decimal --- Decimal fixed-point and floating-point arithmetic

Code source : Lib/decimal.py


The decimal module provides support for fast correctly rounded decimal floating-point arithmetic. It offers several advantages over the float datatype:

  • Le module decimal « est basé sur un modèle en virgule flottante conçu pour les humains, qui suit ce principe directeur : l'ordinateur doit fournir un modèle de calcul qui fonctionne de la même manière que le calcul qu'on apprend à l'école » – extrait (traduit) de la spécification de l'arithmétique décimale.

  • Les nombres décimaux peuvent être représentés exactement en base décimale flottante. En revanche, des nombres tels que 1.1 ou 1.2 n'ont pas de représentation exacte en base binaire flottante. L'utilisateur final ne s'attend typiquement pas à obtenir 3.3000000000000003 lorsqu'il saisit 1.1 + 2.2, ce qui se passe en arithmétique binaire à virgule flottante.

  • Ces inexactitudes ont des conséquences en arithmétique. En base décimale à virgule flottante, 0.1 + 0.1 + 0.1 - 0.3 est exactement égal à zéro. En virgule flottante binaire, l'ordinateur l'évalue à 5.5511151231257827e-017. Bien que très proche de zéro, cette différence induit des erreurs lors des tests d'égalité, erreurs qui peuvent s'accumuler. Pour ces raisons decimal est le module utilisé pour des applications comptables ayant des contraintes strictes de fiabilité.

  • Le module decimal incorpore la notion de chiffres significatifs, de façon à ce que 1.30 + 1.20 égale 2.50. Le dernier zéro est conservé pour respecter le nombre de chiffres significatifs. C'est l'affichage préféré pour représenter des sommes d'argent. Pour la multiplication, l'approche « scolaire » utilise tous les chiffres présents dans les facteurs. Par exemple, 1.3 * 1.2 donne 1.56 tandis que 1.30 * 1.20 donne 1.5600.

  • Contrairement à l'arithmétique en virgule flottante binaire, le module decimal possède un paramètre de précision ajustable (par défaut à 28 chiffres significatifs) qui peut être aussi élevée que nécessaire pour un problème donné :

    >>> from decimal import *
    >>> getcontext().prec = 6
    >>> Decimal(1) / Decimal(7)
    Decimal('0.142857')
    >>> getcontext().prec = 28
    >>> Decimal(1) / Decimal(7)
    Decimal('0.1428571428571428571428571429')
    
  • L'arithmétique binaire et décimale en virgule flottante sont implémentées selon des standards publiés. Alors que le type float n'expose qu'une faible portion de ses capacités, le module decimal expose tous les composants nécessaires du standard. Lorsque nécessaire, le développeur a un contrôle total de la gestion des signaux et de l'arrondi. Cela inclut la possibilité de forcer une arithmétique exacte en utilisant des exceptions pour bloquer toute opération inexacte.

  • Le module decimal a été conçu pour gérer « sans préjugé, à la fois une arithmétique décimale non-arrondie (aussi appelée arithmétique en virgule fixe) et à la fois une arithmétique en virgule flottante » (extrait traduit de la spécification de l'arithmétique décimale).

Le module est conçu autour de trois concepts : le nombre décimal, le contexte arithmétique et les signaux.

Un Decimal est immuable. Il a un signe, un coefficient et un exposant. Pour préserver le nombre de chiffres significatifs, les zéros en fin de chaîne ne sont pas tronqués. Les décimaux incluent aussi des valeurs spéciales telles que Infinity, -Infinity et NaN. Le standard fait également la différence entre -0 et +0.

Le contexte de l'arithmétique est un environnement qui permet de configurer une précision, une règle pour l'arrondi, des limites sur l'exposant, des options indiquant le résultat des opérations et si les signaux (remontés lors d'opérations illégales) sont traités comme des exceptions Python. Les options d'arrondi incluent ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP et ROUND_05UP.

Les signaux sont des groupes de conditions exceptionnelles qui surviennent durant le calcul. Selon les besoins de l'application, les signaux peuvent être ignorés, considérés comme de l'information, ou bien traités comme des exceptions. Les signaux dans le module decimal sont : Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded, Subnormal, Overflow, Underflow et FloatOperation.

Chaque signal est configurable indépendamment, à travers un drapeau (ou option) et un activateur de déroutement. Quand une opération illégale survient, le drapeau du signal est mis à 1 puis, si l'activateur est configuré, une exception est levée. La mise à 1 du drapeau est persistante, l'utilisateur doit donc remettre les drapeaux à zéro avant de commencer un calcul qu'il souhaite surveiller.

Voir aussi

Introduction pratique

Commençons par importer le module, regarder le contexte actuel avec getcontext() et, si nécessaire, configurer la précision, l'arrondi et la gestion des signaux :

>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
        capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
        InvalidOperation])

>>> getcontext().prec = 7       # Set a new precision

Les instances de Decimal peuvent être construites avec des entiers, des chaînes de caractères, des floats ou des n-uplets. La construction depuis un entier ou un float effectue la conversion exacte de cet entier ou de ce float. Les nombres décimaux incluent des valeurs spéciales telles que NaN qui signifie en anglais « Not a number », en français « pas un nombre », des Infinity positifs ou négatifs et -0 :

>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')

Si le signal FloatOperation est activé pour déroutement, un mélange accidentel d'objets Decimal et de float dans les constructeurs ou des opérations de comparaison lève une exception :

>>> c = getcontext()
>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True

Ajouté dans la version 3.3.

Le nombre de chiffres significatifs d'un nouvel objet Decimal est déterminé entièrement par le nombre de chiffres saisis. La précision et les règles d'arrondis n'interviennent que lors d'opérations arithmétiques.

>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')

Si les limites internes de la version en C sont dépassées, la construction d'un objet décimal lève l'exception InvalidOperation :

>>> Decimal("1e9999999999999999999")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Modifié dans la version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating-point flying circus:

>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1)
Decimal('1.3')
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')

Et certaines fonctions mathématiques sont également disponibles sur des instances de Decimal :

>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')

La méthode quantize() arrondit un nombre à un exposant déterminé. Cette méthode est utile pour des applications monétaires qui arrondissent souvent un résultat à un nombre déterminé de chiffres après la virgule :

>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')

Comme montré plus haut, la fonction getcontext() accède au contexte actuel et permet de modifier les paramètres. Cette approche répond aux besoins de la plupart des applications.

Pour un travail plus avancé, il peut être utile de créer des contextes alternatifs en utilisant le constructeur de Context. Pour activer cet objet Context, utilisez la fonction setcontext().

En accord avec le standard, le module decimal fournit des objets Context standards, BasicContext et ExtendedContext. Le premier est particulièrement utile pour le débogage car beaucoup des signaux ont leur déroutement activé :

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')

>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
        capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
  File "<pyshell#143>", line 1, in -toplevel-
    Decimal(42) / Decimal(0)
DivisionByZero: x / 0

Les objets Context ont aussi des options pour détecter des opérations illégales lors des calculs. Ces options restent activées jusqu'à ce qu'elles soit remises à zéro de manière explicite. Il convient donc de remettre à zéro ces options avant chaque inspection de chaque calcul, avec la méthode clear_flags().

>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
        capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

Les options montrent que l'approximation de π par une fraction a été arrondie (les chiffres au-delà de la précision spécifiée par l'objet Context ont été tronqués) et que le résultat est différent (certains des chiffres tronqués étaient différents de zéro).

L'activation du déroutement se fait en utilisant un dictionnaire dans l'attribut traps du contexte :

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
  File "<pyshell#112>", line 1, in -toplevel-
    Decimal(1) / Decimal(0)
DivisionByZero: x / 0

La plupart des applications n'ajustent l'objet Context qu'une seule fois, au démarrage. Et, dans beaucoup d'applications, les données sont converties une fois pour toutes en Decimal. Une fois le Context initialisé et les objets Decimal créés, la majeure partie du programme manipule les données de la même manière qu'avec d'autres types numériques Python.

Les objets Decimal

class decimal.Decimal(value='0', context=None)

Construit un nouvel objet Decimal à partir de value.

value peut être un entier, une chaîne de caractères, un n-uplet, un float ou une autre instance de Decimal. Si value n'est pas fourni, le constructeur renvoie Decimal('0'). Si value est une chaîne de caractères, elle doit correspondre à la syntaxe décimale en dehors des espaces de début et de fin, ou des tirets bas, qui sont enlevés :

sign           ::=  '+' | '-'
digit          ::=  '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator      ::=  'e' | 'E'
digits         ::=  digit [digit]...
decimal-part   ::=  digits '.' [digits] | ['.'] digits
exponent-part  ::=  indicator [sign] digits
infinity       ::=  'Infinity' | 'Inf'
nan            ::=  'NaN' [digits] | 'sNaN' [digits]
numeric-value  ::=  decimal-part [exponent-part] | infinity
numeric-string ::=  [sign] numeric-value | [sign] nan

Les chiffres codés en Unicode sont aussi autorisés, dans les emplacements digit ci-dessus. Cela inclut des chiffres décimaux venant d'autres alphabets (par exemple les chiffres indo-arabes ou Devanagari) ainsi que les chiffres de pleine largeur '\uff10' jusqu'à '\uff19'.

Si value est un n-uplet, il doit avoir trois éléments, le signe (0 pour positif ou 1 pour négatif), un n-uplet de chiffres et un entier représentant l'exposant. Par exemple, Decimal((0, (1, 4, 1, 4), -3)) construit l'objet Decimal('1.414').

If value is a float, the binary floating-point value is losslessly converted to its exact decimal equivalent. This conversion can often require 53 or more digits of precision. For example, Decimal(float('1.1')) converts to Decimal('1.100000000000000088817841970012523233890533447265625').

La précision spécifiée dans le contexte n'affecte pas le nombre de chiffres stockés. Cette valeur est déterminée exclusivement par le nombre de chiffres dans value. Par exemple, Decimal('3.00000') enregistre les 5 zéros même si la précision du contexte est de 3.

L'objectif de l'argument context est de déterminer ce que Python doit faire si value est une chaîne avec un mauvais format. Si le déroutement est activé pour InvalidOperation, une exception est levée, sinon le constructeur renvoie un objet Decimal de valeur NaN.

Une fois construit, un objet Decimal est immuable.

Modifié dans la version 3.2: l'argument du constructeur peut désormais être un objet float.

Modifié dans la version 3.3: un argument float lève une exception si le déroutement est activé pour FloatOperation. Par défaut le déroutement n'est pas activé.

Modifié dans la version 3.6: les tirets bas sont autorisés pour regrouper, tout comme pour l'arithmétique en virgule fixe et flottante.

Decimal floating-point objects share many properties with the other built-in numeric types such as float and int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type (such as float or int).

Il existe quelques différences mineures entre l'arithmétique entre les objets décimaux et l'arithmétique avec les entiers et les float. Quand l'opérateur modulo % est appliqué sur des objets décimaux, le signe du résultat est le signe du dividende plutôt que le signe du diviseur :

>>> (-7) % 4
1
>>> Decimal(-7) % Decimal(4)
Decimal('-3')

L'opérateur division entière (//) se comporte de la même manière, renvoyant la partie entière du quotient plutôt que son arrondi, de manière à préserver l'identité d'Euclide x == (x // y) * y + x % y :

>>> -7 // 4
-2
>>> Decimal(-7) // Decimal(4)
Decimal('-1')

Les opérateurs // et % implémentent la division entière et le reste (ou modulo), respectivement, tels que décrits dans la spécification.

Les objets Decimal ne peuvent généralement pas être combinés avec des float ou des objets fractions.Fraction lors d'opérations arithmétiques : toute addition entre un Decimal et un float, par exemple, lève une exception TypeError. Cependant, il est possible d'utiliser les opérateurs de comparaison entre instances de Decimal et les autres types numériques. Cela évite d'avoir des résultats absurdes lors des tests d'égalité entre différents types.

Modifié dans la version 3.2: les comparaisons inter-types entre Decimal et les autres types numériques sont désormais intégralement gérées.

In addition to the standard numeric properties, decimal floating-point objects also have a number of specialized methods:

adjusted()

Renvoie l'exposant ajusté après avoir décalé les chiffres les plus à droite du coefficient jusqu'à ce qu'il ne reste que le premier chiffre : Decimal('321e+5').adjusted() renvoie sept. Utilisée pour déterminer la position du chiffre le plus significatif par rapport à la virgule.

as_integer_ratio()

Renvoie un couple d'entiers (n, d) qui représentent l'instance Decimal donnée sous la forme d'une fraction, avec les termes les plus petits possibles et avec un dénominateur positif :

>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)

La conversion est exacte. Lève une OverflowError sur l'infini et ValueError sur les Nan.

Ajouté dans la version 3.6.

as_tuple()

Renvoie une représentation sous la forme d'un n-uplet nommé du nombre DecimalTuple(sign, digits, exposant).

canonical()

Renvoie la forme canonique de l'argument. Actuellement, la forme d'une instance Decimal est toujours canonique, donc cette opération renvoie son argument inchangé.

compare(other, context=None)

Compare les valeurs de deux instances Decimal. compare() renvoie une instance Decimal et, si l'un des opérandes est un NaN, alors le résultat est un NaN :

a or b is a NaN  ==> Decimal('NaN')
a < b            ==> Decimal('-1')
a == b           ==> Decimal('0')
a > b            ==> Decimal('1')
compare_signal(other, context=None)

Cette opération est identique à la méthode compare(), sauf que tous les NaN activent un déroutement. Autrement dit, si aucun des opérandes n'est un NaN de signalisation, alors tout opérande NaN silencieux est traité comme s'il s'agissait d'un NaN de signalisation.

compare_total(other, context=None)

Compare deux opérandes en utilisant leur représentation abstraite plutôt que leur valeur numérique. Similaire à la méthode compare(), mais le résultat donne un ordre total sur les instances Decimal. Deux instances de Decimal avec la même valeur numérique mais des représentations différentes se comparent de manière inégale dans cet ordre :

>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')

Les NaN silencieux et de signalisation sont également inclus dans l'ordre total. Le résultat de cette fonction est Decimal('0') si les deux opérandes ont la même représentation, Decimal('-1') si le premier opérande est inférieur au second, et Decimal('1') si le premier opérande est supérieur au deuxième opérande. Voir les spécifications pour les détails de l'ordre total.

Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.

compare_total_mag(other, context=None)

Compare deux opérandes en utilisant leur représentation abstraite plutôt que leur valeur comme dans compare_total(), mais en ignorant le signe de chaque opérande. x.compare_total_mag(y) est équivalent à x.copy_abs().compare_total(y.copy_abs()).

Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.

conjugate()

Ne fait que renvoyer self ; cette méthode existe uniquement pour se conformer à la spécification.

copy_abs()

Renvoie la valeur absolue de l'argument. Cette opération ne dépend pas du contexte et est silencieuse : aucun drapeau n'est modifié et aucun arrondi n'est effectué.

copy_negate()

Renvoie la négation de l'argument. Cette opération ne dépend pas du contexte et est silencieuse : aucun drapeau n'est modifié et aucun arrondi n'est effectué.

copy_sign(other, context=None)

Renvoie une copie du premier opérande mais avec le même signe que celui du deuxième opérande. Par exemple :

>>> Decimal('2.3').copy_sign(Decimal('-1.5'))
Decimal('-2.3')

Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.

exp(context=None)

Renvoie la valeur e**x (fonction exponentielle) du nombre donné. Le résultat est correctement arrondi en utilisant le mode d'arrondi ROUND_HALF_EVEN.

>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal(321).exp()
Decimal('2.561702493119680037517373933E+139')
classmethod from_float(f)

Constructeur alternatif qui n'accepte que les instances de float ou int.

Remarquez que Decimal.from_float(0.1) est différent de Decimal('0.1'). Puisque 0.1 n'est pas exactement représentable en virgule flottante binaire, la valeur est stockée comme la valeur représentable la plus proche qui est 0x1.999999999999ap-4. La valeur équivalente en décimal est 0.1000000000000000055511151231257827021181583404541015625.

Note

depuis Python 3.2, une instance Decimal peut également être construite directement à partir d'un float.

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(float('-inf'))
Decimal('-Infinity')

Ajouté dans la version 3.1.

fma(other, third, context=None)

Multiplier-ajouter fusionné. Renvoie self*other+third sans arrondir le produit intermédiaire self*other.

>>> Decimal(2).fma(3, 5)
Decimal('11')
is_canonical()

Renvoie True si l'argument est sous forme canonique et False sinon. Actuellement, une instance Decimal est toujours canonique, donc cette opération renvoie toujours True.

is_finite()

Renvoie True si l'argument est un nombre fini et False si l'argument est un infini ou un NaN.

is_infinite()

Renvoie True si l'argument est un infini positif ou négatif, False sinon.

is_nan()

Renvoie True si l'argument est un NaN (signalétique ou silencieux), False sinon.

is_normal(context=None)

Renvoie True si l'argument est un nombre fini normal. Renvoie False si l'argument est zéro, infini, résultat d'un dépassement par valeur inférieure ou un NaN.

is_qnan()

Renvoie True si l'argument est un NaN silencieux, False sinon.

is_signed()

Renvoie True si l'argument est négatif, False sinon. Remarquez que les zéros et les NaN peuvent être signés.

is_snan()

Renvoie True si l'argument est un NaN signalétique, False sinon.

is_subnormal(context=None)

Renvoie True si l'argument est le résultat d'un dépassement par valeur inférieure, False sinon.

is_zero()

Renvoie True si l'argument est un zéro (positif ou négatif), False sinon.

ln(context=None)

Renvoie le logarithme naturel (base e) de l'opérande. Le résultat est arrondi avec le mode ROUND_HALF_EVEN.

log10(context=None)

Renvoie le logarithme en base 10 de l'opérande. Le résultat est arrondi avec le mode ROUND_HALF_EVEN.

logb(context=None)

Pour un nombre non nul, renvoie l'exposant ajusté de son opérande en tant qu'instance Decimal. Si l'opérande est un zéro alors Decimal('-Infinity') est renvoyé et le drapeau DivisionByZero est levé. Si l'opérande est un infini alors Decimal('Infinity') est renvoyé.

logical_and(other, context=None)

logical_and() est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le ET des chiffres des deux opérandes.

logical_invert(context=None)

logical_invert() est une opération logique. Le résultat est l'inversion de chacun des chiffres de l'opérande.

logical_or(other, context=None)

logical_or() est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le OU des chiffres des deux opérandes.

logical_xor(other, context=None)

logical_xor() est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le OU EXCLUSIF des chiffres des deux opérandes.

max(other, context=None)

Comme max(self, other) sauf que la règle d'arrondi de context est appliquée avant le retour et que les valeurs NaN sont signalées ou ignorées (selon le contexte et si elles sont signalétiques ou silencieuses).

max_mag(other, context=None)

Semblable à la méthode max(), mais la comparaison est effectuée en utilisant les valeurs absolues des opérandes.

min(other, context=None)

Comme min(self, other) sauf que la règle d'arrondi de context est appliquée avant le retour et que les valeurs NaN sont signalées ou ignorées (selon le contexte et si elles sont signalétiques ou silencieuses).

min_mag(other, context=None)

Semblable à la méthode min(), mais la comparaison est effectuée en utilisant les valeurs absolues des opérandes.

next_minus(context=None)

Renvoie le plus grand nombre représentable dans le context donné (ou dans le contexte du fil d'exécution actuel si aucun contexte n'est donné) qui est plus petit que l'opérande donné.

next_plus(context=None)

Renvoie le plus petit nombre représentable dans le context donné (ou dans le contexte du fil d'exécution actuel si aucun contexte n'est donné) qui est supérieur à l'opérande donné.

next_toward(other, context=None)

Si les deux opérandes ne sont pas égaux, renvoie le nombre le plus proche du premier opérande dans la direction du deuxième opérande. Si les deux opérandes sont numériquement égaux, renvoie une copie du premier opérande avec le signe défini comme étant le même que le signe du second opérande.

normalize(context=None)

Utilisé pour produire des valeurs canoniques d'une classe d'équivalence dans le contexte actuel ou dans le contexte spécifié.

C'est la même sémantique que l'opération unaire plus, sauf que si le résultat final est fini, il est réduit à sa forme la plus simple, avec tous les zéros à droite supprimés et son signe conservé. Autrement dit, tant que la mantisse est différente de zéro et est un multiple de dix, elle est divisée par dix et l'exposant est incrémenté de 1. Sinon (la mantisse est nulle), l'exposant est mis à 0. Dans tous les cas, le signe est inchangé.

Par exemple, Decimal('32.100') et Decimal('0.321000e+2') se normalisent tous deux à la valeur équivalente Decimal('32.1').

Notez que l'arrondi est appliqué avant la réduction à la forme la plus simple.

Dans les dernières versions de la spécification, cette opération est également connue sous le nom de reduce.

number_class(context=None)

Renvoie une chaîne décrivant la classe de l'opérande. La valeur renvoyée est l'une des dix chaînes suivantes.

  • "-Infinity", indiquant que l'opérande est l'infini négatif ;

  • "-Normal", indiquant que l'opérande est un nombre négatif normal ;

  • "-Subnormal", indiquant que l'opérande est négatif et qu'il est le résultat d'un dépassement par valeur inférieure ;

  • "-Zero", indiquant que l'opérande est un zéro négatif ;

  • "+Zero", indiquant que l'opérande est un zéro positif ;

  • "+Subnormal", indiquant que l'opérande est positif et qu'il est le résultat un dépassement par valeur inférieure ;

  • "+Normal", indiquant que l'opérande est un nombre positif normal ;

  • "+Infinity", indiquant que l'opérande est l'infini positif ;

  • "NaN", indiquant que l'opérande est un NaN (Not a Number, pas un nombre) silencieux ;

  • "sNaN", indiquant que l'opérande est un NaN (Not a Number, pas un nombre) signalétique.

quantize(exp, rounding=None, context=None)

Renvoie une valeur égale au premier opérande après arrondi et ayant l'exposant du second opérande.

>>> Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')

Contrairement aux autres opérations, si la longueur du coefficient après l'opération de quantification est supérieure à la précision, alors une InvalidOperation est signalée. Ceci garantit que, sauf condition d'erreur, l'exposant quantifié est toujours égal à celui de l'opérande de droite.

Contrairement aux autres opérations, la quantification ne signale jamais de dépassement par valeur inférieure, même si le résultat est inférieur à la valeur minimale représentable et inexact.

Si l'exposant du deuxième opérande est supérieur à celui du premier, un arrondi peut être nécessaire. Dans ce cas, le mode d'arrondi est déterminé par l'argument rounding s'il est donné, sinon par l'argument context donné ; si aucun argument n'est donné, le mode d'arrondi du contexte du fil d'exécution courant est utilisé.

Une erreur est renvoyée chaque fois que l'exposant résultant est supérieur à Emax ou inférieur à Etiny().

radix()

Renvoie Decimal(10), la base (base) dans laquelle la classe Decimal fait toute son arithmétique. Inclus pour la compatibilité avec la spécification.

remainder_near(other, context=None)

Renvoie le reste de la division de self par other. La différence avec self % other réside dans le signe du reste, qui est choisi de manière à minimiser sa valeur absolue. Plus précisément, la valeur de retour est self - n * othern est l'entier le plus proche de la valeur exacte de self / other et, si deux entiers sont également proches, alors l'entier pair est choisi.

Si le résultat est zéro, alors son signe est le signe de self.

>>> Decimal(18).remainder_near(Decimal(10))
Decimal('-2')
>>> Decimal(25).remainder_near(Decimal(10))
Decimal('5')
>>> Decimal(35).remainder_near(Decimal(10))
Decimal('-5')
rotate(other, context=None)

Renvoie le résultat de la rotation des chiffres du premier opérande d'une quantité spécifiée par le deuxième opérande. Le deuxième opérande doit être un entier compris dans la plage -précision à précision. La valeur absolue du deuxième opérande donne le nombre de rotations unitaires à faire. Si le deuxième opérande est positif alors la rotation se fait vers la gauche ; sinon la rotation se fait vers la droite. Le coefficient du premier opérande est complété à gauche avec des zéros à la précision de la longueur si nécessaire. Le signe et l'exposant du premier opérande sont inchangés.

same_quantum(other, context=None)

Teste si self et other ont le même exposant ou si les deux sont NaN.

Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.

scaleb(other, context=None)

Renvoie le premier opérande avec l'exposant ajusté par le second. De manière équivalente, renvoie le premier opérande multiplié par 10**other. Le deuxième opérande doit être entier.

shift(other, context=None)

Renvoie le résultat du décalage des chiffres du premier opérande d'une quantité spécifiée par le deuxième opérande. Le deuxième opérande doit être un entier compris dans la plage -précision à précision. La valeur absolue du deuxième opérande donne le nombre de décalages unitaires à effectuer. Si le deuxième opérande est positif alors le décalage est vers la gauche ; sinon le décalage est vers la droite. Les chiffres insérés dans le nombre par le décalage sont des zéros. Le signe et l'exposant du premier opérande sont inchangés.

sqrt(context=None)

Renvoie la racine carrée de l'argument avec une précision maximale.

to_eng_string(context=None)

Convertir en chaîne, en utilisant la notation ingénieur si un exposant est nécessaire.

La notation ingénieur possède un exposant qui est un multiple de 3. Cela peut laisser jusqu'à 3 chiffres à gauche de la décimale et peut nécessiter l'ajout d'un ou de deux zéros à la fin.

Par exemple, Decimal('123E+1') est converti en Decimal('1.23E+3').

to_integral(rounding=None, context=None)

Identique à la méthode to_integral_value(). Le nom to_integral a été conservé pour la compatibilité avec les anciennes versions.

to_integral_exact(rounding=None, context=None)

Arrondit à l'entier le plus proche, en signalant Inexact ou Rounded selon le cas si l'arrondi se produit. Le mode d'arrondi est déterminé par le paramètre rounding s'il est donné, sinon par le context donné. Si aucun paramètre n'est donné, le mode d'arrondi du contexte courant est utilisé.

to_integral_value(rounding=None, context=None)

Arrondit à l'entier le plus proche sans signaler Inexact ou Rounded. Si donné, applique rounding ; sinon, utilise la méthode d'arrondi dans le context fourni ou dans le contexte actuel.

Decimal numbers can be rounded using the round() function:

round(number)
round(number, ndigits)

If ndigits is not given or None, returns the nearest int to number, rounding ties to even, and ignoring the rounding mode of the Decimal context. Raises OverflowError if number is an infinity or ValueError if it is a (quiet or signaling) NaN.

If ndigits is an int, the context's rounding mode is respected and a Decimal representing number rounded to the nearest multiple of Decimal('1E-ndigits') is returned; in this case, round(number, ndigits) is equivalent to self.quantize(Decimal('1E-ndigits')). Returns Decimal('NaN') if number is a quiet NaN. Raises InvalidOperation if number is an infinity, a signaling NaN, or if the length of the coefficient after the quantize operation would be greater than the current context's precision. In other words, for the non-corner cases:

  • if ndigits is positive, return number rounded to ndigits decimal places;

  • if ndigits is zero, return number rounded to the nearest integer;

  • if ndigits is negative, return number rounded to the nearest multiple of 10**abs(ndigits).

Par exemple :

>>> from decimal import Decimal, getcontext, ROUND_DOWN
>>> getcontext().rounding = ROUND_DOWN
>>> round(Decimal('3.75'))     # context rounding ignored
4
>>> round(Decimal('3.5'))      # round-ties-to-even
4
>>> round(Decimal('3.75'), 0)  # uses the context rounding
Decimal('3')
>>> round(Decimal('3.75'), 1)
Decimal('3.7')
>>> round(Decimal('3.75'), -1)
Decimal('0E+1')

Opérandes logiques

Les méthodes logical_and(), logical_invert(), logical_or() et logical_xor() s'attendent à ce que leurs arguments soient des opérandes logiques. Un opérande logique est une instance Decimal dont l'exposant et le signe sont tous les deux zéro et dont les chiffres sont tous 0 ou 1.

Objets de contexte

Les contextes sont des environnements pour les opérations arithmétiques. Ils régissent la précision, établissent des règles d'arrondi, déterminent quels signaux sont traités comme des exceptions et limitent la plage des exposants.

Chaque fil d'exécution a son propre contexte actuel qui est accessible ou modifié à l'aide des fonctions getcontext() et setcontext() :

decimal.getcontext()

Renvoie le contexte actuel du fil d'exécution courant.

decimal.setcontext(c)

Définit le contexte du fil d'exécution courant à c.

Vous pouvez également utiliser l'instruction with et la fonction localcontext() pour modifier temporairement le contexte actif.

decimal.localcontext(ctx=None, **kwargs)

Renvoie un gestionnaire de contexte qui définira le contexte actuel du fil d'exécution actif sur une copie de ctx à l'entrée de l'instruction with et restaurera le contexte précédent lors de la sortie de l'instruction with. Si aucun contexte n'est spécifié, une copie du contexte actuel est utilisée. L'argument kwargs est utilisé pour définir les attributs du nouveau contexte.

Par exemple, le code suivant définit la précision décimale actuelle à 42 chiffres, effectue un calcul, puis restaure automatiquement le contexte précédent :

from decimal import localcontext

with localcontext() as ctx:
    ctx.prec = 42   # Perform a high precision calculation
    s = calculate_something()
s = +s  # Round the final result back to the default precision

En utilisant des arguments nommés, le code serait le suivant :

from decimal import localcontext

with localcontext(prec=42) as ctx:
    s = calculate_something()
s = +s

Lève TypeError si kwargs fournit un attribut que Context ne prend pas en charge. Lève soit TypeError ou ValueError si kwargs fournit une valeur invalide pour un attribut.

Modifié dans la version 3.11: localcontext() prend désormais en charge la définition des attributs de contexte grâce à l'utilisation d'arguments nommés.

De nouveaux contextes peuvent également être créés à l'aide du constructeur Context décrit ci-dessous. De plus, le module fournit trois contextes prédéfinis :

class decimal.BasicContext

Il s'agit d'un contexte standard défini par la General Decimal Arithmetic Specification. La précision est fixée à neuf. L'arrondi est défini sur ROUND_HALF_UP. Tous les drapeaux sont effacés. Tous les déroutements sont activés (ils lèvent des exceptions) sauf Inexact, Rounded et Subnormal.

Étant donné que de nombreuses options de déroutement sont activées, ce contexte est utile pour le débogage.

class decimal.ExtendedContext

Il s'agit d'un contexte standard défini par la General Decimal Arithmetic Specification. La précision est fixée à neuf. L'arrondi est défini sur ROUND_HALF_EVEN. Toutes les options de déroutement sont désactivées (afin que les exceptions ne soient pas levées pendant les calculs).

Comme les interruptions sont désactivées, ce contexte est utile pour les applications qui préfèrent avoir une valeur de résultat NaN ou Infinity au lieu de lever des exceptions. Cela permet à une application de terminer une exécution en présence de conditions qui, autrement, arrêteraient le programme.

class decimal.DefaultContext

Ce contexte est utilisé par le constructeur Context comme prototype pour de nouveaux contextes. Changer un champ (par exemple la précision) a pour effet de changer la valeur par défaut pour les nouveaux contextes créés par le constructeur Context.

Ce contexte est particulièrement utile dans les environnements à plusieurs fils d'exécution. La modification de l'un des champs avant le démarrage des fils a pour effet de définir des valeurs par défaut à l'échelle du système. La modification des champs après le démarrage des fils d'exécution n'est pas recommandée car cela nécessiterait une synchronisation des fils d'exécution pour éviter des conditions de concurrence.

Dans les environnements à fil d'exécution unique, il est préférable de ne pas utiliser ce contexte du tout. Créez plutôt simplement des contextes explicitement comme décrit ci-dessous.

Les valeurs par défaut sont Context.prec=28, Context.rounding=ROUND_HALF_EVEN et les interruptions sont activées pour Overflow, InvalidOperation et DivisionByZero.

En plus des trois contextes fournis, de nouveaux contextes peuvent être créés avec le constructeur Context.

class decimal.Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)

Crée un nouveau contexte. Si un champ n'est pas spécifié ou est None, les valeurs par défaut sont copiées à partir du DefaultContext. Si le champ flags n'est pas spécifié ou est None, tous les indicateurs sont effacés.

prec est un entier compris dans la plage [1, MAX_PREC] qui définit la précision des opérations arithmétiques dans le contexte.

L'option rounding est l'une des constantes répertoriées dans la section Modes d'arrondi.

Les champs traps et flags répertorient tous les signaux à définir. En général, les nouveaux contextes ne doivent qu'activer des surveillances et laisser les drapeaux baissés.

Les champs Emin et Emax sont des entiers spécifiant les valeurs limites autorisées pour les exposants. Emin doit être dans [MIN_EMIN, 0], Emax dans la plage [0, MAX_EMAX].

Le champ capitals est soit 0 soit 1 (la valeur par défaut). S'il est défini à 1, les exposants sont imprimés avec un E majuscule ; sinon, un e minuscule est utilisé : Decimal('6.02e+23').

Le champ clamp est soit 0 (la valeur par défaut), soit 1. S'il est défini à 1, l'exposant e d'une instance Decimal représentable dans ce contexte est strictement limité à la plage Emin - prec + 1 <= e <= Emax - prec + 1. Si clamp est 0 alors une condition plus faible est vraie : l'exposant ajusté de l'instance Decimal est au plus Emax. Lorsque clamp vaut 1, un grand nombre normal voit, si possible, son exposant réduit et un nombre correspondant de zéros ajouté à sa mantisse, afin de s'adapter aux contraintes d'exposant ; cela préserve la valeur du nombre mais perd des informations sur les zéros significatifs. Par exemple :

>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
Decimal('1.23000E+999')

Une valeur clamp de 1 permet la compatibilité avec les formats d'échange décimaux à largeur fixe spécifiés dans la norme IEEE 754.

La classe Context définit plusieurs méthodes à usage général ainsi qu'un grand nombre de méthodes permettant de faire de l'arithmétique directement dans un contexte donné. De plus, pour chacune des méthodes Decimal décrites ci-dessus (à l'exception des méthodes adjusted() et as_tuple()), il existe une méthode Context correspondante. Par exemple, pour une instance Context C et une instance Decimal x, C.exp(x) est équivalent à x.exp(context=C). Chaque méthode Context accepte un entier Python (une instance de int) partout où une instance Decimal est acceptée.

clear_flags()

Réinitialise tous les drapeaux à 0.

clear_traps()

Réinitialise toutes les surveillances à 0.

Ajouté dans la version 3.3.

copy()

Renvoie une copie du contexte.

copy_decimal(num)

Renvoie une copie de l'instance Decimal num.

create_decimal(num)

Crée une nouvelle instance Decimal à partir de num mais en utilisant self comme contexte. Contrairement au constructeur Decimal, la précision du contexte, la méthode d'arrondi, les indicateurs et les surveillances sont appliqués à la conversion.

C'est utile car les constantes sont souvent données avec une précision supérieure à celle requise par l'application. Un autre avantage est que l’arrondi élimine immédiatement les effets involontaires des chiffres au-delà de la précision actuelle. Dans l'exemple suivant, l'utilisation d'entrées non arrondies signifie que l'ajout de zéro à une somme peut modifier le résultat :

>>> getcontext().prec = 3
>>> Decimal('3.4445') + Decimal('1.0023')
Decimal('4.45')
>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
Decimal('4.44')

Cette méthode implémente l'opération to-number de la spécification IBM. Si l’argument est une chaîne, aucun espace ou trait de soulignement de début ou de fin n’est autorisé.

create_decimal_from_float(f)

Crée une nouvelle instance Decimal à partir d'un float f mais en arrondissant en utilisant self comme contexte. Contrairement à la méthode de classe Decimal.from_float(), la précision du contexte, la méthode d'arrondi, les indicateurs et les surveillances sont appliqués à la conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415')
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):
    ...
decimal.Inexact: None

Ajouté dans la version 3.1.

Etiny()

Renvoie une valeur égale à Emin - prec + 1 qui est la valeur minimale de l'exposant pour les résultats avec dépassement inférieur. Lorsqu'un dépassement inférieur se produit, l'exposant est défini sur Etiny.

Etop()

Renvoie une valeur égale à Emax - prec + 1.

L'approche habituelle pour travailler avec des décimaux consiste à créer des instances Decimal, puis à appliquer des opérations arithmétiques qui ont lieu dans le contexte actuel du fil d'exécution actif. Une approche alternative consiste à utiliser des méthodes contextuelles pour calculer dans un contexte spécifique. Les méthodes sont similaires à celles de la classe Decimal et ne sont décrites que brièvement ici.

abs(x)

Renvoie la valeur absolue de x.

add(x, y)

Renvoie la somme de x et y.

canonical(x)

Renvoie l'objet Decimal x lui-même.

compare(x, y)

Compare x et y numériquement.

compare_signal(x, y)

Compare numériquement les valeurs des deux opérandes.

compare_total(x, y)

Compare deux opérandes en utilisant leur représentation abstraite.

compare_total_mag(x, y)

Compare deux opérandes en utilisant leur représentation abstraite, en ignorant le signe.

copy_abs(x)

Renvoie une copie de x avec le signe à 0 (c.-à-d. positif).

copy_negate(x)

Renvoie une copie de x mais de signe opposé.

copy_sign(x, y)

Copie le signe de y vers x.

divide(x, y)

Renvoie x divisé par y.

divide_int(x, y)

Renvoie x divisé par y, tronqué comme entier.

divmod(x, y)

Renvoie la partie entière de la division entre deux nombres.

exp(x)

Renvoie e ** x.

fma(x, y, z)

Renvoie x multiplié par y, plus z.

is_canonical(x)

Renvoie True si x est canonique ; False sinon.

is_finite(x)

Renvoie True si x est fini ; False sinon.

is_infinite(x)

Renvoie True si x est infini et False sinon.

is_nan(x)

Renvoie True si x est un NaN (silencieux ou signalétique), False sinon.

is_normal(x)

Renvoie True si x est un nombre normal ; False sinon.

is_qnan(x)

Renvoie True si x est un NaN silencieux, False sinon.

is_signed(x)

Renvoie True si x est négatif et False sinon.

is_snan(x)

Renvoie True si x est un NaN signalétique, False sinon.

is_subnormal(x)

Renvoie True si x est est inférieur à la valeur minimale représentable ; sinon, renvoie False.

is_zero(x)

Renvoie True si x est un zéro et False sinon.

ln(x)

Renvoie le logarithme naturel (en base e) de x.

log10(x)

Renvoie le logarithme en base 10 de x.

logb(x)

Renvoie l'exposant correspondant du chiffre de poids fort de la mantisse de l'opérande.

logical_and(x, y)

Applique l'opération logique ET entre les chiffres de chaque opérande.

logical_invert(x)

Inverse tous les chiffres de x.

logical_or(x, y)

Applique l'opération logique OU entre les chiffres de chaque opérande.

logical_xor(x, y)

Applique l'opération logique OU EXCLUSIF entre les chiffres de chaque opérande.

max(x, y)

Renvoie le maximum entre les deux valeurs numériques.

max_mag(x, y)

Compare les valeurs numériquement en ignorant leur signe.

min(x, y)

Compare numériquement deux valeurs et renvoie le minimum.

min_mag(x, y)

Compare les valeurs numériquement en ignorant leur signe.

minus(x)

Correspond à l’opérateur unaire préfixé « moins » en Python.

multiply(x, y)

Renvoie la multiplication de x avec y.

next_minus(x)

Renvoie le plus grand nombre représentable inférieur à x.

next_plus(x)

Renvoie le plus petit nombre représentable supérieur à x.

next_toward(x, y)

Renvoie le nombre le plus proche de x, en direction de y.

normalize(x)

Réduit x à sa forme la plus simple.

number_class(x)

Renvoie une indication de la classe de x.

plus(x)

Correspond à l'opérateur unaire préfixé « plus » en Python. Cette opération applique la précision du contexte et l'arrondi, ce n'est donc pas une opération d'identité.

power(x, y, modulo=None)

Renvoie x à la puissance y, réduit modulo modulo si celui-ci est donné.

Avec deux arguments, calcule x**y. Si x est négatif alors y doit être entier. Le résultat est inexact à moins que y soit entier et que le résultat soit fini et puisse être exprimé exactement en precision chiffres. Le mode d'arrondi du contexte est utilisé. Les résultats sont toujours correctement arrondis à la manière de Python.

Decimal(0) ** Decimal(0) donne InvalidOperation et, si InvalidOperation n'est pas surveillé, cela donne Decimal('NaN').

Modifié dans la version 3.3: le module C calcule power() en termes de fonctions exp() et ln() correctement arrondies. Le résultat est bien défini mais seulement « presque toujours correctement arrondi ».

Avec trois arguments, calcule (x**y) % modulo. Pour la forme à trois arguments, les restrictions suivantes sur les arguments s'appliquent :

  • les trois arguments doivent être entiers ;

  • y ne doit pas être négatif ;

  • au moins l'un de x ou y doit être différent de zéro ;

  • modulo doit être différent de zéro et avoir au plus precision chiffres.

La valeur résultant de Context.power(x, y, modulo) est égale à la valeur qui serait obtenue en calculant (x**y) % modulo avec une précision illimitée, mais est calculée plus efficacement. L'exposant du résultat est zéro, quels que soient les exposants de x, y et modulo. Le résultat est toujours exact.

quantize(x, y)

Renvoie une valeur égale à x (arrondie), ayant l'exposant de y.

radix()

Renvoie 10 car c'est Decimal, :)

remainder(x, y)

Renvoie le reste de la division entière.

Le signe du résultat, s'il est différent de zéro, est le même que celui du dividende initial.

remainder_near(x, y)

Renvoie x - y * n, où n est l'entier le plus proche de la valeur exacte de x / y (si le résultat est 0 alors son signe est le signe de x).

rotate(x, y)

Renvoie une copie pivotée de x, y fois.

same_quantum(x, y)

Renvoie True si les deux opérandes ont le même exposant.

scaleb(x, y)

Renvoie le premier opérande après avoir ajouté la deuxième valeur à son exp.

shift(x, y)

Renvoie une copie décalée de x, y fois.

sqrt(x)

Renvoie la racine carrée d'un nombre non négatif avec la précision donnée par le contexte.

subtract(x, y)

Renvoie la différence entre x et y.

to_eng_string(x)

Convertir en chaîne, en utilisant la notation ingénieur si un exposant est nécessaire.

La notation ingénieur possède un exposant qui est un multiple de 3. Cela peut laisser jusqu'à 3 chiffres à gauche de la décimale et peut nécessiter l'ajout d'un ou de deux zéros à la fin.

to_integral_exact(x)

Arrondit à un entier.

to_sci_string(x)

Convertit un nombre en chaîne en utilisant la notation scientifique.

Constantes

Les constantes de cette section ne sont pertinentes que pour le module C. Elles sont aussi incluses pour la compatibilité dans la version en Python pur.

32-bit

64-bit

decimal.MAX_PREC

425000000

999999999999999999

decimal.MAX_EMAX

425000000

999999999999999999

decimal.MIN_EMIN

-425000000

-999999999999999999

decimal.MIN_ETINY

-849999999

-1999999999999999997

decimal.HAVE_THREADS

La valeur est True. Déprécié, parce que maintenant Python possède toujours des fils d'exécution.

Obsolète depuis la version 3.9.

decimal.HAVE_CONTEXTVAR

The default value is True. If Python is configured using the --without-decimal-contextvar option, the C version uses a thread-local rather than a coroutine-local context and the value is False. This is slightly faster in some nested context scenarios.

Ajouté dans la version 3.8.3.

Modes d'arrondi

decimal.ROUND_CEILING

Round towards Infinity.

decimal.ROUND_DOWN

Round towards zero.

decimal.ROUND_FLOOR

Round towards -Infinity.

decimal.ROUND_HALF_DOWN

Round to nearest with ties going towards zero.

decimal.ROUND_HALF_EVEN

Round to nearest with ties going to nearest even integer.

decimal.ROUND_HALF_UP

Round to nearest with ties going away from zero.

decimal.ROUND_UP

Round away from zero.

decimal.ROUND_05UP

Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round towards zero.

Signaux

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be sure to clear all flags before starting the next computation.

If the context's trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering the condition.

class decimal.Clamped

Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context's Emin and Emax limits. If possible, the exponent is reduced to fit by adding zeros to the coefficient.

class decimal.DecimalException

Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero

Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact

Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag or trap is used to detect when results are inexact.

class decimal.InvalidOperation

An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity
class decimal.Overflow

Débordement numérique.

Indicates the exponent is larger than Context.Emax after rounding has occurred. If not trapped, the result depends on the rounding mode, either pulling inward to the largest representable finite number or rounding outward to Infinity. In either case, Inexact and Rounded are also signaled.

class decimal.Rounded

Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal

Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result unchanged.

class decimal.Underflow

Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also signaled.

class decimal.FloatOperation

Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor, create_decimal() and all comparison operators. Both conversion and comparisons are exact. Any occurrence of a mixed operation is silently recorded by setting FloatOperation in the context flags. Explicit conversions with from_float() or create_decimal_from_float() do not set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed operations raise FloatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.Exception)
    DecimalException
        Clamped
        DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
        Inexact
            Overflow(Inexact, Rounded)
            Underflow(Inexact, Rounded, Subnormal)
        InvalidOperation
        Rounded
        Subnormal
        FloatOperation(DecimalException, exceptions.TypeError)

Floating-Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1 exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in loss of significance. Knuth provides two instructive examples where rounded floating-point arithmetic with insufficient precision causes the breakdown of the associative and distributive properties of addition:

# Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss of significance:

>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity, Infinity, and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal('Infinity'). Also, they can arise from dividing by zero when the DivisionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped, infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an exception. For example, 0/0 returns NaN which means "not a number". This variety of NaN is quiet and, once created, will flow through other computations always resulting in another NaN. This behavior can be useful for a series of computations that occasionally have missing inputs --- it allows the calculation to proceed while flagging specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python's comparison operators can be a little surprising where a NaN is involved. A test for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing Decimal('NaN')==Decimal('NaN')), while a test for inequality always returns True. An attempt to compare two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal if either operand is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare() and compare_signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating-point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal('Infinity')
Decimal('0E-1000026')

Working with threads

The getcontext() function accesses a different Context object for each thread. Having separate thread contexts means that threads may make changes (such as getcontext().prec=10) without interfering with other threads.

Likewise, the setcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called before getcontext(), then getcontext() will automatically create a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread will use the same values throughout the application, directly modify the DefaultContext object. This should be done before any threads are started so that there won't be a race condition between threads calling getcontext(). For example:

# Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)

# Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
 . . .

Cas pratiques

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt(value, places=2, curr='', sep=',', dp='.',
             pos='', neg='-', trailneg=''):
    """Convert Decimal to a money formatted string.

    places:  required number of places after the decimal point
    curr:    optional currency symbol before the sign (may be blank)
    sep:     optional grouping separator (comma, period, space, or blank)
    dp:      decimal point indicator (comma or period)
             only specify as blank when places is zero
    pos:     optional sign for positive numbers: '+', space or blank
    neg:     optional sign for negative numbers: '-', '(', space or blank
    trailneg:optional trailing minus indicator:  '-', ')', space or blank

    >>> d = Decimal('-1234567.8901')
    >>> moneyfmt(d, curr='$')
    '-$1,234,567.89'
    >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
    '1.234.568-'
    >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
    '($1,234,567.89)'
    >>> moneyfmt(Decimal(123456789), sep=' ')
    '123 456 789.00'
    >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
    '<0.02>'

    """
    q = Decimal(10) ** -places      # 2 places --> '0.01'
    sign, digits, exp = value.quantize(q).as_tuple()
    result = []
    digits = list(map(str, digits))
    build, next = result.append, digits.pop
    if sign:
        build(trailneg)
    for i in range(places):
        build(next() if digits else '0')
    if places:
        build(dp)
    if not digits:
        build('0')
    i = 0
    while digits:
        build(next())
        i += 1
        if i == 3 and digits:
            i = 0
            build(sep)
    build(curr)
    build(neg if sign else pos)
    return ''.join(reversed(result))

def pi():
    """Compute Pi to the current precision.

    >>> print(pi())
    3.141592653589793238462643383

    """
    getcontext().prec += 2  # extra digits for intermediate steps
    three = Decimal(3)      # substitute "three=3.0" for regular floats
    lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
    while s != lasts:
        lasts = s
        n, na = n+na, na+8
        d, da = d+da, da+32
        t = (t * n) / d
        s += t
    getcontext().prec -= 2
    return +s               # unary plus applies the new precision

def exp(x):
    """Return e raised to the power of x.  Result type matches input type.

    >>> print(exp(Decimal(1)))
    2.718281828459045235360287471
    >>> print(exp(Decimal(2)))
    7.389056098930650227230427461
    >>> print(exp(2.0))
    7.38905609893
    >>> print(exp(2+0j))
    (7.38905609893+0j)

    """
    getcontext().prec += 2
    i, lasts, s, fact, num = 0, 0, 1, 1, 1
    while s != lasts:
        lasts = s
        i += 1
        fact *= i
        num *= x
        s += num / fact
    getcontext().prec -= 2
    return +s

def cos(x):
    """Return the cosine of x as measured in radians.

    The Taylor series approximation works best for a small value of x.
    For larger values, first compute x = x % (2 * pi).

    >>> print(cos(Decimal('0.5')))
    0.8775825618903727161162815826
    >>> print(cos(0.5))
    0.87758256189
    >>> print(cos(0.5+0j))
    (0.87758256189+0j)

    """
    getcontext().prec += 2
    i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
    while s != lasts:
        lasts = s
        i += 2
        fact *= i * (i-1)
        num *= x * x
        sign *= -1
        s += num / fact * sign
    getcontext().prec -= 2
    return +s

def sin(x):
    """Return the sine of x as measured in radians.

    The Taylor series approximation works best for a small value of x.
    For larger values, first compute x = x % (2 * pi).

    >>> print(sin(Decimal('0.5')))
    0.4794255386042030002732879352
    >>> print(sin(0.5))
    0.479425538604
    >>> print(sin(0.5+0j))
    (0.479425538604+0j)

    """
    getcontext().prec += 2
    i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
    while s != lasts:
        lasts = s
        i += 2
        fact *= i * (i-1)
        num *= x * x
        sign *= -1
        s += num / fact * sign
    getcontext().prec -= 2
    return +s

FAQ decimal

Q. C'est fastidieux de taper decimal.Decimal('1234.5'). Y a-t-il un moyen de réduire la frappe quand on utilise l'interpréteur interactif ?

R. Certains utilisateurs abrègent le constructeur en une seule lettre :

>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also useful for validation:

>>> TWOPLACES = Decimal(10) ** -2       # same as Decimal('0.01')
>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')
>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')
>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
   ...
Inexact: None

Q. Une fois que mes entrées sont à deux décimales valides, comment maintenir cet invariant dans l'application ?

R. Certaines opérations comme l'addition, la soustraction et la multiplication par un entier préservent automatiquement la virgule fixe. D'autres opérations, comme la division et la multiplication par des non-entiers, changent le nombre de décimales et doivent être suivies d'une étape quantize() :

>>> a = Decimal('102.72')           # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b                           # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42                          # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES)     # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES)     # And quantize division
Decimal('0.03')

Lors du développement d'applications en virgule fixe, il est pratique de définir des fonctions pour gérer cette étape de quantification par quantize() :

>>> def mul(x, y, fp=TWOPLACES):
...     return (x * y).quantize(fp)
...
>>> def div(x, y, fp=TWOPLACES):
...     return (x / y).quantize(fp)
>>> mul(a, b)                       # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and .02E+4 all have the same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]

Q. When does rounding occur in a computation?

A. It occurs after the computation. The philosophy of the decimal specification is that numbers are considered exact and are created independent of the current context. They can even have greater precision than current context. Computations process with those exact inputs and then rounding (or other context operations) is applied to the result of the computation:

>>> getcontext().prec = 5
>>> pi = Decimal('3.1415926535')   # More than 5 digits
>>> pi                             # All digits are retained
Decimal('3.1415926535')
>>> pi + 0                         # Rounded after an addition
Decimal('3.1416')
>>> pi - Decimal('0.00005')        # Subtract unrounded numbers, then round
Decimal('3.1415')
>>> pi + 0 - Decimal('0.00005').   # Intermediate values are rounded
Decimal('3.1416')

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coefficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original's two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing significance, but keeping the value unchanged:

>>> def remove_exponent(d):
...     return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
>>> remove_exponent(Decimal('5E+3'))
Decimal('5000')

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating-point number can be exactly expressed as a Decimal though an exact conversion may take more precision than intuition would suggest:

>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')

Q. Within a complex calculation, how can I make sure that I haven't gotten a spurious result because of insufficient precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues, ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the results are rounded. The advantage for inputs is that "what you type is what you get". A disadvantage is that the results can look odd if you forget that the inputs haven't been rounded:

>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal('1.23456789')      # unary plus triggers rounding
Decimal('1.23')

Alternatively, inputs can be rounded upon creation using the Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')

Q. Is the CPython implementation fast for large numbers?

A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of the decimal module integrate the high speed libmpdec library for arbitrary precision correctly rounded decimal floating-point arithmetic [1]. libmpdec uses Karatsuba multiplication for medium-sized numbers and the Number Theoretic Transform for very large numbers.

The context must be adapted for exact arbitrary precision arithmetic. Emin and Emax should always be set to the maximum values, clamp should always be 0 (the default). Setting prec requires some care.

The easiest approach for trying out bignum arithmetic is to use the maximum value for prec as well [2]:

>>> setcontext(Context(prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))
>>> x = Decimal(2) ** 256
>>> x / 128
Decimal('904625697166532776746648320380374280103671755200316906558262375061821325312')

For inexact results, MAX_PREC is far too large on 64-bit platforms and the available memory will be insufficient:

>>> Decimal(1) / 3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
MemoryError

On systems with overallocation (e.g. Linux), a more sophisticated approach is to adjust prec to the amount of available RAM. Suppose that you have 8GB of RAM and expect 10 simultaneous operands using a maximum of 500MB each:

>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> c = Context(prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext(c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal(0).logical_invert() * 9
>>> sys.getsizeof(x)
524288112
>>> x + 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  decimal.Inexact: [<class 'decimal.Inexact'>]

In general (and especially on systems without overallocation), it is recommended to estimate even tighter bounds and set the Inexact trap if all calculations are expected to be exact.