15. 浮点算术:争议和限制¶
Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the decimal fraction 0.125
has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction 0.001
has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only
real difference being that the first is written in base 10 fractional notation,
and the second in base 2.
不幸的是,大多数的十进制小数都不能精确地表示为二进制小数。这导致在大多数情况下,你输入的十进制浮点数都只能近似地以二进制浮点数形式储存在计算机中。
用十进制来理解这个问题显得更加容易一些。考虑分数 1/3 。我们可以得到它在十进制下的一个近似值
0.3
或者,更近似的,:
0.33
或者,更近似的,:
0.333
以此类推。结果是无论你写下多少的数字,它都永远不会等于 1/3 ,只是更加更加地接近 1/3 。
同样的道理,无论你使用多少位以 2 为基数的数码,十进制的 0.1 都无法精确地表示为一个以 2 为基数的小数。 在以 2 为基数的情况下, 1/10 是一个无限循环小数
0.0001100110011001100110011001100110011001100110011...
在任何一个位置停下,你都只能得到一个近似值。因此,在今天的大部分架构上,浮点数都只能近似地使用二进制小数表示,对应分数的分子使用每 8 字节的前 53 位表示,分母则表示为 2 的幂次。在 1/10 这个例子中,相应的二进制分数是 3602879701896397 / 2 ** 55
,它很接近 1/10 ,但并不是 1/10 。
Many users are not aware of the approximation because of the way values are displayed. Python only prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On most machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to display
>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying a rounded value instead
>>> 1 / 10
0.1
牢记,即使输出的结果看起来好像就是 1/10 的精确值,实际储存的值只是最接近 1/10 的计算机可表示的二进制分数。
有趣的是,有许多不同的十进制数共享相同的最接近的近似二进制小数。例如, 0.1
、 0.10000000000000001
、 0.1000000000000000055511151231257827021181583404541015625
全都近似于 3602879701896397 / 2 ** 55
。由于所有这些十进制值都具有相同的近似值,因此可以显示其中任何一个,同时仍然保留不变的 eval(repr(x)) == x
。
在历史上,Python 提示符和内置的 repr()
函数会选择具有 17 位有效数字的来显示,即 0.10000000000000001
。 从 Python 3.1 开始,Python(在大多数系统上)现在能够选择这些表示中最短的并简单地显示 0.1
。
请注意这种情况是二进制浮点数的本质特性:它不是 Python 的错误,也不是你代码中的错误。 你会在所有支持你的硬件中的浮点运算的语言中发现同样的情况(虽然某些语言在默认状态或所有输出模块下都不会 显示 这种差异)。
For more pleasant output, you may wish to use string formatting to produce a limited number of significant digits:
>>> format(math.pi, '.12g') # give 12 significant digits
'3.14159265359'
>>> format(math.pi, '.2f') # give 2 digits after the point
'3.14'
>>> repr(math.pi)
'3.141592653589793'
必须重点了解的是,这在实际上只是一个假象:你只是将真正的机器码值进行了舍入操作再 显示 而已。
One illusion may beget another. For example, since 0.1 is not exactly 1/10, summing three values of 0.1 may not yield exactly 0.3, either:
>>> .1 + .1 + .1 == .3
False
Also, since the 0.1 cannot get any closer to the exact value of 1/10 and
0.3 cannot get any closer to the exact value of 3/10, then pre-rounding with
round()
function cannot help:
>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False
Though the numbers cannot be made closer to their intended exact values,
the round()
function can be useful for post-rounding so that results
with inexact values become comparable to one another:
>>> round(.1 + .1 + .1, 10) == round(.3, 10)
True
二进制浮点运算会有许多这样令人惊讶的情况。 有关 "0.1" 的问题会在下面 "表示性错误" 一节中更精确详细地描述。 请参阅 Examples of Floating Point Problems 获取针对二进制浮点运算机制及在实践中各种常见问题的概要说明。 还可参阅 The Perils of Floating Point 获取其他常见意外现象的更完整介绍。
正如那篇文章的结尾所言,“对此问题并无简单的答案。” 但是也不必过于担心浮点数的问题! Python 浮点运算中的错误是从浮点运算硬件继承而来,而在大多数机器上每次浮点运算得到的 2**53 数码位都会被作为 1 个整体来处理。 这对大多数任务来说都已足够,但你确实需要记住它并非十进制算术,且每次浮点运算都可能会导致新的舍入错误。
虽然病态的情况确实存在,但对于大多数正常的浮点运算使用来说,你只需简单地将最终显示的结果舍入为你期望的十进制数值即可得到你期望的结果。 str()
通常已足够,对于更精度的控制可参看 格式字符串语法 中 str.format()
方法的格式描述符。
对于需要精确十进制表示的使用场景,请尝试使用 decimal
模块,该模块实现了适合会计应用和高精度应用的十进制运算。
另一种形式的精确运算由 fractions
模块提供支持,该模块实现了基于有理数的算术运算(因此可以精确表示像 1/3 这样的数值)。
如果你是浮点运算的重度用户那么你应当了解一下 NumPy 包以及由 SciPy 项目所提供的许多其他数学和统计运算包。 参见 <https://scipy.org>。
Python provides tools that may help on those rare occasions when you really
do want to know the exact value of a float. The
float.as_integer_ratio()
method expresses the value of a float as a
fraction:
>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)
Since the ratio is exact, it can be used to losslessly recreate the original value:
>>> x == 3537115888337719 / 1125899906842624
True
The float.hex()
method expresses a float in hexadecimal (base
16), again giving the exact value stored by your computer:
>>> x.hex()
'0x1.921f9f01b866ep+1'
This precise hexadecimal representation can be used to reconstruct the float value exactly:
>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True
由于这种表示法是精确的,它适用于跨越不同版本(平台无关)的 Python 移植数值,以及与支持相同格式的其他语言(例如 Java 和 C99)交换数据.
Another helpful tool is the math.fsum()
function which helps mitigate
loss-of-precision during summation. It tracks "lost digits" as values are
added onto a running total. That can make a difference in overall accuracy
so that the errors do not accumulate to the point where they affect the
final total:
>>> sum([0.1] * 10) == 1.0
False
>>> math.fsum([0.1] * 10) == 1.0
True
15.1. 表示性错误¶
本小节将详细解释 "0.1" 的例子,并说明你可以怎样亲自对此类情况进行精确分析。 假定前提是已基本熟悉二进制浮点表示法。
表示性错误 是指某些(其实是大多数)十进制小数无法以二进制(以 2 为基数的计数制)精确表示这一事实造成的错误。 这就是为什么 Python(或者 Perl、C、C++、Java、Fortran 以及许多其他语言)经常不会显示你所期待的精确十进制数值的主要原因。
为什么会这样? 1/10 是无法用二进制小数精确表示的。 至少从 2000 年起,几乎所有机器都使用 IEEE 754 二进制浮点运算标准,而几乎所有系统平台都将 Python 浮点数映射为 IEEE 754 binary64 "双精度" 值。 IEEE 754 binary64 值包含 53 位精度,因此在输入时计算机会尽量将 0.1 转换为以 J/2**N 形式所能表示的最接近的小数,其中 J 为恰好包含 53 比特位的整数。 重新将
1 / 10 ~= J / (2**N)
写为
J ~= 2**N / 10
and recalling that J has exactly 53 bits (is >= 2**52
but < 2**53
),
the best value for N is 56:
>>> 2**52 <= 2**56 // 10 < 2**53
True
That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient rounded:
>>> q, r = divmod(2**56, 10)
>>> r
6
Since the remainder is more than half of 10, the best approximation is obtained by rounding up:
>>> q+1
7205759403792794
因此在 IEEE 754 双精度下可能达到的 1/10 的最佳近似值为:
7205759403792794 / 2 ** 56
分子和分母都除以二则结果小数为:
3602879701896397 / 2 ** 55
请注意由于我们做了向上舍入,这个结果实际上略大于 1/10;如果我们没有向上舍入,则商将会略小于 1/10。 但无论如何它都不会是 精确的 1/10!
因此计算机永远不会 "看到" 1/10: 它实际看到的就是上面所给出的小数,即它能达到的最佳 IEEE 754 双精度近似值:
>>> 0.1 * 2 ** 55
3602879701896397.0
If we multiply that fraction by 10**55, we can see the value out to 55 decimal digits:
>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625
meaning that the exact number stored in the computer is equal to the decimal value 0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full decimal value, many languages (including older versions of Python), round the result to 17 significant digits:
>>> format(0.1, '.17f')
'0.10000000000000001'
The fractions
and decimal
modules make these calculations
easy:
>>> from decimal import Decimal
>>> from fractions import Fraction
>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)
>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'