Estruturas comuns de objetos¶
Existe um grande número de estruturas usadas para a definição de tipos objeto para o Python. Esta seção descreve essas estruturas e como são usadas.
Macros e tipos de objetos base¶
Todos os objetos Python por fim compartilham um pequeno número de campos no começo da representação o objeto na memória. Esses são representados pelos tipos PyObject e PyVarObject, que são definidos, por sua vez, pelas expansões de alguns macros também, utilizados, direta ou indiretamente, na definição de todos outros objetos Python. Macros adicionais podem ser encontrados em contagem de referências.
-
type PyObject¶
- Parte da API Limitada. (Somente alguns membros são parte da ABI estável.)
Todos os tipos de objeto são extensões deste tipo. Este é um tipo que contém as informações necessárias para que o Python trate um ponteiro para um objeto como tal. Em uma versão de “lançamento” normal, ele contém apenas a contagem de referências do objeto e um ponteiro para o objeto do tipo correspondente. Nada é declarado como um
PyObject, mas todo ponteiro para um objeto Python pode ser convertido para um PyObject*.Os membros não devem ser acessados diretamente; em vez disso, use macros como
Py_REFCNTePy_TYPE.-
Py_ssize_t ob_refcnt¶
- Parte da ABI Estável.
A contagem de referências do objeto, conforme retornada por
Py_REFCNT. Não use este campo diretamente; em vez disso, use funções e macros comoPy_REFCNT,Py_INCREF()ePy_DecRef().O tipo de campo pode ser diferente de
Py_ssize_t, dependendo da configuração e da plataforma de construção.
-
PyTypeObject *ob_type¶
- Parte da ABI Estável.
O tipo do objeto. Não use este campo diretamente; use
Py_TYPEePy_SET_TYPE()em vez disso.
-
Py_ssize_t ob_refcnt¶
-
type PyVarObject¶
- Parte da API Limitada. (Somente alguns membros são parte da ABI estável.)
Uma extensão de
PyObjectque adiciona o campoob_size. Isso se destina a objetos que possuem alguma noção de comprimento.Assim como com
PyObject, os membros não devem ser acessados diretamente; em vez disso, use macros comoPy_SIZE,Py_REFCNTePy_TYPE.-
Py_ssize_t ob_size¶
- Parte da ABI Estável.
Um campo de tamanho, cujo conteúdo deve ser considerado um detalhe de implementação interna do objeto.
Não utilize este campo diretamente; utilize
Py_SIZEem vez disso.Funções de criação de objetos, como
PyObject_NewVar(), geralmente definem este campo com o tamanho solicitado (número de itens). Após a criação, valores arbitrários podem ser armazenados emob_sizeusandoPy_SET_SIZE.Para obter o comprimento publicamente exposto de um objeto, conforme retornado pela função Python
len(), usePyObject_Length()em vez disso.
-
Py_ssize_t ob_size¶
-
PyObject_HEAD¶
Este é um macro usado ao declarar novos tipos que representam objetos sem comprimento variável. O macro PyObject_HEAD se expande para:
PyObject ob_base;
Veja documentação de
PyObjectacima.
-
PyObject_VAR_HEAD¶
Esta é uma macro usada ao declarar novos tipos que representam objetos com um comprimento que varia de instância para instância. A macro PyObject_VAR_HEAD se expande para:
PyVarObject ob_base;
Veja documentação de
PyVarObjectacima.
-
PyTypeObject PyBaseObject_Type¶
- Parte da ABI Estável.
A classe base de todos os outros objetos, equivalente a
objectem Python.
-
int Py_Is(PyObject *x, PyObject *y)¶
- Parte da ABI Estável desde a versão 3.10.
Testa se o objeto x é o objeto y, o mesmo que
x is yem Python.Adicionado na versão 3.10.
-
int Py_IsNone(PyObject *x)¶
- Parte da ABI Estável desde a versão 3.10.
Test if an object is the
Nonesingleton, the same asx is Nonein Python.Adicionado na versão 3.10.
-
int Py_IsTrue(PyObject *x)¶
- Parte da ABI Estável desde a versão 3.10.
Test if an object is the
Truesingleton, the same asx is Truein Python.Adicionado na versão 3.10.
-
int Py_IsFalse(PyObject *x)¶
- Parte da ABI Estável desde a versão 3.10.
Test if an object is the
Falsesingleton, the same asx is Falsein Python.Adicionado na versão 3.10.
-
PyTypeObject *Py_TYPE(PyObject *o)¶
- Retorna valor: Referência emprestada. Parte da ABI Estável desde a versão 3.14.
Get the type of the Python object o.
The returned reference is borrowed from o. Do not release it with
Py_DECREF()or similar.
-
int Py_IS_TYPE(PyObject *o, PyTypeObject *type)¶
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to:
Py_TYPE(o) == type.Adicionado na versão 3.9.
-
void Py_SET_TYPE(PyObject *o, PyTypeObject *type)¶
Set the type of object o to type, without any checking or reference counting.
This is a very low-level operation. Consider instead setting the Python attribute
__class__usingPyObject_SetAttrString()or similar.Note that assigning an incompatible type can lead to undefined behavior.
If type is a heap type, the caller must create a new reference to it. Similarly, if the old type of o is a heap type, the caller must release a reference to that type.
Adicionado na versão 3.9.
-
Py_ssize_t Py_SIZE(PyVarObject *o)¶
Get the
ob_sizefield of o.Alterado na versão 3.11:
Py_SIZE()is changed to an inline static function. The parameter type is no longer const PyVarObject*.
-
void Py_SET_SIZE(PyVarObject *o, Py_ssize_t size)¶
Set the
ob_sizefield of o to size.Adicionado na versão 3.9.
-
PyObject_HEAD_INIT(type)¶
This is a macro which expands to initialization values for a new
PyObjecttype. This macro expands to:_PyObject_EXTRA_INIT 1, type,
-
PyVarObject_HEAD_INIT(type, size)¶
This is a macro which expands to initialization values for a new
PyVarObjecttype, including theob_sizefield. This macro expands to:_PyObject_EXTRA_INIT 1, type, size,
Implementing functions and methods¶
-
type PyCFunction¶
- Parte da ABI Estável.
Type of the functions used to implement most Python callables in C. Functions of this type take two PyObject* parameters and return one such value. If the return value is
NULL, an exception shall have been set. If notNULL, the return value is interpreted as the return value of the function as exposed in Python. The function must return a new reference.A assinatura da função é:
PyObject *PyCFunction(PyObject *self, PyObject *args);
-
type PyCFunctionWithKeywords¶
- Parte da ABI Estável.
Type of the functions used to implement Python callables in C with signature METH_VARARGS | METH_KEYWORDS. The function signature is:
PyObject *PyCFunctionWithKeywords(PyObject *self, PyObject *args, PyObject *kwargs);
-
type PyCFunctionFast¶
- Parte da ABI Estável desde a versão 3.13.
Type of the functions used to implement Python callables in C with signature
METH_FASTCALL. The function signature is:PyObject *PyCFunctionFast(PyObject *self, PyObject *const *args, Py_ssize_t nargs);
-
type PyCFunctionFastWithKeywords¶
- Parte da ABI Estável desde a versão 3.13.
Type of the functions used to implement Python callables in C with signature METH_FASTCALL | METH_KEYWORDS. The function signature is:
PyObject *PyCFunctionFastWithKeywords(PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames);
-
type PyCMethod¶
Type of the functions used to implement Python callables in C with signature METH_METHOD | METH_FASTCALL | METH_KEYWORDS. The function signature is:
PyObject *PyCMethod(PyObject *self, PyTypeObject *defining_class, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
Adicionado na versão 3.9.
-
type PyMethodDef¶
- Parte da ABI Estável (incluindo todos os membros).
Structure used to describe a method of an extension type. This structure has four fields:
-
const char *ml_name¶
Nome do método.
-
PyCFunction ml_meth¶
Pointer to the C implementation.
-
int ml_flags¶
Flags bits indicating how the call should be constructed.
-
const char *ml_doc¶
Points to the contents of the docstring.
-
const char *ml_name¶
The ml_meth is a C function pointer.
The functions may be of different
types, but they always return PyObject*. If the function is not of
the PyCFunction, the compiler will require a cast in the method table.
Even though PyCFunction defines the first parameter as
PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include
the following flags.
The individual flags indicate either a calling convention or a binding
convention.
There are these calling conventions:
-
METH_VARARGS¶
- Parte da ABI Estável.
This is the typical calling convention, where the methods have the type
PyCFunction. The function expects two PyObject* values. The first one is the self object for methods; for module functions, it is the module object. The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically processed usingPyArg_ParseTuple()orPyArg_UnpackTuple().
-
METH_KEYWORDS¶
Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS, METH_FASTCALL | METH_KEYWORDS and METH_METHOD | METH_FASTCALL | METH_KEYWORDS.
- METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type
PyCFunctionWithKeywords. The function expects three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possiblyNULLif there are no keyword arguments. The parameters are typically processed usingPyArg_ParseTupleAndKeywords().
-
METH_FASTCALL¶
- Parte da ABI Estável desde a versão 3.7.
Fast calling convention supporting only positional arguments. The methods have the type
PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyObject* values indicating the arguments and the third parameter is the number of arguments (the length of the array).Adicionado na versão 3.7.
Alterado na versão 3.10:
METH_FASTCALLis now part of the stable ABI.
- METH_FASTCALL | METH_KEYWORDS
Extension of
METH_FASTCALLsupporting also keyword arguments, with methods of typePyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vectorcall protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names of the keyword arguments (which are guaranteed to be strings) or possiblyNULLif there are no keywords. The values of the keyword arguments are stored in the args array, after the positional arguments.Adicionado na versão 3.7.
-
METH_METHOD¶
- Parte da ABI Estável desde a versão 3.7.
Can only be used in the combination with other flags: METH_METHOD | METH_FASTCALL | METH_KEYWORDS.
- METH_METHOD | METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that contains the method in question. The defining class might be a superclass of
Py_TYPE(self).The method needs to be of type
PyCMethod, the same as forMETH_FASTCALL | METH_KEYWORDSwithdefining_classargument added afterself.Adicionado na versão 3.9.
-
METH_NOARGS¶
- Parte da ABI Estável.
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGSflag. They need to be of typePyCFunction. The first parameter is typically named self and will hold a reference to the module or object instance. In all cases the second parameter will beNULL.The function must have 2 parameters. Since the second parameter is unused,
Py_UNUSEDcan be used to prevent a compiler warning.
-
METH_O¶
- Parte da ABI Estável.
Methods with a single object argument can be listed with the
METH_Oflag, instead of invokingPyArg_ParseTuple()with a"O"argument. They have the typePyCFunction, with the self parameter, and a PyObject* parameter representing the single argument.
These two constants are not used to indicate the calling convention but the binding when use with methods of classes. These may not be used for functions defined for modules. At most one of these flags may be set for any given method.
-
METH_CLASS¶
- Parte da ABI Estável.
The method will be passed the type object as the first parameter rather than an instance of the type. This is used to create class methods, similar to what is created when using the
classmethod()built-in function.
-
METH_STATIC¶
- Parte da ABI Estável.
The method will be passed
NULLas the first parameter rather than an instance of the type. This is used to create static methods, similar to what is created when using thestaticmethod()built-in function.
One other constant controls whether a method is loaded in place of another definition with the same method name.
-
METH_COEXIST¶
- Parte da ABI Estável.
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot, for example, would generate a wrapped method named
__contains__()and preclude the loading of a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more than wrapper object calls.
-
PyTypeObject PyCMethod_Type¶
The type object corresponding to Python C method objects. This is available as
types.BuiltinMethodTypein the Python layer.
-
int PyCMethod_Check(PyObject *op)¶
Return true if op is an instance of the
PyCMethod_Typetype or a subtype of it. This function always succeeds.
-
int PyCMethod_CheckExact(PyObject *op)¶
This is the same as
PyCMethod_Check(), but does not account for subtypes.
-
PyObject *PyCMethod_New(PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)¶
- Retorna valor: Nova referência. Parte da ABI Estável desde a versão 3.9.
Turn ml into a Python callable object. The caller must ensure that ml outlives the callable. Typically, ml is defined as a static variable.
The self parameter will be passed as the self argument to the C function in
ml->ml_methwhen invoked. self can beNULL.The callable object’s
__module__attribute can be set from the given module argument. module should be a Python string, which will be used as name of the module the function is defined in. If unavailable, it can be set toNoneorNULL.Ver também
The cls parameter will be passed as the defining_class argument to the C function. Must be set if
METH_METHODis set onml->ml_flags.Adicionado na versão 3.9.
-
PyTypeObject PyCFunction_Type¶
- Parte da ABI Estável.
The type object corresponding to Python C function objects. This is available as
types.BuiltinFunctionTypein the Python layer.
-
int PyCFunction_Check(PyObject *op)¶
Return true if op is an instance of the
PyCFunction_Typetype or a subtype of it. This function always succeeds.
-
int PyCFunction_CheckExact(PyObject *op)¶
This is the same as
PyCFunction_Check(), but does not account for subtypes.
-
PyObject *PyCFunction_NewEx(PyMethodDef *ml, PyObject *self, PyObject *module)¶
- Retorna valor: Nova referência. Parte da ABI Estável.
Equivalente a
PyCMethod_New(ml, self, module, NULL).
-
PyObject *PyCFunction_New(PyMethodDef *ml, PyObject *self)¶
- Retorna valor: Nova referência. Parte da ABI Estável desde a versão 3.4.
Equivalente a
PyCMethod_New(ml, self, NULL, NULL).
-
int PyCFunction_GetFlags(PyObject *func)¶
- Parte da ABI Estável.
Get the function’s flags on func as they were passed to
ml_flags.If func is not a C function object, this fails with an exception. func must not be
NULL.This function returns the function’s flags on success, and
-1with an exception set on failure.
-
int PyCFunction_GET_FLAGS(PyObject *func)¶
This is the same as
PyCFunction_GetFlags(), but without error or type checking.
-
PyCFunction PyCFunction_GetFunction(PyObject *func)¶
- Parte da ABI Estável.
Get the function pointer on func as it was passed to
ml_meth.If func is not a C function object, this fails with an exception. func must not be
NULL.This function returns the function pointer on success, and
NULLwith an exception set on failure.
-
int PyCFunction_GET_FUNCTION(PyObject *func)¶
This is the same as
PyCFunction_GetFunction(), but without error or type checking.
-
PyObject *PyCFunction_GetSelf(PyObject *func)¶
- Parte da ABI Estável.
Get the “self” object on func. This is the object that would be passed to the first argument of a
PyCFunction. For C function objects created through aPyMethodDefon aPyModuleDef, this is the resulting module object.If func is not a C function object, this fails with an exception. func must not be
NULL.This function returns a borrowed reference to the “self” object on success, and
NULLwith an exception set on failure.
-
PyObject *PyCFunction_GET_SELF(PyObject *func)¶
This is the same as
PyCFunction_GetSelf(), but without error or type checking.
Accessing attributes of extension types¶
-
type PyMemberDef¶
- Parte da ABI Estável (incluindo todos os membros).
Structure which describes an attribute of a type which corresponds to a C struct member. When defining a class, put a NULL-terminated array of these structures in the
tp_membersslot.Its fields are, in order:
-
const char *name¶
Name of the member. A NULL value marks the end of a
PyMemberDef[]array.The string should be static, no copy is made of it.
-
int type¶
The type of the member in the C struct. See Member types for the possible values.
-
Py_ssize_t offset¶
The offset in bytes that the member is located on the type’s object struct.
-
int flags¶
Zero or more of the Member flags, combined using bitwise OR.
-
const char *doc¶
The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.
By default (when
flagsis0), members allow both read and write access. Use thePy_READONLYflag for read-only access. Certain types, likePy_T_STRING, implyPy_READONLY. OnlyPy_T_OBJECT_EX(and legacyT_OBJECT) members can be deleted.For heap-allocated types (created using
PyType_FromSpec()or similar),PyMemberDefmay contain a definition for the special member"__vectorcalloffset__", corresponding totp_vectorcall_offsetin type objects. This member must be defined withPy_T_PYSSIZET, and eitherPy_READONLYorPy_READONLY | Py_RELATIVE_OFFSET. For example:static PyMemberDef spam_type_members[] = { {"__vectorcalloffset__", Py_T_PYSSIZET, offsetof(Spam_object, vectorcall), Py_READONLY}, {NULL} /* Sentinel */ };
(You may need to
#include <stddef.h>foroffsetof().)The legacy offsets
tp_dictoffsetandtp_weaklistoffsetcan be defined similarly using"__dictoffset__"and"__weaklistoffset__"members, but extensions are strongly encouraged to usePy_TPFLAGS_MANAGED_DICTandPy_TPFLAGS_MANAGED_WEAKREFinstead.Alterado na versão 3.12:
PyMemberDefis always available. Previously, it required including"structmember.h".Alterado na versão 3.14:
Py_RELATIVE_OFFSETis now allowed for"__vectorcalloffset__","__dictoffset__"and"__weaklistoffset__". -
const char *name¶
-
PyObject *PyMember_GetOne(const char *obj_addr, struct PyMemberDef *m)¶
- Parte da ABI Estável.
Get an attribute belonging to the object at address obj_addr. The attribute is described by
PyMemberDefm. ReturnsNULLon error.Alterado na versão 3.12:
PyMember_GetOneis always available. Previously, it required including"structmember.h".
-
int PyMember_SetOne(char *obj_addr, struct PyMemberDef *m, PyObject *o)¶
- Parte da ABI Estável.
Set an attribute belonging to the object at address obj_addr to object o. The attribute to set is described by
PyMemberDefm. Returns0if successful and a negative value on failure.Alterado na versão 3.12:
PyMember_SetOneis always available. Previously, it required including"structmember.h".
Member flags¶
The following flags can be used with PyMemberDef.flags:
-
Py_READONLY¶
- Parte da ABI Estável desde a versão 3.12.
Not writable.
-
Py_AUDIT_READ¶
- Parte da ABI Estável desde a versão 3.12.
Emit an
object.__getattr__audit event before reading.
-
Py_RELATIVE_OFFSET¶
- Parte da ABI Estável desde a versão 3.12.
Indicates that the
offsetof thisPyMemberDefentry indicates an offset from the subclass-specific data, rather than fromPyObject.Can only be used as part of the
Py_tp_membersslotwhen creating a class using negativebasicsize. It is mandatory in that case. When settingtp_membersfrom the slot during class creation, Python clears the flag and setsPyMemberDef.offsetto the offset from thePyObjectstruct.
Alterado na versão 3.10: The RESTRICTED, READ_RESTRICTED and
WRITE_RESTRICTED macros available with
#include "structmember.h" are deprecated.
READ_RESTRICTED and RESTRICTED are equivalent to
Py_AUDIT_READ; WRITE_RESTRICTED does nothing.
Alterado na versão 3.12: The READONLY macro was renamed to Py_READONLY.
The PY_AUDIT_READ macro was renamed with the Py_ prefix.
The new names are now always available.
Previously, these required #include "structmember.h".
The header is still available and it provides the old names.
Member types¶
PyMemberDef.type can be one of the following macros corresponding
to various C types.
When the member is accessed in Python, it will be converted to the
equivalent Python type.
When it is set from Python, it will be converted back to the C type.
If that is not possible, an exception such as TypeError or
ValueError is raised.
Unless marked (D), attributes defined this way cannot be deleted
using e.g. del or delattr().
Macro name |
Tipo em C |
Tipo em Python |
|---|---|---|
|
char |
|
|
short |
|
|
int |
|
|
long |
|
|
long long |
|
|
unsigned char |
|
|
unsigned int |
|
|
unsigned short |
|
|
unsigned long |
|
|
unsigned long long |
|
|
||
|
float |
|
|
double |
|
|
char (escrito como 0 ou 1) |
|
|
const char* (*) |
|
|
const char[] (*) |
|
|
char (0-127) |
|
|
|
(*): Zero-terminated, UTF8-encoded C string. With
Py_T_STRINGthe C representation is a pointer; withPy_T_STRING_INPLACEthe string is stored directly in the structure.(**): String of length 1. Only ASCII is accepted.
(RO): implica
Py_READONLY.(D): pode ser deletado, neste caso o ponteiro é definido para
NULL. Ler um ponteiroNULLlevanta uma exceçãoAttributeError.
Adicionado na versão 3.12: In previous versions, the macros were only available with
#include "structmember.h" and were named without the Py_ prefix
(e.g. as T_INT).
The header is still available and contains the old names, along with
the following deprecated types:
-
T_OBJECT¶
Like
Py_T_OBJECT_EX, butNULLis converted toNone. This results in surprising behavior in Python: deleting the attribute effectively sets it toNone.
-
T_NONE¶
Sempre
None. Deve ser usado comPy_READONLY.
Defining Getters and Setters¶
-
type PyGetSetDef¶
- Parte da ABI Estável (incluindo todos os membros).
Structure to define property-like access for a type. See also description of the
PyTypeObject.tp_getsetslot.-
const char *name¶
attribute name
-
setter set¶
Optional C function to set or delete the attribute. If
NULL, the attribute is read-only.
-
const char *doc¶
optional docstring
-
void *closure¶
Optional user data pointer, providing additional data for getter and setter.
-
const char *name¶
-
typedef PyObject *(*getter)(PyObject*, void*)¶
- Parte da ABI Estável.
The
getfunction takes one PyObject* parameter (the instance) and a user data pointer (the associatedclosure):It should return a new reference on success or
NULLwith a set exception on failure.
-
typedef int (*setter)(PyObject*, PyObject*, void*)¶
- Parte da ABI Estável.
setfunctions take two PyObject* parameters (the instance and the value to be set) and a user data pointer (the associatedclosure):In case the attribute should be deleted the second parameter is
NULL. Should return0on success or-1with a set exception on failure.