Python 有没有提供断点与单步调试等功能的,源码层次的调试器?


pdb 模块是一个简单但是够用的控制台模式 Python 调试器。 它是标准 Python 库的一部分,并且 已收录于库参考手册。 你也可以通过使用 pdb 代码作为样例来编写你自己的调试器。

作为标准 Python 发行版附带组件的 IDLE 交互式环境(通常位于 Tools/scripts/idle)中包含一个图形化的调试器。

PythonWin 是一个包含有基于 pdb 的 GUI 调试器的 Python IDE。 Pythonwin 调试器会为断点加上颜色,并具有许多很棒的特性,例如也可以非 Pythonwin 程序。 Pythonwin 是 Python for Windows Extensions 项目的一部分,也是 ActivePython 发行版的一部分(参见 https://www.activestate.com/activepython)。

Boa Constructor 是一个使用wxWidgets的IDE和GUI构建器。它提供可视化框架创建和操作,对象检查器,源对象浏览器上的许多视图,继承层次结构,doc字符串生成的html文档,高级调试器,集成帮助和Zope支持。

Eric 是一个基于PyQt和Scintilla编辑组件构建的IDE。

Pydb是标准Python调试器pdb的一个版本,经过修改后可与DDD(数据显示调试器)一起使用,DDD是一种流行的图形化调试器前端。 Pydb可以在 http://bashdb.sourceforge.net/pydb/ 找到,DDD可以在 https://www.gnu.org/software/ddd 找到。

有许多商业Python IDE包括图形调试器。他们包括:



PyChecker 是一个寻找Python代码漏洞以及对代码复杂性和风格给出警告的工具。你可以从这里获得PyChecker: http://pychecker.sourceforge.net/

Pylint 是另一个检查模块是否满足编码标准的工具,也可以编写插件来添加自定义功能。除了PyChecker 执行的错误检查之外, Pylint 还提供了一些额外的功能,例如检查行长度,变量名称是否根据您的编码标准格式良好,声明的接口是否完全实现等等。 https://docs.pylint.org/ 提供了Pylint功能的完整列表。

我如何能够通过一个 Python 脚本创建一个独立运行的二进制文件?


一种是使用冻结工具,它包含在Python源代码树 Tools/freeze 中。它将Python字节代码转换为C数组;一个C编译器,你可以将所有模块嵌入到一个新程序中,然后将其与标准Python模块链接。

它的工作原理是递归扫描源代码以获取import语句(两种形式),并在标准Python路径和源目录(用于内置模块)中查找模块。 然后,它将用Python编写的模块的字节码转换为C代码(可以使用编组模块转换为代码对象的数组初始化器),并创建一个定制的配置文件,该文件仅包含程序中实际使用的内置模块。 然后,它编译生成的C代码并将其与Python解释器的其余部分链接,以形成一个独立的二进制文件,其行为与你的脚本完全相同。

显然, freeze 需要一个C编译器。有几个其他实用工具不需要。 一个是Thomas Heller的py2exe(仅限Windows)

Another tool is Anthony Tuininga’s cx_Freeze.

是否有 Python 程序规范代码标准或风格指南?

有的。 请参阅标准库模块所要求的代码风格描述文档 PEP 8


That’s a tough one, in general. There are many tricks to speed up Python code; consider rewriting parts in C as a last resort.

In some cases it’s possible to automatically translate Python to C or x86 assembly language, meaning that you don’t have to modify your code to gain increased speed.

Pyrex can compile a slightly modified version of Python code into a C extension, and can be used on many different platforms.

Psyco is a just-in-time compiler that translates Python code into x86 assembly language. If you can use it, Psyco can provide dramatic speedups for critical functions.

The rest of this answer will discuss various tricks for squeezing a bit more speed out of Python code. Never apply any optimization tricks unless you know you need them, after profiling has indicated that a particular function is the heavily executed hot spot in the code. Optimizations almost always make the code less clear, and you shouldn’t pay the costs of reduced clarity (increased development time, greater likelihood of bugs) unless the resulting performance benefit is worth it.

There is a page on the wiki devoted to performance tips.

Guido van Rossum has written up an anecdote related to optimization at https://www.python.org/doc/essays/list2str.

One thing to notice is that function and (especially) method calls are rather expensive; if you have designed a purely OO interface with lots of tiny functions that don’t do much more than get or set an instance variable or call another method, you might consider using a more direct way such as directly accessing instance variables. Also see the standard module profile which makes it possible to find out where your program is spending most of its time (if you have some patience – the profiling itself can slow your program down by an order of magnitude).

Remember that many standard optimization heuristics you may know from other programming experience may well apply to Python. For example it may be faster to send output to output devices using larger writes rather than smaller ones in order to reduce the overhead of kernel system calls. Thus CGI scripts that write all output in “one shot” may be faster than those that write lots of small pieces of output.

Also, be sure to use Python’s core features where appropriate. For example, slicing allows programs to chop up lists and other sequence objects in a single tick of the interpreter’s mainloop using highly optimized C implementations. Thus to get the same effect as:

L2 = []
for i in range(3):

it is much shorter and far faster to use

L2 = list(L1[:3])  # "list" is redundant if L1 is a list.

Note that the functionally-oriented built-in functions such as map(), zip(), and friends can be a convenient accelerator for loops that perform a single task. For example to pair the elements of two lists together:

>>> zip([1, 2, 3], [4, 5, 6])
[(1, 4), (2, 5), (3, 6)]

or to compute a number of sines:

>>> map(math.sin, (1, 2, 3, 4))
[0.841470984808, 0.909297426826, 0.14112000806, -0.756802495308]

The operation completes very quickly in such cases.

Other examples include the join() and split() methods of string objects. For example if s1..s7 are large (10K+) strings then "".join([s1,s2,s3,s4,s5,s6,s7]) may be far faster than the more obvious s1+s2+s3+s4+s5+s6+s7, since the “summation” will compute many subexpressions, whereas join() does all the copying in one pass. For manipulating strings, use the replace() and the format() methods on string objects. Use regular expressions only when you’re not dealing with constant string patterns. You may still use the old % operations string % tuple and string % dictionary.

Be sure to use the list.sort() built-in method to do sorting, and see the sorting mini-HOWTO for examples of moderately advanced usage. list.sort() beats other techniques for sorting in all but the most extreme circumstances.

Another common trick is to “push loops into functions or methods.” For example suppose you have a program that runs slowly and you use the profiler to determine that a Python function ff() is being called lots of times. If you notice that ff():

def ff(x):
    ... # do something with x computing result...
    return result

tends to be called in loops like:

list = map(ff, oldlist)


for x in sequence:
    value = ff(x)
    ... # do something with value...

then you can often eliminate function call overhead by rewriting ff() to:

def ffseq(seq):
    resultseq = []
    for x in seq:
        ... # do something with x computing result...
    return resultseq

and rewrite the two examples to list = ffseq(oldlist) and to:

for value in ffseq(sequence):
    ... # do something with value...

Single calls to ff(x) translate to ffseq([x])[0] with little penalty. Of course this technique is not always appropriate and there are other variants which you can figure out.

You can gain some performance by explicitly storing the results of a function or method lookup into a local variable. A loop like:

for key in token:
    dict[key] = dict.get(key, 0) + 1

resolves dict.get every iteration. If the method isn’t going to change, a slightly faster implementation is:

dict_get = dict.get  # look up the method once
for key in token:
    dict[key] = dict_get(key, 0) + 1

Default arguments can be used to determine values once, at compile time instead of at run time. This can only be done for functions or objects which will not be changed during program execution, such as replacing

def degree_sin(deg):
    return math.sin(deg * math.pi / 180.0)


def degree_sin(deg, factor=math.pi/180.0, sin=math.sin):
    return sin(deg * factor)

Because this trick uses default arguments for terms which should not be changed, it should only be used when you are not concerned with presenting a possibly confusing API to your users.



通过在函数体中的某处添加赋值语句,导致以前正常工作的代码被修改而得到 UnboundLocalError 会令人感到意外。


>>> x = 10
>>> def bar():
...     print x
>>> bar()


>>> x = 10
>>> def foo():
...     print x
...     x += 1

会得到一个 UnboundLocalError :

>>> foo()
Traceback (most recent call last):
UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the compiler recognizes it as a local variable. Consequently when the earlier print x attempts to print the uninitialized local variable and an error results.


>>> x = 10
>>> def foobar():
...     global x
...     print x
...     x += 1
>>> foobar()


>>> print x



虽然起初有点令人惊讶,但片刻考虑就可以解释。一方面,要求 global 表示已分配的变量可以防止意外的副作用。另一方面,如果所有全局引用都需要 global ,那么你一直都在使用 global 。你必须将对内置函数或导入模块的组件的每个引用声明为全局。这种杂乱会破坏 global 声明用于识别副作用的有用性。


假设你使用for循环来定义几个不同的 lambda (甚至是普通函数),例如::

>>> squares = []
>>> for x in range(5):
...     squares.append(lambda: x**2)

这给你一个包含5个lambdas的列表,它们计算 x**2 。你可能会期望,当它们被调用时,它们将分别返回 014916 。但是,当你真正尝试时,你会看到它们都返回 16 。:

>>> squares[2]()
>>> squares[4]()

发生这种情况是因为 x 不是lambdas的内部变量,而是在外部作用域中定义,并且在调用lambda时访问它 - 而不是在定义它时。 在循环结束时, x 的值是 4 ,所以所有的函数现在返回 4**2 ,即 16 。你还可以通过更改 x 的值来验证这一点,并查看lambdas的结果如何变化:

>>> x = 8
>>> squares[2]()

为了避免这种情况,你需要将值保存在lambdas的局部变量中,这样它们就不依赖于全局``x`` 的值

>>> squares = []
>>> for x in range(5):
...     squares.append(lambda n=x: n**2)

这里, n=x 在lambda本地创建一个新的变量 n ,并在定义lambda时计算,使它具有与 x 在循环中该点相同的值。这意味着 n 的值在第一个lambda中为 0 ,在第二个lambda中为 1 ,在第三个中为 2 ,依此类推。因此每个lambda现在将返回正确的结果:

>>> squares[2]()
>>> squares[4]()



在单个程序中跨模块共享信息的规范方法是创建一个特殊模块(通常称为config或cfg)。只需在应用程序的所有模块中导入配置模块;然后该模块可用作全局名称。因为每个模块只有一个实例,所以对模块对象所做的任何更改都会在任何地方反映出来。 例如:


x = 0   # Default value of the 'x' configuration setting


import config
config.x = 1


import config
import mod
print config.x



通常,不要使用 from modulename import * 。这样做会使导入器的命名空间变得混乱,并且使得连接器更难以检测未定义的名称。



  1. 标准库模块 – 例如: sys, os, getopt, re

  2. 第三方库模块(安装在Python的site-packages目录中的任何内容) – 例如mx.DateTime,ZODB,PIL.Image等

  3. 本地开发的模块

Only use explicit relative package imports. If you’re writing code that’s in the package.sub.m1 module and want to import package.sub.m2, do not just write import m2, even though it’s legal. Write from package.sub import m2 or from . import m2 instead.

有时需要将模块导入语句移动到函数或类里面,以避免循环导入问题。Gordon McMillan 说:

当两个模块都使用 “import <module>” 的导入形式时,循环导入就可以了。但是当第 2 个模块想从第 1 个模块中获取一个名称 (“from module import name”) 并且导入位于顶层时,就会出错。 这是因为第 1 个模块中的名称还不可用,因为第 1 个模块正在忙着导入第 2 个模块。



只有当需要解决诸如避免循环导入或试图减少模块初始化时间的问题时,才可以将导入移动到本地范围,例如在函数定义中。如果根据程序的执行方式,许多导入是不必要的,这种技术尤其有用。如果仅在某个函数中使用模块,您还可能希望将导入移到该函数中。请注意,第一次加载模块可能会因为模块的一次初始化而代价高昂,但多次加载模块实际上是免费的,只需进行几次字典查找。即使模块名称超出了作用域,模块也可能在 sys.modules 中可用。



def foo(mydict={}):  # Danger: shared reference to one dict for all calls
    ... compute something ...
    mydict[key] = value
    return mydict

第一次调用此函数时,mydict 包含一项。第二次,mydict 包含两项,因为当 foo() 开始执行时, mydict 中已经有一项了。

函数调用经常被期望为默认值创建新的对象。 但实际情况并非如此。 默认值会在函数定义时一次性地创建。 如果对象发生改变,就如本示例中的字典那样,则对函数的后续调用将会引用这个被改变的对象。

按照定义,不可变对象例如数字、字符串、元组和 None 因为不可变所以是安全的。 对可变对象例如字典、列表和类实例的改变则可能造成迷惑。

由于这一特性,在编程中应遵循的一项好习惯是不使用可变对象作为默认值。 而应使用 None 作为默认值和函数中的值,检查值为 None 的形参并创建相应的列表、字典或其他可变对象。 例如,不要这样写:

def foo(mydict={}):


def foo(mydict=None):
    if mydict is None:
        mydict = {}  # create a new dict for local namespace

这一特性有时会很有用处。 当你有一个需要进行大量耗时计算的函数时,一个常见技巧是将每次调用函数的参数和结果值缓存起来,并在同样的值被再次请求时返回缓存的值。 这称为“记忆”,具体实现方式可以是这样的:

# Callers will never provide a third parameter for this function.
def expensive(arg1, arg2, _cache={}):
    if (arg1, arg2) in _cache:
        return _cache[(arg1, arg2)]

    # Calculate the value
    result = ... expensive computation ...
    _cache[(arg1, arg2)] = result           # Store result in the cache
    return result



使用函数参数列表中的 *** 说明符收集参数;这会将位置参数作为元组,将关键字参数作为字典。然后,您可以使用 *** 调用另一个函数时传递这些参数:

def f(x, *args, **kwargs):
    kwargs['width'] = '14.3c'
    g(x, *args, **kwargs)

In the unlikely case that you care about Python versions older than 2.0, use apply():

def f(x, *args, **kwargs):
    kwargs['width'] = '14.3c'
    apply(g, (x,)+args, kwargs)


形参 是指出现在函数定义中的名称,而 实参 则是在调用函数时实际传入的值。 形参定义了一个函数能接受何种类型的实参。 例如,对于以下函数定义:

def func(foo, bar=None, **kwargs):

foo, barkwargsfunc 的形参。 但是,在调用 func 时,例如:

func(42, bar=314, extra=somevar)

实际的值 42, 314somevar 则是实参。

为什么更改列表 ‘y’ 也会更改列表 ‘x’?


>>> x = []
>>> y = x
>>> y.append(10)
>>> y
>>> x



  1. 变量只是指向具体对象的名称。 执行 y = x 并不会为列表创建一个副本 —— 它只是创建了一个新变量 y 指向 x 所指向的同一对象。 这意味着只存在一个对象(列表),xy 都是对它的引用。

  2. 列表属于 mutable 对象,这意味着你可以改变它的内容。

在调用 append() 之后,这个可变对象的内容由 [] 变为 [10]。 由于两个变量都指向同一对象,因此使用任何一个名称所访问到的都是修改后的值 [10]

如果我们改为将不可变对象赋值给 x:

>>> x = 5  # ints are immutable
>>> y = x
>>> x = x + 1  # 5 can't be mutated, we are creating a new object here
>>> x
>>> y

我们可以看到在此情况下 xy 就不再相等了。 这是因为整数是 immutable 对象,当我们执行 x = x + 1 时我们并不是改变了 5 这个对象的值;而是创建了一个新的对象 (整数 6) 并将其赋值给 x (也就是改变了 x 所指向的对象)。 在赋值之后我们就有了两个对象 (整数 65) 以及分别指向它们的两个变量 (x 现在指向 6y 仍然指向 5)。

某些操作 (例如 y.append(10)y.sort()) 是改变原对象,而看上去相似的另一些操作 (例如 y = y + [10]sorted(y)) 则是创建新对象。 通常在 Python 中 (以及在标准库的所有代码中) 会改变原对象的方法将返回 None 以帮助避免混淆这两种不同类型的操作。 因此如果你错误地使用了 y.sort() 并期望它将返回一个经过排序的 y 的副本,你得到的结果将会是 None,这将导致你的程序产生一个容易诊断的错误。

但是,还存在一类操作,不同的类型执行相同的操作会有不同的行为:那就是增强赋值运算符。 例如,+= 会原地改变列表,但不会改变元组或整数 (a_list += [1, 2, 3]a_list.extend([1, 2, 3]) 一样都会改变 a_list,而 some_tuple += (1, 2, 3)some_int += 1 则会创建新的对象)。


  • 如果我们有一个可变对象 (list, dict, set 等等),我们可以使用某些特定的操作来改变它,所有指向它的变量都会显示它的改变。

  • 如果我们有一个不可变对象 (str, int, tuple 等等),所有指向它的变量都将显示相同样的值,但凡是会改变这个值的操作将总是返回一个新对象。

如果你想知道两个变量是否指向相同的对象,你可以使用 is 运算符,或内置函数 id()


请记住在 Python 中参数是通过赋值来传递的。 由于赋值只是创建了对象的引用,因此在调用者和被调用者的参数名称之间没有别名,所以本身是没有按引用调用的。 你可以通过多种方式实现所需的效果。

  1. 通过返回一个结果元组:

    def func2(a, b):
        a = 'new-value'        # a and b are local names
        b = b + 1              # assigned to new objects
        return a, b            # return new values
    x, y = 'old-value', 99
    x, y = func2(x, y)
    print x, y                 # output: new-value 100


  2. 通过使用全局变量。 这种方式不是线程安全的,而且也不受推荐。

  3. 通过传递一个可变 (即可原地修改的) 对象:

    def func1(a):
        a[0] = 'new-value'     # 'a' references a mutable list
        a[1] = a[1] + 1        # changes a shared object
    args = ['old-value', 99]
    print args[0], args[1]     # output: new-value 100
  4. 通过传递一个会被改变的字典:

    def func3(args):
        args['a'] = 'new-value'     # args is a mutable dictionary
        args['b'] = args['b'] + 1   # change it in-place
    args = {'a': 'old-value', 'b': 99}
    print args['a'], args['b']
  5. 或者在一个类实例中捆绑值:

    class callByRef:
        def __init__(self, **args):
            for (key, value) in args.items():
                setattr(self, key, value)
    def func4(args):
        args.a = 'new-value'        # args is a mutable callByRef
        args.b = args.b + 1         # change object in-place
    args = callByRef(a='old-value', b=99)
    print args.a, args.b




你有两种选择:使用嵌套作用域,或者使用可调用对象。 例如,假设你想要定义 linear(a,b) 使其返回一个函数 f(x) 来设计 a*x+b 的值。 可以使用以下嵌套作用域:

def linear(a, b):
    def result(x):
        return a * x + b
    return result


class linear:

    def __init__(self, a, b):
        self.a, self.b = a, b

    def __call__(self, x):
        return self.a * x + self.b


taxes = linear(0.3, 2)

都会给出一个可调用对象,使得 taxes(10e6) == 0.3 * 10e6 + 2.

可调用对象方式的缺点是速度略慢且生成的代码略长。 但是,请注意一组可调用对象能够通过继承来共享签名:

class exponential(linear):
    # __init__ inherited
    def __call__(self, x):
        return self.a * (x ** self.b)


class counter:

    value = 0

    def set(self, x):
        self.value = x

    def up(self):
        self.value = self.value + 1

    def down(self):
        self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

这里 inc(), dec()reset() 将表现为共享同一计数变量的多个函数。


一般来说,通常情况下请尝试 copy.copy()copy.deepcopy()。 不是所有对象都可以复制,但多数都是可以的。

某些对象可以方便地复制。 例如字典具有 copy() 方法:

newdict = olddict.copy()


new_l = l[:]


对于一个用户自定义类的实例 x,dir(x) 将返回一个按字母顺序排序的包含实例属性和方法及其类所定义的属性名称的列表。


Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a value; The same is true of def and class statements, but in that case the value is a callable. Consider the following code:

>>> class A:
...     pass
>>> B = A
>>> a = B()
>>> b = a
>>> print b
<__main__.A instance at 0x16D07CC>
>>> print a
<__main__.A instance at 0x16D07CC>

不严谨地讲,该类有一个名称:虽然它是绑定了两个名称并通过名称 B 发起调用,所创建的实例仍然被视为类 A 的一个实例。 但是实例的名称则无法确定地说是 a 或是 b,因为有两个名称被绑定到了同一个值。

一般来说你的代码应该没有必要“知道”特定值的名称。 除非你是在编写特殊的内省程序,出现这样的问题通常表明如果改变方式可能会更有利。

在 comp.lang.python 中,Fredrik Lundh 在回答这样的问题时曾经给出过一个绝佳的类比:

跟你找出在你家门廊见到的某只猫的名字所用的办法一样:猫(对象)自己无法告诉你它的名字,它根本就不在乎 —— 所以找出它叫什么名字的唯一办法是问你的所有邻居(命名空间)那是不是他们的猫(对象)……



逗号在 Python 中不是运算符。 考虑这个例子:

>>> "a" in "b", "a"
(False, 'a')


("a" in "b"), "a"


"a" in ("b", "a")

对于各种赋值运算符 (=, += 等) 来说同样如此。 它们并不是真正的运算符而是赋值语句中的语法分隔符。

是否有与 C 的 “?:” 三目运算符等价的东西?

Yes, this feature was added in Python 2.5. The syntax would be as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25

small = x if x < y else y

For versions previous to 2.5 the answer would be ‘No’.


Yes. Usually this is done by nesting lambda within lambda. See the following three examples, due to Ulf Bartelt:

# Primes < 1000
print filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))

# First 10 Fibonacci numbers
print map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1: f(x,f),

# Mandelbrot set
print (lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+y,map(lambda y,
Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24)
#    \___ ___/  \___ ___/  |   |   |__ lines on screen
#        V          V      |   |______ columns on screen
#        |          |      |__________ maximum of "iterations"
#        |          |_________________ range on y axis
#        |____________________________ range on x axis




要指定一个八进制数码,则在八进制值之前加一个零和一个小写或大写字母 “o” 作为前缀。 例如,要将变量 “a” 设为八进制的 “10” (十进制的 8),就输入:

>>> a = 0o10
>>> a

十六进制数也同样简单。 只要在十六进制数之前加一个零和一个小写或大写字母 “x”。 十六进制数码中的字母可以为大写或小写。 例如在 Python 解释器中输入:

>>> a = 0xa5
>>> a
>>> b = 0XB2
>>> b

为什么-22 // 10返回-3?

这主要是为了让 i % j 的正负与 j 一致,如果你想要这样的结果,并且又想要:

i == (i // j) * j + (i % j)

那么整除就必须向下取整。 C 同样要求保持一致,并且编译器在截短 i // j 的结果值时需要使 i % j 的正负与 i 一致。

对于 i % j 来说 j 为负值的应用场景实际上是非常少的。 而 j 为正值的情况则非常多,并且实际上在所有情况下让 i % j 的结果为 >= 0 会更有用处。 如果如果现在时间为 10 时,那么 200 小时前应是几时? -190 % 12 == 2 是有用处的;-190 % 12 == -10 则是会导致意外的漏洞。


On Python 2, a / b returns the same as a // b if __future__.division is not in effect. This is also known as “classic” division.


对于整数,可使用内置的 int() 类型构造器,例如 int('144') == 144。 类似地,可使用 float() 转换为浮点数,例如 float('144') == 144.0

By default, these interpret the number as decimal, so that int('0144') == 144 and int('0x144') raises ValueError. int(string, base) takes the base to convert from as a second optional argument, so int('0x144', 16) == 324. If the base is specified as 0, the number is interpreted using Python’s rules: a leading ‘0’ indicates octal, and ‘0x’ indicates a hex number.

如果你只是想将字符串转为数字,请不要使用内置函数 eval()eval() 的速度会慢很多并且有安全风险:别人可能会传入具有你不想要的附带效果的 Python 表达式。 例如,别人可以传入 __import__('os').system("rm -rf $HOME") 这将删除你的家目录。

eval() also has the effect of interpreting numbers as Python expressions, so that e.g. eval('09') gives a syntax error because Python regards numbers starting with ‘0’ as octal (base 8).


To convert, e.g., the number 144 to the string ‘144’, use the built-in type constructor str(). If you want a hexadecimal or octal representation, use the built-in functions hex() or oct(). For fancy formatting, see the 格式字符串语法 section, e.g. "{:04d}".format(144) yields '0144' and "{:.3f}".format(1.0/3.0) yields '0.333'. In Python 2, the division (/) operator returns the floor of the mathematical result of division if the arguments are ints or longs, but it returns a reasonable approximation of the division result if the arguments are floats or complex:

>>> print('{:.3f}'.format(1/3))
>>> print('{:.3f}'.format(1.0/3))

In Python 3, the default behaviour of the division operator (see PEP 238) has been changed but you can have the same behaviour in Python 2 if you import division from __future__:

>>> from __future__ import division
>>> print('{:.3f}'.format(1/3))

You may also use the % operator on strings. See the library reference manual for details.


You can’t, because strings are immutable. If you need an object with this ability, try converting the string to a list or use the array module:

>>> import io
>>> s = "Hello, world"
>>> a = list(s)
>>> print a
['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd']
>>> a[7:] = list("there!")
>>> ''.join(a)
'Hello, there!'

>>> import array
>>> a = array.array('c', s)
>>> print a
array('c', 'Hello, world')
>>> a[0] = 'y'; print a
array('c', 'yello, world')
>>> a.tostring()
'yello, world'



  • 最好的做法是使用一个将字符串映射到函数的字典。 这一技巧的主要优势在于字符串不必与函数名称一致。 这也是用于模拟其他语言中 case 结构的主要技巧:

    def a():
    def b():
    dispatch = {'go': a, 'stop': b}  # Note lack of parens for funcs
    dispatch[get_input()]()  # Note trailing parens to call function
  • 使用内置函数 getattr()

    import foo
    getattr(foo, 'bar')()

    请注意 getattr() 可用于任何对象,包括类、类实例、模块等等。


    class Foo:
        def do_foo(self):
        def do_bar(self):
    f = getattr(foo_instance, 'do_' + opname)
  • 使用 locals()eval() 来解析出函数名:

    def myFunc():
        print "hello"
    fname = "myFunc"
    f = locals()[fname]
    f = eval(fname)

    注意:使用 eval() 速度慢而且危险。 如果你不能绝对掌控字符串的内容,别人将能传入可被解析为任意函数直接执行的字符串。

是否有与Perl 的chomp() 等效的方法,用于从字符串中删除尾随换行符?

Starting with Python 2.2, you can use S.rstrip("\r\n") to remove all occurrences of any line terminator from the end of the string S without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
...          "\r\n"
...          "\r\n")
>>> lines.rstrip("\n\r")
'line 1 '

由于通常只在一次读取一行文本时才需要这样做,所以使用 S.rstrip() 这种方式工作得很好。

For older versions of Python, there are two partial substitutes:

  • If you want to remove all trailing whitespace, use the rstrip() method of string objects. This removes all trailing whitespace, not just a single newline.

  • Otherwise, if there is only one line in the string S, use S.splitlines()[0].

是否有 scanf() 或 sscanf() 的对应物?


对于简单的输入解析,最方便的做法通常是使用字符串对象的 split() 方法将一行内容拆解为以空格分隔的单词,然后使用 int()float() 将表示十进制数的字符串转换为数值。 split() 支持可选的 “sep” 形参,适用于内容行使用空格符以外的分隔符的情况。

以于更复杂的输入解析,正则表达式会比 C 的 sscanf() 更强大,也更适合此类任务。

What does ‘UnicodeError: ASCII [decoding,encoding] error: ordinal not in range(128)’ mean?

This error indicates that your Python installation can handle only 7-bit ASCII strings. There are a couple ways to fix or work around the problem.

If your programs must handle data in arbitrary character set encodings, the environment the application runs in will generally identify the encoding of the data it is handing you. You need to convert the input to Unicode data using that encoding. For example, a program that handles email or web input will typically find character set encoding information in Content-Type headers. This can then be used to properly convert input data to Unicode. Assuming the string referred to by value is encoded as UTF-8:

value = unicode(value, "utf-8")

will return a Unicode object. If the data is not correctly encoded as UTF-8, the above call will raise a UnicodeError exception.

If you only want strings converted to Unicode which have non-ASCII data, you can try converting them first assuming an ASCII encoding, and then generate Unicode objects if that fails:

    x = unicode(value, "ascii")
except UnicodeError:
    value = unicode(value, "utf-8")
    # value was valid ASCII data

It’s possible to set a default encoding in a file called sitecustomize.py that’s part of the Python library. However, this isn’t recommended because changing the Python-wide default encoding may cause third-party extension modules to fail.

Note that on Windows, there is an encoding known as “mbcs”, which uses an encoding specific to your current locale. In many cases, and particularly when working with COM, this may be an appropriate default encoding to use.



类型构造器 tuple(seq) 可将任意序列(实际上是任意可迭代对象)转换为具有相同排列顺序的相同条目的元组。

例如,tuple([1, 2, 3]) 产生 (1, 2, 3)tuple('abc') 产生 ('a', 'b', 'c')。 如果参数为一个元组,它不会创建副本而是返回同一对象,因此如果你不确定某个对象是否为元组时也可简单地调用 tuple()

类型构造器 list(seq) 可将任意序列或可迭代对象转换为具有相同排列顺序的相同条目的列表。 例如,list((1, 2, 3)) 产生 [1, 2, 3]list('abc') 产生 ['a', 'b', 'c']。 如果参数为一个列表,它会像 seq[:] 那样创建一个副本。


Python 序列使用正数或负数作为序号或称索引号。 对于正数序号,第一个序号为 0 而 1 为第二个序号,依此类推。 对于负数序号,倒数第一个序号为 -1 而倒数第二个序号为 -2,依此类推。 可以认为 seq[-n] 就相当于 seq[len(seq)-n]

使用负数序号有时会很方便。 例如 S[:-1] 就是原字符串去掉最后一个字符,这可以用来移除某个字符串末尾的换行符。


使用 reversed() 内置函数,这是Python 2.4中的新功能:

for x in reversed(sequence):
    ...  # do something with x ...


在 Python 2.3 里,您可以使用扩展切片语法:

for x in sequence[::-1]:
    ...  # do something with x ...


有关执行此操作的许多方法的详细讨论,请参阅 Python Cookbook:


if mylist:
    last = mylist[-1]
    for i in range(len(mylist)-2, -1, -1):
        if last == mylist[i]:
            del mylist[i]
            last = mylist[i]

If all elements of the list may be used as dictionary keys (i.e. they are all hashable) this is often faster

d = {}
for x in mylist:
    d[x] = 1
mylist = list(d.keys())

In Python 2.5 and later, the following is possible instead:

mylist = list(set(mylist))




["this", 1, "is", "an", "array"]


array 模块还提供了创建具有紧凑表示的固定类型的数组的方法,但它的索引速度比列表慢。还要注意,数字扩展和其他扩展还定义了具有各种特性的类似数组的结构。


lisp_list = ("like",  ("this",  ("example", None) ) )

如果需要可变性,可以使用列表而不是元组。这里模拟lisp car的是 lisp_list[0] ,模拟cdr的是 lisp_list[1] 。只有在你确定真的需要的时候才这样做,因为它通常比使用Python列表慢得多。



>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]


>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

其中的原因在于使用 * 对列表执行重复操作并不是创建副本,它只是创建现有对象的引用。 *3 创建了对长度为二的同一列表的 3 个引用。 对某一行的改变会作用于所有行,通常这一定不是你所希望的。


A = [None] * 3
for i in range(3):
    A[i] = [None] * 2

这样就生成了一个包含 3 个长度为二的不同列表的列表。 你也可以使用列表推导式:

w, h = 2, 3
A = [[None] * w for i in range(h)]

或者你还可以使用提供矩阵类型的扩展包;其中最著名的是 NumPy



result = [obj.method() for obj in mylist]

More generically, you can try the following function:

def method_map(objects, method, arguments):
    """method_map([a,b], "meth", (1,2)) gives [a.meth(1,2), b.meth(1,2)]"""
    nobjects = len(objects)
    methods = map(getattr, objects, [method]*nobjects)
    return map(apply, methods, [arguments]*nobjects)

为什么 a_tuple[i] += [‘item’] 会在执行加法时引发异常?

这是由两个事实共同导致的结果,一是增强赋值运算符属于 赋值 运算符,二是在 Python 中存在可变和不可变两种不同的对象。

此处的讨论在任何对元组中指向可变对象的元素使用增强赋值运算符的情况都是普遍成立的,但在此我们只以 list+= 来举例。


>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):
TypeError: 'tuple' object does not support item assignment

发生异常的原因是显而易见的: 1 会与对象 a_tuple[0] 相加,而该对象为 (1),得到结果对象 2,但当我们试图将运算结果 2 赋值给元组的 0 号元素时就将报错,因为我们不能改变元组的元素所指向的对象。


>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):
TypeError: 'tuple' object does not support item assignment



>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):
TypeError: 'tuple' object does not support item assignment


>>> a_tuple[0]
['foo', 'item']

要明白为何会这样,你需要知道 (a) 如果一个对象实现了 __iadd__ 魔术方法,它会在执行 += 增强赋值时被调用,并且其返回值将用于该赋值语句; (b) 对于列表来说,__iadd__ 等价于在列表上调用 extend 并返回该列表。 因此对于列表我们可以说 += 就是 list.extend 的“快捷方式”:

>>> a_list = []
>>> a_list += [1]
>>> a_list


>>> result = a_list.__iadd__([1])
>>> a_list = result

a_list 所引用的对象已被修改,而引用被修改对象的指针又重新被赋值给 a_list。 赋值的最终结果没有变化,因为它是引用 a_list 之前所引用的同一对象的指针,但仍然发生了赋值操作。


>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):
TypeError: 'tuple' object does not support item assignment

__iadd__ 成功执行,因此列表得到了扩充,但是虽然 result 指向了 a_tuple[0] 已经指向的同一对象,最后的赋值仍然导致了报错,因为元组是不可变的。


How can I get a dictionary to display its keys in a consistent order?

You can’t. Dictionaries store their keys in an unpredictable order, so the display order of a dictionary’s elements will be similarly unpredictable.

This can be frustrating if you want to save a printable version to a file, make some changes and then compare it with some other printed dictionary. In this case, use the pprint module to pretty-print the dictionary; the items will be presented in order sorted by the key.

A more complicated solution is to subclass dict to create a SortedDict class that prints itself in a predictable order. Here’s one simpleminded implementation of such a class:

class SortedDict(dict):
    def __repr__(self):
        keys = sorted(self.keys())
        result = ("{!r}: {!r}".format(k, self[k]) for k in keys)
        return "{{{}}}".format(", ".join(result))

    __str__ = __repr__

This will work for many common situations you might encounter, though it’s far from a perfect solution. The largest flaw is that if some values in the dictionary are also dictionaries, their values won’t be presented in any particular order.


The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps each element to its “sort value”. In Python, use the key argument for the sort() function:

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))


Merge them into a single list of tuples, sort the resulting list, and then pick out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]
>>> list2 = ["something", "else", "to", "sort"]
>>> pairs = zip(list1, list2)
>>> pairs
[('what', 'something'), ("I'm", 'else'), ('sorting', 'to'), ('by', 'sort')]
>>> pairs.sort()
>>> result = [ x[1] for x in pairs ]
>>> result
['else', 'sort', 'to', 'something']


>>> result = []
>>> for p in pairs: result.append(p[1])

如果你觉得这个更容易读懂,那么你可能更喜欢使用这个而不是前面的列表推导。然而,对于长列表来说,它的速度几乎是原来的两倍。为什么?首先, append() 操作必须重新分配内存,虽然它使用了一些技巧来避免每次都这样做,但它仍然偶尔需要这样做,而且代价相当高。第二,表达式 “result.append” 需要额外的属性查找。第三,必须执行所有这些函数调用会降低速度。



是通过执行类语句创建的特定对象类型。类对象 被当作模板来创建实例对象,实例对象包含了特定于数据类型的数据(属性)和代码(方法)。

类可以基于一个或多个的其他类,称之为基类(ES),它继承基类的属性和方法,这样就可以通过继承来连续地细化对象模型。例如:您可能有一个 Mailbox 类提供邮箱的基本访问方法.,它的子类 MboxMailbox, MaildirMailbox, OutlookMailbox 用于处理各种特定邮箱格式。


方法 实际上就是类定义中的函数。对于某个对象 x 上的方法,通常称为 x.name(arguments...)

class C:
    def meth(self, arg):
        return arg * 2 + self.attribute

什么是 self ?

Self 只是 方法 的第一个参数的常规名称。例如:对于某个类的某个实例 x ,其方法 meth(self, a, b, c) 实际上应该被称为 x.meth(a, b, c) ;对于被调用的方法会被称为 meth(x, a, b, c)

另请参阅 为什么必须在方法定义和调用中显式使用“self”?


Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a number of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, ...)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or isinstance(obj, (int, long, float, complex)).

请注意大多数程序不会经常对用户自定义类使用 isinstance()。 如果是你自已开发的类,更正确的面向对象风格是在类中定义方法来封装特定的行为,而不是检查对象的类并根据它属于什么类来做不同的事。 例如,如果你有一个执行某些操作的函数:

def search(obj):
    if isinstance(obj, Mailbox):
        ...  # code to search a mailbox
    elif isinstance(obj, Document):
        ...  # code to search a document
    elif ...

更好的方法是在所有类上定义一个 search() 方法,然后调用它:

class Mailbox:
    def search(self):
        ...  # code to search a mailbox

class Document:
    def search(self):
        ...  # code to search a document



委托是一种面向对象的技巧(也称为设计模式)。 假设您有一个对象 x 并且想要改变其中一个方法的行为。 您可以创建一个新类,它提供您感兴趣的方法的新实现,并将所有其他方法委托给 x 的相应方法。

Python程序员可以轻松实现委托。 例如,以下类实现了一个类,该类的行为类似于文件,但将所有写入的数据转换为大写:

class UpperOut:

    def __init__(self, outfile):
        self._outfile = outfile

    def write(self, s):

    def __getattr__(self, name):
        return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before calling the underlying self.__outfile.write() method. All other methods are delegated to the underlying self.__outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference for more information about controlling attribute access.

请注意对于更一般的情况来说,委托可能包含更多细节问题。 当某些属性既需要读取又需要设置时,类还必须定义 __setattr__() 方法,并且这样做必须小心谨慎。 __setattr__() 的基本实现大致相当于以下代码:

class X:
    def __setattr__(self, name, value):
        self.__dict__[name] = value

大多数 __setattr__() 实现必须修改 self.__dict__ 来为自身保存局部状态而又不至于造成无限递归。


If you’re using new-style classes, use the built-in super() function:

class Derived(Base):
    def meth(self):
        super(Derived, self).meth()

If you’re using classic classes: For a class definition such as class Derived(Base): ... you can call method meth() defined in Base (or one of Base’s base classes) as Base.meth(self, arguments...). Here, Base.meth is an unbound method, so you need to provide the self argument.



BaseAlias = <real base class>

class Derived(BaseAlias):
    def meth(self):


Python支持静态数据和静态方法(在C ++或Java的意义上)。


class C:
    count = 0   # number of times C.__init__ called

    def __init__(self):
        C.count = C.count + 1

    def getcount(self):
        return C.count  # or return self.count

对于任意 c 来说只要 isinstance(c, C) 为真,则 c.count 同样也指向 C.count,除非被 c 自身,或者从 c.__class__ 回到 C 的基类搜索路径上的某个类所重载。

注意:在 C 的某个方法内部,像 self.count = 42 这样的赋值将在 self 自身的字典中新建一个名为 “count” 的不相关实例。 想要重新绑定类静态数据名称就必须总是指明类名,无论是在方法内部还是外部:

C.count = 314

Static methods are possible since Python 2.2:

class C:
    def static(arg1, arg2, arg3):
        # No 'self' parameter!
    static = staticmethod(static)

With Python 2.4’s decorators, this can also be written as

class C:
    def static(arg1, arg2, arg3):
        # No 'self' parameter!


def getcount():
    return C.count




在C ++中,你会这样写

class C {
    C() { cout << "No arguments\n"; }
    C(int i) { cout << "Argument is " << i << "\n"; }


class C:
    def __init__(self, i=None):
        if i is None:
            print "No arguments"
            print "Argument is", i



def __init__(self, *args):


我尝试使用 __spam ,但是得到一个关于 _SomeClassName__spam 的错误信息。

以双下划线打头的变量会被“更名”以提供一种定义类私有变量的简单而有效的方式。 任何形式为 __spam 的标识符(至少前缀两个下划线,至多后缀一个下划线)文本会被替换为 _classname__spam,其中 classname 为去除了全部前缀下划线的当前类名称。

这并不能保证私密性:外部用户仍然可以访问 “_classname__spam” 属性,私有变量值也在对象的 __dict__ 中可见。 许多 Python 程序员从来都不使用这种私有变量名称。

类定义了 __del__ 方法,但是删除对象时没有调用它。


del 语句不一定调用 __del__() —— 它只是减少对象的引用计数,如果(引用计数)达到零,才会调用 __del__()

如果数据结构包含循环链接(例如,每个子级都有一个父级引用,每个父级都有一个子级列表的树),则引用计数将永远不会返回零。尽管Python 偶尔会运行一个算法来检测这样的循环,但在数据结构的引用计数清零后,垃圾收集器可能需要一段时间来运行,因此 __del__() 方法可能会在不方便和随机的时间被调用。这对于重现一个问题,是非常不方便的。更糟糕的是,对象 __del__() 的方法执行顺序是任意的。虽然可以运行 gc.collect() 来强制回收,但在一些病态的情况下,对象永远不会被回收。

Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called whenever you’re done with them. The close() method can then remove attributes that refer to subobjecs. Don’t call __del__() directly – __del__() should call close() and close() should make sure that it can be called more than once for the same object.

另一种避免循环引用的方法是使用 weakref 模块,该模块允许您指向对象而不增加其引用计数。例如,树状数据结构应该对其父级和同级引用使用弱引用(如果需要的话!)

If the object has ever been a local variable in a function that caught an expression in an except clause, chances are that a reference to the object still exists in that function’s stack frame as contained in the stack trace. Normally, calling sys.exc_clear() will take care of this by clearing the last recorded exception.

最后,如果 __del__() 方法引发异常,会将警告消息打印到 sys.stderr



为什么 id() 的结果看起来不是唯一的?

id() 返回一个整数,该整数在对象的生命周期内保证是唯一的。因为在CPython中,这是对象的内存地址,所以经常发生在从内存中删除对象之后,下一个新创建的对象被分配在内存中的相同位置。这个例子说明了这一点:

>>> id(1000)
>>> id(2000)

这两个id属于之前创建的不同整数对象,并在执行 id() 调用后立即删除。要确保要检查其id的对象仍处于活动状态,请创建对该对象的另一个引用:

>>> a = 1000; b = 2000
>>> id(a)
>>> id(b)


如何创建 .pyc 文件?

When a module is imported for the first time (or when the source is more recent than the current compiled file) a .pyc file containing the compiled code should be created in the same directory as the .py file.

One reason that a .pyc file may not be created is permissions problems with the directory. This can happen, for example, if you develop as one user but run as another, such as if you are testing with a web server. Creation of a .pyc file is automatic if you’re importing a module and Python has the ability (permissions, free space, etc…) to write the compiled module back to the directory.

Running Python on a top level script is not considered an import and no .pyc will be created. For example, if you have a top-level module foo.py that imports another module xyz.py, when you run foo, xyz.pyc will be created since xyz is imported, but no foo.pyc file will be created since foo.py isn’t being imported.

If you need to create foo.pyc – that is, to create a .pyc file for a module that is not imported – you can, using the py_compile and compileall modules.

py_compile 模块能够手动编译任意模块。 一种做法是交互式地使用该模块中的 compile() 函数:

>>> import py_compile
>>> py_compile.compile('foo.py')                 

This will write the .pyc to the same location as foo.py (or you can override that with the optional parameter cfile).

你还可以使用 compileall 模块自动编译一个目录或多个目录下的所有文件。 具体做法可以是在命令行提示符中运行 compileall.py 并提供包含要编译 Python 文件的目录路径:

python -m compileall .


模块可以通过查看预定义的全局变量 __name__ 找到自己的模块名称。如果它的值为 '__main__' ,程序将作为脚本运行。通常,通过导入使用的许多模块也提供命令行界面或自检,并且只在检查 __name__ 之后,才执行之后的代码:

def main():
    print 'Running test...'

if __name__ == '__main__':




from bar import bar_var
foo_var = 1


from foo import foo_var
bar_var = 2


  • 首先导入foo

  • 创建用于foo的空全局变量

  • foo被编译并开始执行

  • foo 导入 bar

  • 创建了用于bar 的空全局变量

  • bar被编译并开始执行

  • bar导入foo(这是一个空操作(no-op ),因为已经有一个名为foo的模块)

  • bar.foo_var = foo.foo_var


当你使用 import foo ,然后尝试在全局代码中访问 foo.foo_var 时,会发生同样的事情。


Guido van Rossum 建议避免使用 from <module> import ... ,并将所有代码放在函数中。全局变量和类变量的初始化只能使用常量或内置函数。这意味着导入模块中的所有内容都被引用为 <module>.<name>

Jim Roskind建议在每个模块中按以下顺序执行步骤:

  • 导出(全局变量,函数和不需要导入基类的类)

  • 导入 声明

  • 活动代码(包括从导入值初始化的全局变量)。

van Rossum不喜欢这种方法,因为导入出现在一个陌生的地方,但这种方法确实有效。

Matthias Urlichs建议重构代码,以便首先不需要递归导入。


__import__(‘x.y.z’) 返回 <module ‘x’>; 如何获取z?

考虑使用 importlib 中的函数 import_module()

z = importlib.import_module('x.y.z')


For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module would be parsed and re-parsed many times. To force rereading of a changed module, do this:

import modname


from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import cls
>>> c = cls.C()                # Create an instance of C
>>> reload(cls)
<module 'cls' from 'cls.pyc'>
>>> isinstance(c, cls.C)       # isinstance is false?!?

The nature of the problem is made clear if you print out the class objects:

>>> c.__class__
<class cls.C at 0x7352a0>
>>> cls.C
<class cls.C at 0x4198d0>