はじめに¶
Python のアプリケーションプログラマ用インタフェース (Application Programmer's Interface, API) は、 Python インタプリタに対する様々なレベルでのアクセス手段を C や C++ のプログラマに提供しています。この API は通常 C++ からも全く同じように利用できるのですが、簡潔な呼び名にするために Python/C API と名づけられています。根本的に異なる二つの目的から、 Python/C API が用いられます。第一は、特定用途の 拡張モジュール (extension module) 、すなわち Python インタプリタを拡張する C で書かれたモジュールを記述する、という目的です。第二は、より大規模なアプリケーション内で Python を構成要素 (component) として利用するという目的です; このテクニックは、一般的にはアプリケーションへの Python の埋め込み (embedding) と呼びます。
拡張モジュールの作成は比較的わかりやすいプロセスで、 "手引書 (cookbook)" 的なアプローチでうまく実現できます。作業をある程度まで自動化してくれるツールもいくつかあります。一方、他のアプリケーションへの Python の埋め込みは、Python ができてから早い時期から行われてきましたが、拡張モジュールの作成に比べるとやや難解です。
多くの API 関数は、Python の埋め込みであるか拡張であるかに関わらず役立ちます; とはいえ、Python を埋め込んでいるほとんどのアプリケーションは、同時に自作の拡張モジュールも提供する必要が生じることになるでしょうから、Python を実際にアプリケーションに埋め込んでみる前に拡張モジュールの書き方に詳しくなっておくのはよい考えだと思います。
コーディング基準¶
CPython に含める C コードを書いている場合は、 PEP 7 のガイドラインと基準に従わなければ なりません 。 このガイドラインは、コントリビュート対象の Python のバージョンに関係無く適用されます。 自身のサードパーティーのモジュールでは、それをいつか Python にコントリビュートするつもりでなければ、この慣習に従う必要はありません。
インクルードファイル¶
Python/C API を使うために必要な、関数、型およびマクロの全ての定義をインクルードするには、以下の行:
#define PY_SSIZE_T_CLEAN
#include <Python.h>
をソースコードに記述します。この行を記述すると、標準ヘッダ: <stdio.h>
, <string.h>
, <errno.h>
, <limits.h>
, <assert.h>
, <stdlib.h>
を (利用できれば) インクルードします。
注釈
Python は、システムによっては標準ヘッダの定義に影響するようなプリプロセッサ定義を行っているので、 Python.h
をいずれの標準ヘッダよりも前にインクルード せねばなりません 。
Python.h
をインクルードする前に、常に PY_SSIZE_T_CLEAN
を定義することが推奨されます。
このマクロの解説については 引数の解釈と値の構築 を参照してください。
Python.h で定義されている、ユーザから見える名前全て (Python.h がインクルードしている標準ヘッダの名前は除きます) には、接頭文字列 Py
または _Py
が付きます。_Py
で始まる名前は Python 実装で内部使用するための名前で、拡張モジュールの作者は使ってはなりません。構造体のメンバには予約済みの接頭文字列はありません。
注釈
API のユーザは、Py
や _Py
で始まる名前を定義するコードを絶対に書いてはなりません。
後からコードを読む人を混乱させたり、将来の Python のバージョンで同じ名前が定義されて、ユーザの書いたコードの可搬性を危うくする可能性があります。
ヘッダファイル群は通常 Python と共にインストールされます。 Unixでは prefix/include/pythonversion/
および exec_prefix/include/pythonversion/
に置かれます。 prefix
と exec_prefix
は Python をビルドする際の configure スクリプトに与えたパラメタに対応し、 version は '%d.%d' % sys.version_info[:2]
に対応します。 Windows では、ヘッダは prefix/include
に置かれます。 prefix
はインストーラに指定したインストールディレクトリです。
ヘッダをインクルードするには、各ヘッダの入ったディレクトリ (別々のディレクトリの場合は両方) を、コンパイラがインクルードファイルを検索するためのパスに入れます。親ディレクトリをサーチパスに入れて、 #include <pythonX.Y/Python.h>
のようにしては なりません ; prefix
内のプラットフォームに依存しないヘッダは、 exec_prefix
からプラットフォーム依存のヘッダをインクルードしているので、このような操作を行うと複数のプラットフォームでのビルドができなくなります。
C++ users should note that although the API is defined entirely using C, the
header files properly declare the entry points to be extern "C"
. As a result,
there is no need to do anything special to use the API from C++.
便利なマクロ¶
Python のヘッダーファイルには便利なマクロがいくつか定義されています。
多くのマクロは、それが役に立つところ (例えば、 Py_RETURN_NONE
) の近くに定義があります。
より一般的な使われかたをする他のマクロはこれらのヘッダーファイルに定義されています。
ただし、ここで完全に列挙されているとは限りません。
-
PyMODINIT_FUNC¶
Declare an extension module
PyInit
initialization function. The function return type is PyObject*. The macro declares any special linkage declarations required by the platform, and for C++ declares the function asextern "C"
.The initialization function must be named
PyInit_name
, where name is the name of the module, and should be the only non-static
item defined in the module file. Example:static struct PyModuleDef spam_module = { PyModuleDef_HEAD_INIT, .m_name = "spam", ... }; PyMODINIT_FUNC PyInit_spam(void) { return PyModule_Create(&spam_module); }
-
Py_ABS(x)¶
x
の絶対値を返します。Added in version 3.3.
-
Py_ALWAYS_INLINE¶
Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline the function.
It can be used to inline performance critical static inline functions when building Python in debug mode with function inlining disabled. For example, MSC disables function inlining when building in debug mode.
Marking blindly a static inline function with Py_ALWAYS_INLINE can result in worse performances (due to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit analysis.
If Python is built in debug mode (if the
Py_DEBUG
macro is defined), thePy_ALWAYS_INLINE
macro does nothing.It must be specified before the function return type. Usage:
static inline Py_ALWAYS_INLINE int random(void) { return 4; }
Added in version 3.11.
-
Py_CHARMASK(c)¶
引数は文字か、[-128, 127] あるいは [0, 255] の範囲の整数でなければなりません。 このマクロは
符号なし文字
にキャストしたc
を返します。
-
Py_DEPRECATED(version)¶
Use this for deprecated declarations. The macro must be placed before the symbol name.
以下はプログラム例です:
Py_DEPRECATED(3.8) PyAPI_FUNC(int) Py_OldFunction(void);
バージョン 3.8 で変更: MSVC サポートが追加されました。
-
Py_GETENV(s)¶
Like
getenv(s)
, but returnsNULL
if-E
was passed on the command line (seePyConfig.use_environment
).
-
Py_MAX(x, y)¶
x
とy
の最大値を返します。Added in version 3.3.
-
Py_MEMBER_SIZE(type, member)¶
(
type
) 構造体のmember
のサイズをバイト単位で返します。Added in version 3.6.
-
Py_MIN(x, y)¶
x
とy
の最小値を返します。Added in version 3.3.
-
Py_NO_INLINE¶
Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds which heavily inline code (see bpo-33720).
使い方:
Py_NO_INLINE static int random(void) { return 4; }
Added in version 3.11.
-
Py_STRINGIFY(x)¶
x
を C 文字列へ変換します。 例えば、Py_STRINGIFY(123)
は"123"
を返します。Added in version 3.4.
-
Py_UNREACHABLE()¶
Use this when you have a code path that cannot be reached by design. For example, in the
default:
clause in aswitch
statement for which all possible values are covered incase
statements. Use this in places where you might be tempted to put anassert(0)
orabort()
call.In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code. For example, the macro is implemented with
__builtin_unreachable()
on GCC in release mode.A use for
Py_UNREACHABLE()
is following a call a function that never returns but that is not declared_Py_NO_RETURN
.If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For example, under low memory condition or if a system call returns a value out of the expected range. In this case, it's better to report the error to the caller. If the error cannot be reported to caller,
Py_FatalError()
can be used.Added in version 3.7.
-
Py_UNUSED(arg)¶
Use this for unused arguments in a function definition to silence compiler warnings. Example:
int func(int a, int Py_UNUSED(b)) { return a; }
.Added in version 3.4.
-
PyDoc_STRVAR(name, str)¶
Creates a variable with name
name
that can be used in docstrings. If Python is built without docstrings, the value will be empty.Use
PyDoc_STRVAR
for docstrings to support building Python without docstrings, as specified in PEP 7.以下はプログラム例です:
PyDoc_STRVAR(pop_doc, "Remove and return the rightmost element."); static PyMethodDef deque_methods[] = { // ... {"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc}, // ... }
-
PyDoc_STR(str)¶
Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use
PyDoc_STR
in specifying docstrings to support building Python without docstrings, as specified in PEP 7.以下はプログラム例です:
static PyMethodDef pysqlite_row_methods[] = { {"keys", (PyCFunction)pysqlite_row_keys, METH_NOARGS, PyDoc_STR("Returns the keys of the row.")}, {NULL, NULL} };
オブジェクト、型および参照カウント¶
Python/C API 関数は、 PyObject* 型の一つ以上の引数と戻り値を持ちます。この型は、任意の Python オブジェクトを表現する不透明 (opaque) なデータ型へのポインタです。 Python 言語は、全ての Python オブジェクト型をほとんどの状況 (例えば代入、スコープ規則 (scope rule)、引数渡し) で同様に扱います。ほとんど全ての Python オブジェクトはヒープ (heap) 上に置かれます: このため、 PyObject
型のオブジェクトは、自動記憶 (automatic) としても静的記憶 (static) としても宣言できません。 PyObject* 型のポインタ変数のみ宣言できます。唯一の例外は、型オブジェクトです; 型オブジェクトはメモリ解放 (deallocate) してはならないので、通常は静的記憶の PyTypeObject
オブジェクトにします。
全ての Python オブジェクトには (Python 整数型ですら) 型 (type) と参照カウント (reference count) があります。あるオブジェクトの型は、そのオブジェクトがどの種類のオブジェクトか (例えば整数、リスト、ユーザ定義関数、など; その他多数については 標準型の階層 で説明しています) を決定します。よく知られている型については、各々マクロが存在して、あるオブジェクトがその型かどうか調べられます; 例えば、 PyList_Check(a)
は、 a で示されたオブジェクトが Python リスト型のとき (かつそのときに限り) 真値を返します。
参照カウント法¶
The reference count is important because today's computers have a finite (and often severely limited) memory size; it counts how many different places there are that have a strong reference to an object. Such a place could be another object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other objects, those references are released. Those other objects may be deallocated in turn, if there are no more references to them, and so on. (There's an obvious problem with objects that reference each other here; for now, the solution is "don't do that.")
Reference counts are always manipulated explicitly. The normal way is
to use the macro Py_INCREF()
to take a new reference to an
object (i.e. increment its reference count by one),
and Py_DECREF()
to release that reference (i.e. decrement the
reference count by one). The Py_DECREF()
macro
is considerably more complex than the incref one, since it must check whether
the reference count becomes zero and then cause the object's deallocator to be
called. The deallocator is a function pointer contained in the object's type
structure. The type-specific deallocator takes care of releasing references
for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization
that's needed. There's no chance that the reference count can overflow; at
least as many bits are used to hold the reference count as there are distinct
memory locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)
).
Thus, the reference count increment is a simple operation.
It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains a pointer to an object. In theory, the object's reference count goes up by one when the variable is made to point to it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn't changed. The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it
for a while without taking a new reference. Some other operation might
conceivably remove the object from the list, releasing that reference,
and possibly deallocating it. The real danger is that innocent-looking
operations may invoke arbitrary Python code which could do this; there is a code
path which allows control to flow back to the user from a Py_DECREF()
, so
almost any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name
begins with PyObject_
, PyNumber_
, PySequence_
or PyMapping_
).
These operations always create a new strong reference
(i.e. increment the reference count) of the object they return.
This leaves the caller with the responsibility to call Py_DECREF()
when
they are done with the result; this soon becomes second nature.
参照カウントの詳細¶
The reference count behavior of functions in the Python/C API is best explained
in terms of ownership of references. Ownership pertains to references, never
to objects (objects are not owned: they are always shared). "Owning a
reference" means being responsible for calling Py_DECREF on it when the
reference is no longer needed. Ownership can also be transferred, meaning that
the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py_DECREF()
or Py_XDECREF()
when it's no longer needed---or passing on this responsibility (usually to its
caller). When a function passes ownership of a reference on to its caller, the
caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
逆に、ある関数呼び出しで、あるオブジェクトへの参照を呼び出される関数に渡す際には、二つの可能性: 関数がオブジェクトへの参照を 盗み取る (steal) 場合と、そうでない場合があります。参照を盗む とは、関数に参照を渡したときに、参照の所有者がその関数になったと仮定し、関数の呼び出し元には所有権がなくなるということです。
参照を盗み取る関数はほとんどありません; 例外としてよく知られているのは、 PyList_SetItem()
と PyTuple_SetItem()
で、これらはシーケンスに入れる要素に対する参照を盗み取ります (しかし、要素の入る先のタプルやリストの参照は盗み取りません!)。これらの関数は、リストやタプルの中に新たに作成されたオブジェクトを入れていく際の常套的な書き方をしやすくするために、参照を盗み取るように設計されています; 例えば、 (1, 2, "three")
というタプルを生成するコードは以下のようになります (とりあえず例外処理のことは忘れておきます; もっとよい書き方を後で示します):
PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));
ここで、 PyLong_FromLong()
は新しい参照を返し、すぐに PyTuple_SetItem()
に盗まれます。参照が盗まれた後もそのオブジェクトを利用したい場合は、参照盗む関数を呼び出す前に、 Py_INCREF()
を利用してもう一つの参照を取得してください。
ちなみに、 PyTuple_SetItem()
はタプルに値をセットするための 唯一の 方法です; タプルは変更不能なデータ型なので、 PySequence_SetItem()
や PyObject_SetItem()
を使うと上の操作は拒否されてしまいます。自分でタプルの値を入れていくつもりなら、 PyTuple_SetItem()
だけしか使えません。
同じく、リストに値を入れていくコードは PyList_New()
と PyList_SetItem()
で書けます。
しかし実際には、タプルやリストを生成して値を入れる際には、上記のような方法はほとんど使いません。より汎用性のある関数、 Py_BuildValue()
があり、ほとんどの主要なオブジェクトをフォーマット文字列 format string の指定に基づいて C の値から生成できます。例えば、上の二種類のコードブロックは、以下のように置き換えられます (エラーチェックにも配慮しています):
PyObject *tuple, *list;
tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");
It is much more common to use PyObject_SetItem()
and friends with items
whose references you are only borrowing, like arguments that were passed in to
the function you are writing. In that case, their behaviour regarding references
is much saner, since you don't have to take a new reference just so you
can give that reference away ("have it be stolen"). For example, this function
sets all items of a list (actually, any mutable sequence) to a given item:
int
set_all(PyObject *target, PyObject *item)
{
Py_ssize_t i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t(i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF(index);
return -1;
}
Py_DECREF(index);
}
return 0;
}
関数の戻り値の場合には、状況は少し異なります。ほとんどの関数については、参照を渡してもその参照に対する所有権が変わることがない一方で、あるオブジェクトに対する参照を返すような多くの関数は、参照に対する所有権を呼び出し側に与えます。理由は簡単です: 多くの場合、関数が返すオブジェクトはその場で (on the fly) 生成されるため、呼び出し側が得る参照は生成されたオブジェクトに対する唯一の参照になるからです。従って、 PyObject_GetItem()
や PySequence_GetItem()
のように、オブジェクトに対する参照を返す汎用の関数は、常に新たな参照を返します (呼び出し側が参照の所有者になります)。
重要なのは、関数が返す参照の所有権を持てるかどうかは、どの関数を呼び出すかだけによる、と理解することです --- 関数呼び出し時の お飾り (関数に引数として渡したオブジェクトの型) は この問題には関係ありません! 従って、 PyList_GetItem()
を使ってリスト内の要素を得た場合には、参照の所有者にはなりません --- が、同じ要素を同じリストから PySequence_GetItem()
(図らずもこの関数は全く同じ引数をとります) を使って取り出すと、返されたオブジェクトに対する参照を得ます。
以下は、整数からなるリストに対して各要素の合計を計算する関数をどのようにして書けるかを示した例です; 一つは PyList_GetItem()
を使っていて、もう一つは PySequence_GetItem()
を使っています。
long
sum_list(PyObject *list)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
return total;
}
long
sum_sequence(PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {
value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF(item); /* Discard reference ownership */
}
}
return total;
}
型¶
他にも Python/C API において重要な役割を持つデータ型がいくつかあります; ほとんどは int, long, double, および char* といった、単なる C のデータ型です。また、モジュールで公開している関数を列挙する際に用いられる静的なテーブルや、新しいオブジェクト型におけるデータ属性を記述したり、複素数の値を記述したりするために構造体をいくつか使っています。これらの型については、その型を使う関数とともに説明してゆきます。
-
type Py_ssize_t¶
- 次に属します: Stable ABI.
A signed integral type such that
sizeof(Py_ssize_t) == sizeof(size_t)
. C99 doesn't define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.PY_SSIZE_T_MAX
is the largest positive value of typePy_ssize_t
.
例外¶
Python プログラマは、特定のエラー処理が必要なときだけしか例外を扱う必要はありません; 処理しなかった例外は、処理の呼び出し側、そのまた呼び出し側、といった具合に、トップレベルのインタプリタ層まで自動的に伝播します。インタプリタ層は、スタックトレースバックと合わせて例外をユーザに報告します。
ところが、 C プログラマの場合、エラーチェックは常に明示的に行わねばなりません。 Python/C API の全ての関数は、関数のドキュメントで明確に説明がない限り例外を発行する可能性があります。一般的な話として、ある関数が何らかのエラーに遭遇すると、関数は例外を設定して、関数内における参照の所有権を全て放棄し、エラー値 (error indicator) を返します。ドキュメントに書かれてない場合、このエラー値は関数の戻り値の型によって、 NULL
か -1
のどちらかになります。いくつかの関数ではブール型で真/偽を返し、偽はエラーを示します。きわめて少数の関数では明確なエラー指標を返さなかったり、あいまいな戻り値を返したりするので、 PyErr_Occurred()
で明示的にエラーテストを行う必要があります。これらの例外は常に明示的にドキュメント化されます。
例外時の状態情報 (exception state)は、スレッド単位に用意された記憶領域 (per-thread storage) 内で管理されます (この記憶領域は、スレッドを使わないアプリケーションではグローバルな記憶領域と同じです)。一つのスレッドは二つの状態のどちらか: 例外が発生したか、まだ発生していないか、をとります。関数 PyErr_Occurred()
を使うと、この状態を調べられます: この関数は例外が発生した際にはその例外型オブジェクトに対する借用参照 (borrowed reference) を返し、そうでないときには NULL
を返します。例外状態を設定する関数は数多くあります: PyErr_SetString()
はもっともよく知られている (が、もっとも汎用性のない) 例外を設定するための関数で、 PyErr_Clear()
は例外状態情報を消し去る関数です。
完全な例外状態情報は、3 つのオブジェクト: 例外の型、例外の値、そしてトレースバック、からなります (どのオブジェクトも NULL
を取り得ます)。これらの情報は、 Python の sys.exc_info()
の結果と同じ意味を持ちます; とはいえ、 C と Python の例外状態情報は全く同じではありません: Python における例外オブジェクトは、Python の try
... except
文で最近処理したオブジェクトを表す一方、 C レベルの例外状態情報が存続するのは、渡された例外情報を sys.exc_info()
その他に転送するよう取り計らう Python のバイトコードインタプリタのメインループに到達するまで、例外が関数の間で受け渡しされている間だけです。
Python 1.5 からは、Python で書かれたコードから例外状態情報にアクセスする方法として、推奨されていてスレッドセーフな方法は sys.exc_info()
になっているので注意してください。この関数は Python コードの実行されているスレッドにおける例外状態情報を返します。また、これらの例外状態情報に対するアクセス手段は、両方とも意味づけ (semantics) が変更され、ある関数が例外を捕捉すると、その関数を実行しているスレッドの例外状態情報を保存して、呼び出し側の例外状態情報を維持するようになりました。この変更によって、無害そうに見える関数が現在扱っている例外を上書きすることで引き起こされる、例外処理コードでよくおきていたバグを抑止しています; また、トレースバック内のスタックフレームで参照されているオブジェクトがしばしば不必要に寿命を永らえていたのをなくしています。
一般的な原理として、ある関数が別の関数を呼び出して何らかの作業をさせるとき、呼び出し先の関数が例外を送出していないか調べなくてはならず、もし送出していれば、その例外状態情報は呼び出し側に渡されなければなりません。呼び出し元の関数はオブジェクト参照の所有権をすべて放棄し、エラー指標を返さなくてはなりませんが、余計に例外を設定する必要は ありません --- そんなことをすれば、たった今送出されたばかりの例外を上書きしてしまい、エラーの原因そのものに関する重要な情報を失うことになります。
A simple example of detecting exceptions and passing them on is shown in the
sum_sequence()
example above. It so happens that this example doesn't
need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:
def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1
以下は対応するコードを C で完璧に書いたものです:
int
incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /* -1 for error, 0 for success */
}
なんとこの例は C で goto
文を使うお勧めの方法まで示していますね! この例では、特定の例外を処理するために PyErr_ExceptionMatches()
および PyErr_Clear()
をどう使うかを示しています。また、所有権を持っている参照で、値が NULL
になるかもしれないものを捨てるために Py_XDECREF()
をどう使うかも示しています (関数名に 'X'
が付いていることに注意してください; Py_DECREF()
は NULL
参照に出くわすとクラッシュします)。正しく動作させるためには、所有権を持つ参照を保持するための変数を NULL
で初期化することが重要です; 同様に、あらかじめ戻り値を定義する際には値を -1
(失敗) で初期化しておいて、最後の関数呼び出しまでうまくいった場合にのみ 0
(成功) に設定します。
Python の埋め込み¶
Python インタプリタの埋め込みを行う人 (いわば拡張モジュールの書き手の対極) が気にかけなければならない重要なタスクは、Python インタプリタの初期化処理 (initialization)、そしておそらくは終了処理 (finalization) です。インタプリタのほとんどの機能は、インタプリタの起動後しか使えません。
基本的な初期化処理を行う関数は Py_Initialize()
です。この関数はロード済みのモジュールからなるテーブルを作成し、土台となるモジュール builtins
, __main__
, および sys
を作成します。また、モジュール検索パス (sys.path
) の初期化も行います。
Py_Initialize()
does not set the "script argument list" (sys.argv
).
If this variable is needed by Python code that will be executed later, setting
PyConfig.argv
and PyConfig.parse_argv
must be set: see
Python Initialization Configuration.
ほとんどのシステムでは (特に Unix と Windows は、詳細がわずかに異なりはしますが)、 Py_Initialize()
は標準の Python インタプリタ実行形式の場所に対する推定結果に基づいて、 Python のライブラリが Python インタプリタ実行形式からの相対パスで見つかるという仮定の下にモジュール検索パスを計算します。とりわけこの検索では、シェルコマンド検索パス (環境変数 PATH
) 上に見つかった python
という名前の実行ファイルの置かれているディレクトリの親ディレクトリからの相対で、 lib/pythonX.Y
という名前のディレクトリを探します。
例えば、 Python 実行形式が /usr/local/bin/python
で見つかったとすると、ライブラリが /usr/local/lib/pythonX.Y
にあるものと仮定します。 (実際には、このパスは "フォールバック (fallback)" のライブラリ位置でもあり、 python
が PATH
上に無い場合に使われます。) ユーザは PYTHONHOME
を設定することでこの動作をオーバーライドしたり、 PYTHONPATH
を設定して追加のディレクトリを標準モジュール検索パスの前に挿入したりできます。
The embedding application can steer the search by calling
Py_SetProgramName(file)
before calling Py_Initialize()
. Note that
PYTHONHOME
still overrides this and PYTHONPATH
is still
inserted in front of the standard path. An application that requires total
control has to provide its own implementation of Py_GetPath()
,
Py_GetPrefix()
, Py_GetExecPrefix()
, and
Py_GetProgramFullPath()
(all defined in Modules/getpath.c
).
たまに、 Python を初期化前の状態にもどしたいことがあります。例えば、あるアプリケーションでは実行を最初からやりなおし (start over) させる (Py_Initialize()
をもう一度呼び出させる) ようにしたいかもしれません。あるいは、アプリケーションが Python を一旦使い終えて、Python が確保したメモリを解放させたいかもしれません。 Py_FinalizeEx()
を使うとこうした処理を実現できます。また、関数 Py_IsInitialized()
は、Python が現在初期化済みの状態にある場合に真を返します。これらの関数についてのさらなる情報は、後の章で説明します。 Py_FinalizeEx()
がPythonインタプリタに確保された全てのメモリを 解放するわけではない ことに注意してください。例えば、拡張モジュールによって確保されたメモリは、現在のところ解放する事ができません。
デバッグ版ビルド (Debugging Builds)¶
インタプリタと拡張モジュールに対しての追加チェックをするためのいくつかのマクロを有効にしてPythonをビルドすることができます。これらのチェックは、実行時に大きなオーバーヘッドを生じる傾向があります。なので、デフォルトでは有効にされていません。
Pythonデバッグ版ビルドの全ての種類のリストが、Pythonソース配布(source distribution)の中の Misc/SpecialBuilds.txt
にあります。参照カウントのトレース、メモリアロケータのデバッグ、インタプリタのメインループの低レベルプロファイリングが利用可能です。よく使われるビルドについてのみ、この節の残りの部分で説明します。
-
Py_DEBUG¶
Compiling the interpreter with the Py_DEBUG
macro defined produces
what is generally meant by a debug build of Python.
Py_DEBUG
is enabled in the Unix build by adding
--with-pydebug
to the ./configure
command.
It is also implied by the presence of the
not-Python-specific _DEBUG
macro. When Py_DEBUG
is enabled
in the Unix build, compiler optimization is disabled.
In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.
Py_TRACE_REFS
を宣言すると、参照トレースが有効になります (configure --with-trace-refs オプション
を参照してください)。全ての PyObject
に二つのフィールドを追加することで、使用中のオブジェクトの循環二重連結リストが管理されます。全ての割り当て(allocation)がトレースされます。終了時に、全ての残っているオブジェクトが表示されます。 (インタラクティブモードでは、インタプリタによる文の実行のたびに表示されます。)
より詳しい情報については、Pythonのソース配布(source distribution)の中の Misc/SpecialBuilds.txt
を参照してください。