Notes

\newline

Ignoré

\\

barre oblique inversée (\)

\'

guillemet simple (')

\"

guillemet double (")

\a

cloche ASCII (BEL)

\b

retour arrière ASCII (BS)

\f

saut de page ASCII (FF)

\n

saut de ligne ASCII (LF)

\N{name}

Character named name in the Unicode database (Unicode only)

\r

retour à la ligne ASCII (CR)

\t

tabulation horizontale ASCII (TAB)

\uxxxx

Character with 16-bit hex value xxxx (Unicode only)

(1)

\Uxxxxxxxx

Character with 32-bit hex value xxxxxxxx (Unicode only)

(2)

\v

tabulation verticale ASCII (VT)

\ooo

caractère dont le code est ooo en octal

(3,5)

\xhh

caractère dont le code est ooo en hexadécimal

(4,5)

Notes :

  1. Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

  2. Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).

  3. Comme dans le C Standard, jusqu’à trois chiffres en base huit sont acceptés.

  4. Contrairement au C Standard, il est obligatoire de fournir deux chiffres hexadécimaux.

  5. In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily recognized as broken.) It is also important to note that the escape sequences marked as « (Unicode only) » in the table above fall into the category of unrecognized escapes for non-Unicode string literals.

When an 'r' or 'R' prefix is present, a character following a backslash is included in the string without change, and all backslashes are left in the string. For example, the string literal r"\n" consists of two characters: a backslash and a lowercase 'n'. String quotes can be escaped with a backslash, but the backslash remains in the string; for example, r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid string literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by a newline is interpreted as those two characters as part of the string, not as a line continuation.

When an 'r' or 'R' prefix is used in conjunction with a 'u' or 'U' prefix, then the \uXXXX and \UXXXXXXXX escape sequences are processed while all other backslashes are left in the string. For example, the string literal ur"\u0062\n" consists of three Unicode characters: “LATIN SMALL LETTER B”, “REVERSE SOLIDUS”, and “LATIN SMALL LETTER N”. Backslashes can be escaped with a preceding backslash; however, both remain in the string. As a result, \uXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2. Concaténation de chaînes de caractères

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to "helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]"       # letter or underscore
           "[A-Za-z0-9_]*"   # letter, digit or underscore
          )

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each component (even mixing raw strings and triple quoted strings).

2.4.3. Littéraux numériques

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers. There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Notez que les littéraux numériques ne comportent pas de signe ; une phrase telle que -1 est en fait une expression composée de l’opérateur unitaire - et du littéral 1.

2.4.4. Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger    ::=  integer ("l" | "L")
integer        ::=  decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::=  nonzerodigit digit* | "0"
octinteger     ::=  "0" ("o" | "O") octdigit+ | "0" octdigit+
hexinteger     ::=  "0" ("x" | "X") hexdigit+
bininteger     ::=  "0" ("b" | "B") bindigit+
nonzerodigit   ::=  "1"..."9"
octdigit       ::=  "0"..."7"
bindigit       ::=  "0" | "1"
hexdigit       ::=  digit | "a"..."f" | "A"..."F"

Although both lower case 'l' and upper case 'L' are allowed as suffix for long integers, it is strongly recommended to always use 'L', since the letter 'l' looks too much like the digit '1'.

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arithmetic) are accepted as if they were long integers instead. 1 There is no limit for long integer literals apart from what can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7     2147483647                        0177
3L    79228162514264337593543950336L    0377L   0x100000000L
      79228162514264337593543950336             0xdeadbeef

2.4.5. Nombres à virgule flottante littéraux

Les nombres à virgule flottante littéraux sont décrits par les définitions lexicales suivantes :

floatnumber   ::=  pointfloat | exponentfloat
pointfloat    ::=  [intpart] fraction | intpart "."
exponentfloat ::=  (intpart | pointfloat) exponent
intpart       ::=  digit+
fraction      ::=  "." digit+
exponent      ::=  ("e" | "E") ["+" | "-"] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using radix 10. For example, 077e010 is legal, and denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. Some examples of floating point literals:

3.14    10.    .001    1e100    3.14e-10    0e0

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator - and the literal 1.

2.4.6. Imaginaires littéraux

Les nombres imaginaires sont décrits par les définitions lexicales suivantes :

imagnumber ::=  (floatnumber | intpart) ("j" | "J")

Un littéral imaginaire produit un nombre complexe dont la partie réelle est 0.0. Les nombres complexes sont représentés comme une paire de nombres à virgule flottante et possèdent les mêmes restrictions concernant les plages autorisées. Pour créer un nombre complexe dont la partie réelle est non nulle, ajoutez un nombre à virgule flottante à votre littéral imaginaire. Par exemple (3+4j). Voici d’autres exemples de littéraux imaginaires :

3.14j   10.j    10j     .001j   1e100j  3.14e-10j

2.5. Opérateurs

Les lexèmes suivants sont des opérateurs :

+       -       *       **      /       //      %
<<      >>      &       |       ^       ~
<       >       <=      >=      ==      !=      <>

The comparison operators <> and != are alternate spellings of the same operator. != is the preferred spelling; <> is obsolescent.

2.6. Délimiteurs

Les lexèmes suivants servent de délimiteurs dans la grammaire :

(       )       [       ]       {       }      @
,       :       .       `       =       ;
+=      -=      *=      /=      //=     %=
&=      |=      ^=      >>=     <<=     **=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also perform an operation.

Les caractères ASCII suivants ont une signification spéciale en tant que partie d’autres lexèmes ou ont une signification particulière pour l’analyseur lexical :

'       "       #       \

Les caractères ASCII suivants ne sont pas utilisés en Python. S’ils apparaissent en dehors de chaines littérales ou de commentaires, ils produisent une erreur :

$       ?

Notes

1

In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting 4294967296 from their unsigned value.