Objetos tipo

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_* functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Los objetos de tipo son bastante grandes en comparación con la mayoría de los tipos estándar. La razón del tamaño es que cada objeto de tipo almacena una gran cantidad de valores, principalmente punteros de función C, cada uno de los cuales implementa una pequeña parte de la funcionalidad del tipo. Los campos del objeto tipo se examinan en detalle en esta sección. Los campos se describirán en el orden en que aparecen en la estructura.

Además de la siguiente referencia rápida, la sección Ejemplos proporciona una visión rápida del significado y uso de PyTypeObject.

Referencia rápida

«ranuras tp» (tp slots)

Ranura PyTypeObject [1]

Type

métodos/atributos especiales

Información [2]

O

T

D

I

<R> tp_name

const char *

__name__

X

X

tp_basicsize

Py_ssize_t

X

X

X

tp_itemsize

Py_ssize_t

X

X

tp_dealloc

destructor

X

X

X

tp_vectorcall_offset

Py_ssize_t

X

X

(tp_getattr)

getattrfunc

__getattribute__, __getattr__

G

(tp_setattr)

setattrfunc

__setattr__, __delattr__

G

tp_as_async

PyAsyncMethods *

sub-ranuras (sub-slots)

%

tp_repr

reprfunc

__repr__

X

X

X

tp_as_number

PyNumberMethods *

sub-ranuras (sub-slots)

%

tp_as_sequence

PySequenceMethods *

sub-ranuras (sub-slots)

%

tp_as_mapping

PyMappingMethods *

sub-ranuras (sub-slots)

%

tp_hash

hashfunc

__hash__

X

G

tp_call

ternaryfunc

__call__

X

X

tp_str

reprfunc

__str__

X

X

tp_getattro

getattrofunc

__getattribute__, __getattr__

X

X

G

tp_setattro

setattrofunc

__setattr__, __delattr__

X

X

G

tp_as_buffer

PyBufferProcs *

%

tp_flags

unsigned long

X

X

?

tp_doc

const char *

__doc__

X

X

tp_traverse

traverseproc

X

G

tp_clear

inquiry

X

G

tp_richcompare

richcmpfunc

__lt__, __le__, __eq__, __ne__, __gt__, __ge__

X

G

(tp_weaklistoffset)

Py_ssize_t

X

?

tp_iter

getiterfunc

__iter__

X

tp_iternext

iternextfunc

__next__

X

tp_methods

PyMethodDef []

X

X

tp_members

PyMemberDef []

X

tp_getset

PyGetSetDef []

X

X

tp_base

PyTypeObject *

__base__

X

tp_dict

PyObject *

__dict__

?

tp_descr_get

descrgetfunc

__get__

X

tp_descr_set

descrsetfunc

__set__, __delete__

X

(tp_dictoffset)

Py_ssize_t

X

?

tp_init

initproc

__init__

X

X

X

tp_alloc

allocfunc

X

?

?

tp_new

newfunc

__new__

X

X

?

?

tp_free

freefunc

X

X

?

?

tp_is_gc

inquiry

X

X

<tp_bases>

PyObject *

__bases__

~

<tp_mro>

PyObject *

__mro__

~

[tp_cache]

PyObject *

[tp_subclasses]

void *

__subclasses__

[tp_weaklist]

PyObject *

(tp_del)

destructor

[tp_version_tag]

unsigned int

tp_finalize

destructor

__del__

X

tp_vectorcall

vectorcallfunc

[tp_watched]

unsigned char

sub-ranuras (sub-slots)

Ranuras (Slot)

Type

métodos especiales

am_await

unaryfunc

__await__

am_aiter

unaryfunc

__aiter__

am_anext

unaryfunc

__anext__

am_send

sendfunc

nb_add

binaryfunc

__add__ __radd__

nb_inplace_add

binaryfunc

__iadd__

nb_subtract

binaryfunc

__sub__ __rsub__

nb_inplace_subtract

binaryfunc

__isub__

nb_multiply

binaryfunc

__mul__ __rmul__

nb_inplace_multiply

binaryfunc

__imul__

nb_remainder

binaryfunc

__mod__ __rmod__

nb_inplace_remainder

binaryfunc

__imod__

nb_divmod

binaryfunc

__divmod__ __rdivmod__

nb_power

ternaryfunc

__pow__ __rpow__

nb_inplace_power

ternaryfunc

__ipow__

nb_negative

unaryfunc

__neg__

nb_positive

unaryfunc

__pos__

nb_absolute

unaryfunc

__abs__

nb_bool

inquiry

__bool__

nb_invert

unaryfunc

__invert__

nb_lshift

binaryfunc

__lshift__ __rlshift__

nb_inplace_lshift

binaryfunc

__ilshift__

nb_rshift

binaryfunc

__rshift__ __rrshift__

nb_inplace_rshift

binaryfunc

__irshift__

nb_and

binaryfunc

__and__ __rand__

nb_inplace_and

binaryfunc

__iand__

nb_xor

binaryfunc

__xor__ __rxor__

nb_inplace_xor

binaryfunc

__ixor__

nb_or

binaryfunc

__or__ __ror__

nb_inplace_or

binaryfunc

__ior__

nb_int

unaryfunc

__int__

nb_reserved

void *

nb_float

unaryfunc

__float__

nb_floor_divide

binaryfunc

__floordiv__

nb_inplace_floor_divide

binaryfunc

__ifloordiv__

nb_true_divide

binaryfunc

__truediv__

nb_inplace_true_divide

binaryfunc

__itruediv__

nb_index

unaryfunc

__index__

nb_matrix_multiply

binaryfunc

__matmul__ __rmatmul__

nb_inplace_matrix_multiply

binaryfunc

__imatmul__

mp_length

lenfunc

__len__

mp_subscript

binaryfunc

__getitem__

mp_ass_subscript

objobjargproc

__setitem__, __delitem__

sq_length

lenfunc

__len__

sq_concat

binaryfunc

__add__

sq_repeat

ssizeargfunc

__mul__

sq_item

ssizeargfunc

__getitem__

sq_ass_item

ssizeobjargproc

__setitem__ __delitem__

sq_contains

objobjproc

__contains__

sq_inplace_concat

binaryfunc

__iadd__

sq_inplace_repeat

ssizeargfunc

__imul__

bf_getbuffer

getbufferproc()

bf_releasebuffer

releasebufferproc()

ranura de typedefs

typedef

Tipos parámetros

Tipo de retorno

allocfunc

PyObject *

destructor

PyObject *

void

freefunc

void *

void

traverseproc

void *

int

newfunc

PyObject *

initproc

int

reprfunc

PyObject *

PyObject *

getattrfunc

const char *

PyObject *

setattrfunc

const char *

int

getattrofunc

PyObject *

setattrofunc

int

descrgetfunc

PyObject *

descrsetfunc

int

hashfunc

PyObject *

Py_hash_t

richcmpfunc

int

PyObject *

getiterfunc

PyObject *

PyObject *

iternextfunc

PyObject *

PyObject *

lenfunc

PyObject *

Py_ssize_t

getbufferproc

int

releasebufferproc

void

inquiry

PyObject *

int

unaryfunc

PyObject *

binaryfunc

PyObject *

ternaryfunc

PyObject *

ssizeargfunc

PyObject *

ssizeobjargproc

int

objobjproc

int

objobjargproc

int

Vea Tipo Ranura typedefs abajo para más detalles.

Definición de PyTypeObject

La definición de estructura para PyTypeObject se puede encontrar en Include/object.h. Por conveniencia de referencia, esto repite la definición encontrada allí:

typedef struct _typeobject {
    PyObject_VAR_HEAD
    const char *tp_name; /* For printing, in format "<module>.<name>" */
    Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

    /* Methods to implement standard operations */

    destructor tp_dealloc;
    Py_ssize_t tp_vectorcall_offset;
    getattrfunc tp_getattr;
    setattrfunc tp_setattr;
    PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
                                    or tp_reserved (Python 3) */
    reprfunc tp_repr;

    /* Method suites for standard classes */

    PyNumberMethods *tp_as_number;
    PySequenceMethods *tp_as_sequence;
    PyMappingMethods *tp_as_mapping;

    /* More standard operations (here for binary compatibility) */

    hashfunc tp_hash;
    ternaryfunc tp_call;
    reprfunc tp_str;
    getattrofunc tp_getattro;
    setattrofunc tp_setattro;

    /* Functions to access object as input/output buffer */
    PyBufferProcs *tp_as_buffer;

    /* Flags to define presence of optional/expanded features */
    unsigned long tp_flags;

    const char *tp_doc; /* Documentation string */

    /* Assigned meaning in release 2.0 */
    /* call function for all accessible objects */
    traverseproc tp_traverse;

    /* delete references to contained objects */
    inquiry tp_clear;

    /* Assigned meaning in release 2.1 */
    /* rich comparisons */
    richcmpfunc tp_richcompare;

    /* weak reference enabler */
    Py_ssize_t tp_weaklistoffset;

    /* Iterators */
    getiterfunc tp_iter;
    iternextfunc tp_iternext;

    /* Attribute descriptor and subclassing stuff */
    struct PyMethodDef *tp_methods;
    struct PyMemberDef *tp_members;
    struct PyGetSetDef *tp_getset;
    // Strong reference on a heap type, borrowed reference on a static type
    struct _typeobject *tp_base;
    PyObject *tp_dict;
    descrgetfunc tp_descr_get;
    descrsetfunc tp_descr_set;
    Py_ssize_t tp_dictoffset;
    initproc tp_init;
    allocfunc tp_alloc;
    newfunc tp_new;
    freefunc tp_free; /* Low-level free-memory routine */
    inquiry tp_is_gc; /* For PyObject_IS_GC */
    PyObject *tp_bases;
    PyObject *tp_mro; /* method resolution order */
    PyObject *tp_cache;
    PyObject *tp_subclasses;
    PyObject *tp_weaklist;
    destructor tp_del;

    /* Type attribute cache version tag. Added in version 2.6 */
    unsigned int tp_version_tag;

    destructor tp_finalize;
    vectorcallfunc tp_vectorcall;

    /* bitset of which type-watchers care about this type */
    unsigned char tp_watched;
} PyTypeObject;

Ranuras (Slots) PyObject

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (created by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

Py_ssize_t PyObject.ob_refcnt
Part of the Stable ABI.

This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not count as references. But for dynamically allocated type objects, the instances do count as references.

Herencia:

Este campo no es heredado por los subtipos.

PyTypeObject *PyObject.ob_type
Part of the Stable ABI.

Este es el tipo del tipo, en otras palabras, su metatipo. Se inicializa mediante el argumento de la macro PyObject_HEAD_INIT, y su valor normalmente debería ser &PyType_Type. Sin embargo, para los módulos de extensión cargables dinámicamente que deben ser utilizables en Windows (al menos), el compilador se queja de que este no es un inicializador válido. Por lo tanto, la convención es pasar NULL al macro PyObject_HEAD_INIT e inicializar este campo explícitamente al comienzo de la función de inicialización del módulo, antes de hacer cualquier otra cosa. Esto normalmente se hace así:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type is NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready() will not change this field if it is non-zero.

Herencia:

Este campo es heredado por subtipos.

Ranuras PyVarObject

Py_ssize_t PyVarObject.ob_size
Part of the Stable ABI.

Para objetos de tipo estáticamente asignados, debe inicializarse a cero. Para objetos de tipo dinámicamente asignados, este campo tiene un significado interno especial.

Herencia:

Este campo no es heredado por los subtipos.

Ranuras PyTypeObject

Each slot has a section describing inheritance. If PyType_Ready() may set a value when the field is set to NULL then there will also be a «Default» section. (Note that many fields set on PyBaseObject_Type and PyType_Type effectively act as defaults.)

const char *PyTypeObject.tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should be just the type name. If the module is a submodule of a package, the full package name is part of the full module name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name initializer "P.Q.M.T".

Para objetos de tipo dinámicamente asignados, éste debe ser sólo el nombre del tipo, y el nombre del módulo almacenado explícitamente en el dict tipo que el valor de '__module__' clave.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name__ attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the __module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with pydoc.

Este campo no debe ser NULL. Es el único campo obligatorio en PyTypeObject() (que no sea potencialmente tp_itemsize).

Herencia:

Este campo no es heredado por los subtipos.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

Estos campos permiten calcular el tamaño en bytes de instancias del tipo.

Hay dos tipos de tipos: los tipos con instancias de longitud fija tienen un campo cero tp_itemsize, los tipos con instancias de longitud variable tienen un campo distinto de cero tp_itemsize. Para un tipo con instancias de longitud fija, todas las instancias tienen el mismo tamaño, dado en tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is tp_basicsize plus N times tp_itemsize, where N is the «length» of the object. The value of N is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative ob_size to indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the _ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The basic size does not include the GC header size.

Una nota sobre la alineación: si los elementos variables requieren una alineación particular, esto debe ser atendido por el valor de tp_basicsize. Ejemplo: supongamos que un tipo implementa un arreglo de dobles (double). tp_itemsize es sizeof(double). Es responsabilidad del programador que tp_basicsize es un múltiplo de sizeof(double) (suponiendo que este sea el requisito de alineación para double).

Para cualquier tipo con instancias de longitud variable, este campo no debe ser NULL.

Herencia:

Estos campos se heredan por separado por subtipos. Si el tipo base tiene un miembro distinto de cero tp_itemsize, generalmente no es seguro establecer tp_itemsize en un valor diferente de cero en un subtipo ( aunque esto depende de la implementación del tipo base).

destructor PyTypeObject.tp_dealloc

Un puntero a la función destructor de instancias. Esta función debe definirse a menos que el tipo garantice que sus instancias nunca se desasignarán (como es el caso de los singletons None y Ellipsis). La firma de la función es:

void tp_dealloc(PyObject *self);

The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new reference count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing function corresponding to the allocation function used to allocate the buffer), and call the type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should be the one used to allocate the instance; this is normally PyObject_Free() if the instance was allocated using PyObject_New or PyObject_NewVar, or PyObject_GC_Del() if the instance was allocated using PyObject_GC_New or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py_TPFLAGS_HAVE_GC flag bit set), the destructor should call PyObject_GC_UnTrack() before clearing any member fields.

static void foo_dealloc(foo_object *self) {
    PyObject_GC_UnTrack(self);
    Py_CLEAR(self->ref);
    Py_TYPE(self)->tp_free((PyObject *)self);
}

Finally, if the type is heap allocated (Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned reference to its type object (via Py_DECREF()) after calling the type deallocator. In order to avoid dangling pointers, the recommended way to achieve this is:

static void foo_dealloc(foo_object *self) {
    PyTypeObject *tp = Py_TYPE(self);
    // free references and buffers here
    tp->tp_free(self);
    Py_DECREF(tp);
}

Advertencia

In a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Herencia:

Este campo es heredado por subtipos.

Py_ssize_t PyTypeObject.tp_vectorcall_offset

Un desplazamiento opcional a una función por instancia que implementa la llamada al objeto usando vectorcall protocol, una alternativa más eficiente del simple tp_call.

This field is only used if the flag Py_TPFLAGS_HAVE_VECTORCALL is set. If so, this must be a positive integer containing the offset in the instance of a vectorcallfunc pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Cualquier clase que establezca _Py_TPFLAGS_HAVE_VECTORCALL también debe establecer tp_call y asegurarse de que su comportamiento sea coherente con la función vectorcallfunc. Esto se puede hacer configurando tp_call en PyVectorcall_Call().

Distinto en la versión 3.8: Antes de la versión 3.8, este slot se llamaba tp_print. En Python 2.x, se usó para imprimir en un archivo. En Python 3.0 a 3.7, no se usó.

Distinto en la versión 3.12: Before version 3.12, it was not recommended for mutable heap types to implement the vectorcall protocol. When a user sets __call__ in Python code, only tp_call is updated, likely making it inconsistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization by clearing the Py_TPFLAGS_HAVE_VECTORCALL flag.

Herencia:

This field is always inherited. However, the Py_TPFLAGS_HAVE_VECTORCALL flag is not always inherited. If it’s not set, then the subclass won’t use vectorcall, except when PyVectorcall_Call() is explicitly called.

getattrfunc PyTypeObject.tp_getattr

Un puntero opcional a la función «obtener atributo cadena de caracteres» (get-attribute-string).

Este campo está en desuso. Cuando se define, debe apuntar a una función que actúe igual que la función tp_getattro, pero tomando una cadena de caracteres C en lugar de un objeto de cadena Python para dar el nombre del atributo.

Herencia:

Group: tp_getattr, tp_getattro

Este campo es heredado por los subtipos junto con tp_getattro: un subtipo hereda ambos tp_getattr y tp_getattro de su base escriba cuando los subtipos tp_getattr y tp_getattro son ambos NULL.

setattrfunc PyTypeObject.tp_setattr

Un puntero opcional a la función para configurar y eliminar atributos.

Este campo está en desuso. Cuando se define, debe apuntar a una función que actúe igual que la función tp_setattro, pero tomando una cadena de caracteres C en lugar de un objeto de cadena Python para dar el nombre del atributo.

Herencia:

Group: tp_setattr, tp_setattro

Este campo es heredado por los subtipos junto con tp_setattro: un subtipo hereda ambos tp_setattr y tp_setattro de su base escriba cuando los subtipos tp_setattr y tp_setattro son ambos NULL.

PyAsyncMethods *PyTypeObject.tp_as_async

Puntero a una estructura adicional que contiene campos relevantes solo para los objetos que implementan los protocolos «esperable» (awaitable) y «iterador asíncrono» (asynchronous iterator) en el nivel C. Ver Estructuras de objetos asíncronos para más detalles.

Added in version 3.5: Anteriormente conocidos como tp_compare y tp_reserved.

Herencia:

El campo tp_as_async no se hereda, pero los campos contenidos se heredan individualmente.

reprfunc PyTypeObject.tp_repr

Un puntero opcional a una función que implementa la función incorporada repr().

La firma es la misma que para PyObject_Repr():

PyObject *tp_repr(PyObject *self);

La función debe retornar una cadena de caracteres o un objeto Unicode. Idealmente, esta función debería retornar una cadena que, cuando se pasa a eval(), dado un entorno adecuado, retorna un objeto con el mismo valor. Si esto no es factible, debe retornar una cadena que comience con '<' y termine con '>' desde la cual se puede deducir tanto el tipo como el valor del objeto.

Herencia:

Este campo es heredado por subtipos.

Por defecto:

Cuando este campo no está configurado, se retorna una cadena de caracteres de la forma <%s object at %p>, donde %s se reemplaza por el nombre del tipo y %p por dirección de memoria del objeto.

PyNumberMethods *PyTypeObject.tp_as_number

Puntero a una estructura adicional que contiene campos relevantes solo para objetos que implementan el protocolo numérico. Estos campos están documentados en Estructuras de objetos de números.

Herencia:

El campo tp_as_number no se hereda, pero los campos contenidos se heredan individualmente.

PySequenceMethods *PyTypeObject.tp_as_sequence

Puntero a una estructura adicional que contiene campos relevantes solo para objetos que implementan el protocolo de secuencia. Estos campos están documentados en estructuras de secuencia.

Herencia:

El campo tp_as_sequence no se hereda, pero los campos contenidos se heredan individualmente.

PyMappingMethods *PyTypeObject.tp_as_mapping

Puntero a una estructura adicional que contiene campos relevantes solo para objetos que implementan el protocolo de mapeo. Estos campos están documentados en Estructuras de objetos mapeo.

Herencia:

El campo tp_as_mapping no se hereda, pero los campos contenidos se heredan individualmente.

hashfunc PyTypeObject.tp_hash

Un puntero opcional a una función que implementa la función incorporada hash().

La firma es la misma que para PyObject_Hash():

Py_hash_t tp_hash(PyObject *);

El valor -1 no debe retornarse como un valor de retorno normal; Cuando se produce un error durante el cálculo del valor hash, la función debe establecer una excepción y retornar -1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises TypeError. This is the same as setting it to PyObject_HashNotImplemented().

Este campo se puede establecer explícitamente en PyObject_HashNotImplemented() para bloquear la herencia del método hash de un tipo primario. Esto se interpreta como el equivalente de __hash__ = None en el nivel de Python, lo que hace que isinstance(o, collections.Hashable) retorne correctamente False. Tenga en cuenta que lo contrario también es cierto: establecer __hash__ = None en una clase en el nivel de Python dará como resultado que la ranura tp_hash se establezca en PyObject_HashNotImplemented().

Herencia:

Group: tp_hash, tp_richcompare

Este campo es heredado por subtipos junto con tp_richcompare: un subtipo hereda ambos tp_richcompare y tp_hash, cuando los subtipos tp_richcompare y tp_hash son ambos NULL.

Por defecto:

PyBaseObject_Type uses PyObject_GenericHash().

ternaryfunc PyTypeObject.tp_call

Un puntero opcional a una función que implementa la llamada al objeto. Esto debería ser NULL si el objeto no es invocable. La firma es la misma que para PyObject_Call():

PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);

Herencia:

Este campo es heredado por subtipos.

reprfunc PyTypeObject.tp_str

Un puntero opcional a una función que implementa la operación integrada str(). (Tenga en cuenta que str es un tipo ahora, y str() llama al constructor para ese tipo. Este constructor llama a PyObject_Str() para hacer el trabajo real, y PyObject_Str() llamará a este controlador.)

La firma es la misma que para PyObject_Str():

PyObject *tp_str(PyObject *self);

La función debe retornar una cadena de caracteres o un objeto Unicode. Debe ser una representación de cadena «amigable» del objeto, ya que esta es la representación que será utilizada, entre otras cosas, por la función print().

Herencia:

Este campo es heredado por subtipos.

Por defecto:

Cuando este campo no está configurado, se llama a PyObject_Repr() para retornar una representación de cadena de caracteres.

getattrofunc PyTypeObject.tp_getattro

Un puntero opcional a la función «obtener atributo» (get-attribute).

La firma es la misma que para PyObject_GetAttr():

PyObject *tp_getattro(PyObject *self, PyObject *attr);

Por lo general, es conveniente establecer este campo en PyObject_GenericGetAttr(), que implementa la forma normal de buscar atributos de objeto.

Herencia:

Group: tp_getattr, tp_getattro

Este campo es heredado por los subtipos junto con tp_getattr: un subtipo hereda ambos tp_getattr y tp_getattro de su base escriba cuando los subtipos tp_getattr y tp_getattro son ambos NULL.

Por defecto:

PyBaseObject_Type uses PyObject_GenericGetAttr().

setattrofunc PyTypeObject.tp_setattro

Un puntero opcional a la función para configurar y eliminar atributos.

La firma es la misma que para PyObject_SetAttr():

int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);

Además, se debe admitir la configuración de value en NULL para eliminar un atributo. Por lo general, es conveniente establecer este campo en PyObject_GenericSetAttr(), que implementa la forma normal de establecer los atributos del objeto.

Herencia:

Group: tp_setattr, tp_setattro

Los subtipos heredan este campo junto con tp_setattr: un subtipo hereda ambos tp_setattr y tp_setattro de su base escriba cuando los subtipos tp_setattr y tp_setattro son ambos NULL.

Por defecto:

PyBaseObject_Type uses PyObject_GenericSetAttr().

PyBufferProcs *PyTypeObject.tp_as_buffer

Puntero a una estructura adicional que contiene campos relevantes solo para objetos que implementan la interfaz del búfer. Estos campos están documentados en Estructuras de objetos búfer.

Herencia:

El campo tp_as_buffer no se hereda, pero los campos contenidos se heredan individualmente.

unsigned long PyTypeObject.tp_flags

Este campo es una máscara de bits de varias banderas. Algunas banderas indican semántica variante para ciertas situaciones; otros se utilizan para indicar que ciertos campos en el tipo de objeto (o en las estructuras de extensión a las que se hace referencia a través de tp_as_number, tp_as_sequence, tp_as_mapping, y tp_as_buffer) que históricamente no siempre estuvieron presentes son válidos; si dicho bit de bandera está claro, no se debe acceder a los campos de tipo que protege y se debe considerar que tienen un valor cero o NULL.

Herencia:

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse and tp_clear fields in the subtype exist and have NULL values. .. XXX are most flag bits really inherited individually?

Por defecto:

PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.

Máscaras de bits:

Las siguientes máscaras de bits están definidas actualmente; estos se pueden unidos por OR usando el operador | para formar el valor del campo tp_flags. El macro PyType_HasFeature() toma un tipo y un valor de banderas, tp y f, y comprueba si tp->tp_flags & f no es cero.

Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically using PyType_FromSpec(). In this case, the ob_type field of its instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed). Heap types should also support garbage collection as they can form a reference cycle with their own module object.

Herencia:

???

Py_TPFLAGS_BASETYPE

Este bit se establece cuando el tipo se puede usar como el tipo base de otro tipo. Si este bit es claro, el tipo no puede subtiparse (similar a una clase «final» en Java).

Herencia:

???

Py_TPFLAGS_READY

Este bit se establece cuando el objeto tipo ha sido completamente inicializado por PyType_Ready().

Herencia:

???

Py_TPFLAGS_READYING

Este bit se establece mientras PyType_Ready() está en el proceso de inicialización del objeto tipo.

Herencia:

???

Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created using PyObject_GC_New and destroyed using PyObject_GC_Del(). More information in section Apoyo a la recolección de basura cíclica. This bit also implies that the GC-related fields tp_traverse and tp_clear are present in the type object.

Herencia:

Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.

Herencia:

???

Py_TPFLAGS_METHOD_DESCRIPTOR

Este bit indica que los objetos se comportan como métodos independientes.

Si este indicador está configurado para type(meth), entonces:

  • meth.__get__(obj, cls)(*args, **kwds) (con obj no None) debe ser equivalente a meth(obj, *args, **kwds).

  • meth.__get__(None, cls)(*args, **kwds) debe ser equivalente a meth(*args, **kwds).

Este indicador (flag) permite una optimización para llamadas a métodos típicos como obj.meth(): evita crear un objeto temporal de «método vinculado» para obj.meth.

Added in version 3.8.

Herencia:

This flag is never inherited by types without the Py_TPFLAGS_IMMUTABLETYPE flag set. For extension types, it is inherited whenever tp_descr_get is inherited.

Py_TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a ~object.__dict__ attribute, and that the space for the dictionary is managed by the VM.

If this flag is set, Py_TPFLAGS_HAVE_GC should also be set.

The type traverse function must call PyObject_VisitManagedDict() and its clear function must call PyObject_ClearManagedDict().

Added in version 3.12.

Herencia:

This flag is inherited unless the tp_dictoffset field is set in a superclass.

Py_TPFLAGS_MANAGED_WEAKREF

This bit indicates that instances of the class should be weakly referenceable.

Added in version 3.12.

Herencia:

This flag is inherited unless the tp_weaklistoffset field is set in a superclass.

Py_TPFLAGS_ITEMS_AT_END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.

Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory area, at an offset of Py_TYPE(obj)->tp_basicsize (which may be different in each subclass).

When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized. Python does not check this.

Added in version 3.12.

Herencia:

This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS
Py_TPFLAGS_TYPE_SUBCLASS

Estas marcas son utilizadas por funciones como PyLong_Check() para determinar rápidamente si un tipo es una subclase de un tipo incorporado; dichos controles específicos son más rápidos que un control genérico, como PyObject_IsInstance(). Los tipos personalizados que heredan de los elementos integrados deben tener su tp_flags configurado correctamente, o el código que interactúa con dichos tipos se comportará de manera diferente dependiendo del tipo de verificación que se use.

Py_TPFLAGS_HAVE_FINALIZE

Este bit se establece cuando la ranura tp_finalize está presente en la estructura de tipo.

Added in version 3.4.

Obsoleto desde la versión 3.8: Este indicador ya no es necesario, ya que el intérprete asume que: el espacio tp_finalize siempre está presente en la estructura de tipos.

Py_TPFLAGS_HAVE_VECTORCALL

Este bit se establece cuando la clase implementa protocolo vectorcall. Consulte tp_vectorcall_offset para obtener más detalles.

Herencia:

This bit is inherited if tp_call is also inherited.

Added in version 3.9.

Distinto en la versión 3.12: This flag is now removed from a class when the class’s __call__() method is reassigned.

This flag can now be inherited by mutable classes.

Py_TPFLAGS_IMMUTABLETYPE

Este bit se establece para objetos de tipo que son inmutables: los atributos de tipo no se pueden establecer ni eliminar.

PyType_Ready() aplica automáticamente este indicador a static types.

Herencia:

Este flag no se hereda.

Added in version 3.10.

Py_TPFLAGS_DISALLOW_INSTANTIATION

No permita la creación de instancias del tipo: establezca tp_new en NULL y no cree la clave __new__ en el diccionario de tipos.

La bandera debe establecerse antes de crear el tipo, no después. Por ejemplo, debe establecerse antes de que se llame a PyType_Ready() en el tipo.

La bandera se establece automáticamente en static types si tp_base es NULL o &PyBaseObject_Type y tp_new es NULL.

Herencia:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL tp_new (which is only possible via the C API).

Nota

To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.

Py_TPFLAGS_MAPPING

Este bit indica que las instancias de la clase pueden coincidir con los patrones de correspondencia cuando se utilizan como sujeto de un bloque match. Se configura automáticamente al registrar o subclasificar collections.abc.Mapping, y se desarma al registrar collections.abc.Sequence.

Nota

Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to enable both flags simultaneously.

Herencia:

This flag is inherited by types that do not already set Py_TPFLAGS_SEQUENCE.

Ver también

PEP 634 - Coincidencia de patrones estructurales: especificación

Added in version 3.10.

Py_TPFLAGS_SEQUENCE

Este bit indica que las instancias de la clase pueden coincidir con los patrones de secuencia cuando se utilizan como sujeto de un bloque match. Se configura automáticamente al registrar o subclasificar collections.abc.Sequence, y se desarma al registrar collections.abc.Mapping.

Nota

Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to enable both flags simultaneously.

Herencia:

This flag is inherited by types that do not already set Py_TPFLAGS_MAPPING.

Ver también

PEP 634 - Coincidencia de patrones estructurales: especificación

Added in version 3.10.

Py_TPFLAGS_VALID_VERSION_TAG

Internal. Do not set or unset this flag. To indicate that a class has changed call PyType_Modified()

Advertencia

This flag is present in header files, but is not be used. It will be removed in a future version of CPython

const char *PyTypeObject.tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the __doc__ attribute on the type and instances of the type.

Herencia:

Este campo es no heredado por los subtipos.

traverseproc PyTypeObject.tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_traverse(PyObject *self, visitproc visit, void *arg);

Se puede encontrar más información sobre el esquema de recolección de basura de Python en la sección Apoyo a la recolección de basura cíclica.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are Python objects that the instance owns. For example, this is function local_traverse() from the _thread extension module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{
    Py_VISIT(self->args);
    Py_VISIT(self->kw);
    Py_VISIT(self->dict);
    return 0;
}

Tenga en cuenta que Py_VISIT() solo se llama a aquellos miembros que pueden participar en los ciclos de referencia. Aunque también hay un miembro self->key, solo puede ser NULL o una cadena de caracteres de Python y, por lo tanto, no puede ser parte de un ciclo de referencia.

Por otro lado, incluso si sabe que un miembro nunca puede ser parte de un ciclo, como ayuda para la depuración puede visitarlo de todos modos solo para que la función get_referents() del módulo gc lo incluirá.

Heap types (Py_TPFLAGS_HEAPTYPE) must visit their type with:

Py_VISIT(Py_TYPE(self));

It is only needed since Python 3.9. To support Python 3.8 and older, this line must be conditional:

#if PY_VERSION_HEX >= 0x03090000
    Py_VISIT(Py_TYPE(self));
#endif

If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, the traverse function must call PyObject_VisitManagedDict() like this:

PyObject_VisitManagedDict((PyObject*)self, visit, arg);

Advertencia

Al implementar tp_traverse, solo se deben visitar los miembros que tienen la instancia owns (por tener referencias fuertes). Por ejemplo, si un objeto admite referencias débiles a través de la ranura tp_weaklist, el puntero que respalda la lista vinculada (a lo que apunta tp_weaklist) no debe visitarse ya que la instancia no posee directamente las referencias débiles a sí misma (la lista de referencias débiles está ahí para respaldar la maquinaria de referencia débil, pero la instancia no tiene una fuerte referencia a los elementos dentro de ella, ya que pueden eliminarse incluso si la instancia todavía está viva).

Note that Py_VISIT() requires the visit and arg parameters to local_traverse() to have these specific names; don’t name them just anything.

Las instancias de heap-allocated types contienen una referencia a su tipo. Por lo tanto, su función transversal debe visitar Py_TYPE(self) o delegar esta responsabilidad llamando a tp_traverse de otro tipo asignado al heap (como una superclase asignada al heap). Si no es así, es posible que el objeto de tipo no se recolecte como basura.

Distinto en la versión 3.9: Se espera que los tipos asignados al heap visiten Py_TYPE(self) en tp_traverse. En versiones anteriores de Python, debido al bug 40217, hacer esto puede provocar fallas en las subclases.

Herencia:

Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject.tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_clear(PyObject *);

La función miembro tp_clear se usa para romper los ciclos de referencia en la basura cíclica detectada por el recolector de basura. En conjunto, todas las funciones tp_clear en el sistema deben combinarse para romper todos los ciclos de referencia. Esto es sutil y, en caso de duda, proporcione una función tp_clear. Por ejemplo, el tipo de tupla no implementa una función tp_clear, porque es posible demostrar que ningún ciclo de referencia puede estar compuesto completamente de tuplas. Por lo tanto, las funciones tp_clear de otros tipos deben ser suficientes para romper cualquier ciclo que contenga una tupla. Esto no es inmediatamente obvio, y rara vez hay una buena razón para evitar la implementación de tp_clear.

Las implementaciones de tp_clear deberían descartar las referencias de la instancia a las de sus miembros que pueden ser objetos de Python, y establecer sus punteros a esos miembros en NULL, como en el siguiente ejemplo:

static int
local_clear(localobject *self)
{
    Py_CLEAR(self->key);
    Py_CLEAR(self->args);
    Py_CLEAR(self->kw);
    Py_CLEAR(self->dict);
    return 0;
}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the contained object must not be released (via Py_DECREF()) until after the pointer to the contained object is set to NULL. This is because releasing the reference may cause the contained object to become trash, triggering a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer be used. The Py_CLEAR() macro performs the operations in a safe order.

If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, the traverse function must call PyObject_ClearManagedDict() like this:

PyObject_ClearManagedDict((PyObject*)self);

Tenga en cuenta que tp_clear no se llama siempre antes de que se desasigne una instancia. Por ejemplo, cuando el recuento de referencias es suficiente para determinar que un objeto ya no se utiliza, el recolector de basura cíclico no está involucrado y se llama directamente a tp_dealloc.

Debido a que el objetivo de tp_clear es romper los ciclos de referencia, no es necesario borrar objetos contenidos como cadenas de caracteres de Python o enteros de Python, que no pueden participar en los ciclos de referencia. Por otro lado, puede ser conveniente borrar todos los objetos Python contenidos y escribir la función tp_dealloc para invocar tp_clear.

Se puede encontrar más información sobre el esquema de recolección de basura de Python en la sección Apoyo a la recolección de basura cíclica.

Herencia:

Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject.tp_richcompare

Un puntero opcional a la función de comparación enriquecida, cuya firma es:

PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);

Se garantiza que el primer parámetro será una instancia del tipo definido por PyTypeObject.

La función debería retornar el resultado de la comparación (generalmente Py_True o Py_False). Si la comparación no está definida, debe retornar Py_NotImplemented, si se produce otro error, debe retornar NULL y establecer una condición de excepción.

Las siguientes constantes se definen para ser utilizadas como el tercer argumento para tp_richcompare y para PyObject_RichCompare():

Constante

Comparación

Py_LT

<

Py_LE

<=

Py_EQ

==

Py_NE

!=

Py_GT

>

Py_GE

>=

El siguiente macro está definido para facilitar la escritura de funciones de comparación enriquecidas:

Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, op)

Retorna Py_True o Py_False de la función, según el resultado de una comparación. VAL_A y VAL_B deben ser ordenados por operadores de comparación C (por ejemplo, pueden ser enteros o punto flotantes de C). El tercer argumento especifica la operación solicitada, como por ejemplo PyObject_RichCompare().

The returned value is a new strong reference.

En caso de error, establece una excepción y retorna NULL de la función.

Added in version 3.7.

Herencia:

Group: tp_hash, tp_richcompare

Este campo es heredado por subtipos junto con tp_hash: un subtipo hereda tp_richcompare y tp_hash cuando el subtipo tp_richcompare y tp_hash son ambos NULL.

Por defecto:

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to participate in any comparisons.

Py_ssize_t PyTypeObject.tp_weaklistoffset

While this field is still supported, Py_TPFLAGS_MANAGED_WEAKREF should be used instead, if at all possible.

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by PyObject_ClearWeakRefs() and the PyWeakref_* functions. The instance structure needs to include a field of type PyObject* which is initialized to NULL.

No confunda este campo con tp_weaklist; ese es el encabezado de la lista para referencias débiles al objeto de tipo en sí.

It is an error to set both the Py_TPFLAGS_MANAGED_WEAKREF bit and tp_weaklistoffset.

Herencia:

Este campo es heredado por subtipos, pero consulte las reglas que se enumeran a continuación. Un subtipo puede anular este desplazamiento; Esto significa que el subtipo utiliza un encabezado de lista de referencia débil diferente que el tipo base. Dado que el encabezado de la lista siempre se encuentra a través de tp_weaklistoffset, esto no debería ser un problema.

Por defecto:

If the Py_TPFLAGS_MANAGED_WEAKREF bit is set in the tp_flags field, then tp_weaklistoffset will be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject.tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the instances of this type are iterable (although sequences may be iterable without this function).

Esta función tiene la misma firma que PyObject_GetIter():

PyObject *tp_iter(PyObject *self);

Herencia:

Este campo es heredado por subtipos.

iternextfunc PyTypeObject.tp_iternext

An optional pointer to a function that returns the next item in an iterator. The signature is:

PyObject *tp_iternext(PyObject *self);

Cuando el iterador está agotado, debe retornar NULL; a la excepción StopIteration puede o no establecerse. Cuando se produce otro error, también debe retornar NULL. Su presencia indica que las instancias de este tipo son iteradores.

Los tipos de iterador también deberían definir la función tp_iter, y esa función debería retornar la instancia de iterador en sí (no una nueva instancia de iterador).

Esta función tiene la misma firma que PyIter_Next().

Herencia:

Este campo es heredado por subtipos.

struct PyMethodDef *PyTypeObject.tp_methods

Un puntero opcional a un arreglo estático terminado en NULL de estructuras PyMethodDef, declarando métodos regulares de este tipo.

Para cada entrada en el arreglo, se agrega una entrada al diccionario del tipo (ver tp_dict a continuación) que contiene un descriptor method.

Herencia:

Los subtipos no heredan este campo (los métodos se heredan mediante un mecanismo diferente).

struct PyMemberDef *PyTypeObject.tp_members

Un puntero opcional a un arreglo estático terminado en NULL de estructuras PyMemberDef, declarando miembros de datos regulares (campos o ranuras) de instancias de este tipo.

Para cada entrada en el arreglo, se agrega una entrada al diccionario del tipo (ver tp_dict a continuación) que contiene un descriptor member.

Herencia:

Los subtipos no heredan este campo (los miembros se heredan mediante un mecanismo diferente).

struct PyGetSetDef *PyTypeObject.tp_getset

Un puntero opcional a un arreglo estático terminado en NULL de estructuras PyGetSetDef, declarando atributos calculados de instancias de este tipo.

Para cada entrada en el arreglo, se agrega una entrada al diccionario del tipo (ver tp_dict a continuación) que contiene un descriptor getset.

Herencia:

Este campo no es heredado por los subtipos (los atributos computados se heredan a través de un mecanismo diferente).

PyTypeObject *PyTypeObject.tp_base

Un puntero opcional a un tipo base del que se heredan las propiedades de tipo. En este nivel, solo se admite una herencia única; La herencia múltiple requiere la creación dinámica de un objeto tipo llamando al metatipo.

Nota

La inicialización de ranuras está sujeta a las reglas de inicialización de globales. C99 requiere que los inicializadores sean «constantes de dirección». Los designadores de funciones como PyType_GenericNew(), con conversión implícita a un puntero, son constantes de dirección C99 válidas.

However, the unary “&” operator applied to a non-static variable like PyBaseObject_Type is not required to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are strictly standard conforming in this particular behavior.

En consecuencia, tp_base debe establecerse en la función init del módulo de extensión.

Herencia:

Este campo no es heredado por los subtipos (obviamente).

Por defecto:

Este campo predeterminado es &PyBaseObject_Type (que para los programadores de Python se conoce como el tipo objeto).

PyObject *PyTypeObject.tp_dict

El diccionario del tipo se almacena aquí por PyType_Ready().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like __add__()). Once initialization for the type has finished, this field should be treated as read-only.

Some types may not store their dictionary in this slot. Use PyType_GetDict() to retrieve the dictionary for an arbitrary type.

Distinto en la versión 3.12: Internals detail: For static builtin types, this is always NULL. Instead, the dict for such types is stored on PyInterpreterState. Use PyType_GetDict() to get the dict for an arbitrary type.

Herencia:

Este campo no es heredado por los subtipos (aunque los atributos definidos aquí se heredan a través de un mecanismo diferente).

Por defecto:

Si este campo es NULL, PyType_Ready() le asignará un nuevo diccionario.

Advertencia

No es seguro usar PyDict_SetItem() en o modificar de otra manera a tp_dict con el diccionario C-API.

descrgetfunc PyTypeObject.tp_descr_get

Un puntero opcional a una función «obtener descriptor» (descriptor ger).

La firma de la función es:

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

Herencia:

Este campo es heredado por subtipos.

descrsetfunc PyTypeObject.tp_descr_set

Un puntero opcional a una función para configurar y eliminar el valor de un descriptor.

La firma de la función es:

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

El argumento value se establece a NULL para borrar el valor.

Herencia:

Este campo es heredado por subtipos.

Py_ssize_t PyTypeObject.tp_dictoffset

While this field is still supported, Py_TPFLAGS_MANAGED_DICT should be used instead, if at all possible.

Si las instancias de este tipo tienen un diccionario que contiene variables de instancia, este campo no es cero y contiene el desplazamiento en las instancias del tipo del diccionario de variables de instancia; este desplazamiento es utilizado por PyObject_GenericGetAttr().

No confunda este campo con tp_dict; ese es el diccionario para los atributos del tipo de objeto en sí.

The value specifies the offset of the dictionary from the start of the instance structure.

El tp_dictoffset debe considerarse como de solo escritura. Para obtener el puntero al diccionario, llame a PyObject_GenericGetDict(). Llamar a PyObject_GenericGetDict() puede necesitar asignar memoria para el diccionario, por lo que puede ser más eficiente llamar a PyObject_GetAttr() cuando se accede a un atributo en el objeto.

It is an error to set both the Py_TPFLAGS_MANAGED_WEAKREF bit and tp_dictoffset.

Herencia:

This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsafe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use Py_TPFLAGS_MANAGED_DICT.

Por defecto:

This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.

If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, then tp_dictoffset will be set to -1, to indicate that it is unsafe to use this field.

initproc PyTypeObject.tp_init

Un puntero opcional a una función de inicialización de instancia.

This function corresponds to the __init__() method of classes. Like __init__(), it is possible to create an instance without calling __init__(), and it is possible to reinitialize an instance by calling its __init__() method again.

La firma de la función es:

int tp_init(PyObject *self, PyObject *args, PyObject *kwds);

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword arguments of the call to __init__().

La función tp_init, si no es NULL, se llama cuando una instancia se crea normalmente llamando a su tipo, después de la función tp_new del tipo ha retornado una instancia del tipo. Si la función tp_new retorna una instancia de otro tipo que no es un subtipo del tipo original, no se llama la función tp_init; if tp_new retorna una instancia de un subtipo del tipo original, se llama al subtipo tp_init.

Retorna 0 en caso de éxito, -1 y establece una excepción en caso de error.

Herencia:

Este campo es heredado por subtipos.

Por defecto:

Para tipos estáticos, este campo no tiene un valor predeterminado.

allocfunc PyTypeObject.tp_alloc

Un puntero opcional a una función de asignación de instancia.

La firma de la función es:

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

Herencia:

Este campo es heredado por subtipos estáticos, pero no por subtipos dinámicos (subtipos creados por una declaración de clase).

Por defecto:

Para subtipos dinámicos, este campo siempre se establece en PyType_GenericAlloc(), para forzar una estrategia de asignación de heap estándar.

For static subtypes, PyBaseObject_Type uses PyType_GenericAlloc(). That is the recommended value for all statically defined types.

newfunc PyTypeObject.tp_new

Un puntero opcional a una función de creación de instancias.

La firma de la función es:

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);

El argumento subtype es el tipo de objeto que se está creando; los argumentos args y kwds representan argumentos posicionales y de palabras clave de la llamada al tipo. Tenga en cuenta que subtype no tiene que ser igual al tipo cuya función tp_new es llamada; puede ser un subtipo de ese tipo (pero no un tipo no relacionado).

La función tp_new debería llamar a subtype->tp_alloc(subtype, nitems) para asignar espacio para el objeto, y luego hacer solo la inicialización adicional que sea absolutamente necesaria. La inicialización que se puede ignorar o repetir de forma segura debe colocarse en el controlador tp_init. Una buena regla general es que para los tipos inmutables, toda la inicialización debe tener lugar en tp_new, mientras que para los tipos mutables, la mayoría de las inicializaciones se deben diferir a tp_init.

Set the Py_TPFLAGS_DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.

Herencia:

Este campo se hereda por subtipos, excepto que no lo heredan tipos estáticos cuyo tp_base es NULL o &PyBaseObject_Type.

Por defecto:

Para tipos estáticos, este campo no tiene ningún valor predeterminado. Esto significa que si la ranura se define como NULL, no se puede llamar al tipo para crear nuevas instancias; presumiblemente hay alguna otra forma de crear instancias, como una función de fábrica.

freefunc PyTypeObject.tp_free

Un puntero opcional a una función de desasignación de instancia. Su firma es:

void tp_free(void *self);

Un inicializador que es compatible con esta firma es PyObject_Free().

Herencia:

Este campo es heredado por subtipos estáticos, pero no por subtipos dinámicos (subtipos creados por una declaración de clase)

Por defecto:

In dynamic subtypes, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the value of the Py_TPFLAGS_HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type uses PyObject_Free().

inquiry PyTypeObject.tp_is_gc

Un puntero opcional a una función llamada por el recolector de basura.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-collectible instance. The signature is:

int tp_is_gc(PyObject *self);

(El único ejemplo de esto son los tipos en sí. El metatipo, PyType_Type, define esta función para distinguir entre tipos estática y dinámicamente asignados.)

Herencia:

Este campo es heredado por subtipos.

Por defecto:

This slot has no default. If this field is NULL, Py_TPFLAGS_HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject.tp_bases

Tupla de tipos base.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of PyType_FromSpecWithBases(). The argument form is preferred.

Advertencia

Multiple inheritance does not work well for statically defined types. If you set tp_bases to a tuple, Python will not raise an error, but some slots will only be inherited from the first base.

Herencia:

Este campo no se hereda.

PyObject *PyTypeObject.tp_mro

Tupla que contiene el conjunto expandido de tipos base, comenzando con el tipo en sí y terminando con object, en orden de resolución de método.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

Herencia:

Este campo no se hereda; se calcula fresco por PyType_Ready().

PyObject *PyTypeObject.tp_cache

No usado. Solo para uso interno.

Herencia:

Este campo no se hereda.

void *PyTypeObject.tp_subclasses

A collection of subclasses. Internal use only. May be an invalid pointer.

To get a list of subclasses, call the Python method __subclasses__().

Distinto en la versión 3.12: For some types, this field does not hold a valid PyObject*. The type was changed to void* to indicate this.

Herencia:

Este campo no se hereda.

PyObject *PyTypeObject.tp_weaklist

Cabecera de lista de referencia débil, para referencias débiles a este tipo de objeto. No heredado Solo para uso interno.

Distinto en la versión 3.12: Internals detail: For the static builtin types this is always NULL, even if weakrefs are added. Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the internal _PyObject_GET_WEAKREFS_LISTPTR() macro to avoid the distinction.

Herencia:

Este campo no se hereda.

destructor PyTypeObject.tp_del

Este campo está en desuso. Use tp_finalize en su lugar.

unsigned int PyTypeObject.tp_version_tag

Se usa para indexar en el caché de métodos. Solo para uso interno.

Herencia:

Este campo no se hereda.

destructor PyTypeObject.tp_finalize

Un puntero opcional a una función de finalización de instancia. Su firma es:

void tp_finalize(PyObject *self);

Si tp_finalize está configurado, el intérprete lo llama una vez cuando finaliza una instancia. Se llama desde el recolector de basura (si la instancia es parte de un ciclo de referencia aislado) o justo antes de que el objeto se desasigne. De cualquier manera, se garantiza que se invocará antes de intentar romper los ciclos de referencia, asegurando que encuentre el objeto en un estado sano.

tp_finalize no debe mutar el estado de excepción actual; por lo tanto, una forma recomendada de escribir un finalizador no trivial es:

static void
local_finalize(PyObject *self)
{
    PyObject *error_type, *error_value, *error_traceback;

    /* Save the current exception, if any. */
    PyErr_Fetch(&error_type, &error_value, &error_traceback);

    /* ... */

    /* Restore the saved exception. */
    PyErr_Restore(error_type, error_value, error_traceback);
}

Herencia:

Este campo es heredado por subtipos.

Added in version 3.4.

Distinto en la versión 3.8: Before version 3.8 it was necessary to set the Py_TPFLAGS_HAVE_FINALIZE flags bit in order for this field to be used. This is no longer required.

Ver también

«Finalización segura de objetos» (PEP 442)

vectorcallfunc PyTypeObject.tp_vectorcall

A vectorcall function to use for calls of this type object (rather than instances). In other words, tp_vectorcall can be used to optimize type.__call__, which typically returns a new instance of type.

As with any vectorcall function, if tp_vectorcall is NULL, the tp_call protocol (Py_TYPE(type)->tp_call) is used instead.

Nota

The vectorcall protocol requires that the vectorcall function has the same behavior as the corresponding tp_call. This means that type->tp_vectorcall must match the behavior of Py_TYPE(type)->tp_call.

Specifically, if type uses the default metaclass, type->tp_vectorcall must behave the same as PyType_Type->tp_call, which:

  • calls type->tp_new,

  • if the result is a subclass of type, calls type->tp_init on the result of tp_new, and

  • returns the result of tp_new.

Typically, tp_vectorcall is overridden to optimize this process for specific tp_new and tp_init. When doing this for user-subclassable types, note that both can be overridden (using __new__() and __init__(), respectively).

Herencia:

Este campo nunca se hereda.

Added in version 3.9: (el campo existe desde 3.8 pero solo se usa desde 3.9)

unsigned char PyTypeObject.tp_watched

Internal. Do not use.

Added in version 3.12.

Tipos estáticos

Tradicionalmente, los tipos definidos en el código C son static, es decir, una estructura estática PyTypeObject se define directamente en el código y se inicializa usando PyType_Ready().

Esto da como resultado tipos que están limitados en relación con los tipos definidos en Python:

  • Los tipos estáticos están limitados a una base, es decir, no pueden usar herencia múltiple.

  • Los objetos de tipo estático (pero no necesariamente sus instancias) son inmutables. No es posible agregar o modificar los atributos del objeto tipo desde Python.

  • Los objetos de tipo estático se comparten en sub intérpretes, por lo que no deben incluir ningún estado específico del sub interpretador.

Also, since PyTypeObject is only part of the Limited API as an opaque struct, any extension modules using static types must be compiled for a specific Python minor version.

Tipos Heap

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes created by Python’s class statement. Heap types have the Py_TPFLAGS_HEAPTYPE flag set.

This is done by filling a PyType_Spec structure and calling PyType_FromSpec(), PyType_FromSpecWithBases(), PyType_FromModuleAndSpec(), or PyType_FromMetaclass().

Estructuras de objetos de números

type PyNumberMethods

Esta estructura contiene punteros a las funciones que utiliza un objeto para implementar el protocolo numérico. Cada función es utilizada por la función de un nombre similar documentado en la sección Protocolo de números.

Aquí está la definición de la estructura:

typedef struct {
     binaryfunc nb_add;
     binaryfunc nb_subtract;
     binaryfunc nb_multiply;
     binaryfunc nb_remainder;
     binaryfunc nb_divmod;
     ternaryfunc nb_power;
     unaryfunc nb_negative;
     unaryfunc nb_positive;
     unaryfunc nb_absolute;
     inquiry nb_bool;
     unaryfunc nb_invert;
     binaryfunc nb_lshift;
     binaryfunc nb_rshift;
     binaryfunc nb_and;
     binaryfunc nb_xor;
     binaryfunc nb_or;
     unaryfunc nb_int;
     void *nb_reserved;
     unaryfunc nb_float;

     binaryfunc nb_inplace_add;
     binaryfunc nb_inplace_subtract;
     binaryfunc nb_inplace_multiply;
     binaryfunc nb_inplace_remainder;
     ternaryfunc nb_inplace_power;
     binaryfunc nb_inplace_lshift;
     binaryfunc nb_inplace_rshift;
     binaryfunc nb_inplace_and;
     binaryfunc nb_inplace_xor;
     binaryfunc nb_inplace_or;

     binaryfunc nb_floor_divide;
     binaryfunc nb_true_divide;
     binaryfunc nb_inplace_floor_divide;
     binaryfunc nb_inplace_true_divide;

     unaryfunc nb_index;

     binaryfunc nb_matrix_multiply;
     binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

Nota

Las funciones binarias y ternarias deben verificar el tipo de todos sus operandos e implementar las conversiones necesarias (al menos uno de los operandos es una instancia del tipo definido). Si la operación no está definida para los operandos dados, las funciones binarias y ternarias deben retornar Py_NotImplemented, si se produce otro error, deben retornar NULL y establecer una excepción.

Nota

The nb_reserved field should always be NULL. It was previously called nb_long, and was renamed in Python 3.0.1.

binaryfunc PyNumberMethods.nb_add
binaryfunc PyNumberMethods.nb_subtract
binaryfunc PyNumberMethods.nb_multiply
binaryfunc PyNumberMethods.nb_remainder
binaryfunc PyNumberMethods.nb_divmod
ternaryfunc PyNumberMethods.nb_power
unaryfunc PyNumberMethods.nb_negative
unaryfunc PyNumberMethods.nb_positive
unaryfunc PyNumberMethods.nb_absolute
inquiry PyNumberMethods.nb_bool
unaryfunc PyNumberMethods.nb_invert
binaryfunc PyNumberMethods.nb_lshift
binaryfunc PyNumberMethods.nb_rshift
binaryfunc PyNumberMethods.nb_and
binaryfunc PyNumberMethods.nb_xor
binaryfunc PyNumberMethods.nb_or
unaryfunc PyNumberMethods.nb_int
void *PyNumberMethods.nb_reserved
unaryfunc PyNumberMethods.nb_float
binaryfunc PyNumberMethods.nb_inplace_add
binaryfunc PyNumberMethods.nb_inplace_subtract
binaryfunc PyNumberMethods.nb_inplace_multiply
binaryfunc PyNumberMethods.nb_inplace_remainder
ternaryfunc PyNumberMethods.nb_inplace_power
binaryfunc PyNumberMethods.nb_inplace_lshift
binaryfunc PyNumberMethods.nb_inplace_rshift
binaryfunc PyNumberMethods.nb_inplace_and
binaryfunc PyNumberMethods.nb_inplace_xor
binaryfunc PyNumberMethods.nb_inplace_or
binaryfunc PyNumberMethods.nb_floor_divide
binaryfunc PyNumberMethods.nb_true_divide
binaryfunc PyNumberMethods.nb_inplace_floor_divide
binaryfunc PyNumberMethods.nb_inplace_true_divide
unaryfunc PyNumberMethods.nb_index
binaryfunc PyNumberMethods.nb_matrix_multiply
binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

Estructuras de objetos mapeo

type PyMappingMethods

Esta estructura contiene punteros a las funciones que utiliza un objeto para implementar el protocolo de mapeo. Tiene tres miembros:

lenfunc PyMappingMethods.mp_length

Esta función es utilizada por PyMapping_Size() y PyObject_Size(), y tiene la misma firma. Esta ranura puede establecerse en NULL si el objeto no tiene una longitud definida.

binaryfunc PyMappingMethods.mp_subscript

Esta función es utilizada por PyObject_GetItem() y PySequence_GetSlice(), y tiene la misma firma que PyObject_GetItem(). Este espacio debe llenarse para que la función PyMapping_Check() retorna 1, de lo contrario puede ser NULL.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_DelItem(), PySequence_SetSlice() and PySequence_DelSlice(). It has the same signature as PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

Estructuras de objetos secuencia

type PySequenceMethods

Esta estructura contiene punteros a las funciones que utiliza un objeto para implementar el protocolo de secuencia.

lenfunc PySequenceMethods.sq_length

Esta función es utilizada por PySequence_Size() y PyObject_Size(), y tiene la misma firma. También se usa para manejar índices negativos a través de los espacios sq_item y sq_ass_item.

binaryfunc PySequenceMethods.sq_concat

Esta función es utilizada por PySequence_Concat() y tiene la misma firma. También es utilizado por el operador +, después de intentar la suma numérica a través de la ranura nb_add.

ssizeargfunc PySequenceMethods.sq_repeat

Esta función es utilizada por PySequence_Repeat() y tiene la misma firma. También es utilizado por el operador *, después de intentar la multiplicación numérica a través de la ranura nb_multiply.

ssizeargfunc PySequenceMethods.sq_item

Esta función es utilizada por PySequence_GetItem() y tiene la misma firma. También es utilizado por PyObject_GetItem(), después de intentar la suscripción a través de la ranura mp_subscript. Este espacio debe llenarse para que la función PySequence_Check() retorna 1, de lo contrario puede ser NULL.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item

Esta función es utilizada por PySequence_SetItem() y tiene la misma firma. También lo usan PyObject_SetItem() y PyObject_DelItem(), después de intentar la asignación y eliminación del elemento a través de la ranura mp_ass_subscript. Este espacio puede dejarse en NULL si el objeto no admite la asignación y eliminación de elementos.

objobjproc PySequenceMethods.sq_contains

Esta función puede ser utilizada por PySequence_Contains() y tiene la misma firma. Este espacio puede dejarse en NULL, en este caso PySequence_Contains() simplemente atraviesa la secuencia hasta que encuentra una coincidencia.

binaryfunc PySequenceMethods.sq_inplace_concat

Esta función es utilizada por PySequence_InPlaceConcat() y tiene la misma firma. Debería modificar su primer operando y retornarlo. Este espacio puede dejarse en NULL, en este caso PySequence_InPlaceConcat() volverá a PySequence_Concat(). También es utilizado por la asignación aumentada +=, después de intentar la suma numérica en el lugar a través de la ranura nb_inplace_add.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

Esta función es utilizada por PySequence_InPlaceRepeat() y tiene la misma firma. Debería modificar su primer operando y retornarlo. Este espacio puede dejarse en NULL, en este caso PySequence_InPlaceRepeat() volverá a PySequence_Repeat(). También es utilizado por la asignación aumentada *=, después de intentar la multiplicación numérica en el lugar a través de la ranura nb_inplace_multiply.

Estructuras de objetos búfer

type PyBufferProcs

Esta estructura contiene punteros a las funciones requeridas por Buffer protocol. El protocolo define cómo un objeto exportador puede exponer sus datos internos a objetos de consumo.

getbufferproc PyBufferProcs.bf_getbuffer

La firma de esta función es:

int (PyObject *exporter, Py_buffer *view, int flags);

Maneja una solicitud a exporter para completar view según lo especificado por flags. Excepto por el punto (3), una implementación de esta función DEBE seguir estos pasos:

  1. Check if the request can be met. If not, raise BufferError, set view->obj to NULL and return -1.

  2. Rellene los campos solicitados.

  3. Incrementa un contador interno para el número de exportaciones (exports).

  4. Set view->obj to exporter and increment view->obj.

  5. Retorna 0.

Si exporter es parte de una cadena o árbol de proveedores de búfer, se pueden usar dos esquemas principales:

  • Re-export: Each member of the tree acts as the exporting object and sets view->obj to a new reference to itself.

  • Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a new reference to the root object.

Los campos individuales de view se describen en la sección Estructura de búfer, las reglas sobre cómo debe reaccionar un exportador a solicitudes específicas se encuentran en la sección Tipos de solicitud de búfer.

Toda la memoria señalada en la estructura Py_buffer pertenece al exportador y debe permanecer válida hasta que no queden consumidores. format, shape, strides, suboffsets y internal son de solo lectura para el consumidor.

PyBuffer_FillInfo() proporciona una manera fácil de exponer un búfer de bytes simple mientras se trata correctamente con todos los tipos de solicitud.

PyObject_GetBuffer() es la interfaz para el consumidor que envuelve esta función.

releasebufferproc PyBufferProcs.bf_releasebuffer

La firma de esta función es:

void (PyObject *exporter, Py_buffer *view);

Maneja una solicitud para liberar los recursos del búfer. Si no es necesario liberar recursos, PyBufferProcs.bf_releasebuffer puede ser NULL. De lo contrario, una implementación estándar de esta función tomará estos pasos opcionales:

  1. Disminuir un contador interno para el número de exportaciones.

  2. Si el contador es 0, libera toda la memoria asociada con view.

El exportador DEBE utilizar el campo internal para realizar un seguimiento de los recursos específicos del búfer. Se garantiza que este campo permanecerá constante, mientras que un consumidor PUEDE pasar una copia del búfer original como argumento view.

This function MUST NOT decrement view->obj, since that is done automatically in PyBuffer_Release() (this scheme is useful for breaking reference cycles).

PyBuffer_Release() es la interfaz para el consumidor que envuelve esta función.

Estructuras de objetos asíncronos

Added in version 3.5.

type PyAsyncMethods

Esta estructura contiene punteros a las funciones requeridas para implementar objetos «esperable» (awaitable) y «iterador asincrónico» (asynchronous iterator).

Aquí está la definición de la estructura:

typedef struct {
    unaryfunc am_await;
    unaryfunc am_aiter;
    unaryfunc am_anext;
    sendfunc am_send;
} PyAsyncMethods;
unaryfunc PyAsyncMethods.am_await

La firma de esta función es:

PyObject *am_await(PyObject *self);

The returned object must be an iterator, i.e. PyIter_Check() must return 1 for it.

Este espacio puede establecerse en NULL si un objeto no es awaitable.

unaryfunc PyAsyncMethods.am_aiter

La firma de esta función es:

PyObject *am_aiter(PyObject *self);

Must return an asynchronous iterator object. See __anext__() for details.

Este espacio puede establecerse en NULL si un objeto no implementa el protocolo de iteración asincrónica.

unaryfunc PyAsyncMethods.am_anext

La firma de esta función es:

PyObject *am_anext(PyObject *self);

Must return an awaitable object. See __anext__() for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send

La firma de esta función es:

PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);

Consulte PyIter_Send() para obtener más detalles. Esta ranura se puede establecer en NULL.

Added in version 3.10.

Tipo Ranura typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Part of the Stable ABI.

The purpose of this function is to separate memory allocation from memory initialization. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of the allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise, nitems is not used and the length of the block should be tp_basicsize.

Esta función no debe hacer ninguna otra instancia de inicialización, ni siquiera para asignar memoria adicional; eso debe ser realizado por tp_new.

typedef void (*destructor)(PyObject*)
Part of the Stable ABI.
typedef void (*freefunc)(void*)

Consulte tp_free.

typedef PyObject *(*newfunc)(PyTypeObject*, PyObject*, PyObject*)
Part of the Stable ABI.

Consulte tp_new.

typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

Consulte tp_init.

typedef PyObject *(*reprfunc)(PyObject*)
Part of the Stable ABI.

Consulte tp_repr.

typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Part of the Stable ABI.

Retorna el valor del atributo nombrado para el objeto.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)
Part of the Stable ABI.

Establece el valor del atributo nombrado para el objeto. El argumento del valor se establece en NULL para eliminar el atributo.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Part of the Stable ABI.

Retorna el valor del atributo nombrado para el objeto.

Consulte tp_getattro.

typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)
Part of the Stable ABI.

Establece el valor del atributo nombrado para el objeto. El argumento del valor se establece en NULL para eliminar el atributo.

Consulte tp_setattro.

typedef PyObject *(*descrgetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

See tp_descr_get.

typedef int (*descrsetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

See tp_descr_set.

typedef Py_hash_t (*hashfunc)(PyObject*)
Part of the Stable ABI.

Consulte tp_hash.

typedef PyObject *(*richcmpfunc)(PyObject*, PyObject*, int)
Part of the Stable ABI.

Consulte tp_richcompare.

typedef PyObject *(*getiterfunc)(PyObject*)
Part of the Stable ABI.

Consulte tp_iter.

typedef PyObject *(*iternextfunc)(PyObject*)
Part of the Stable ABI.

Consulte tp_iternext.

typedef Py_ssize_t (*lenfunc)(PyObject*)
Part of the Stable ABI.
typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Part of the Stable ABI since version 3.12.
typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Part of the Stable ABI since version 3.12.
typedef PyObject *(*unaryfunc)(PyObject*)
Part of the Stable ABI.
typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Part of the Stable ABI.
typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)

Consulte am_send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.
typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Part of the Stable ABI.
typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Part of the Stable ABI.
typedef int (*objobjproc)(PyObject*, PyObject*)
Part of the Stable ABI.
typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

Ejemplos

Los siguientes son ejemplos simples de definiciones de tipo Python. Incluyen el uso común que puede encontrar. Algunos demuestran casos difíciles de esquina (corner cases). Para obtener más ejemplos, información práctica y un tutorial, consulte «definiendo nuevos tipos» (Definición de tipos de extensión: Tutorial) y «tópicos de nuevos tipos (Definición de tipos de extensión: temas variados).

Un tipo estático básico:

typedef struct {
    PyObject_HEAD
    const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject),
    .tp_doc = PyDoc_STR("My objects"),
    .tp_new = myobj_new,
    .tp_dealloc = (destructor)myobj_dealloc,
    .tp_repr = (reprfunc)myobj_repr,
};

También puede encontrar código más antiguo (especialmente en la base de código CPython) con un inicializador más detallado:

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "mymod.MyObject",               /* tp_name */
    sizeof(MyObject),               /* tp_basicsize */
    0,                              /* tp_itemsize */
    (destructor)myobj_dealloc,      /* tp_dealloc */
    0,                              /* tp_vectorcall_offset */
    0,                              /* tp_getattr */
    0,                              /* tp_setattr */
    0,                              /* tp_as_async */
    (reprfunc)myobj_repr,           /* tp_repr */
    0,                              /* tp_as_number */
    0,                              /* tp_as_sequence */
    0,                              /* tp_as_mapping */
    0,                              /* tp_hash */
    0,                              /* tp_call */
    0,                              /* tp_str */
    0,                              /* tp_getattro */
    0,                              /* tp_setattro */
    0,                              /* tp_as_buffer */
    0,                              /* tp_flags */
    PyDoc_STR("My objects"),        /* tp_doc */
    0,                              /* tp_traverse */
    0,                              /* tp_clear */
    0,                              /* tp_richcompare */
    0,                              /* tp_weaklistoffset */
    0,                              /* tp_iter */
    0,                              /* tp_iternext */
    0,                              /* tp_methods */
    0,                              /* tp_members */
    0,                              /* tp_getset */
    0,                              /* tp_base */
    0,                              /* tp_dict */
    0,                              /* tp_descr_get */
    0,                              /* tp_descr_set */
    0,                              /* tp_dictoffset */
    0,                              /* tp_init */
    0,                              /* tp_alloc */
    myobj_new,                      /* tp_new */
};

Un tipo que admite referencias débiles, instancias de diccionarios (dicts) y hashing:

typedef struct {
    PyObject_HEAD
    const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject),
    .tp_doc = PyDoc_STR("My objects"),
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
         Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
         Py_TPFLAGS_MANAGED_WEAKREF,
    .tp_new = myobj_new,
    .tp_traverse = (traverseproc)myobj_traverse,
    .tp_clear = (inquiry)myobj_clear,
    .tp_alloc = PyType_GenericNew,
    .tp_dealloc = (destructor)myobj_dealloc,
    .tp_repr = (reprfunc)myobj_repr,
    .tp_hash = (hashfunc)myobj_hash,
    .tp_richcompare = PyBaseObject_Type.tp_richcompare,
};

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func) using Py_TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
    PyUnicodeObject raw;
    char *extra;
} MyStr;

static PyTypeObject MyStr_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyStr",
    .tp_basicsize = sizeof(MyStr),
    .tp_base = NULL,  // set to &PyUnicode_Type in module init
    .tp_doc = PyDoc_STR("my custom str"),
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
    .tp_repr = (reprfunc)myobj_repr,
};

El tipo estático más simple con instancias de longitud fija:

typedef struct {
    PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
};

El tipo estático más simple con instancias de longitud variable:

typedef struct {
    PyObject_VAR_HEAD
    const char *data[1];
} MyObject;

static PyTypeObject MyObject_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "mymod.MyObject",
    .tp_basicsize = sizeof(MyObject) - sizeof(char *),
    .tp_itemsize = sizeof(char *),
};