3. 확장형 정의하기: 여러 가지 주제¶
이 섹션은 구현할 수 있는 다양한 형 메서드와 그것이 하는 일에 대해 훑어보기를 제공하기 위한 것입니다.
Here is the definition of PyTypeObject
, with some fields only used in
debug builds omitted:
typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */
destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */
reprfunc tp_repr;
/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;
/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;
/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;
const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;
/* delete references to contained objects */
inquiry tp_clear;
/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;
/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;
/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;
destructor tp_finalize;
vectorcallfunc tp_vectorcall;
} PyTypeObject;
이제 메서드가 아주 많습니다. 너무 걱정하지 마십시오 – 정의하려는 형이 있으면, 이 중 일부만 구현할 가능성이 매우 높습니다.
아마 지금까지 예상했듯이, 이것에 대해 살펴보고 다양한 처리기에 대한 자세한 정보를 제공할 것입니다. 필드의 순서에 영향을 미치는 많은 과거의 짐이 있어서, 구조체에 정의된 순서대로 진행하지 않을 것입니다. 필요한 필드가 포함된 예제를 찾은 다음 새 형에 맞게 값을 변경하기가 종종 가장 쉽습니다.
const char *tp_name; /* For printing */
형의 이름 – 이전 장에서 언급했듯이, 이것은 여러 곳에서 나타나는데, 거의 진단 목적입니다. 그러한 상황에서 도움이 될만한 것을 선택하십시오!
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
이 필드는 이 형의 새 객체가 만들어질 때 할당할 메모리양을 런타임에 알려줍니다. 파이썬은 가변 길이 구조(생각하세요: 문자열, 튜플)에 대한 지원을 내장하고 있는데, 이때 tp_itemsize
필드가 참여합니다. 이것은 나중에 다룰 것입니다.
const char *tp_doc;
여기에 파이썬 스크립트가 obj.__doc__
을 참조하여 독스트링을 꺼낼 때 반환할 문자열(또는 문자열의 주소)을 넣을 수 있습니다.
이제 기본 형 메서드에 대해 살펴보겠습니다 – 대부분의 확장형이 구현할 것들입니다.
3.1. 파이널리제이션과 할당 해제¶
destructor tp_dealloc;
이 함수는 형의 인스턴스의 참조 횟수가 0으로 줄어들고 파이썬 인터프리터가 그것을 재활용하고자 할 때 호출됩니다. 여러분의 형에 해제할 메모리가 있거나 수행할 기타 정리 작업이 있으면, 여기에 넣을 수 있습니다. 객체 자체도 여기서 해제해야 합니다. 이 함수의 예는 다음과 같습니다:
static void
newdatatype_dealloc(newdatatypeobject *obj)
{
free(obj->obj_UnderlyingDatatypePtr);
Py_TYPE(obj)->tp_free((PyObject *)obj);
}
If your type supports garbage collection, the destructor should call
PyObject_GC_UnTrack()
before clearing any member fields:
static void
newdatatype_dealloc(newdatatypeobject *obj)
{
PyObject_GC_UnTrack(obj);
Py_CLEAR(obj->other_obj);
...
Py_TYPE(obj)->tp_free((PyObject *)obj);
}
할당 해제 함수의 중요한 요구 사항 중 하나는 계류 중인 예외를 그대로 남겨 두어야 한다는 것입니다. 인터프리터가 파이썬 스택을 되감을 때 할당 해제기가 자주 호출되기 때문에 중요합니다; 스택이 (정상적인 반환이 아닌) 예외로 인해 되감길 때, 할당 해제기가 예외가 이미 설정되어 있음을 알 수 없도록 하는 것은 아무것도 수행되지 않습니다. 할당 해제기가 수행하는 추가 파이썬 코드가 실행될 수 있도록 하는 추가 조치는 예외가 설정되었음을 감지할 수 있습니다. 이는 인터프리터가 혼동하도록 할 수 있습니다. 이를 방지하는 올바른 방법은 안전하지 않은 조치를 수행하기 전에 계류 중인 예외를 저장하고 완료되면 복원하는 것입니다. PyErr_Fetch()
와 PyErr_Restore()
함수를 사용하여 수행할 수 있습니다:
static void
my_dealloc(PyObject *obj)
{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;
if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;
/* This saves the current exception state */
PyErr_Fetch(&err_type, &err_value, &err_traceback);
cbresult = PyObject_CallNoArgs(self->my_callback);
if (cbresult == NULL)
PyErr_WriteUnraisable(self->my_callback);
else
Py_DECREF(cbresult);
/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);
Py_DECREF(self->my_callback);
}
Py_TYPE(obj)->tp_free((PyObject*)self);
}
참고
할당 해제 함수에서 안전하게 수행할 수 있는 작업에는 제한이 있습니다. 먼저, 형이 가비지 수거를 지원하면 (tp_traverse
및/또는 tp_clear
를 사용해서), tp_dealloc
이 호출될 때 객체의 일부 멤버가 지워지거나 파이널라이즈 될 수 있습니다. 둘째, tp_dealloc
에서, 객체는 불안정한 상태에 있습니다: 참조 횟수가 0입니다. (위의 예에서와같이) 사소하지 않은 객체나 API를 호출하면 tp_dealloc
을 다시 호출하게 되어, 이중 해제와 충돌이 발생할 수 있습니다.
파이썬 3.4부터는, tp_dealloc
에 복잡한 파이널리제이션 코드를 넣지 말고, 대신 새로운 tp_finalize
형 메서드를 사용하는 것이 좋습니다.
더 보기
PEP 442는 새로운 파이널리제이션 체계를 설명합니다.
3.2. 객체 표현¶
파이썬에서, 객체의 텍스트 표현을 생성하는 두 가지 방법이 있습니다: repr()
함수와 str()
함수. (print()
함수는 단지 str()
을 호출합니다.) 이 처리기들은 모두 선택적입니다.
reprfunc tp_repr;
reprfunc tp_str;
tp_repr
처리기는 호출된 인스턴스의 표현을 포함하는 문자열 객체를 반환해야 합니다. 다음은 간단한 예입니다:
static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{
return PyUnicode_FromFormat("Repr-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);
}
If no tp_repr
handler is specified, the interpreter will supply a
representation that uses the type’s tp_name
and a uniquely identifying
value for the object.
tp_str
처리기는 str()
에 대한 것이고, 위에서 설명한 tp_repr
처리기와 repr()
간의 관계와 같은 관계입니다; 즉, 파이썬 코드가 객체의 인스턴스에서 str()
을 호출할 때 호출됩니다. 구현은 tp_repr
함수와 매우 유사하지만, 결과 문자열은 사람이 사용하기 위한 것입니다. tp_str
을 지정하지 않으면, tp_repr
처리기가 대신 사용됩니다.
다음은 간단한 예입니다:
static PyObject *
newdatatype_str(newdatatypeobject * obj)
{
return PyUnicode_FromFormat("Stringified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);
}
3.3. 어트리뷰트 관리¶
어트리뷰트를 지원할 수 있는 모든 객체에 대해, 해당 형은 어트리뷰트가 결정되는(resolved) 방법을 제어하는 함수를 제공해야 합니다. 어트리뷰트를 꺼낼 수 있는 함수와 (뭔가 정의되어 있다면), 어트리뷰트를 설정하는 다른 함수(어트리뷰트 설정이 허용된다면)가 있어야 합니다. 어트리뷰트 제거는 특별한 경우이며, 처리기에 전달된 새 값이 NULL
입니다.
Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a PyObject*. Each type can use whichever pair makes more sense for the implementation’s convenience.
getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattro; /* PyObject * version */
setattrofunc tp_setattro;
If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic implementations which can be used to provide the PyObject* version of the attribute management functions. The actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many examples which have not been updated to use some of the new generic mechanism that is available.
3.3.1. 범용 어트리뷰트 관리¶
대부분의 확장형은 간단한 어트리뷰트만 사용합니다. 그렇다면, 어트리뷰트를 간단하게 만드는 것은 무엇입니까? 충족해야 하는 몇 가지 조건만 있습니다:
PyType_Ready()
가 호출될 때 어트리뷰트의 이름을 알아야 합니다.어트리뷰트를 찾거나 설정했음을 기록하는 데 특별한 처리가 필요하지 않으며 값을 기반으로 조처를 하지 않아도 됩니다.
이 목록은 어트리뷰트 값, 값을 계산하는 시점 또는 관련 데이터가 저장되는 방법에 제한을 두지 않음에 유의하십시오.
PyType_Ready()
가 호출될 때, 형 객체가 참조하는 3개의 테이블을 사용하여 형 객체의 딕셔너리에 배치되는 디스크립터를 만듭니다. 각 디스크립터는 인스턴스 객체의 한 어트리뷰트에 대한 액세스를 제어합니다. 각 테이블은 선택적입니다; 세 개 모두가 NULL
이면, 형의 인스턴스는 베이스형에서 상속된 어트리뷰트만 갖게 되며, tp_getattro
와 tp_setattro
필드도 NULL
로 남겨두어야 베이스형이 어트리뷰트를 처리할 수 있습니다.
테이블은 형 객체의 세 필드로 선언됩니다:
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
tp_methods
가 NULL
이 아니면, PyMethodDef
구조체의 배열을 참조해야 합니다. 테이블의 각 항목은 다음 구조체의 인스턴스입니다:
typedef struct PyMethodDef {
const char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */
const char *ml_doc; /* docstring */
} PyMethodDef;
One entry should be defined for each method provided by the type; no entries are
needed for methods inherited from a base type. One additional entry is needed
at the end; it is a sentinel that marks the end of the array. The
ml_name
field of the sentinel must be NULL
.
두 번째 테이블은 인스턴스에 저장된 데이터에 직접 매핑되는 어트리뷰트를 정의하는 데 사용됩니다. 다양한 기본 C형이 지원되며, 액세스는 읽기 전용이거나 읽고 쓰기일 수 있습니다. 테이블의 구조체는 다음과 같이 정의됩니다:
typedef struct PyMemberDef {
const char *name;
int type;
int offset;
int flags;
const char *doc;
} PyMemberDef;
For each entry in the table, a descriptor will be constructed and added to the
type which will be able to extract a value from the instance structure. The
type
field should contain one of the type codes defined in the
structmember.h
header; the value will be used to determine how to
convert Python values to and from C values. The flags
field is used to
store flags which control how the attribute can be accessed.
다음 플래그 상수는 structmember.h
에 정의되어 있습니다; 비트별 OR를 사용하여 결합할 수 있습니다.
상수 |
의미 |
---|---|
|
쓸 수 없습니다. |
|
Emit an |
버전 3.10에서 변경: RESTRICTED
, READ_RESTRICTED
and WRITE_RESTRICTED
are deprecated. However, READ_RESTRICTED
is an alias for
PY_AUDIT_READ
, so fields that specify either RESTRICTED
or READ_RESTRICTED
will also raise an audit event.
An interesting advantage of using the tp_members
table to build
descriptors that are used at runtime is that any attribute defined this way can
have an associated doc string simply by providing the text in the table. An
application can use the introspection API to retrieve the descriptor from the
class object, and get the doc string using its __doc__
attribute.
As with the tp_methods
table, a sentinel entry with a ml_name
value
of NULL
is required.
3.3.2. 형별 어트리뷰트 관리¶
For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference between the char* and PyObject* flavors of the interface. This example effectively does the same thing as the generic example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called, so that if you do need to extend their functionality, you’ll understand what needs to be done.
The tp_getattr
handler is called when the object requires an attribute
look-up. It is called in the same situations where the __getattr__()
method of a class would be called.
예는 다음과 같습니다:
static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PyLong_FromLong(obj->data);
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",
tp->tp_name, name);
return NULL;
}
The tp_setattr
handler is called when the __setattr__()
or
__delattr__()
method of a class instance would be called. When an
attribute should be deleted, the third parameter will be NULL
. Here is an
example that simply raises an exception; if this were really all you wanted, the
tp_setattr
handler should be set to NULL
.
static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{
PyErr_Format(PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;
}
3.4. 객체 비교¶
richcmpfunc tp_richcompare;
The tp_richcompare
handler is called when comparisons are needed. It is
analogous to the rich comparison methods, like
__lt__()
, and also called by PyObject_RichCompare()
and
PyObject_RichCompareBool()
.
This function is called with two Python objects and the operator as arguments,
where the operator is one of Py_EQ
, Py_NE
, Py_LE
, Py_GE
,
Py_LT
or Py_GT
. It should compare the two objects with respect to the
specified operator and return Py_True
or Py_False
if the comparison is
successful, Py_NotImplemented
to indicate that comparison is not
implemented and the other object’s comparison method should be tried, or NULL
if an exception was set.
내부 포인터의 크기가 같으면 같다고 간주하는 데이터형에 대한 샘플 구현은 다음과 같습니다:
static PyObject *
newdatatype_richcmp(PyObject *obj1, PyObject *obj2, int op)
{
PyObject *result;
int c, size1, size2;
/* code to make sure that both arguments are of type
newdatatype omitted */
size1 = obj1->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;
switch (op) {
case Py_LT: c = size1 < size2; break;
case Py_LE: c = size1 <= size2; break;
case Py_EQ: c = size1 == size2; break;
case Py_NE: c = size1 != size2; break;
case Py_GT: c = size1 > size2; break;
case Py_GE: c = size1 >= size2; break;
}
result = c ? Py_True : Py_False;
Py_INCREF(result);
return result;
}
3.5. 추상 프로토콜 지원¶
파이썬은 다양한 추상 ‘프로토콜’을 지원합니다; 이러한 인터페이스를 사용하기 위해 제공되는 구체적인 인터페이스는 추상 객체 계층에 설명되어 있습니다.
이러한 추상 인터페이스 중 다수는 파이썬 구현 개발 초기에 정의되었습니다. 특히, 숫자, 매핑 및 시퀀스 프로토콜은 처음부터 파이썬의 일부였습니다. 다른 프로토콜은 시간이 지남에 따라 추가되었습니다. 형 구현의 여러 처리기 루틴에 의존하는 프로토콜의 경우, 이전 프로토콜은 형 객체가 참조하는 선택적 처리기 블록으로 정의되었습니다. 최신 프로토콜의 경우 메인 형 객체에 추가 슬롯이 있으며, 슬롯이 존재하고 인터프리터가 확인해야 함을 나타내는 플래그 비트가 설정됩니다. (플래그 비트는 슬롯 값이 NULL
이 아님을 나타내지 않습니다. 플래그는 슬롯의 존재를 나타내도록 설정될 수 있지만, 슬롯은 여전히 채워지지 않을 수 있습니다.)
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
여러분의 객체가 숫자, 시퀀스 또는 매핑 객체처럼 작동하도록 하려면, C형 PyNumberMethods
, PySequenceMethods
또는 PyMappingMethods
를 각각 구현하는 구조체의 주소를 배치합니다. 이 구조체를 적절한 값으로 채우는 것은 여러분의 책임입니다. 파이썬 소스 배포의 Objects
디렉터리에서 이들 각각의 사용 예를 찾을 수 있습니다.
hashfunc tp_hash;
여러분이 제공하기로 선택했다면, 이 함수는 데이터형의 인스턴스에 대한 해시 숫자를 반환해야 합니다. 다음은 간단한 예입니다:
static Py_hash_t
newdatatype_hash(newdatatypeobject *obj)
{
Py_hash_t result;
result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;
return result;
}
Py_hash_t
is a signed integer type with a platform-varying width.
Returning -1
from tp_hash
indicates an error,
which is why you should be careful to avoid returning it when hash computation
is successful, as seen above.
ternaryfunc tp_call;
이 함수는 데이터형의 인스턴스가 “호출”될 때 호출됩니다, 예를 들어, obj1
이 데이터형의 인스턴스이고 파이썬 스크립트에 obj1('hello')
가 포함되어 있으면 tp_call
처리기가 호출됩니다.
이 함수는 세 개의 인자를 취합니다:
self는 호출의 대상인 데이터형의 인스턴스입니다. 호출이
obj1('hello')
이면, self는obj1
입니다.args는 호출에 대한 인자를 포함하는 튜플입니다.
PyArg_ParseTuple()
을 사용하여 인자를 추출할 수 있습니다.kwds는 전달된 키워드 인자의 딕셔너리입니다. 이것이
NULL
이 아니고 키워드 인자를 지원하면PyArg_ParseTupleAndKeywords()
를 사용하여 인자를 추출하십시오. 키워드 인자를 지원하지 않고 이것이NULL
이 아니면, 키워드 인자가 지원되지 않는다는 메시지와 함께TypeError
를 발생시키십시오.
장난감 tp_call
구현은 다음과 같습니다:
static PyObject *
newdatatype_call(newdatatypeobject *self, PyObject *args, PyObject *kwds)
{
PyObject *result;
const char *arg1;
const char *arg2;
const char *arg3;
if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
return NULL;
}
result = PyUnicode_FromFormat(
"Returning -- value: [%d] arg1: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
arg1, arg2, arg3);
return result;
}
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
These functions provide support for the iterator protocol. Both handlers
take exactly one parameter, the instance for which they are being called,
and return a new reference. In the case of an error, they should set an
exception and return NULL
. tp_iter
corresponds
to the Python __iter__()
method, while tp_iternext
corresponds to the Python __next__()
method.
모든 이터러블 객체는 이터레이터 객체를 반환해야 하는 tp_iter
처리기를 구현해야 합니다. 다음은 파이썬 클래스에도 적용되는 공통 지침입니다:
여러 개의 독립 이터레이터를 지원할 수 있는 컬렉션(가령 리스트와 튜플)의 경우,
tp_iter
를 호출할 때마다 새 이터레이터가 만들어지고 반환되어야 합니다.한 번만 이터레이트 될 수 있는 (보통 파일 객체처럼 이터레이션의 부작용으로 인해) 객체는 스스로에 대한 새로운 참조를 반환하여
tp_iter
를 구현할 수 있습니다 – 따라서tp_iternext
처리기도 구현해야 합니다.
모든 이터레이터 객체는 tp_iter
와 tp_iternext
를 모두 구현해야 합니다. 이터레이터의 tp_iter
처리기는 이터레이터에 대한 새로운 참조를 반환해야 합니다. tp_iternext
처리기는 이터레이션의 다음 객체(있다면)에 대한 새 참조를 반환해야 합니다. 이터레이션이 끝에 도달하면, tp_iternext
는 예외를 설정하지 않고 NULL
을 반환하거나, NULL
을 반환하는 것에 더해 StopIteration
을 설정할 수 있습니다; 예외를 피하면 성능이 약간 향상될 수 있습니다. 실제 에러가 발생하면, tp_iternext
는 항상 예외를 설정하고, NULL
을 반환해야 합니다.
3.6. 약한 참조 지원¶
파이썬의 약한 참조 구현의 목표 중 하나는 성능에 중요한 객체(가령 숫자)에 대한 부하를 발생시키지 않고 모든 형이 약한 참조 메커니즘에 참여할 수 있도록 하는 것입니다.
더 보기
weakref
모듈에 대한 설명서.
객체가 약하게 참조될 수 있으려면, 확장형이 두 가지 작업을 수행해야 합니다:
Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s constructor should leave it
NULL
(which is automatic when using the defaulttp_alloc
).인터프리터가 해당 필드에 액세스하고 수정하는 방법을 알 수 있도록,
tp_weaklistoffset
형 멤버를 C 객체 구조체에서 위에서 언급한 필드의 오프셋으로 설정하십시오.
구체적으로, 다음은 필수 필드로 사소한 객체 구조체를 확장하는 방법입니다:
typedef struct {
PyObject_HEAD
PyObject *weakreflist; /* List of weak references */
} TrivialObject;
And the corresponding member in the statically declared type object:
static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT(NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),
};
유일한 추가 사항은 필드가 NULL
이 아니면 tp_dealloc
이 (PyObject_ClearWeakRefs()
를 호출하여) 모든 약한 참조를 지울 필요가 있다는 것입니다:
static void
Trivial_dealloc(TrivialObject *self)
{
/* Clear weakrefs first before calling any destructors */
if (self->weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE(self)->tp_free((PyObject *) self);
}
3.7. 추가 제안¶
새 데이터형에 특정 메서드를 구현하는 방법을 배우려면, CPython 소스 코드를 구하십시오. Objects
디렉터리로 이동한 다음, C 소스 파일에서 tp_
에 원하는 기능을 더한 것(예를 들어, tp_richcompare
)을 검색하십시오. 구현하려는 함수의 예를 찾을 수 있을 겁니다.
객체가 구현 중인 형의 구상 인스턴스인지 확인해야 하면, PyObject_TypeCheck()
함수를 사용하십시오. 사용 예는 다음과 같습니다:
if (!PyObject_TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;
}
더 보기
- CPython 소스 릴리스를 다운로드하십시오.
- GitHub의 CPython 프로젝트, CPython 소스 코드가 개발되는 곳.