signal — Define manipuladores para eventos assíncronos

Código-fonte: Lib/signal.py


Este módulo fornece mecanismos para usar signal handlers em Python

Regras gerais

A função signal.signal() permite definir manipuladores personalizados a serem executados quando um sinal é recebido. Um pequeno número de manipuladores padrão são instalados: SIGPIPE é ignorado (então erros de gravação em encadeamentos e sockets podem ser relatados como exceções comuns do Python) e SIGINT é traduzido em uma exceção KeyboardInterrupt se o processo pai não a tiver alterado.

Um manipulador para um sinal específico, uma vez definido, permanece instalado até ser explicitamente redefinido (o Python emula a interface de estilo BSD independentemente da implementação subjacente), com exceção do manipulador para SIGCHLD, que segue a implementação subjacente.

Em plataformas WebAssembly, os sinais são emulados e, portanto, se comportam de forma diferente. Várias funções e sinais não estão disponíveis nessas plataformas.

Execução de manipuladores de sinais Python

Um manipulador de sinal Python não é executado dentro do manipulador de sinal de baixo nível (C). Em vez disso, o manipulador de sinal de baixo nível define um sinalizador que diz à máquina virtual para executar o manipulador de sinal Python correspondente em um ponto posterior (por exemplo, na próxima instrução bytecode). Isso tem consequências:

  • Faz pouco sentido capturar erros síncronos como SIGFPE ou SIGSEGV que são causados ​​por uma operação inválida no código C. O Python retornará do manipulador de sinais para o código C, o que provavelmente levantará o mesmo sinal novamente, fazendo com que o Python aparentemente trave. Do Python 3.3 em diante, você pode usar o módulo faulthandler para relatar erros síncronos.

  • Um cálculo de longa duração implementado puramente em C (como correspondência de expressão regular em um grande corpo de texto) pode ser executado ininterruptamente por um período de tempo arbitrário, independentemente de quaisquer sinais recebidos. Os manipuladores de sinal do Python serão chamados quando o cálculo terminar.

  • Se o manipulador levantar uma exceção, ela será levantada “do nada” no thread principal. Veja a nota abaixo para uma discussão.

Sinais e threads

Os manipuladores de sinais Python são sempre executados no thread Python principal do interpretador principal, mesmo se o sinal foi recebido em outro thread. Isso significa que os sinais não podem ser usados ​​como um meio de comunicação entre threads. Você pode usar as primitivas de sincronização do módulo threading em vez disso.

Além disso, somente a thread principal do interpretador principal tem permissão para definir um novo manipulador de sinal.

Conteúdo do módulo

Alterado na versão 3.5: As constantes relacionadas a sinal (SIG*), manipulador (SIG_DFL, SIG_IGN) e sigmask (SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK) listadas abaixo foram transformadas em enums (Signals, Handlers e Sigmasks respectivamente). As funções getsignal(), pthread_sigmask(), sigpending() e sigwait() retornam enums legíveis por humanos como objetos Signals.

O módulo de sinal define três enumerações:

class signal.Signals

Coleção enum.IntEnum de constantes SIG* e constantes CTRL_*.

Adicionado na versão 3.5.

class signal.Handlers

Coleção enum.IntEnum das constantes SIG_DFL e SIG_IGN.

Adicionado na versão 3.5.

class signal.Sigmasks

Coleção enum.IntEnum das constantes SIG_BLOCK, SIG_UNBLOCK e SIG_SETMASK.

Availability: Unix.

Veja a página man sigprocmask(2) e pthread_sigmask(3) para mais informações.

Adicionado na versão 3.5.

As variáveis ​​definidas no módulo signal são:

signal.SIG_DFL

Esta é uma das duas opções de manipulação de sinal padrão; ela simplesmente executará a função padrão para o sinal. Por exemplo, na maioria dos sistemas, a ação padrão para SIGQUIT é despejar o núcleo e sair, enquanto a ação padrão para SIGCHLD é simplesmente ignorá-lo.

signal.SIG_IGN

Este é outro manipulador de sinal padrão, que simplesmente ignorará o sinal fornecido.

signal.SIGABRT

Sinal de abortar de abort(3).

signal.SIGALRM

Sinal do temporizador de alarm(2).

Availability: Unix.

signal.SIGBREAK

Interrupção do teclado (CTRL + BREAK).

Availability: Windows.

signal.SIGBUS

Erro de barramento (acesso incorreto à memória).

Availability: Unix.

signal.SIGCHLD

Processo filho interrompido ou encerrado.

Availability: Unix.

signal.SIGCLD

Apelido para SIGCHLD.

Availability: not macOS.

signal.SIGCONT

Continua o processo se ele estiver parado no momento

Availability: Unix.

signal.SIGFPE

Exceção de ponto flutuante. Por exemplo, divisão por zero.

Ver também

ZeroDivisionError é levatanda quando o segundo argumento de uma operação de divisão ou módulo é zero.

signal.SIGHUP

Travamento detectado no terminal de controle ou morte do processo de controle.

Availability: Unix.

signal.SIGILL

Instrução ilegal.

signal.SIGINT

Interrupção do teclado (CTRL + C).

A ação padrão é levantar KeyboardInterrupt.

signal.SIGKILL

Sinal de matar.

Ele não pode ser capturado, bloqueado ou ignorado.

Availability: Unix.

signal.SIGPIPE

Encadeamento quebrado: escreve no encadeamento sem leitores.

A ação padrão é ignorar o sinal.

Availability: Unix.

signal.SIGSEGV

Falha de segmentação: referência de memória inválida.

signal.SIGSTKFLT

Falha de pilha no coprocessador. O kernel Linux não levanta esse sinal: ele só pode ser emitido no espaço do usuário.

Availability: Linux.

Em arquiteturas onde o sinal está disponível. Veja a página man signal(7) para mais informações.

Adicionado na versão 3.11.

signal.SIGTERM

Sinal de encerramento.

signal.SIGUSR1

Sinal definido pelo usuário 1.

Availability: Unix.

signal.SIGUSR2

Sinal definido pelo usuário 2.

Availability: Unix.

signal.SIGWINCH

Sinal de redimensionamento do Windows.

Availability: Unix.

SIG*

All the signal numbers are defined symbolically. For example, the hangup signal is defined as signal.SIGHUP; the variable names are identical to the names used in C programs, as found in <signal.h>. The Unix man page for ‘signal()’ lists the existing signals (on some systems this is signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal names; only those names defined by the system are defined by this module.

signal.CTRL_C_EVENT

The signal corresponding to the Ctrl+C keystroke event. This signal can only be used with os.kill().

Availability: Windows.

Adicionado na versão 3.2.

signal.CTRL_BREAK_EVENT

The signal corresponding to the Ctrl+Break keystroke event. This signal can only be used with os.kill().

Availability: Windows.

Adicionado na versão 3.2.

signal.NSIG

One more than the number of the highest signal number. Use valid_signals() to get valid signal numbers.

signal.ITIMER_REAL

Decrements interval timer in real time, and delivers SIGALRM upon expiration.

signal.ITIMER_VIRTUAL

Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expiration.

signal.ITIMER_PROF

Decrements interval timer both when the process executes and when the system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent by the application in user and kernel space. SIGPROF is delivered upon expiration.

signal.SIG_BLOCK

A possible value for the how parameter to pthread_sigmask() indicating that signals are to be blocked.

Adicionado na versão 3.3.

signal.SIG_UNBLOCK

A possible value for the how parameter to pthread_sigmask() indicating that signals are to be unblocked.

Adicionado na versão 3.3.

signal.SIG_SETMASK

A possible value for the how parameter to pthread_sigmask() indicating that the signal mask is to be replaced.

Adicionado na versão 3.3.

The signal module defines one exception:

exception signal.ItimerError

Raised to signal an error from the underlying setitimer() or getitimer() implementation. Expect this error if an invalid interval timer or a negative time is passed to setitimer(). This error is a subtype of OSError.

Adicionado na versão 3.3: This error used to be a subtype of IOError, which is now an alias of OSError.

The signal module defines the following functions:

signal.alarm(time)

If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time seconds. Any previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned value is then the number of seconds before any previously set alarm was to have been delivered. If time is zero, no alarm is scheduled, and any scheduled alarm is canceled. If the return value is zero, no alarm is currently scheduled.

Availability: Unix.

See the man page alarm(2) for further information.

signal.getsignal(signalnum)

Return the current signal handler for the signal signalnum. The returned value may be a callable Python object, or one of the special values signal.SIG_IGN, signal.SIG_DFL or None. Here, signal.SIG_IGN means that the signal was previously ignored, signal.SIG_DFL means that the default way of handling the signal was previously in use, and None means that the previous signal handler was not installed from Python.

signal.strsignal(signalnum)

Returns the description of signal signalnum, such as “Interrupt” for SIGINT. Returns None if signalnum has no description. Raises ValueError if signalnum is invalid.

Adicionado na versão 3.8.

signal.valid_signals()

Return the set of valid signal numbers on this platform. This can be less than range(1, NSIG) if some signals are reserved by the system for internal use.

Adicionado na versão 3.8.

signal.pause()

Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.

Availability: Unix.

See the man page signal(2) for further information.

See also sigwait(), sigwaitinfo(), sigtimedwait() and sigpending().

signal.raise_signal(signum)

Sends a signal to the calling process. Returns nothing.

Adicionado na versão 3.8.

signal.pidfd_send_signal(pidfd, sig, siginfo=None, flags=0)

Send signal sig to the process referred to by file descriptor pidfd. Python does not currently support the siginfo parameter; it must be None. The flags argument is provided for future extensions; no flag values are currently defined.

See the pidfd_send_signal(2) man page for more information.

Availability: Linux >= 5.1, Android >= build-time API level 31

Adicionado na versão 3.9.

signal.pthread_kill(thread_id, signalnum)

Send the signal signalnum to the thread thread_id, another thread in the same process as the caller. The target thread can be executing any code (Python or not). However, if the target thread is executing the Python interpreter, the Python signal handlers will be executed by the main thread of the main interpreter. Therefore, the only point of sending a signal to a particular Python thread would be to force a running system call to fail with InterruptedError.

Utilize a threading.get_ident() ou o atributo ident dos objetos threading.Thread para obter um valor adequado para thread_id.

If signalnum is 0, then no signal is sent, but error checking is still performed; this can be used to check if the target thread is still running.

Levanta um evento de auditoria signal.pthread_kill com os argumentos thread_id, signalnum.

Availability: Unix.

See the man page pthread_kill(3) for further information.

See also os.kill().

Adicionado na versão 3.3.

signal.pthread_sigmask(how, mask)

Fetch and/or change the signal mask of the calling thread. The signal mask is the set of signals whose delivery is currently blocked for the caller. Return the old signal mask as a set of signals.

The behavior of the call is dependent on the value of how, as follows.

  • SIG_BLOCK: The set of blocked signals is the union of the current set and the mask argument.

  • SIG_UNBLOCK: The signals in mask are removed from the current set of blocked signals. It is permissible to attempt to unblock a signal which is not blocked.

  • SIG_SETMASK: The set of blocked signals is set to the mask argument.

mask is a set of signal numbers (e.g. {signal.SIGINT, signal.SIGTERM}). Use valid_signals() for a full mask including all signals.

For example, signal.pthread_sigmask(signal.SIG_BLOCK, []) reads the signal mask of the calling thread.

SIGKILL and SIGSTOP cannot be blocked.

Availability: Unix.

Veja a página man sigprocmask(2) e pthread_sigmask(3) para mais informações.

Veja também pause(), sigpending() e sigwait().

Adicionado na versão 3.3.

signal.setitimer(which, seconds, interval=0.0)

Sets given interval timer (one of signal.ITIMER_REAL, signal.ITIMER_VIRTUAL or signal.ITIMER_PROF) specified by which to fire after seconds (float is accepted, different from alarm()) and after that every interval seconds (if interval is non-zero). The interval timer specified by which can be cleared by setting seconds to zero.

When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the timer being used; signal.ITIMER_REAL will deliver SIGALRM, signal.ITIMER_VIRTUAL sends SIGVTALRM, and signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an ItimerError.

Availability: Unix.

signal.getitimer(which)

Returns current value of a given interval timer specified by which.

Availability: Unix.

signal.set_wakeup_fd(fd, *, warn_on_full_buffer=True)

Set the wakeup file descriptor to fd. When a signal is received, the signal number is written as a single byte into the fd. This can be used by a library to wakeup a poll or select call, allowing the signal to be fully processed.

The old wakeup fd is returned (or -1 if file descriptor wakeup was not enabled). If fd is -1, file descriptor wakeup is disabled. If not -1, fd must be non-blocking. It is up to the library to remove any bytes from fd before calling poll or select again.

When threads are enabled, this function can only be called from the main thread of the main interpreter; attempting to call it from other threads will cause a ValueError exception to be raised.

There are two common ways to use this function. In both approaches, you use the fd to wake up when a signal arrives, but then they differ in how they determine which signal or signals have arrived.

In the first approach, we read the data out of the fd’s buffer, and the byte values give you the signal numbers. This is simple, but in rare cases it can run into a problem: generally the fd will have a limited amount of buffer space, and if too many signals arrive too quickly, then the buffer may become full, and some signals may be lost. If you use this approach, then you should set warn_on_full_buffer=True, which will at least cause a warning to be printed to stderr when signals are lost.

In the second approach, we use the wakeup fd only for wakeups, and ignore the actual byte values. In this case, all we care about is whether the fd’s buffer is empty or non-empty; a full buffer doesn’t indicate a problem at all. If you use this approach, then you should set warn_on_full_buffer=False, so that your users are not confused by spurious warning messages.

Alterado na versão 3.5: No Windows, a função agora também suporta manipuladores de socket.

Alterado na versão 3.7: Added warn_on_full_buffer parameter.

signal.siginterrupt(signalnum, flag)

Change system call restart behaviour: if flag is False, system calls will be restarted when interrupted by signal signalnum, otherwise system calls will be interrupted. Returns nothing.

Availability: Unix.

See the man page siginterrupt(3) for further information.

Note that installing a signal handler with signal() will reset the restart behaviour to interruptible by implicitly calling siginterrupt() with a true flag value for the given signal.

signal.signal(signalnum, handler)

Set the handler for signal signalnum to the function handler. handler can be a callable Python object taking two arguments (see below), or one of the special values signal.SIG_IGN or signal.SIG_DFL. The previous signal handler will be returned (see the description of getsignal() above). (See the Unix man page signal(2) for further information.)

When threads are enabled, this function can only be called from the main thread of the main interpreter; attempting to call it from other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame object; for a description of frame objects, see the description in the type hierarchy or see the attribute descriptions in the inspect module).

On Windows, signal() can only be called with SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM, or SIGBREAK. A ValueError will be raised in any other case. Note that not all systems define the same set of signal names; an AttributeError will be raised if a signal name is not defined as SIG* module level constant.

signal.sigpending()

Examine the set of signals that are pending for delivery to the calling thread (i.e., the signals which have been raised while blocked). Return the set of the pending signals.

Availability: Unix.

See the man page sigpending(2) for further information.

Veja também pause(), pthread_sigmask() e sigwait().

Adicionado na versão 3.3.

signal.sigwait(sigset)

Suspend execution of the calling thread until the delivery of one of the signals specified in the signal set sigset. The function accepts the signal (removes it from the pending list of signals), and returns the signal number.

Availability: Unix.

See the man page sigwait(3) for further information.

See also pause(), pthread_sigmask(), sigpending(), sigwaitinfo() and sigtimedwait().

Adicionado na versão 3.3.

signal.sigwaitinfo(sigset)

Suspend execution of the calling thread until the delivery of one of the signals specified in the signal set sigset. The function accepts the signal and removes it from the pending list of signals. If one of the signals in sigset is already pending for the calling thread, the function will return immediately with information about that signal. The signal handler is not called for the delivered signal. The function raises an InterruptedError if it is interrupted by a signal that is not in sigset.

The return value is an object representing the data contained in the siginfo_t structure, namely: si_signo, si_code, si_errno, si_pid, si_uid, si_status, si_band.

Availability: Unix.

See the man page sigwaitinfo(2) for further information.

See also pause(), sigwait() and sigtimedwait().

Adicionado na versão 3.3.

Alterado na versão 3.5: The function is now retried if interrupted by a signal not in sigset and the signal handler does not raise an exception (see PEP 475 for the rationale).

signal.sigtimedwait(sigset, timeout)

Like sigwaitinfo(), but takes an additional timeout argument specifying a timeout. If timeout is specified as 0, a poll is performed. Returns None if a timeout occurs.

Availability: Unix.

See the man page sigtimedwait(2) for further information.

See also pause(), sigwait() and sigwaitinfo().

Adicionado na versão 3.3.

Alterado na versão 3.5: The function is now retried with the recomputed timeout if interrupted by a signal not in sigset and the signal handler does not raise an exception (see PEP 475 for the rationale).

Exemplos

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to open a file; this is useful if the file is for a serial device that may not be turned on, which would normally cause the os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
    signame = signal.Signals(signum).name
    print(f'Signal handler called with signal {signame} ({signum})')
    raise OSError("Couldn't open device!")

# Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

# This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)

signal.alarm(0)          # Disable the alarm

Note on SIGPIPE

Piping output of your program to tools like head(1) will cause a SIGPIPE signal to be sent to your process when the receiver of its standard output closes early. This results in an exception like BrokenPipeError: [Errno 32] Broken pipe. To handle this case, wrap your entry point to catch this exception as follows:

import os
import sys

def main():
    try:
        # simulate large output (your code replaces this loop)
        for x in range(10000):
            print("y")
        # flush output here to force SIGPIPE to be triggered
        # while inside this try block.
        sys.stdout.flush()
    except BrokenPipeError:
        # Python flushes standard streams on exit; redirect remaining output
        # to devnull to avoid another BrokenPipeError at shutdown
        devnull = os.open(os.devnull, os.O_WRONLY)
        os.dup2(devnull, sys.stdout.fileno())
        sys.exit(1)  # Python exits with error code 1 on EPIPE

if __name__ == '__main__':
    main()

Do not set SIGPIPE’s disposition to SIG_DFL in order to avoid BrokenPipeError. Doing that would cause your program to exit unexpectedly whenever any socket connection is interrupted while your program is still writing to it.

Note on Signal Handlers and Exceptions

If a signal handler raises an exception, the exception will be propagated to the main thread and may be raised after any bytecode instruction. Most notably, a KeyboardInterrupt may appear at any point during execution. Most Python code, including the standard library, cannot be made robust against this, and so a KeyboardInterrupt (or any other exception resulting from a signal handler) may on rare occasions put the program in an unexpected state.

To illustrate this issue, consider the following code:

class SpamContext:
    def __init__(self):
        self.lock = threading.Lock()

    def __enter__(self):
        # If KeyboardInterrupt occurs here, everything is fine
        self.lock.acquire()
        # If KeyboardInterrupt occurs here, __exit__ will not be called
        ...
        # KeyboardInterrupt could occur just before the function returns

    def __exit__(self, exc_type, exc_val, exc_tb):
        ...
        self.lock.release()

For many programs, especially those that merely want to exit on KeyboardInterrupt, this is not a problem, but applications that are complex or require high reliability should avoid raising exceptions from signal handlers. They should also avoid catching KeyboardInterrupt as a means of gracefully shutting down. Instead, they should install their own SIGINT handler. Below is an example of an HTTP server that avoids KeyboardInterrupt:

import signal
import socket
from selectors import DefaultSelector, EVENT_READ
from http.server import HTTPServer, SimpleHTTPRequestHandler

interrupt_read, interrupt_write = socket.socketpair()

def handler(signum, frame):
    print('Signal handler called with signal', signum)
    interrupt_write.send(b'\0')
signal.signal(signal.SIGINT, handler)

def serve_forever(httpd):
    sel = DefaultSelector()
    sel.register(interrupt_read, EVENT_READ)
    sel.register(httpd, EVENT_READ)

    while True:
        for key, _ in sel.select():
            if key.fileobj == interrupt_read:
                interrupt_read.recv(1)
                return
            if key.fileobj == httpd:
                httpd.handle_request()

print("Serving on port 8000")
httpd = HTTPServer(('', 8000), SimpleHTTPRequestHandler)
serve_forever(httpd)
print("Shutdown...")