用語集¶
>>>
¶The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively in the interpreter.
...
¶次のものが考えられます:
The default Python prompt of the interactive shell when entering the code for an indented code block, when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after specifying a decorator.
組み込みの定数
Ellipsis
。
- 2to3¶
A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as
lib2to3
; a standalone entry point is provided asTools/scripts/2to3
. See 2to3 --- Python 2 から 3 への自動コード変換.- abstract base class¶
(抽象基底クラス) 抽象基底クラスは duck-typing を補完するもので、
hasattr()
などの別のテクニックでは不恰好であったり微妙に誤る (例えば magic methods の場合) 場合にインターフェースを定義する方法を提供します。ABC は仮想 (virtual) サブクラスを導入します。これは親クラスから継承しませんが、それでもisinstance()
やissubclass()
に認識されます;abc
モジュールのドキュメントを参照してください。Python には、多くの組み込み ABC が同梱されています。その対象は、(collections.abc
モジュールで) データ構造、(numbers
モジュールで) 数、(io
モジュールで) ストリーム、(importlib.abc
モジュールで) インポートファインダ及びローダーです。abc
モジュールを利用して独自の ABC を作成できます。- annotation¶
(アノテーション) 変数、クラス属性、関数のパラメータや返り値に関係するラベルです。 慣例により type hint として使われています。
ローカル変数のアノテーションは実行時にはアクセスできませんが、グローバル変数、クラス属性、関数のアノテーションはそれぞれモジュール、クラス、関数の
__annotations__
特殊属性に保持されています。機能の説明がある variable annotation, function annotation, PEP 484, PEP 526 を参照してください。また、アノテーションを利用するベストプラクティスとして Annotations Best Practices も参照してください。
- 引数 (argument)¶
(実引数) 関数を呼び出す際に、 関数 (または メソッド) に渡す値です。実引数には2種類あります:
キーワード引数: 関数呼び出しの際に引数の前に識別子がついたもの (例:
name=
) や、**
に続けた辞書の中の値として渡された引数。例えば、次のcomplex()
の呼び出しでは、3
と5
がキーワード引数です:complex(real=3, imag=5) complex(**{'real': 3, 'imag': 5})
位置引数: キーワード引数以外の引数。位置引数は引数リストの先頭に書くことができ、また
*
に続けた iterable の要素として渡すことができます。例えば、次の例では3
と5
は両方共位置引数です:complex(3, 5) complex(*(3, 5))
実引数は関数の実体において名前付きのローカル変数に割り当てられます。割り当てを行う規則については 呼び出し (call) を参照してください。シンタックスにおいて実引数を表すためにあらゆる式を使うことが出来ます。評価された値はローカル変数に割り当てられます。
仮引数 、FAQ の 実引数と仮引数の違いは何ですか? 、PEP 362 を参照してください。
- asynchronous context manager¶
(非同期コンテキストマネージャ)
__aenter__()
と__aexit__()
メソッドを定義することでasync with
文内の環境を管理するオブジェクトです。 PEP 492 で導入されました。- asynchronous generator¶
(非同期ジェネレータ) asynchronous generator iterator を返す関数です。
async def
で定義されたコルーチン関数に似ていますが、yield
式を持つ点で異なります。yield
式はasync for
ループで使用できる値の並びを生成するのに使用されます。通常は非同期ジェネレータ関数を指しますが、文脈によっては 非同期ジェネレータイテレータ を指す場合があります。 意図された意味が明らかでない場合、 明瞭化のために完全な単語を使用します。
非同期ジェネレータ関数には、
async for
文やasync with
文だけでなくawait
式もあることがあります。- asynchronous generator iterator¶
(非同期ジェネレータイテレータ) asynchronous generator 関数で生成されるオブジェクトです。
これは asynchronous iterator で、
__anext__()
メソッドを使って呼ばれると awaitable オブジェクトを返します。 この awaitable オブジェクトは、次のyield
式まで非同期ジェネレータ関数の本体を実行します。各
yield
では一時的に処理を中断し、その場の実行状態 (ローカル変数や保留中の try 文を含む) を記憶します。 非同期ジェネレータイテレータ が__anext__()
で返された他の awaitable で実際に再開する時には、その中断箇所が選ばれます。 PEP 492 および PEP 525 を参照してください。- asynchronous iterable¶
(非同期イテラブル)
async for
文の中で使用できるオブジェクトです。 自身の__aiter__()
メソッドから asynchronous iterator を返さなければなりません。 PEP 492 で導入されました。- asynchronous iterator¶
(非同期イテレータ)
__aiter__()
と__anext__()
メソッドを実装したオブジェクトです。__anext__()
は awaitable オブジェクトを返さなければなりません。async for
はStopAsyncIteration
例外を送出するまで、非同期イテレータの__anext__()
メソッドが返す awaitable を解決します。 PEP 492 で導入されました。- 属性¶
(属性) オブジェクトに関連付けられ、ドット表記式によって名前で通常参照される値です。例えば、オブジェクト o が属性 a を持っているとき、その属性は o.a で参照されます。
オブジェクトには、 識別子 (identifier) およびキーワード (keyword) で定義される識別子ではない名前の属性を与えることができます。たとえば
setattr()
を使い、オブジェクトがそれを許可している場合に行えます。このような属性はドット表記式ではアクセスできず、代わりにgetattr()
を使って取る必要があります。- awaitable¶
(待機可能)
await
式で使用することが出来るオブジェクトです。 coroutine か、__await__()
メソッドがあるオブジェクトです。 PEP 492 を参照してください。- BDFL¶
慈悲深き終身独裁者 (Benevolent Dictator For Life) の略です。Python の作者、Guido van Rossum のことです。
- binary file¶
(バイナリファイル) bytes-like オブジェクト の読み込みおよび書き込みができる ファイルオブジェクト です。 バイナリファイルの例は、バイナリモード (
'rb'
,'wb'
or'rb+'
) で開かれたファイル、sys.stdin.buffer
、sys.stdout.buffer
、io.BytesIO
やgzip.GzipFile
. のインスタンスです。- borrowed reference¶
In Python's C API, a borrowed reference is a reference to an object, where the code using the object does not own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can remove the last strong reference to the object and so destroy it.
Calling
Py_INCREF()
on the borrowed reference is recommended to convert it to a strong reference in-place, except when the object cannot be destroyed before the last usage of the borrowed reference. ThePy_NewRef()
function can be used to create a new strong reference.- bytes-like object¶
バッファプロトコル (buffer Protocol) をサポートしていて、 C 言語の意味で 連続した バッファーを提供可能なオブジェクト。
bytes
,bytearray
,array.array
や、多くの一般的なmemoryview
オブジェクトがこれに当たります。 bytes-like オブジェクトは、データ圧縮、バイナリファイルへの保存、ソケットを経由した送信など、バイナリデータを要求するいろいろな操作に利用することができます。幾つかの操作ではバイナリデータを変更する必要があります。 その操作のドキュメントではよく "読み書き可能な bytes-like オブジェクト" に言及しています。 変更可能なバッファーオブジェクトには、
bytearray
とbytearray
のmemoryview
などが含まれます。 また、他の幾つかの操作では不変なオブジェクト内のバイナリデータ ("読み出し専用の bytes-like オブジェクト") を必要します。それにはbytes
とbytes
のmemoryview
オブジェクトが含まれます。- bytecode¶
(バイトコード) Python のソースコードは、 Python プログラムの CPython インタプリタの内部表現であるバイトコードへとコンパイルされます。 バイトコードは
.pyc
ファイルにキャッシュされ、同じファイルが二度目に実行されるときはより高速になります (ソースコードからバイトコードへの再度のコンパイルは回避されます)。 この "中間言語 (intermediate language)" は、各々のバイトコードに対応する機械語を実行する 仮想マシン で動作するといえます。 重要な注意として、バイトコードは異なる Python 仮想マシン間で動作することや、Python リリース間で安定であることは期待されていません。バイトコードの命令一覧は dis モジュール にあります。
- callable¶
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following syntax:
callable(argument1, argument2, argumentN)
A function, and by extension a method, is a callable. An instance of a class that implements the
__call__()
method is also a callable.- callback¶
(コールバック) 将来のある時点で実行されるために引数として渡される関数
- クラス¶
(クラス) ユーザー定義オブジェクトを作成するためのテンプレートです。クラス定義は普通、そのクラスのインスタンス上の操作をするメソッドの定義を含みます。
- class variable¶
(クラス変数) クラス上に定義され、クラスレベルで (つまり、クラスのインスタンス上ではなしに) 変更されることを目的としている変数です。
- complex number¶
(複素数) よく知られている実数系を拡張したもので、すべての数は実部と虚部の和として表されます。虚数は虚数単位 (
-1
の平方根) に実数を掛けたもので、一般に数学ではi
と書かれ、工学ではj
と書かれます。Python は複素数に組み込みで対応し、後者の表記を取っています。虚部は末尾にj
をつけて書きます。例えば3+1j
です。math
モジュールの複素数版を利用するには、cmath
を使います。複素数の使用はかなり高度な数学の機能です。必要性を感じなければ、ほぼ間違いなく無視してしまってよいでしょう。- context manager¶
An object which controls the environment seen in a
with
statement by defining__enter__()
and__exit__()
methods. See PEP 343.- context variable¶
(コンテキスト変数) コンテキストに依存して異なる値を持つ変数。 これは、ある変数の値が各々の実行スレッドで異なり得るスレッドローカルストレージに似ています。 しかしコンテキスト変数では、 1 つの実行スレッドにいくつかのコンテキストがあり得、コンテキスト変数の主な用途は並列な非同期タスクの変数の追跡です。
contextvars
を参照してください。- contiguous¶
(隣接、連続) バッファが厳密に C-連続 または Fortran 連続 である場合に、そのバッファは連続しているとみなせます。 ゼロ次元バッファは C 連続であり Fortran 連続です。 一次元の配列では、その要素は必ずメモリ上で隣接するように配置され、添字がゼロから始まり増えていく順序で並びます。 多次元の C-連続な配列では、メモリアドレス順に要素を巡る際には最後の添え字が最初に変わるのに対し、 Fortran 連続な配列では最初の添え字が最初に動きます。
- コルーチン¶
(コルーチン) コルーチンはサブルーチンのより一般的な形式です。 サブルーチンには決められた地点から入り、別の決められた地点から出ます。 コルーチンには多くの様々な地点から入る、出る、再開することができます。 コルーチンは
async def
文で実装できます。 PEP 492 を参照してください。- coroutine function¶
(コルーチン関数) coroutine オブジェクトを返す関数です。 コルーチン関数は
async def
文で実装され、await
、async for
、 およびasync with
キーワードを持つことが出来ます。 これらは PEP 492 で導入されました。- CPython¶
python.org で配布されている、Python プログラミング言語の標準的な実装です。"CPython" という単語は、この実装を Jython や IronPython といった他の実装と区別する必要が有る場合に利用されます。
- decorator¶
(デコレータ) 別の関数を返す関数で、通常、
@wrapper
構文で関数変換として適用されます。デコレータの一般的な利用例は、classmethod()
とstaticmethod()
です。デコレータの文法はシンタックスシュガーです。次の2つの関数定義は意味的に同じものです:
def f(arg): ... f = staticmethod(f) @staticmethod def f(arg): ...
同じ概念がクラスにも存在しますが、あまり使われません。デコレータについて詳しくは、 関数定義 および クラス定義 のドキュメントを参照してください。
- descriptor¶
Any object which defines the methods
__get__()
,__set__()
, or__delete__()
. When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis for many features including functions, methods, properties, class methods, static methods, and reference to super classes.デスクリプタのメソッドに関しての詳細は、 デスクリプタ (descriptor) の実装 や Descriptor How To Guide を参照してください。
- dictionary¶
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__()
and__eq__()
methods. Called a hash in Perl.- dictionary comprehension¶
(辞書内包表記) iterable 内の全てあるいは一部の要素を処理して、その結果からなる辞書を返すコンパクトな書き方です。
results = {n: n ** 2 for n in range(10)}
とすると、キーn
を値n ** 2
に対応付ける辞書を生成します。 リスト、集合、辞書の表示 を参照してください。- dictionary view¶
(辞書ビュー)
dict.keys()
、dict.values()
、dict.items()
が返すオブジェクトです。 辞書の項目の動的なビューを提供します。 すなわち、辞書が変更されるとビューはそれを反映します。 辞書ビューを強制的に完全なリストにするにはlist(dictview)
を使用してください。 辞書ビューオブジェクト を参照してください。- docstring¶
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is executed, it is recognized by the compiler and put into the
__doc__
attribute of the enclosing class, function or module. Since it is available via introspection, it is the canonical place for documentation of the object.- duck-typing¶
あるオブジェクトが正しいインターフェースを持っているかを決定するのにオブジェクトの型を見ないプログラミングスタイルです。代わりに、単純にオブジェクトのメソッドや属性が呼ばれたり使われたりします。(「アヒルのように見えて、アヒルのように鳴けば、それはアヒルである。」)インターフェースを型より重視することで、上手くデザインされたコードは、ポリモーフィックな代替を許して柔軟性を向上させます。ダックタイピングは
type()
やisinstance()
による判定を避けます。 (ただし、ダックタイピングを 抽象基底クラス で補完することもできます。) その代わり、典型的にhasattr()
判定や EAFP プログラミングを利用します。- EAFP¶
「認可をとるより許しを請う方が容易 (easier to ask for forgiveness than permission、マーフィーの法則)」の略です。この Python で広く使われているコーディングスタイルでは、通常は有効なキーや属性が存在するものと仮定し、その仮定が誤っていた場合に例外を捕捉します。この簡潔で手早く書けるコーディングスタイルには、
try
文およびexcept
文がたくさんあるのが特徴です。このテクニックは、C のような言語でよく使われている LBYL スタイルと対照的なものです。- expression¶
(式) 何かの値と評価される、一まとまりの構文 (a piece of syntax) です。言い換えると、式とはリテラル、名前、属性アクセス、演算子や関数呼び出しなど、値を返す式の要素の積み重ねです。他の多くの言語と違い、Python では言語の全ての構成要素が式というわけではありません。
while
のように、式としては使えない 文 もあります。代入も式ではなく文です。- extension module¶
(拡張モジュール) C や C++ で書かれたモジュールで、Python の C API を利用して Python コアやユーザーコードとやりとりします。
- f-string¶
'f'
や'F'
が先頭に付いた文字列リテラルは "f-string" と呼ばれ、これは フォーマット済み文字列リテラル の短縮形の名称です。 PEP 498 も参照してください。- file object¶
An object exposing a file-oriented API (with methods such as
read()
orwrite()
) to an underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.ファイルオブジェクトには実際には 3 種類あります: 生の バイナリーファイル、バッファされた バイナリーファイル、そして テキストファイル です。インターフェイスは
io
モジュールで定義されています。ファイルオブジェクトを作る標準的な方法はopen()
関数を使うことです。- file-like object¶
file object と同義です。
- filesystem encoding and error handler¶
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to the operating system.
ファイルシステムのエンコーディングでは、すべてが 128 バイト以下に正常にデコードされることが保証されなくてはなりません。ファイルシステムのエンコーディングでこれが保証されなかった場合は、API 関数が
UnicodeError
を送出することがあります。The
sys.getfilesystemencoding()
andsys.getfilesystemencodeerrors()
functions can be used to get the filesystem encoding and error handler.The filesystem encoding and error handler are configured at Python startup by the
PyConfig_Read()
function: seefilesystem_encoding
andfilesystem_errors
members ofPyConfig
.See also the locale encoding.
- finder¶
(ファインダ) インポートされているモジュールの loader の発見を試行するオブジェクトです。
There are two types of finder: meta path finders for use with
sys.meta_path
, and path entry finders for use withsys.path_hooks
.- floor division¶
(切り捨て除算) 一番近い整数に切り捨てる数学的除算。 切り捨て除算演算子は
//
です。 例えば、11 // 4
は2
になり、それとは対称に浮動小数点数の真の除算では2.75
が 返ってきます。(-11) // 4
は-2.75
を 小さい方に 丸める (訳注: 負の無限大への丸めを行う) ので-3
になることに注意してください。 PEP 238 を参照してください。- 関数¶
(関数) 呼び出し側に値を返す一連の文のことです。関数には0以上の 実引数 を渡すことが出来ます。実体の実行時に引数を使用することが出来ます。 仮引数、メソッド、関数定義 を参照してください。
- function annotation¶
(関数アノテーション) 関数のパラメータや返り値の annotation です。
関数アノテーションは、通常は 型ヒント のために使われます: 例えば、この関数は 2 つの
int
型の引数を取ると期待され、またint
型の返り値を持つと期待されています。def sum_two_numbers(a: int, b: int) -> int: return a + b
関数アノテーションの文法は 関数定義 の節で解説されています。
機能の説明がある variable annotation, PEP 484,を参照してください。また、アノテーションを利用するベストプラクティスとして Annotations Best Practices も参照してください。
- __future__¶
from __future__ import <feature>
という future 文 は、コンパイラーに将来の Python リリースで標準となる構文や意味を使用して現在のモジュールをコンパイルするよう指示します。__future__
モジュールでは、 feature のとりうる値をドキュメント化しています。このモジュールをインポートし、その変数を評価することで、新機能が最初に言語に追加されたのはいつかや、いつデフォルトになるか (またはなったか) を見ることができます:>>> import __future__ >>> __future__.division _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)
- garbage collection¶
(ガベージコレクション) これ以降使われることのないメモリを解放する処理です。 Pythonは、参照カウントと、循環参照を検出し破壊する循環ガベージコレクタを使ってガベージコレクションを行います。 ガベージコレクタは
gc
モジュールを使って操作できます。- ジェネレータ¶
(ジェネレータ) generator iterator を返す関数です。 通常の関数に似ていますが、
yield
式を持つ点で異なります。yield
式は、 for ループで使用できたり、next()
関数で値を 1 つずつ取り出したりできる、値の並びを生成するのに使用されます。通常はジェネレータ関数を指しますが、文脈によっては ジェネレータイテレータ を指す場合があります。 意図された意味が明らかでない場合、 明瞭化のために完全な単語を使用します。
- generator iterator¶
(ジェネレータイテレータ) generator 関数で生成されるオブジェクトです。
yield
のたびに局所実行状態 (局所変数や未処理の try 文などを含む) を記憶して、処理は一時的に中断されます。 ジェネレータイテレータ が再開されると、中断した位置を取得します (通常の関数が実行のたびに新しい状態から開始するのと対照的です)。- generator expression¶
An expression that returns an iterator. It looks like a normal expression followed by a
for
clause defining a loop variable, range, and an optionalif
clause. The combined expression generates values for an enclosing function:>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81 285
- generic function¶
(ジェネリック関数) 異なる型に対し同じ操作をする関数群から構成される関数です。呼び出し時にどの実装を用いるかはディスパッチアルゴリズムにより決定されます。
single dispatch、
functools.singledispatch()
デコレータ、PEP 443 を参照してください。- generic type¶
A type that can be parameterized; typically a container class such as
list
ordict
. Used for type hints and annotations.For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the
typing
module.- GIL¶
global interpreter lock を参照してください。
- global interpreter lock¶
(グローバルインタプリタロック) CPython インタプリタが利用している、一度に Python の バイトコード を実行するスレッドは一つだけであることを保証する仕組みです。これにより (
dict
などの重要な組み込み型を含む) オブジェクトモデルが同時アクセスに対して暗黙的に安全になるので、 CPython の実装がシンプルになります。インタプリタ全体をロックすることで、マルチプロセッサマシンが生じる並列化のコストと引き換えに、インタプリタを簡単にマルチスレッド化できるようになります。ただし、標準あるいは外部のいくつかの拡張モジュールは、圧縮やハッシュ計算などの計算の重い処理をするときに GIL を解除するように設計されています。また、I/O 処理をする場合 GIL は常に解除されます。
Past efforts to create a "free-threaded" interpreter (one which locks shared data at a much finer granularity) have not been successful because performance suffered in the common single-processor case. It is believed that overcoming this performance issue would make the implementation much more complicated and therefore costlier to maintain.
- hash-based pyc¶
(ハッシュベース pyc ファイル) 正当性を判別するために、対応するソースファイルの最終更新時刻ではなくハッシュ値を使用するバイトコードのキャッシュファイルです。キャッシュされたバイトコードの無効化 を参照してください。
- hashable¶
An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__()
method), and can be compared to other objects (it needs an__eq__()
method). Hashable objects which compare equal must have the same hash value.ハッシュ可能なオブジェクトは辞書のキーや集合のメンバーとして使えます。辞書や集合のデータ構造は内部でハッシュ値を使っているからです。
Python のイミュータブルな組み込みオブジェクトは、ほとんどがハッシュ可能です。(リストや辞書のような) ミュータブルなコンテナはハッシュ不可能です。(タプルや frozenset のような) イミュータブルなコンテナは、要素がハッシュ可能であるときのみハッシュ可能です。 ユーザー定義のクラスのインスタンスであるようなオブジェクトはデフォルトでハッシュ可能です。 それらは全て (自身を除いて) 比較結果は非等価であり、ハッシュ値は
id()
より得られます。- IDLE¶
Python の統合開発環境 (Integrated DeveLopment Environment)及び学習環境 (Learning Environment) です。IDLE は Python の標準的な配布に同梱されている基本的な機能のエディタとインタプリタ環境です。
- 永続オブジェクト (immortal)¶
Immortal objects are a CPython implementation detail introduced in PEP 683.
If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the interpreter is running. For example,
True
andNone
are immortal in CPython.- immutable¶
(イミュータブル) 固定の値を持ったオブジェクトです。イミュータブルなオブジェクトには、数値、文字列、およびタプルなどがあります。これらのオブジェクトは値を変えられません。別の値を記憶させる際には、新たなオブジェクトを作成しなければなりません。イミュータブルなオブジェクトは、固定のハッシュ値が必要となる状況で重要な役割を果たします。辞書のキーがその例です。
- import path¶
path based finder が import するモジュールを検索する場所 (または path entry) のリスト。 import 中、このリストは通常
sys.path
から来ますが、サブパッケージの場合は親パッケージの__path__
属性からも来ます。- importing¶
あるモジュールの Python コードが別のモジュールの Python コードで使えるようにする処理です。
- importer¶
- interactive¶
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter prompt, immediately execute them and see their results. Just launch
python
with no arguments (possibly by selecting it from your computer's main menu). It is a very powerful way to test out new ideas or inspect modules and packages (rememberhelp(x)
).- interpreted¶
Python はインタプリタ形式の言語であり、コンパイラ言語の対極に位置します。 (バイトコードコンパイラがあるために、この区別は曖昧ですが。) ここでのインタプリタ言語とは、ソースコードのファイルを、まず実行可能形式にしてから実行させるといった操作なしに、直接実行できることを意味します。インタプリタ形式の言語は通常、コンパイラ形式の言語よりも開発/デバッグのサイクルは短いものの、プログラムの実行は一般に遅いです。 対話的 も参照してください。
- interpreter shutdown¶
Python インタープリターはシャットダウンを要請された時に、モジュールやすべてのクリティカルな内部構造をなどの、すべての確保したリソースを段階的に開放する、特別なフェーズに入ります。 このフェーズは ガベージコレクタ を複数回呼び出します。 これによりユーザー定義のデストラクターや weakref コールバックが呼び出されることがあります。 シャットダウンフェーズ中に実行されるコードは、それが依存するリソースがすでに機能しない(よくある例はライブラリーモジュールや warning 機構です) ために様々な例外に直面します。
インタープリタがシャットダウンする主な理由は
__main__
モジュールや実行されていたスクリプトの実行が終了したことです。- iterable¶
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such as
list
,str
, andtuple
) and some non-sequence types likedict
, file objects, and objects of any classes you define with an__iter__()
method or with a__getitem__()
method that implements sequence semantics.Iterables can be used in a
for
loop and in many other places where a sequence is needed (zip()
,map()
, ...). When an iterable object is passed as an argument to the built-in functioniter()
, it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to calliter()
or deal with iterator objects yourself. Thefor
statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.- iterator¶
データの流れを表現するオブジェクトです。イテレータの
__next__()
メソッドを繰り返し呼び出す (または組み込み関数next()
に渡す) と、流れの中の要素を一つずつ返します。データがなくなると、代わりにStopIteration
例外を送出します。その時点で、イテレータオブジェクトは尽きており、それ以降は__next__()
を何度呼んでもStopIteration
を送出します。イテレータは、そのイテレータオブジェクト自体を返す__iter__()
メソッドを実装しなければならないので、イテレータは他の iterable を受理するほとんどの場所で利用できます。はっきりとした例外は複数の反復を行うようなコードです。 (list
のような) コンテナオブジェクトは、自身をiter()
関数にオブジェクトに渡したりfor
ループ内で使うたびに、新たな未使用のイテレータを生成します。これをイテレータで行おうとすると、前回のイテレーションで使用済みの同じイテレータオブジェクトを単純に返すため、空のコンテナのようになってしまします。詳細な情報は イテレータ型 にあります。
CPython 実装の詳細: CPython does not consistently apply the requirement that an iterator define
__iter__()
.- key function¶
(キー関数) キー関数、あるいは照合関数とは、ソートや順序比較のための値を返す呼び出し可能オブジェクト(callable)です。例えば、
locale.strxfrm()
をキー関数に使えば、ロケール依存のソートの慣習にのっとったソートキーを返します。Python の多くのツールはキー関数を受け取り要素の並び順やグループ化を管理します。
min()
,max()
,sorted()
,list.sort()
,heapq.merge()
,heapq.nsmallest()
,heapq.nlargest()
,itertools.groupby()
等があります。キー関数を作る方法はいくつかあります。 例えば
str.lower()
メソッドを大文字小文字を区別しないソートを行うキー関数として使うことが出来ます。 あるいは、lambda r: (r[0], r[2])
のようなlambda
式からキー関数を作ることができます。 また、operator.attrgetter()
,operator.itemgetter()
,operator.methodcaller()
の 3 つのキー関数コンストラクタがあります。 キー関数の作り方と使い方の例は Sorting HOW TO を参照してください。- keyword argument¶
実引数 を参照してください。
- lambda¶
(ラムダ) 無名のインライン関数で、関数が呼び出されたときに評価される 1 つの 式 を含みます。ラムダ関数を作る構文は
lambda [parameters]: expression
です。- LBYL¶
「ころばぬ先の杖 (look before you leap)」 の略です。このコーディングスタイルでは、呼び出しや検索を行う前に、明示的に前提条件 (pre-condition) 判定を行います。 EAFP アプローチと対照的で、
if
文がたくさん使われるのが特徴的です。マルチスレッド化された環境では、LBYL アプローチは "見る" 過程と "飛ぶ" 過程の競合状態を引き起こすリスクがあります。例えば、
if key in mapping: return mapping[key]
というコードは、判定の後、別のスレッドが探索の前に mapping から key を取り除くと失敗します。この問題は、ロックするか EAFP アプローチを使うことで解決できます。- list¶
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since access to elements is O(1).
- list comprehension¶
(リスト内包表記) シーケンス中の全てあるいは一部の要素を処理して、その結果からなるリストを返す、コンパクトな方法です。
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0]
とすると、 0 から 255 までの偶数を 16進数表記 (0x..) した文字列からなるリストを生成します。if
節はオプションです。if
節がない場合、range(256)
の全ての要素が処理されます。- loader¶
モジュールをロードするオブジェクト。
load_module()
という名前のメソッドを定義していなければなりません。ローダーは一般的に finder から返されます。詳細は PEP 302 を、 abstract base class についてはimportlib.abc.Loader
を参照してください。- ロケールエンコーディング¶
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with
locale.setlocale(locale.LC_CTYPE, new_locale)
.On Windows, it is the ANSI code page (ex:
"cp1252"
).On Android and VxWorks, Python uses
"utf-8"
as the locale encoding.locale.getencoding()
can be used to get the locale encoding.See also the filesystem encoding and error handler.
- magic method¶
special method のくだけた同義語です。
- mapping¶
(マッピング) 任意のキー探索をサポートしていて、
collections.abc.Mapping
かcollections.abc.MutableMapping
の 抽象基底クラス で指定されたメソッドを実装しているコンテナオブジェクトです。例えば、dict
,collections.defaultdict
,collections.OrderedDict
,collections.Counter
などです。- meta path finder¶
sys.meta_path
を検索して得られた finder. meta path finder は path entry finder と関係はありますが、別物です。meta path finder が実装するメソッドについては
importlib.abc.MetaPathFinder
を参照してください。- metaclass¶
(メタクラス) クラスのクラスです。クラス定義は、クラス名、クラスの辞書と、基底クラスのリストを作ります。メタクラスは、それら 3 つを引数として受け取り、クラスを作る責任を負います。ほとんどのオブジェクト指向言語は(訳注:メタクラスの)デフォルトの実装を提供しています。Python が特別なのはカスタムのメタクラスを作成できる点です。ほとんどのユーザーに取って、メタクラスは全く必要のないものです。しかし、一部の場面では、メタクラスは強力でエレガントな方法を提供します。たとえば属性アクセスのログを取ったり、スレッドセーフ性を追加したり、オブジェクトの生成を追跡したり、シングルトンを実装するなど、多くの場面で利用されます。
詳細は メタクラス を参照してください。
- メソッド¶
(メソッド) クラス本体の中で定義された関数。そのクラスのインスタンスの属性として呼び出された場合、メソッドはインスタンスオブジェクトを第一 引数 として受け取ります (この第一引数は通常
self
と呼ばれます)。 関数 と ネストされたスコープ も参照してください。- method resolution order¶
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3 release.
- module¶
(モジュール) Python コードの組織単位としてはたらくオブジェクトです。モジュールは任意の Python オブジェクトを含む名前空間を持ちます。モジュールは importing の処理によって Python に読み込まれます。
パッケージ を参照してください。
- module spec¶
モジュールをロードするのに使われるインポート関連の情報を含む名前空間です。
importlib.machinery.ModuleSpec
のインスタンスです。- MRO¶
method resolution order を参照してください。
- mutable¶
(ミュータブル) ミュータブルなオブジェクトは、
id()
を変えることなく値を変更できます。 イミュータブル) も参照してください。- named tuple¶
"名前付きタプル" という用語は、タプルを継承していて、インデックスが付く要素に対し属性を使ってのアクセスもできる任意の型やクラスに応用されています。 その型やクラスは他の機能も持っていることもあります。
time.localtime()
やos.stat()
の返り値を含むいくつかの組み込み型は名前付きタプルです。 他の例はsys.float_info
です:>>> sys.float_info[1] # indexed access 1024 >>> sys.float_info.max_exp # named field access 1024 >>> isinstance(sys.float_info, tuple) # kind of tuple True
Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created from a regular class definition that inherits from
tuple
and that defines named fields. Such a class can be written by hand, or it can be created by inheritingtyping.NamedTuple
, or with the factory functioncollections.namedtuple()
. The latter techniques also add some extra methods that may not be found in hand-written or built-in named tuples.- namespace¶
(名前空間) 変数が格納される場所です。名前空間は辞書として実装されます。名前空間にはオブジェクトの (メソッドの) 入れ子になったものだけでなく、局所的なもの、大域的なもの、そして組み込みのものがあります。名前空間は名前の衝突を防ぐことによってモジュール性をサポートする。例えば関数
builtins.open
とos.open()
は名前空間で区別されています。また、どのモジュールが関数を実装しているか明示することによって名前空間は可読性と保守性を支援します。例えば、random.seed()
やitertools.islice()
と書くと、それぞれモジュールrandom
やitertools
で実装されていることが明らかです。- namespace package¶
(名前空間パッケージ) サブパッケージのコンテナとしてのみ提供される PEP 420 で定義された package です。名前空間パッケージは物理的な表現を持たないことができ、
__init__.py
ファイルを持たないため、 regular package とは異なります。module を参照してください。
- nested scope¶
(ネストされたスコープ) 外側で定義されている変数を参照する機能です。例えば、ある関数が別の関数の中で定義されている場合、内側の関数は外側の関数中の変数を参照できます。ネストされたスコープはデフォルトでは変数の参照だけができ、変数の代入はできないので注意してください。ローカル変数は、最も内側のスコープで変数を読み書きします。同様に、グローバル変数を使うとグローバル名前空間の値を読み書きします。
nonlocal
で外側の変数に書き込めます。- new-style class¶
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes could use Python's newer, versatile features like
__slots__
, descriptors, properties,__getattribute__()
, class methods, and static methods.- object¶
(オブジェクト) 状態 (属性や値) と定義された振る舞い (メソッド) をもつ全てのデータ。もしくは、全ての 新スタイルクラス の究極の基底クラスのこと。
- package¶
(パッケージ) サブモジュールや再帰的にサブパッケージを含むことの出来る module のことです。専門的には、パッケージは
__path__
属性を持つ Python オブジェクトです。regular package と namespace package を参照してください。
- parameter¶
(仮引数) 名前付の実体で 関数 (や メソッド ) の定義において関数が受ける 実引数 を指定します。仮引数には5種類あります:
位置またはキーワード: 位置 であるいは キーワード引数 として渡すことができる引数を指定します。 これはたとえば以下の foo や bar のように、デフォルトの仮引数の種類です:
def func(foo, bar=None): ...
位置専用: 位置によってのみ与えられる引数を指定します。位置専用の引数は 関数定義の引数のリストの中でそれらの後ろに
/
を含めることで定義できます。例えば下記の posonly1 と posonly2 は位置専用引数になります:def func(posonly1, posonly2, /, positional_or_keyword): ...
キーワード専用: キーワードによってのみ与えられる引数を指定します。キーワード専用の引数を定義できる場所は、例えば以下の kw_only1 や kw_only2 のように、関数定義の仮引数リストに含めた可変長位置引数または裸の
*
の後です:def func(arg, *, kw_only1, kw_only2): ...
可変長位置: (他の仮引数で既に受けられた任意の位置引数に加えて) 任意の個数の位置引数が与えられることを指定します。このような仮引数は、以下の args のように仮引数名の前に
*
をつけることで定義できます:def func(*args, **kwargs): ...
可変長キーワード: (他の仮引数で既に受けられた任意のキーワード引数に加えて) 任意の個数のキーワード引数が与えられることを指定します。このような仮引数は、上の例の kwargs のように仮引数名の前に
**
をつけることで定義できます。
仮引数はオプションと必須の引数のどちらも指定でき、オプションの引数にはデフォルト値も指定できます。
仮引数 、FAQ の 実引数と仮引数の違いは何ですか? 、
inspect.Parameter
クラス、 関数定義 セクション、PEP 362 を参照してください。- path entry¶
path based finder が import するモジュールを探す import path 上の1つの場所です。
- path entry finder¶
sys.path_hooks
にある callable (つまり path entry hook) が返した finder です。与えられた path entry にあるモジュールを見つける方法を知っています。パスエントリーファインダが実装するメソッドについては
importlib.abc.PathEntryFinder
を参照してください。- path entry hook¶
A callable on the
sys.path_hooks
list which returns a path entry finder if it knows how to find modules on a specific path entry.- path based finder¶
デフォルトの meta path finder の1つは、モジュールの import path を検索します。
- path-like object¶
(path-like オブジェクト) ファイルシステムパスを表します。 path-like オブジェクトは、パスを表す
str
オブジェクトやbytes
オブジェクト、またはos.PathLike
プロトコルを実装したオブジェクトのどれかです。os.PathLike
プロトコルをサポートしているオブジェクトはos.fspath()
を呼び出すことでstr
またはbytes
のファイルシステムパスに変換できます。os.fsdecode()
とos.fsencode()
はそれぞれstr
あるいはbytes
になるのを保証するのに使えます。 PEP 519 で導入されました。- PEP¶
Python Enhancement Proposal。PEP は、Python コミュニティに対して情報を提供する、あるいは Python の新機能やその過程や環境について記述する設計文書です。 PEP は、機能についての簡潔な技術的仕様と提案する機能の論拠 (理論) を伝えるべきです。
PEP は、新機能の提案にかかる、コミュニティによる問題提起の集積と Python になされる設計決断の文書化のための最上位の機構となることを意図しています。PEP の著者にはコミュニティ内の合意形成を行うこと、反対意見を文書化することの責務があります。
PEP 1 を参照してください。
- portion¶
PEP 420 で定義されている、namespace package に属する、複数のファイルが (zipファイルに格納されている場合もある) 1つのディレクトリに格納されたもの。
- 位置引数 (positional argument)¶
実引数 を参照してください。
- provisional API¶
(暫定 API) 標準ライブラリの後方互換性保証から計画的に除外されたものです。そのようなインターフェースへの大きな変更は、暫定であるとされている間は期待されていませんが、コア開発者によって必要とみなされれば、後方非互換な変更 (インターフェースの削除まで含まれる) が行われえます。このような変更はむやみに行われるものではありません -- これは API を組み込む前には見落とされていた重大な欠陥が露呈したときにのみ行われます。
暫定 API についても、後方互換性のない変更は「最終手段」とみなされています。問題点が判明した場合でも後方互換な解決策を探すべきです。
このプロセスにより、標準ライブラリは問題となるデザインエラーに長い間閉じ込められることなく、時代を超えて進化を続けられます。詳細は PEP 411 を参照してください。
- provisional package¶
provisional API を参照してください。
- Python 3000¶
Python 3.x リリースラインのニックネームです。(Python 3 が遠い将来の話だった頃に作られた言葉です。) "Py3k" と略されることもあります。
- Pythonic¶
他の言語で一般的な考え方で書かれたコードではなく、Python の特に一般的なイディオムに従った考え方やコード片。例えば、Python の一般的なイディオムでは
for
文を使ってイテラブルのすべての要素に渡ってループします。他の多くの言語にはこの仕組みはないので、Python に慣れていない人は代わりに数値のカウンターを使うかもしれません:for i in range(len(food)): print(food[i])
これに対し、きれいな Pythonic な方法は:
for piece in food: print(piece)
- qualified name¶
(修飾名) モジュールのグローバルスコープから、そのモジュールで定義されたクラス、関数、メソッドへの、 "パス" を表すドット名表記です。 PEP 3155 で定義されています。トップレベルの関数やクラスでは、修飾名はオブジェクトの名前と同じです:
>>> class C: ... class D: ... def meth(self): ... pass ... >>> C.__qualname__ 'C' >>> C.D.__qualname__ 'C.D' >>> C.D.meth.__qualname__ 'C.D.meth'
モジュールへの参照で使われると、完全修飾名 (fully qualified name) はすべての親パッケージを含む全体のドット名表記、例えば
email.mime.text
を意味します:>>> import email.mime.text >>> email.mime.text.__name__ 'email.mime.text'
- reference count¶
The number of references to an object. When the reference count of an object drops to zero, it is deallocated. Some objects are "immortal" and have reference counts that are never modified, and therefore the objects are never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython implementation. Programmers can call the
sys.getrefcount()
function to return the reference count for a particular object.- regular package¶
伝統的な、
__init__.py
ファイルを含むディレクトリとしての package。namespace package を参照してください。
- __slots__¶
クラス内での宣言で、インスタンス属性の領域をあらかじめ定義しておき、インスタンス辞書を排除することで、メモリを節約します。これはよく使われるテクニックですが、正しく扱うには少しトリッキーなので、稀なケース、例えばメモリが死活問題となるアプリケーションでインスタンスが大量に存在する、といったときを除き、使わないのがベストです。
- sequence¶
An iterable which supports efficient element access using integer indices via the
__getitem__()
special method and defines a__len__()
method that returns the length of the sequence. Some built-in sequence types arelist
,str
,tuple
, andbytes
. Note thatdict
also supports__getitem__()
and__len__()
, but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.The
collections.abc.Sequence
abstract base class defines a much richer interface that goes beyond just__getitem__()
and__len__()
, addingcount()
,index()
,__contains__()
, and__reversed__()
. Types that implement this expanded interface can be registered explicitly usingregister()
. For more documentation on sequence methods generally, see Common Sequence Operations.- set comprehension¶
(集合内包表記) iterable 内の全てあるいは一部の要素を処理して、その結果からなる集合を返すコンパクトな書き方です。
results = {c for c in 'abracadabra' if c not in 'abc'}
とすると、{'r', 'd'}
という文字列の辞書を生成します。 リスト、集合、辞書の表示 を参照してください。- single dispatch¶
generic function の一種で実装は一つの引数の型により選択されます。
- slice¶
(スライス) 一般に シーケンス の一部を含むオブジェクト。スライスは、添字表記
[]
で与えられた複数の数の間にコロンを書くことで作られます。例えば、variable_name[1:3:5]
です。角括弧 (添字) 記号はslice
オブジェクトを内部で利用しています。- special method¶
(特殊メソッド) ある型に特定の操作、例えば加算をするために Python から暗黙に呼び出されるメソッド。この種類のメソッドは、メソッド名の最初と最後にアンダースコア 2 つがついています。特殊メソッドについては 特殊メソッド名 で解説されています。
- statement¶
(文) 文はスイート (コードの"ブロック") に不可欠な要素です。文は 式 かキーワードから構成されるもののどちらかです。後者には
if
、while
、for
があります。- static type checker¶
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also type hints and the
typing
module.- strong reference¶
In Python's C API, a strong reference is a reference to an object which is owned by the code holding the reference. The strong reference is taken by calling
Py_INCREF()
when the reference is created and released withPy_DECREF()
when the reference is deleted.The
Py_NewRef()
function can be used to create a strong reference to an object. Usually, thePy_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking one reference.See also borrowed reference.
- text encoding¶
A string in Python is a sequence of Unicode code points (in range
U+0000
--U+10FFFF
). To store or transfer a string, it needs to be serialized as a sequence of bytes.Serializing a string into a sequence of bytes is known as "encoding", and recreating the string from the sequence of bytes is known as "decoding".
There are a variety of different text serialization codecs, which are collectively referred to as "text encodings".
- text file¶
(テキストファイル)
str
オブジェクトを読み書きできる file object です。 しばしば、テキストファイルは実際にバイト指向のデータストリームにアクセスし、 テキストエンコーディング を自動的に行います。 テキストファイルの例は、sys.stdin
,sys.stdout
,io.StringIO
インスタンスなどをテキストモード ('r'
or'w'
) で開いたファイルです。bytes-like オブジェクト を読み書きできるファイルオブジェクトについては、 バイナリファイル も参照してください。
- triple-quoted string¶
(三重クォート文字列) 3つの連続したクォート記号(")かアポストロフィー(')で囲まれた文字列。通常の(一重)クォート文字列に比べて表現できる文字列に違いはありませんが、幾つかの理由で有用です。1つか2つの連続したクォート記号をエスケープ無しに書くことができますし、行継続文字(\)を使わなくても複数行にまたがることができるので、ドキュメンテーション文字列を書く時に特に便利です。
- type¶
(型) Python オブジェクトの型はオブジェクトがどのようなものかを決めます。あらゆるオブジェクトは型を持っています。オブジェクトの型は
__class__
属性でアクセスしたり、type(obj)
で取得したり出来ます。- type alias¶
(型エイリアス) 型の別名で、型を識別子に代入して作成します。
型エイリアスは 型ヒント を単純化するのに有用です。例えば:
def remove_gray_shades( colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]: pass
これは次のようにより読みやすくできます:
Color = tuple[int, int, int] def remove_gray_shades(colors: list[Color]) -> list[Color]: pass
- type hint¶
(型ヒント) 変数、クラス属性、関数のパラメータや返り値の期待される型を指定する annotation です。
Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also aid IDEs with code completion and refactoring.
グローバル変数、クラス属性、関数で、ローカル変数でないものの型ヒントは
typing.get_type_hints()
で取得できます。- universal newlines¶
テキストストリームの解釈法の一つで、以下のすべてを行末と認識します: Unix の行末規定
'\n'
、Windows の規定'\r\n'
、古い Macintosh の規定'\r'
。利用法について詳しくは、 PEP 278 と PEP 3116 、さらにbytes.splitlines()
も参照してください。- variable annotation¶
(変数アノテーション) 変数あるいはクラス属性の annotation 。
変数あるいはクラス属性に注釈を付けたときは、代入部分は任意です:
class C: field: 'annotation'
変数アノテーションは通常は 型ヒント のために使われます: 例えば、この変数は
int
の値を取ることを期待されています:count: int = 0
変数アノテーションの構文については 注釈付き代入文 (annotated assignment statements) 節で解説しています。
機能の説明がある function annotation, PEP 484 , PEP 526 を参照してください。また、アノテーションを利用するベストプラクティスとして Annotations Best Practices も参照してください。
- virtual environment¶
(仮想環境) 協調的に切り離された実行環境です。これにより Python ユーザとアプリケーションは同じシステム上で動いている他の Python アプリケーションの挙動に干渉することなく Python パッケージのインストールと更新を行うことができます。
venv
を参照してください。- virtual machine¶
(仮想マシン) 完全にソフトウェアにより定義されたコンピュータ。 Python の仮想マシンは、バイトコードコンパイラが出力した バイトコード を実行します。
- Zen of Python¶
(Pythonの悟り) Python を理解し利用する上での導きとなる、Python の設計原則と哲学をリストにしたものです。対話プロンプトで "
import this
" とするとこのリストを読めます。