2. Análisis léxico¶
A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer (also known as the tokenizer). This chapter describes how the lexical analyzer produces these tokens.
The lexical analyzer determines the program text’s encoding
(UTF-8 by default), and decodes the text into
source characters.
If the text cannot be decoded, a SyntaxError is raised.
Next, the lexical analyzer uses the source characters to generate a stream of tokens. The type of a generated token generally depends on the next source character to be processed. Similarly, other special behavior of the analyzer depends on the first source character that hasn’t yet been processed. The following table gives a quick summary of these source characters, with links to sections that contain more information.
Character |
Next token (or other relevant documentation) |
|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.1. Estructura de línea¶
Un programa Python se divide en un número de líneas lógicas.
2.1.1. Líneas lógicas¶
The end of a logical line is represented by the token NEWLINE.
Statements cannot cross logical line boundaries except where NEWLINE
is allowed by the syntax (e.g., between statements in compound statements).
A logical line is constructed from one or more physical lines by following
the explicit or implicit
line joining rules.
2.1.2. Líneas físicas¶
A physical line is a sequence of characters terminated by one the following end-of-line sequences:
the Unix form using ASCII LF (linefeed),
the Windows form using the ASCII sequence CR LF (return followed by linefeed),
the “Classic Mac OS” form using the ASCII CR (return) character.
Regardless of platform, each of these sequences is replaced by a single ASCII LF (linefeed) character. (This is done even inside string literals.) Each line can use any of the sequences; they do not need to be consistent within a file.
The end of input also serves as an implicit terminator for the final physical line.
Formally:
newline: <ASCII LF> | <ASCII CR> <ASCII LF> | <ASCII CR>
2.1.4. Declaración de Codificación¶
Si un comentario en la primera o segunda línea del script de Python coincide con la expresión regular coding[=:]\s*([-\w.]+), este comentario se procesa como una declaración de codificación; el primer grupo de esta expresión denomina la codificación del archivo de código fuente. La declaración de codificación debe aparecer en una línea propia. Si se trata de la segunda línea, la primera línea debe ser también una línea solamente de comentario. Las formas recomendadas de una expresión de codificación son
# -*- coding: <encoding-name> -*-
que también es reconocido por GNU Emacs y
# vim:fileencoding=<encoding-name>
que es reconocido por el VIM de Bram Moolenaar.
If no encoding declaration is found, the default encoding is UTF-8. If the
implicit or explicit encoding of a file is UTF-8, an initial UTF-8 byte-order
mark (b'\xef\xbb\xbf') is ignored rather than being a syntax error.
Si se declara una codificación, Python debe reconocer el nombre de la codificación (ver Codificaciones estándar). La codificación se utiliza para todos los análisis léxicos, incluidos las cadenas literales, los comentarios y los identificadores.
All lexical analysis, including string literals, comments and identifiers, works on Unicode text decoded using the source encoding. Any Unicode code point, except the NUL control character, can appear in Python source.
source_character: <any Unicode code point, except NUL>
2.1.5. Unión explícita de líneas¶
Dos o más líneas físicas pueden unirse en líneas lógicas utilizando caracteres de barra invertida (\), de la siguiente manera: cuando una línea física termina en una barra invertida que no es parte de literal de cadena o de un comentario, se une con la siguiente formando una sola línea lógica, borrando la barra invertida y el siguiente carácter de fin de línea. Por ejemplo:
if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1
Una línea que termina en una barra invertida no puede llevar un comentario. Una barra invertida no continúa un comentario. Una barra invertida no continúa un token excepto para los literales de la cadena (es decir, los tokens que no sean literales de la cadena no pueden ser divididos a través de líneas físicas usando una barra invertida). La barra invertida es ilegal en cualquier parte de una línea fuera del literal de la cadena.
2.1.6. Unión implícita de líneas¶
Las expresiones entre paréntesis, entre corchetes o entre rizos pueden dividirse en más de una línea física sin usar barras invertidas. Por ejemplo:
month_names = ['Januari', 'Februari', 'Maart', # Son los
'April', 'Mei', 'Juni', # nombres holandeses
'Juli', 'Augustus', 'September', # para los meses
'Oktober', 'November', 'December'] # del año
Las líneas continuas implícitas pueden llevar comentarios. La sangría de las líneas de continuación no es importante. Se permiten líneas de continuación en blanco. No hay ningún token NEWLINE (nueva línea) entre las líneas de continuación implícitas. Las líneas de continuación implícitas también pueden aparecer dentro de cadenas de triple comilla ( ver más adelante); en ese caso no pueden llevar comentarios.
2.1.7. Líneas en blanco¶
A logical line that contains only spaces, tabs, formfeeds and possibly a
comment, is ignored (i.e., no NEWLINE token is generated).
During interactive input of statements, handling of a blank line may differ
depending on the implementation of the read-eval-print loop.
In the standard interactive interpreter, an entirely blank logical line (that
is, one containing not even whitespace or a comment) terminates a multi-line
statement.
2.1.8. Sangría¶
El espacio en blanco ( espacios y tabulaciones) al principio de una línea lógica se utiliza para calcular el nivel de sangría de la línea, que a su vez se utiliza para determinar la agrupación de las declaraciones.
Los tabuladores se sustituyen (de izquierda a derecha) por uno a ocho espacios, de manera que el número total de caracteres hasta el reemplazo inclusive es un múltiplo de ocho (se pretende que sea la misma regla que la utilizada por Unix). El número total de espacios que preceden al primer carácter no en blanco determina entonces la sangría de la línea. La sangría no puede dividirse en múltiples líneas físicas utilizando barras invertidas; el espacio en blanco hasta la primera barra invertida determina la sangría.
La indentación se rechaza como inconsistente si un archivo fuente mezcla tabulaciones y espacios de manera que el significado depende del valor de una tabulación en los espacios; un TabError se produce en ese caso.
Nota de compatibilidad entre plataformas: debido a la naturaleza de los editores de texto en plataformas que no sean UNIX, no es aconsejable utilizar una mezcla de espacios y tabuladores para la sangría en un solo archivo de origen. También debe tenerse en cuenta que las diferentes plataformas pueden limitar explícitamente el nivel máximo de sangría.
Un carácter formfeed puede estar presente al comienzo de la línea; será ignorado para los cálculos de sangría anteriores. Los caracteres formfeed que aparecen en otras partes del espacio en blanco inicial tienen un efecto indefinido (por ejemplo, pueden poner a cero el recuento de espacio).
The indentation levels of consecutive lines are used to generate
INDENT and DEDENT tokens, using a stack,
as follows.
Before the first line of the file is read, a single zero is pushed on the stack;
this will never be popped off again. The numbers pushed on the stack will
always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack.
If it is equal, nothing happens. If it is larger, it is pushed on the stack, and
one INDENT token is generated. If it is smaller, it must be one of the
numbers occurring on the stack; all numbers on the stack that are larger are
popped off, and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number
remaining on the stack that is larger than zero.
Aquí hay un ejemplo de un código de Python con una correcta (aunque no tan clara) sangría:
def perm(l):
# Calcular la lista de todas las permutaciones de l
if len(l) <= 1:
return [l]
r = []
for i in range(len(l)):
s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r
El siguiente ejemplo muestra varios errores de sangría:
def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent
(En realidad, los tres primeros errores son detectados por el analizador; sólo el último error es encontrado por el analizador léxico — la sangría de return r no coincide con un nivel sacado de la pila.)
2.1.9. Espacios en blanco entre tokens¶
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used interchangeably to separate tokens:
whitespace: ' ' | tab | formfeed
Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token. For example, ab is one
token, but a b is two tokens. However, +a and + a both produce
two tokens, + and a, as +a is not a valid token.
2.1.10. End marker¶
At the end of non-interactive input, the lexical analyzer generates an
ENDMARKER token.
2.2. Otros tokens¶
Besides NEWLINE, INDENT and DEDENT,
the following categories of tokens exist:
identifiers and keywords (NAME), literals (such as
NUMBER and STRING), and other symbols
(operators and delimiters, OP).
Whitespace characters (other than logical line terminators, discussed earlier)
are not tokens, but serve to delimit tokens.
Where ambiguity exists, a token comprises the longest possible string that
forms a legal token, when read from left to right.
2.3. Names (identifiers and keywords)¶
NAME tokens represent identifiers, keywords, and
soft keywords.
Names are composed of the following characters:
uppercase and lowercase letters (
A-Zanda-z),the underscore (
_),digits (
0through9), which cannot appear as the first character, andnon-ASCII characters. Valid names may only contain «letter-like» and «digit-like» characters; see Non-ASCII characters in names for details.
Names must contain at least one character, but have no upper length limit. Case is significant.
Formally, names are described by the following lexical definitions:
NAME:name_startname_continue* name_start: "a"..."z" | "A"..."Z" | "_" | <non-ASCII character> name_continue: name_start | "0"..."9" identifier: <NAME, except keywords>
Note that not all names matched by this grammar are valid; see Non-ASCII characters in names for details.
2.3.1. Palabras clave¶
The following names are used as reserved words, or keywords of the language, and cannot be used as ordinary identifiers. They must be spelled exactly as written here:
False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield
2.3.2. Palabras clave suaves¶
Added in version 3.10.
Some names are only reserved under specific contexts. These are known as soft keywords:
These syntactically act as keywords in their specific contexts, but this distinction is done at the parser level, not when tokenizing.
Como palabras clave suaves, su uso en la gramática es posible sin dejar de preservar la compatibilidad con el código existente que usa esos nombres como nombres de identificadores.
Distinto en la versión 3.12: type ahora es un palabra clave suave.
2.3.3. Clases reservadas de identificadores¶
Ciertas clases de identificadores (además de las palabras clave) tienen significados especiales. Estas clases se identifican por los patrones de los caracteres de guión bajo que van delante y detrás:
_*No importado por
from module import *._En un patrón
casedentro de una declaraciónmatch,_es una palabra clave suave que denota un comodín wildcard.Por separado, el intérprete interactivo pone a disposición el resultado de la última evaluación en la variable
_. (Se almacena en el módulobuiltins, junto con funciones incorporadas comoprint).En otros lugares,
_es un identificador regular. A menudo se usa para nombrar elementos «especiales», pero no es especial para Python en sí.Nota
El nombre
_se usa a menudo en conjunción con la internacionalización; consultar la documentación del módulogettext`para más información sobre esta convención.También se usa comúnmente para variables no utilizadas.
__*__Nombres definidos por el sistema, conocidos informalmente como nombres «dunder». Estos nombres son definidos por el intérprete y su aplicación (incluida la biblioteca estándar). Los nombres actuales del sistema se discuten en la sección Nombres especiales de método y en otros lugares. Es probable que se definan más en futuras versiones de Python. Cualquier uso de nombres
__*__, en cualquier contexto, que no siga un uso explícitamente documentado, está sujeto a que se rompa sin previo aviso.__*Nombres de clase privada. Los nombres de esta categoría, cuando se utilizan en el contexto de una definición de clase, se reescriben para utilizar una forma desfigurada que ayude a evitar conflictos de nombres entre los atributos «privados» de las clases base y derivadas. Ver la sección Identificadores (Nombres).
2.3.4. Non-ASCII characters in names¶
Names that contain non-ASCII characters need additional normalization
and validation beyond the rules and grammar explained
above.
For example, ř_1, 蛇, or साँप are valid names, but r〰2,
€, or 🐍 are not.
This section explains the exact rules.
All names are converted into the normalization form NFKC while parsing.
This means that, for example, some typographic variants of characters are
converted to their «basic» form. For example, fiⁿₐˡᵢᶻₐᵗᵢᵒₙ normalizes to
finalization, so Python treats them as the same name:
>>> fiⁿₐˡᵢᶻₐᵗᵢᵒₙ = 3
>>> finalization
3
Nota
Normalization is done at the lexical level only.
Run-time functions that take names as strings generally do not normalize
their arguments.
For example, the variable defined above is accessible at run time in the
globals() dictionary as globals()["finalization"] but not
globals()["fiⁿₐˡᵢᶻₐᵗᵢᵒₙ"].
Similarly to how ASCII-only names must contain only letters, digits and
the underscore, and cannot start with a digit, a valid name must
start with a character in the «letter-like» set xid_start,
and the remaining characters must be in the «letter- and digit-like» set
xid_continue.
These sets based on the XID_Start and XID_Continue sets as defined by the
Unicode standard annex UAX-31.
Python’s xid_start additionally includes the underscore (_).
Note that Python does not necessarily conform to UAX-31.
A non-normative listing of characters in the XID_Start and XID_Continue
sets as defined by Unicode is available in the DerivedCoreProperties.txt
file in the Unicode Character Database.
For reference, the construction rules for the xid_* sets are given below.
The set id_start is defined as the union of:
Unicode category
<Lu>- uppercase letters (includesAtoZ)Unicode category
<Ll>- lowercase letters (includesatoz)Unicode category
<Lt>- titlecase lettersUnicode category
<Lm>- modifier lettersUnicode category
<Lo>- other lettersUnicode category
<Nl>- letter numbers{
"_"} - the underscore<Other_ID_Start>- an explicit set of characters in PropList.txt to support backwards compatibility
The set xid_start then closes this set under NFKC normalization, by
removing all characters whose normalization is not of the form
id_start id_continue*.
The set id_continue is defined as the union of:
id_start(see above)Unicode category
<Nd>- decimal numbers (includes0to9)Unicode category
<Pc>- connector punctuationsUnicode category
<Mn>- nonspacing marksUnicode category
<Mc>- spacing combining marks<Other_ID_Continue>- another explicit set of characters in PropList.txt to support backwards compatibility
Again, xid_continue closes this set under NFKC normalization.
Unicode categories use the version of the Unicode Character Database as
included in the unicodedata module.
2.4. Literales¶
Los literales son notaciones para los valores constantes de algunos tipos incorporados.
In terms of lexical analysis, Python has string, bytes and numeric literals.
Other «literals» are lexically denoted using keywords
(None, True, False) and the special
ellipsis token (...).
2.5. Literales de cadenas y bytes¶
String literals are text enclosed in single quotes (') or double
quotes ("). For example:
"spam"
'eggs'
The quote used to start the literal also terminates it, so a string literal can only contain the other quote (except with escape sequences, see below). For example:
'Say "Hello", please.'
"Don't do that!"
Except for this limitation, the choice of quote character (' or ")
does not affect how the literal is parsed.
Inside a string literal, the backslash (\) character introduces an
escape sequence, which has special meaning depending on the character
after the backslash.
For example, \" denotes the double quote character, and does not end
the string:
>>> print("Say \"Hello\" to everyone!")
Say "Hello" to everyone!
See escape sequences below for a full list of such sequences, and more details.
2.5.1. Triple-quoted strings¶
Strings can also be enclosed in matching groups of three single or double quotes. These are generally referred to as triple-quoted strings:
"""This is a triple-quoted string."""
In triple-quoted literals, unescaped quotes are allowed (and are
retained), except that three unescaped quotes in a row terminate the literal,
if they are of the same kind (' or ") used at the start:
"""This string has "quotes" inside."""
Unescaped newlines are also allowed and retained:
'''This triple-quoted string
continues on the next line.'''
2.5.2. String prefixes¶
String literals can have an optional prefix that influences how the content of the literal is parsed, for example:
b"data"
f'{result=}'
The allowed prefixes are:
r: Raw stringf: Formatted string literal («f-string»)t: Template string literal («t-string»)u: No effect (allowed for backwards compatibility)
See the linked sections for details on each type.
Prefixes are case-insensitive (for example, “B” works the same as “b”).
The “r” prefix can be combined with “f”, “t” or “b”, so “fr”,
“rf”, “tr”, “rt”, “br”, and “rb” are also valid prefixes.
Added in version 3.3: El prefijo 'rb' de literales de bytes raw se ha añadido como sinónimo de 'br'.
Se reintrodujo el soporte para el legado unicode literal (u'value') para simplificar el mantenimiento de las bases de código dual Python 2.x y 3.x. Ver PEP 414 para más información.
2.5.3. Formal grammar¶
String literals, except «f-strings» and «t-strings», are described by the following lexical definitions.
These definitions use negative lookaheads (!)
to indicate that an ending quote ends the literal.
STRING: [stringprefix] (stringcontent) stringprefix: <("r" | "u" | "b" | "br" | "rb"), case-insensitive> stringcontent: | "'''" ( !"'''"longstringitem)* "'''" | '"""' ( !'"""'longstringitem)* '"""' | "'" ( !"'"stringitem)* "'" | '"' ( !'"'stringitem)* '"' stringitem:stringchar|stringescapeseqstringchar: <anysource_character, except backslash and newline> longstringitem:stringitem| newline stringescapeseq: "\" <anysource_character>
Note that as in all lexical definitions, whitespace is significant. In particular, the prefix (if any) must be immediately followed by the starting quote.
2.5.4. Secuencias de escape¶
Unless an “r” or “R” prefix is present, escape sequences in string and
bytes literals are interpreted according to rules similar to those used by
Standard C. The recognized escape sequences are:
Secuencia de escape |
Significado |
|---|---|
|
|
|
|
|
|
|
|
|
ASCII Bell (BEL) |
|
ASCII Retroceso (BS) |
|
ASCII Formfeed (FF) |
|
ASCII Linefeed (LF) |
|
ASCII Retorno de carro (CR) |
|
ASCII Sangría horizontal (TAB) |
|
ASCII Sangría vertical (VT) |
|
|
|
|
|
|
|
|
|
2.5.4.1. Ignored end of line¶
Se puede agregar una barra invertida al final de una línea para ignorar la nueva línea:
>>> 'Esta cadena no incluirá \
... caracteres de barra invertida o nueva linea.'
'Esta cadena no incluirá caracteres de barra invertida o nueva linea.'
Se puede lograr el mismo resultado usando triple-quoted strings, o paréntesis y string literal concatenation.
2.5.4.2. Escaped characters¶
To include a backslash in a non-raw Python string
literal, it must be doubled. The \\ escape sequence denotes a single
backslash character:
>>> print('C:\\Program Files')
C:\Program Files
Similarly, the \' and \" sequences denote the single and double
quote character, respectively:
>>> print('\' and \"')
' and "
2.5.4.3. Octal character¶
The sequence \ooo denotes a character with the octal (base 8)
value ooo:
>>> '\120'
'P'
Up to three octal digits (0 through 7) are accepted.
In a bytes literal, character means a byte with the given value. In a string literal, it means a Unicode character with the given value.
Distinto en la versión 3.11: Octal escapes with value larger than 0o377 (255) produce a
DeprecationWarning.
Distinto en la versión 3.12: Octal escapes with value larger than 0o377 (255) produce a
SyntaxWarning.
In a future Python version they will raise a SyntaxError.
2.5.4.4. Hexadecimal character¶
The sequence \xhh denotes a character with the hex (base 16)
value hh:
>>> '\x50'
'P'
A diferencia de C estándar, se requieren exactamente dos dígitos hexadecimales.
In a bytes literal, character means a byte with the given value. In a string literal, it means a Unicode character with the given value.
2.5.4.5. Named Unicode character¶
The sequence \N{name} denotes a Unicode character
with the given name:
>>> '\N{LATIN CAPITAL LETTER P}'
'P'
>>> '\N{SNAKE}'
'🐍'
This sequence cannot appear in bytes literals.
Distinto en la versión 3.3: Support for name aliases has been added.
2.5.4.6. Hexadecimal Unicode characters¶
These sequences \uxxxx and \Uxxxxxxxx denote the
Unicode character with the given hex (base 16) value.
Exactly four digits are required for \u; exactly eight digits are
required for \U.
The latter can encode any Unicode character.
>>> '\u1234'
'ሴ'
>>> '\U0001f40d'
'🐍'
These sequences cannot appear in bytes literals.
2.5.4.7. Unrecognized escape sequences¶
Unlike in Standard C, all unrecognized escape sequences are left in the string unchanged, that is, the backslash is left in the result:
>>> print('\q')
\q
>>> list('\q')
['\\', 'q']
Note that for bytes literals, the escape sequences only recognized in string
literals (\N..., \u..., \U...) fall into the category of
unrecognized escapes.
Distinto en la versión 3.6: Secuencias de escape no conocidas producen un DeprecationWarning.
Distinto en la versión 3.12: Unrecognized escape sequences produce a SyntaxWarning.
In a future Python version they will raise a SyntaxError.
2.5.5. Bytes literals¶
Bytes literals are always prefixed with “b” or “B”; they produce an
instance of the bytes type instead of the str type.
They may only contain ASCII characters; bytes with a numeric value of 128
or greater must be expressed with escape sequences (typically
Hexadecimal character or Octal character):
>>> b'\x89PNG\r\n\x1a\n'
b'\x89PNG\r\n\x1a\n'
>>> list(b'\x89PNG\r\n\x1a\n')
[137, 80, 78, 71, 13, 10, 26, 10]
Similarly, a zero byte must be expressed using an escape sequence (typically
\0 or \x00).
2.5.6. Raw string literals¶
Both string and bytes literals may optionally be prefixed with a letter “r”
or “R”; such constructs are called raw string literals
and raw bytes literals respectively and treat backslashes as
literal characters.
As a result, in raw string literals, escape sequences
are not treated specially:
>>> r'\d{4}-\d{2}-\d{2}'
'\\d{4}-\\d{2}-\\d{2}'
Incluso en un literal raw, las comillas se pueden escapar con una barra inversa, pero la barra inversa permanece en el resultado; por ejemplo, r"\"" es un literal de cadena válido que consiste en dos caracteres: una barra inversa y una comilla doble; r"\" no es un literal de cadena válido (incluso una cadena en bruto no puede terminar en un número impar de barras inversas). Específicamente, un literal raw no puede terminar en una sola barra inversa (ya que la barra inversa se escaparía del siguiente carácter de comillas). Nótese también que una sola barra inversa seguida de una nueva línea se interpreta como esos dos caracteres como parte del literal, no como una continuación de línea.
2.5.7. f-strings¶
Added in version 3.6.
Distinto en la versión 3.8: Added the debug specifier (=)
Distinto en la versión 3.12: Many restrictions on expressions within f-strings have been removed. Notably, nested strings, comments, and backslashes are now permitted.
A formatted string literal or f-string is a string literal
that is prefixed with “f” or “F”.
Unlike other string literals, f-strings do not have a constant value.
They may contain replacement fields delimited by curly braces {}.
Replacement fields contain expressions which are evaluated at run time.
For example:
>>> who = 'nobody'
>>> nationality = 'Spanish'
>>> f'{who.title()} expects the {nationality} Inquisition!'
'Nobody expects the Spanish Inquisition!'
Any doubled curly braces ({{ or }}) outside replacement fields
are replaced with the corresponding single curly brace:
>>> print(f'{{...}}')
{...}
Other characters outside replacement fields are treated like in ordinary string literals. This means that escape sequences are decoded (except when a literal is also marked as a raw string), and newlines are possible in triple-quoted f-strings:
>>> name = 'Galahad'
>>> favorite_color = 'blue'
>>> print(f'{name}:\t{favorite_color}')
Galahad: blue
>>> print(rf"C:\Users\{name}")
C:\Users\Galahad
>>> print(f'''Three shall be the number of the counting
... and the number of the counting shall be three.''')
Three shall be the number of the counting
and the number of the counting shall be three.
Expressions in formatted string literals are treated like regular
Python expressions.
Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.
An empty expression is not allowed, and both lambda and
assignment expressions := must be surrounded by explicit parentheses:
>>> f'{(half := 1/2)}, {half * 42}'
'0.5, 21.0'
Se puede reutilizar el tipo de comilla del f-string exterior dentro de un campo de reemplazo:
>>> a = dict(x=2)
>>> f"abc {a["x"]} def"
'abc 2 def'
También se permiten barras invertidas en campos de reemplazo y se evalúan de la misma manera que cualquier otro contexto:
>>> a = ["a", "b", "c"]
>>> print(f"Lista a contiene:\n{"\n".join(a)}")
Lista a contiene:
a
b
c
It is possible to nest f-strings:
>>> name = 'world'
>>> f'Repeated:{f' hello {name}' * 3}'
'Repeated: hello world hello world hello world'
Portable Python programs should not use more than 5 levels of nesting.
Detalles de implementación de CPython: CPython does not limit nesting of f-strings.
Replacement expressions can contain newlines in both single-quoted and
triple-quoted f-strings and they can contain comments.
Everything that comes after a # inside a replacement field
is a comment (even closing braces and quotes).
This means that replacement fields with comments must be closed in a
different line:
>>> a = 2
>>> f"abc{a # This comment }" continues until the end of the line
... + 3}"
'abc5'
After the expression, replacement fields may optionally contain:
a debug specifier – an equal sign (
=), optionally surrounded by whitespace on one or both sides;a conversion specifier –
!s,!ror!a; and/ora format specifier prefixed with a colon (
:).
See the Standard Library section on f-strings for details on how these fields are evaluated.
As that section explains, format specifiers are passed as the second argument
to the format() function to format a replacement field value.
For example, they can be used to specify a field width and padding characters
using the Format Specification Mini-Language:
>>> number = 14.3
>>> f'{number:20.7f}'
' 14.3000000'
Top-level format specifiers may include nested replacement fields:
>>> field_size = 20
>>> precision = 7
>>> f'{number:{field_size}.{precision}f}'
' 14.3000000'
These nested fields may include their own conversion fields and format specifiers:
>>> number = 3
>>> f'{number:{field_size}}'
' 3'
>>> f'{number:{field_size:05}}'
'00000000000000000003'
However, these nested fields may not include more deeply nested replacement fields.
Formatted string literals cannot be used as docstrings, even if they do not include expressions:
>>> def foo():
... f"Not a docstring"
...
>>> print(foo.__doc__)
None
Ver también
PEP 498 – Literal String Interpolation
PEP 701 – Syntactic formalization of f-strings
str.format(), which uses a related format string mechanism.
2.5.8. t-strings¶
Added in version 3.14.
A template string literal or t-string is a string literal
that is prefixed with “t” or “T”.
These strings follow the same syntax rules as
formatted string literals.
For differences in evaluation rules, see the
Standard Library section on t-strings
2.5.9. Formal grammar for f-strings¶
F-strings are handled partly by the lexical analyzer, which produces the
tokens FSTRING_START, FSTRING_MIDDLE
and FSTRING_END, and partly by the parser, which handles
expressions in the replacement field.
The exact way the work is split is a CPython implementation detail.
Correspondingly, the f-string grammar is a mix of lexical and syntactic definitions.
Whitespace is significant in these situations:
There may be no whitespace in
FSTRING_START(between the prefix and quote).Whitespace in
FSTRING_MIDDLEis part of the literal string contents.In
fstring_replacement_field, iff_debug_specifieris present, all whitespace after the opening brace until thef_debug_specifier, as well as whitespace immediatelly followingf_debug_specifier, is retained as part of the expression.Detalles de implementación de CPython: The expression is not handled in the tokenization phase; it is retrieved from the source code using locations of the
{token and the token after=.
The FSTRING_MIDDLE definition uses
negative lookaheads (!)
to indicate special characters (backslash, newline, {, }) and
sequences (f_quote).
fstring:FSTRING_STARTfstring_middle*FSTRING_ENDFSTRING_START:fstringprefix("'" | '"' | "'''" | '"""') FSTRING_END:f_quotefstringprefix: <("f" | "fr" | "rf"), case-insensitive> f_debug_specifier: '=' f_quote: <the quote character(s) used in FSTRING_START> fstring_middle: |fstring_replacement_field|FSTRING_MIDDLEFSTRING_MIDDLE: | (!"\" !newline!'{' !'}' !f_quote)source_character|stringescapeseq| "{{" | "}}" | <newline, in triple-quoted f-strings only> fstring_replacement_field: | '{'f_expression[f_debug_specifier] [fstring_conversion] [fstring_full_format_spec] '}' fstring_conversion: | "!" ("s" | "r" | "a") fstring_full_format_spec: | ':'fstring_format_spec* fstring_format_spec: |FSTRING_MIDDLE|fstring_replacement_fieldf_expression: | ','.(conditional_expression| "*"or_expr)+ [","] |yield_expression
Nota
In the above grammar snippet, the f_quote and FSTRING_MIDDLE rules
are context-sensitive – they depend on the contents of FSTRING_START
of the nearest enclosing fstring.
Constructing a more traditional formal grammar from this template is left as an exercise for the reader.
The grammar for t-strings is identical to the one for f-strings, with t instead of f at the beginning of rule and token names and in the prefix.
tstring: TSTRING_START tstring_middle* TSTRING_END <rest of the t-string grammar is omitted; see above>
2.6. Literales numéricos¶
NUMBER tokens represent numeric literals, of which there are
three types: integers, floating-point numbers, and imaginary numbers.
NUMBER:integer|floatnumber|imagnumber
The numeric value of a numeric literal is the same as if it were passed as a
string to the int, float or complex class
constructor, respectively.
Note that not all valid inputs for those constructors are also valid literals.
Numeric literals do not include a sign; a phrase like -1 is
actually an expression composed of the unary operator “-” and the literal
1.
2.6.1. Literales enteros¶
Integer literals denote whole numbers. For example:
7
3
2147483647
There is no limit for the length of integer literals apart from what can be stored in available memory:
7922816251426433759354395033679228162514264337593543950336
Underscores can be used to group digits for enhanced readability, and are ignored for determining the numeric value of the literal. For example, the following literals are equivalent:
100_000_000_000
100000000000
1_00_00_00_00_000
Underscores can only occur between digits.
For example, _123, 321_, and 123__321 are not valid literals.
Integers can be specified in binary (base 2), octal (base 8), or hexadecimal
(base 16) using the prefixes 0b, 0o and 0x, respectively.
Hexadecimal digits 10 through 15 are represented by letters A-F,
case-insensitive. For example:
0b100110111
0b_1110_0101
0o177
0o377
0xdeadbeef
0xDead_Beef
An underscore can follow the base specifier.
For example, 0x_1f is a valid literal, but 0_x1f and 0x__1f are
not.
Leading zeros in a non-zero decimal number are not allowed.
For example, 0123 is not a valid literal.
This is for disambiguation with C-style octal literals, which Python used
before version 3.0.
Formally, integer literals are described by the following lexical definitions:
integer:decinteger|bininteger|octinteger|hexinteger|zerointegerdecinteger:nonzerodigit(["_"]digit)* bininteger: "0" ("b" | "B") (["_"]bindigit)+ octinteger: "0" ("o" | "O") (["_"]octdigit)+ hexinteger: "0" ("x" | "X") (["_"]hexdigit)+ zerointeger: "0"+ (["_"] "0")* nonzerodigit: "1"..."9" digit: "0"..."9" bindigit: "0" | "1" octdigit: "0"..."7" hexdigit:digit| "a"..."f" | "A"..."F"
Distinto en la versión 3.6: Los guiones bajos están ahora permitidos para agrupar en literales.
2.6.2. Literales de punto flotante¶
Floating-point (float) literals, such as 3.14 or 1.5, denote
approximations of real numbers.
They consist of integer and fraction parts, each composed of decimal digits.
The parts are separated by a decimal point, .:
2.71828
4.0
Unlike in integer literals, leading zeros are allowed.
For example, 077.010 is legal, and denotes the same number as 77.01.
As in integer literals, single underscores may occur between digits to help readability:
96_485.332_123
3.14_15_93
Either of these parts, but not both, can be empty. For example:
10. # (equivalent to 10.0)
.001 # (equivalent to 0.001)
Optionally, the integer and fraction may be followed by an exponent:
the letter e or E, followed by an optional sign, + or -,
and a number in the same format as the integer and fraction parts.
The e or E represents «times ten raised to the power of»:
1.0e3 # (represents 1.0×10³, or 1000.0)
1.166e-5 # (represents 1.166×10⁻⁵, or 0.00001166)
6.02214076e+23 # (represents 6.02214076×10²³, or 602214076000000000000000.)
In floats with only integer and exponent parts, the decimal point may be omitted:
1e3 # (equivalent to 1.e3 and 1.0e3)
0e0 # (equivalent to 0.)
Formally, floating-point literals are described by the following lexical definitions:
floatnumber: |digitpart"." [digitpart] [exponent] | "."digitpart[exponent] |digitpartexponentdigitpart:digit(["_"]digit)* exponent: ("e" | "E") ["+" | "-"]digitpart
Distinto en la versión 3.6: Los guiones bajos están ahora permitidos para agrupar en literales.
2.6.3. Literales imaginarios¶
Python has complex number objects, but no complex literals. Instead, imaginary literals denote complex numbers with a zero real part.
For example, in math, the complex number 3+4.2i is written
as the real number 3 added to the imaginary number 4.2i.
Python uses a similar syntax, except the imaginary unit is written as j
rather than i:
3+4.2j
This is an expression composed
of the integer literal 3,
the operator “+”,
and the imaginary literal 4.2j.
Since these are three separate tokens, whitespace is allowed between them:
3 + 4.2j
No whitespace is allowed within each token.
In particular, the j suffix, may not be separated from the number
before it.
The number before the j has the same syntax as a floating-point literal.
Thus, the following are valid imaginary literals:
4.2j
3.14j
10.j
.001j
1e100j
3.14e-10j
3.14_15_93j
Unlike in a floating-point literal the decimal point can be omitted if the imaginary number only has an integer part. The number is still evaluated as a floating-point number, not an integer:
10j
0j
1000000000000000000000000j # equivalent to 1e+24j
The j suffix is case-insensitive.
That means you can use J instead:
3.14J # equivalent to 3.14j
Formally, imaginary literals are described by the following lexical definition:
imagnumber: (floatnumber|digitpart) ("j" | "J")
2.7. Operators and delimiters¶
The following grammar defines operator and delimiter tokens,
that is, the generic OP token type.
A list of these tokens and their names
is also available in the token module documentation.
OP: | assignment_operator | bitwise_operator | comparison_operator | enclosing_delimiter | other_delimiter | arithmetic_operator | "..." | other_op assignment_operator: "+=" | "-=" | "*=" | "**=" | "/=" | "//=" | "%=" | "&=" | "|=" | "^=" | "<<=" | ">>=" | "@=" | ":=" bitwise_operator: "&" | "|" | "^" | "~" | "<<" | ">>" comparison_operator: "<=" | ">=" | "<" | ">" | "==" | "!=" enclosing_delimiter: "(" | ")" | "[" | "]" | "{" | "}" other_delimiter: "," | ":" | "!" | ";" | "=" | "->" arithmetic_operator: "+" | "-" | "**" | "*" | "//" | "/" | "%" other_op: "." | "@"
Nota
Generally, operators are used to combine expressions, while delimiters serve other purposes. However, there is no clear, formal distinction between the two categories.
Some tokens can serve as either operators or delimiters, depending on usage.
For example, * is both the multiplication operator and a delimiter used
for sequence unpacking, and @ is both the matrix multiplication and
a delimiter that introduces decorators.
For some tokens, the distinction is unclear.
For example, some people consider ., (, and ) to be delimiters, while others
see the getattr() operator and the function call operator(s).
Some of Python’s operators, like and, or, and not in, use
keyword tokens rather than «symbols» (operator tokens).
A sequence of three consecutive periods (...) has a special
meaning as an Ellipsis literal.
2.1.3. Comentarios¶
Un comentario comienza con un carácter de almohadilla (
#) que no es parte de un literal de cadena, y termina al final de la línea física. Un comentario implica el final de la línea lógica, a menos que se invoque la regla implícita de unión de líneas. Los comentarios son ignorados por la sintaxis.