random --- 生成伪随机数

源码: Lib/random.py


该模块实现了各种分布的伪随机数生成器。

对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。

在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。

几乎所有模块函数都依赖于基本函数 random() ,它在半开放区间 [0.0,1.0) 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度浮点数,周期为 2**19937-1 ,其在 C 中的底层实现既快又线程安全。 Mersenne Twister 是现存最广泛测试的随机数发生器之一。 但是,因为完全确定性,它不适用于所有目的,并且完全不适合加密目的。

这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。

如果你想使用自己设计的不同基础生成器,类 Random 也可以作为子类:在这种情况下,重载 random()seed()getstate() 以及 setstate() 方法。可选地,新生成器可以提供 getrandbits() 方法——这允许 randrange() 在任意大的范围内产生选择。

random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。

警告

不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。

也參考

M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.

Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。

簿记功能

random.seed(a=None, version=2)

初始化随机数生成器。

如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。

如果 a 是 int 类型,则直接使用。

对于版本2(默认的),strbytesbytearray 对象转换为 int 并使用它的所有位。

对于版本1(用于从旧版本的Python再现随机序列),用于 strbytes 的算法生成更窄的种子范围。

3.2 版更變: 已移至版本2方案,该方案使用字符串种子中的所有位。

3.9 版後已棄用: 在将来,seed 必须是下列类型之一: NoneType, int, float, str, bytesbytearray

random.getstate()

返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。

random.setstate(state)

state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。

用于字节数据的函数

random.randbytes(n)

生成 n 个随机字节。

此方法不可用于生成安全凭据。 那应当使用 secrets.token_bytes()

3.9 版新加入.

整数用函数

random.randrange(stop)
random.randrange(start, stop[, step])

range(start, stop, step) 返回一个随机选择的元素。 这相当于 choice(range(start, stop, step)) ,但实际上并没有构建一个 range 对象。

位置参数模式匹配 range() 。不应使用关键字参数,因为该函数可能以意外的方式使用它们。

3.2 版更變: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像``int(random()*n)``这样的形式,它可以产生稍微不均匀的分布。

random.randint(a, b)

返回随机整数 N 满足 a <= N <= b。相当于 randrange(a, b+1)

random.getrandbits(k)

返回具有 k 个随机比特位的非负 Python 整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可能将其作为 API 的可选部分提供。 在可能的情况下,getrandbits() 会启用 randrange() 来处理任意大的区间。

3.9 版更變: 此方法现在接受零作为 k 的值。

序列用函数

random.choice(seq)

从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError

random.choices(population, weights=None, *, cum_weights=None, k=1)

从*population*中选择替换,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError

如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重``[10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]``。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。

如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weights 和*cum_weights*。

weightscum_weights 可使用 random() 所返回的能与 float 值进行相互运算的任何数字类型(包括 int、float、Fraction 但不包括 Decimal)。 权重为负值的行为未有定义。 如果权重为负值则将引发 ValueError

对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。

3.6 版新加入.

3.9 版更變: 如果所有权重均为负值则将引发 ValueError

random.shuffle(x[, random])

将序列 x 随机打乱位置。

可选参数 random 是一个0参数函数,在 [0.0, 1.0) 中返回随机浮点数;默认情况下,这是函数 random()

要改变一个不可变的序列并返回一个新的打乱列表,请使用``sample(x, k=len(x))``。

请注意,即使对于小的 len(x)x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。

Deprecated since version 3.9, will be removed in version 3.11: 可选形参 random

random.sample(population, k, *, counts=None)

返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。

返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。

总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。

重复的元素可以一个个地直接列出,或使用可选的仅限关键字形参 counts 来指定。 例如,sample(['red', 'blue'], counts=[4, 2], k=5) 等价于 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)

要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60)

如果样本大小大于总体大小,则引发 ValueError

3.9 版更變: 增加了 counts 形参。

3.9 版後已棄用: 在将来,population 必须是一个序列。 set 的实例将不再被支持。 集合必须先转换为 listtuple,最好是固定顺序以使抽样是可重现的。

实值分布

以下函数生成特定的实值分布。如常用数学实践中所使用的那样, 函数参数以分布方程中的相应变量命名;大多数这些方程都可以在任何统计学教材中找到。

random.random()

返回 [0.0, 1.0) 范围内的下一个随机浮点数。

random.uniform(a, b)

返回一个随机浮点数 N ,当 a <= ba <= N <= b ,当 b < ab <= N <= a

取决于等式 a + (b-a) * random() 中的浮点舍入,终点 b 可以包括或不包括在该范围内。

random.triangular(low, high, mode)

返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 modelowhigh 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。

random.betavariate(alpha, beta)

Beta 分布。 参数的条件是 alpha > 0beta > 0。 返回值的范围介于 0 和 1 之间。

random.expovariate(lambd)

指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。

random.gammavariate(alpha, beta)

Gamma 分布。 ( 不是 gamma 函数! ) 参数的条件是 alpha > 0beta > 0

概率分布函数是:

          x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) =  --------------------------------------
            math.gamma(alpha) * beta ** alpha
random.gauss(mu, sigma)

高斯分布。 mu 是平均值,sigma 是标准差。 这比下面定义的 normalvariate() 函数略快。

多线程注意事项:当两个线程同时调用此方法时,它们有可能将获得相同的返回值。 这可以通过三种办法来避免。 1) 让每个线程使用不同的随机数生成器实例。 2) 在所有调用外面加锁。 3) 改用速度较慢但是线程安全的 normalvariate() 函数。

random.lognormvariate(mu, sigma)

对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigmamu 可以是任何值,sigma 必须大于零。

random.normalvariate(mu, sigma)

正态分布。 mu 是平均值,sigma 是标准差。

random.vonmisesvariate(mu, kappa)

冯·米塞斯(von Mises)分布。 mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2*pi 的范围内减小到均匀的随机角度。

random.paretovariate(alpha)

帕累托分布。 alpha 是形状参数。

random.weibullvariate(alpha, beta)

威布尔分布。 alpha 是比例参数,beta 是形状参数。

替代生成器

class random.Random([seed])

。该类实现了 random 模块所用的默认伪随机数生成器。

3.9 版後已棄用: 在将来,seed 必须是下列类型之一: NoneType, int, float, str, bytesbytearray

class random.SystemRandom([seed])

使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate()setstate() 方法如果被调用则引发 NotImplementedError

关于再现性的说明

有时能够重现伪随机数生成器给出的序列是很有用处的。 通过重用一个种子值,只要没有运行多线程,相同的序列就应当可在多次运行中重现。

大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:

  • 如果添加了新的播种方法,则将提供向后兼容的播种机。

  • 当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。

例子

基本示例:

>>> random()                             # Random float:  0.0 <= x < 1.0
0.37444887175646646

>>> uniform(2.5, 10.0)                   # Random float:  2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate(1 / 5)                   # Interval between arrivals averaging 5 seconds
5.148957571865031

>>> randrange(10)                        # Integer from 0 to 9 inclusive
7

>>> randrange(0, 101, 2)                 # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw'])      # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()
>>> shuffle(deck)                        # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4)    # Four samples without replacement
[40, 10, 50, 30]

模拟:

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value:  ten, jack, queen, or king.
>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> dealt.count('tens') / 20
0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
...     return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
...     return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958

statistical bootstrapping 的示例,使用重新采样和替换来估计一个样本的均值的置信区间:

# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
      f'interval from {means[5]:.1f} to {means[94]:.1f}')

使用 重新采样排列测试 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:

# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)

n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
    shuffle(combined)
    new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')

多服务器队列的到达时间和服务交付模拟:

from heapq import heappush, heappop
from random import expovariate, gauss
from statistics import mean, median, stdev

average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3

waits = []
arrival_time = 0.0
servers = [0.0] * num_servers  # time when each server becomes available
for i in range(100_000):
    arrival_time += expovariate(1.0 / average_arrival_interval)
    next_server_available = heappop(servers)
    wait = max(0.0, next_server_available - arrival_time)
    waits.append(wait)
    service_duration = gauss(average_service_time, stdev_service_time)
    service_completed = arrival_time + wait + service_duration
    heappush(servers, service_completed)

print(f'Mean wait: {mean(waits):.1f}.  Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}.  Max wait: {max(waits):.1f}.')

也參考

Statistics for Hackers Jake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、改组和交叉验证。

Economics Simulation Peter Norvig 编写的市场模拟,显示了该模块提供的许多工具和分布的有效使用(高斯、均匀、样本、beta变量、选择、三角和随机范围等)。

A Concrete Introduction to Probability (using Python) Peter Norvig 撰写的教程,涵盖了概率论基础知识,如何编写模拟,以及如何使用 Python 进行数据分析。

例程

默认的 random() 返回在 0.0 ≤ x < 1.0 范围内 2⁻⁵³ 的倍数。 所有这些数值间隔相等并能精确表示为 Python 浮点数。 但是在此间隔上有许多其他可表示浮点数是不可能的选择。 例如,0.05954861408025609 就不是 2⁻⁵³ 的整数倍。

以下规范程序采取了一种不同的方式。 在间隔上的所有浮点数都是可能的选择。 它们的尾数取值来自 2⁵² ≤ 尾数 < 2⁵³ 范围内整数的均匀分布。 指数取值则来自几何分布,其中小于 -53 的指数的出现频率为下一个较大指数的一半。

from random import Random
from math import ldexp

class FullRandom(Random):

    def random(self):
        mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
        exponent = -53
        x = 0
        while not x:
            x = self.getrandbits(32)
            exponent += x.bit_length() - 32
        return ldexp(mantissa, exponent)

该类中所有的 实值分布 都将使用新的方法:

>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544

该规范程序在概念上等效于在 0.0 ≤ x < 1.0 范围内对所有 2⁻¹⁰⁷⁴ 的倍数进行选择的算法。 所有这样的数字间隔都相等,但大多必须向下舍入为最接近的 Python 浮点数表示形式。 (2⁻¹⁰⁷⁴ 这个数值是等于 math.ulp(0.0) 的未经正规化的最小正浮点数。)

也參考

生成伪随机浮点数值 为 Allen B. Downey 所撰写的描述如何生成相比通过 random() 正常生成的数值更细粒度浮点数的论文。