typing — Soporte para type hints

Nuevo en la versión 3.5.

Source code: Lib/typing.py

Nota

En tiempo de ejecución, Python no impone las anotaciones de tipado en funciones y variables. Pueden ser utilizadas por herramientas de terceros como validadores de tipado, IDEs, linters, etc.


Este módulo proporciona soporte en tiempo de ejecución (runtime) para anotaciones de tipado, tal y como se especifica en PEP 484, PEP 526, PEP 544, PEP 586, PEP 589, y PEP 591. Las características fundamentales consisten en los tipos Any, Union, Tuple, Callable, TypeVar, and Generic. Para la especificación completa véase PEP 484. Para una introducción simplificada a type hints véase PEP 483.

La siguiente función toma y retorna una cadena de texto, que se anota de la siguiente manera:

def greeting(name: str) -> str:
    return 'Hello ' + name

En la función greeting, se espera que el argumento name sea de tipo str y que el tipo retornado sea str. Los subtipos también son aceptados como argumento válido.

Alias de tipo

A type alias is defined by assigning the type to the alias. In this example, Vector and list[float] will be treated as interchangeable synonyms:

Vector = list[float]

def scale(scalar: float, vector: Vector) -> Vector:
    return [scalar * num for num in vector]

# typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])

Los alias de tipo son útiles para simplificar indicadores de tipo complejos. Por ejemplo:

from collections.abc import Sequence

ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: Sequence[Server]) -> None:
    ...

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
    ...

Nótese que None como indicador de tipo es un caso especial y es substituido por type(None).

NewType

Úsese la función auxiliar NewType() para crear tipos distinguibles entre sí:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

El validador estático de tipos tratará el nuevo tipo como si fuera una subclase del tipo original. Esto es útil para capturar errores lógicos:

def get_user_name(user_id: UserId) -> str:
    ...

# typechecks
user_a = get_user_name(UserId(42351))

# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

Se pueden realizar todas las operaciones de int en una variable de tipo UserId, pero el resultado siempre será de tipo int. Esto permite pasar un UserId allí donde se espere un int, pero evitará la creación accidental de un UserId de manera incorrecta:

# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)

Nótese que estas comprobaciones son impuestas solo en la validación de tipado estática. En tiempo de ejecución, la sentencia Derived = NewType('Derived', Base) hará de Derived una función que retornará inmediatamente el parámetro que se le pase. Esto implica que la expresión Derived(some_value) no crea una nueva clase o genera más coste que la llamada a una función normal.

Más concretamente, la expresión some_value is Derived(some_value) será siempre verdadera en tiempo de ejecución.

Esto también implica que no es posible crear un subtipo de Derived ya que, en tiempo de ejecución, es una función de identidad, no un tipo propiamente dicho:

from typing import NewType

UserId = NewType('UserId', int)

# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

Sin embargo, es posible crear un NewType() basado en un NewType “derivado”:

from typing import NewType

UserId = NewType('UserId', int)

ProUserId = NewType('ProUserId', UserId)

y la comprobación de tipo para ProUserId funcionará como se espera.

Véase PEP 484 para más detalle.

Nota

Recuérdese que el uso de alias de tipo implica que los dos tipos son equivalentes entre sí. Haciendo Alias = Original provocará que el Validador estático de tipos trate Alias como algo exactamente equivalente a Original en todos los casos. Esto es útil para cuando se quiera simplificar indicadores de tipo complejos.

En cambio, NewType declara un tipo que es subtipo de otro. Haciendo Derived = NewType('Derived', Original) hará que el Validador estático de tipos trate Derived como una subclase de Original, lo que implica que un valor de tipo Original no puede ser usado allí donde se espere un valor de tipo Derived. Esto es útil para prevenir errores lógicos con un coste de ejecución mínimo.

Nuevo en la versión 3.5.2.

Callable

Entidades que esperen llamadas a funciones con interfaces específicas puede ser anotadas usando Callable[[Arg1Type, Arg2Type], ReturnType].

Por ejemplo:

from collections.abc import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

Es posible declarar el tipo de retorno de un callable (invocable) sin especificar tipos en los parámetros substituyendo la lista de argumentos por unos puntos suspensivos (…) en el indicador de tipo: Callable[..., ReturnType].

Genéricos

Ya que no es posible inferir estáticamente y de una manera genérica la información de tipo de objetos dentro de contenedores, las clases base abstractas han sido mejoradas para permitir sintaxis de subíndice para denotar los tipos esperados en elementos contenedores.

from collections.abc import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ...

Los genéricos se pueden parametrizar usando una nueva factoría disponible en typing llamada TypeVar.

from collections.abc import Sequence
from typing import TypeVar

T = TypeVar('T')      # Declare type variable

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]

Tipos genéricos definidos por el usuario

Una clase definida por el usuario puede ser definida como una clase genérica.

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log('Set ' + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log('Get ' + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info('%s: %s', self.name, message)

Generic[T] como clase base define que la clase LoggedVar toma un solo parámetro T. Esto también implica que T es un tipo válido dentro del cuerpo de la clase.

La clase base Generic define __class_getitem__() para que LoggedVar[t] sea válido como tipo:

from collections.abc import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:
        var.set(0)

Un tipo genérico puede tener un número indefinido de variables de tipo, y pueden limitarse a tipos concretos:

from typing import TypeVar, Generic
...

T = TypeVar('T')
S = TypeVar('S', int, str)

class StrangePair(Generic[T, S]):
    ...

Cada argumento de variable de tipo en una clase Generic debe ser distinto. Así, no será válido:

from typing import TypeVar, Generic
...

T = TypeVar('T')

class Pair(Generic[T, T]):   # INVALID
    ...

Se puede utilizar herencia múltiple con Generic:

from collections.abc import Sized
from typing import TypeVar, Generic

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):
    ...

Cuando se hereda de clases genéricas, se pueden fijar algunas variables de tipo:

from collections.abc import Mapping
from typing import TypeVar

T = TypeVar('T')

class MyDict(Mapping[str, T]):
    ...

En este caso MyDict tiene un solo parámetro, T.

Al usar una clase genérica sin especificar parámetros de tipo se asume Any para todas las posiciones. En el siguiente ejemplo, MyIterable no es genérico pero hereda implícitamente de Iterable[Any]:

from collections.abc import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

Son posibles los alias de tipos genéricos definidos por el usuario. Ejemplos:

from collections.abc import Iterable
from typing import TypeVar, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]

# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
    ...

T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
    return sum(x*y for x, y in v)

Distinto en la versión 3.7: Generic ya no posee una metaclase personalizable.

Un clase genérica definida por el usuario puede tener clases ABC como clase base sin conflicto de metaclase. Las metaclases genéricas no están permitidas. El resultado de parametrizar clases genéricas se cachea, y la mayoría de los tipos en el módulo typing pueden tener un hash y ser comparables por igualdad (equality).

El tipo Any

Un caso especial de tipo es Any. Un Validador estático de tipos tratará cualquier tipo como compatible con Any, y Any como compatible con todos los tipos.

This means that it is possible to perform any operation or method call on a value of type Any and assign it to any variable:

from typing import Any

a = None    # type: Any
a = []      # OK
a = 2       # OK

s = ''      # type: str
s = a       # OK

def foo(item: Any) -> int:
    # Typechecks; 'item' could be any type,
    # and that type might have a 'bar' method
    item.bar()
    ...

Nótese que no se realiza comprobación de tipo cuando se asigna un valor de tipo Any a un tipo más preciso. Por ejemplo, el Validador estático de tipos no reportó ningún error cuando se asignó a a s, aún cuando se declaró s como de tipo str y recibió un valor int en tiempo de ejecución.

Además, todas las funciones sin un tipo de retorno o tipos en los parámetros serán asignadas implícitamente a Any por defecto:

def legacy_parser(text):
    ...
    return data

# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
    ...
    return data

Este comportamiento permite que Any sea usado como una vía de escape cuando es necesario mezclar código tipado estática y dinámicamente.

Compárese el comportamiento de Any con el de object. De manera similar a Any, todo tipo es un subtipo de object. Sin embargo, en oposición a Any, lo contrario no es cierto: object no es un subtipo de ningún otro tipo.

Esto implica que cuando el tipo de un valor es object, un validador de tipos rechazará prácticamente todas las operaciones con él, y al asignarlo a una variable (o usarlo como valor de retorno) de un tipo más preciso será un error de tipo. Por ejemplo:

def hash_a(item: object) -> int:
    # Fails; an object does not have a 'magic' method.
    item.magic()
    ...

def hash_b(item: Any) -> int:
    # Typechecks
    item.magic()
    ...

# Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")

# Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")

Úsese object para indicar que un valor puede ser de cualquier tipo de manera segura. Úsese Any para indicar que un valor es de tipado dinámico.

Subtipado nominal vs estructural

Inicialmente, el PEP 484 definió el sistema de tipado estático de Python como nominal. Esto implica que una clase A será permitida allí donde se espere una clase B si y solo si A es una subclase de B.

This requirement previously also applied to abstract base classes, such as Iterable. The problem with this approach is that a class had to be explicitly marked to support them, which is unpythonic and unlike what one would normally do in idiomatic dynamically typed Python code. For example, this conforms to PEP 484:

from collections.abc import Sized, Iterable, Iterator

class Bucket(Sized, Iterable[int]):
    ...
    def __len__(self) -> int: ...
    def __iter__(self) -> Iterator[int]: ...

El PEP 544 permite resolver este problema al permitir escribir el código anterior sin una clase base explícita en la definición de la clase, permitiendo que el Validador estático de tipo considere implícitamente que Bucket es un subtipo tanto de Sized como de Iterable[int]. Esto se conoce como tipado estructural (o duck-typing estático):

from collections.abc import Iterator, Iterable

class Bucket:  # Note: no base classes
    ...
    def __len__(self) -> int: ...
    def __iter__(self) -> Iterator[int]: ...

def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket())  # Passes type check

Asimismo, creando subclases de la clase especial Protocol, el usuario puede definir nuevos protocolos personalizados y beneficiarse del tipado estructural (véanse los ejemplos de abajo).

Module contents

The module defines the following classes, functions and decorators.

Nota

This module defines several types that are subclasses of pre-existing standard library classes which also extend Generic to support type variables inside []. These types became redundant in Python 3.9 when the corresponding pre-existing classes were enhanced to support [].

The redundant types are deprecated as of Python 3.9 but no deprecation warnings will be issued by the interpreter. It is expected that type checkers will flag the deprecated types when the checked program targets Python 3.9 or newer.

The deprecated types will be removed from the typing module in the first Python version released 5 years after the release of Python 3.9.0. See details in PEP 585Type Hinting Generics In Standard Collections.

Special typing primitives

Special types

These can be used as types in annotations and do not support [].

typing.Any

Tipo especial que indica un tipo sin restricciones.

  • Todos los tipos son compatibles con Any.

  • Any es compatible con todos los tipos.

typing.NoReturn

Tipo especial que indica que una función nunca retorna un valor. Por ejemplo:

from typing import NoReturn

def stop() -> NoReturn:
    raise RuntimeError('no way')

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.2.

Special forms

These can be used as types in annotations using [], each having a unique syntax.

typing.Tuple

El tipo Tuple, Tuple[X, Y] es el tipo de una tupla de dos ítems con el primer ítem de tipo X y el segundo de tipo Y. El tipo de una tupla vacía se puede escribir así: Tuple[()].

Ejemplo: Tuple[T1, T2] es una tupla de dos elementos con sus correspondientes variables de tipo T1 y T2. Tuple[int, float, str] es un tupla con un número entero, un número de punto flotante y una cadena de texto.

Para especificar una tupla de longitud variable y tipo homogéneo, se usan puntos suspensivos, p. ej. Tuple[int, ...]. Un simple Tuple es equivalente a Tuple[Any, ...] y, a su vez, a tuple.

Obsoleto desde la versión 3.9: builtins.tuple now supports []. See PEP 585 and Generic Alias Type.

typing.Union

Tipo unión; Union[X, Y] significa que o bien X o bien Y.

Para definir una unión, úsese p. ej. Union[int, str]. Más detalles:

  • Los argumentos deben ser tipos y haber al menos uno.

  • Las uniones de uniones se simplifican (se aplanan), p. ej.:

    Union[Union[int, str], float] == Union[int, str, float]
    
  • Las uniones con un solo argumento se eliminan, p. ej.:

    Union[int] == int  # The constructor actually returns int
    
  • Argumentos repetidos se omiten, p. ej.:

    Union[int, str, int] == Union[int, str]
    
  • Cuando se comparan uniones, el orden de los argumentos se ignoran, p. ej.:

    Union[int, str] == Union[str, int]
    
  • No se puede derivar (subclass) o instanciar una unión.

  • No es posible escribir Union[X][Y].

  • Se puede usar Optional[X] como una versión corta de Union[X, None].

Distinto en la versión 3.7: No elimina subclases explícitas de una unión en tiempo de ejecución.

typing.Optional

Tipo Optional.

Optional[X] es equivalente a Union[X, None].

Nótese que no es lo mismo que un argumento opcional, que es aquel que tiene un valor por defecto. Un argumento opcional con un valor por defecto no necesita el indicador Optional en su anotación de tipo simplemente por que sea opcional. Por ejemplo:

def foo(arg: int = 0) -> None:
    ...

Por otro lado, si se permite un valor None, es apropiado el uso de Optional, independientemente de que sea opcional o no. Por ejemplo:

def foo(arg: Optional[int] = None) -> None:
    ...
typing.Callable

Tipo Callable (invocable); Callable[[int], str] es una función de (int) -> str.

La sintaxis de subscripción (con corchetes []) debe usarse siempre con dos valores: la lista de argumentos y el tipo de retorno. La lista de argumentos debe ser una lista de tipos o unos puntos suspensivos; el tipo de retorno debe ser un único tipo.

No existe una sintaxis para indicar argumentos opcionales o con clave (keyword); tales funciones rara vez se utilizan como tipos para llamadas. Callable[..., ReturnType] (puntos suspensivos) se puede usar para indicar que un callable admite un número indeterminado de argumentos y retorna ReturnType. Un simple Callable es equivalente a Callable[..., Any] y, a su vez, a collections.abc.Callable.

Obsoleto desde la versión 3.9: collections.abc.Callable now supports []. See PEP 585 and Generic Alias Type.

class typing.Type(Generic[CT_co])

Una variable indicada como C puede aceptar valores de tipo C. Sin embargo, un variable indicada como Type[C] puede aceptar valores que son clases en sí mismas – específicamente, aceptará el objecto clase de C. Por ejemplo.:

a = 3         # Has type 'int'
b = int       # Has type 'Type[int]'
c = type(a)   # Also has type 'Type[int]'

Nótese que Type[C] es covariante:

class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...

# Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:
    # ...
    return user_class()

El hecho de que Type[C] sea covariante implica que todas las subclases de C deben implementar la misma interfaz del constructor y las mismas interfaces de los métodos de clase que C. El validador de tipos marcará cualquier incumplimiento de esto, pero permitirá llamadas al constructor que coincida con la llamada al constructor de la clase base indicada. El modo en que el validador de tipos debe gestionar este caso particular podría cambiar en futuras revisiones de PEP 484.

Lo únicos parámetros válidos de Type son clases, Any, type variables, y uniones de cualquiera de los tipos anteriores. Por ejemplo:

def new_non_team_user(user_class: Type[Union[BasicUser, ProUser]]): ...

Type[Any] es equivalente a Type, que a su vez es equivalente a type, que es la raíz de la jerarquía de metaclases de Python.

Nuevo en la versión 3.5.2.

Obsoleto desde la versión 3.9: builtins.type now supports []. See PEP 585 and Generic Alias Type.

typing.Literal

Un tipo que puede ser utilizado para indicar a los validadores de tipos que una variable o un parámetro de una función tiene un valor equivalente al valor literal proveído (o uno de los proveídos). Por ejemplo:

def validate_simple(data: Any) -> Literal[True]:  # always returns True
    ...

MODE = Literal['r', 'rb', 'w', 'wb']
def open_helper(file: str, mode: MODE) -> str:
    ...

open_helper('/some/path', 'r')  # Passes type check
open_helper('/other/path', 'typo')  # Error in type checker

Literal[...] no puede ser derivado. En tiempo de ejecución, se permite un valor arbitrario como argumento de tipo de Literal[...], pero los validadores de tipos pueden imponer sus restricciones. Véase PEP 585 para más detalles sobre tipos literales.

Nuevo en la versión 3.8.

Distinto en la versión 3.9.1: Literal now de-duplicates parameters. Equality comparisons of Literal objects are no longer order dependent. Literal objects will now raise a TypeError exception during equality comparisons if one of their parameters are not hashable.

typing.ClassVar

Construcción especial para tipado para marcar variables de clase.

Tal y como introduce PEP 526, una anotación de variable rodeada por ClassVar indica que la intención de un atributo dado es ser usado como variable de clase y que no debería ser modificado en las instancias de esa misma clase. Uso:

class Starship:
    stats: ClassVar[dict[str, int]] = {} # class variable
    damage: int = 10                     # instance variable

ClassVar solo acepta tipos y no admite más niveles de subíndices.

ClassVar no es un clase en sí misma, y no debe ser usado con isinstance() o issubclass(). ClassVar no modifica el comportamiento de Python en tiempo de ejecución pero puede ser utilizado por validadores de terceros. Por ejemplo, un validador de tipos puede marcar el siguiente código como erróneo:

enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {}     # This is OK

Nuevo en la versión 3.5.3.

typing.Final

Un construcción especial para tipado que indica a los validadores de tipo que un nombre no puede ser reasignado o sobrescrito en una subclase. Por ejemplo:

MAX_SIZE: Final = 9000
MAX_SIZE += 1  # Error reported by type checker

class Connection:
    TIMEOUT: Final[int] = 10

class FastConnector(Connection):
    TIMEOUT = 1  # Error reported by type checker

No hay comprobación en tiempo de ejecución para estas propiedades. Véase PEP 591 para más detalles.

Nuevo en la versión 3.8.

typing.Annotated

A type, introduced in PEP 593 (Flexible function and variable annotations), to decorate existing types with context-specific metadata (possibly multiple pieces of it, as Annotated is variadic). Specifically, a type T can be annotated with metadata x via the typehint Annotated[T, x]. This metadata can be used for either static analysis or at runtime. If a library (or tool) encounters a typehint Annotated[T, x] and has no special logic for metadata x, it should ignore it and simply treat the type as T. Unlike the no_type_check functionality that currently exists in the typing module which completely disables typechecking annotations on a function or a class, the Annotated type allows for both static typechecking of T (e.g., via mypy or Pyre, which can safely ignore x) together with runtime access to x within a specific application.

Ultimately, the responsibility of how to interpret the annotations (if at all) is the responsibility of the tool or library encountering the Annotated type. A tool or library encountering an Annotated type can scan through the annotations to determine if they are of interest (e.g., using isinstance()).

When a tool or a library does not support annotations or encounters an unknown annotation it should just ignore it and treat annotated type as the underlying type.

It’s up to the tool consuming the annotations to decide whether the client is allowed to have several annotations on one type and how to merge those annotations.

Since the Annotated type allows you to put several annotations of the same (or different) type(s) on any node, the tools or libraries consuming those annotations are in charge of dealing with potential duplicates. For example, if you are doing value range analysis you might allow this:

T1 = Annotated[int, ValueRange(-10, 5)]
T2 = Annotated[T1, ValueRange(-20, 3)]

Passing include_extras=True to get_type_hints() lets one access the extra annotations at runtime.

The details of the syntax:

  • The first argument to Annotated must be a valid type

  • Multiple type annotations are supported (Annotated supports variadic arguments):

    Annotated[int, ValueRange(3, 10), ctype("char")]
    
  • Annotated must be called with at least two arguments ( Annotated[int] is not valid)

  • The order of the annotations is preserved and matters for equality checks:

    Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[
        int, ctype("char"), ValueRange(3, 10)
    ]
    
  • Nested Annotated types are flattened, with metadata ordered starting with the innermost annotation:

    Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[
        int, ValueRange(3, 10), ctype("char")
    ]
    
  • Duplicated annotations are not removed:

    Annotated[int, ValueRange(3, 10)] != Annotated[
        int, ValueRange(3, 10), ValueRange(3, 10)
    ]
    
  • Annotated can be used with nested and generic aliases:

    T = TypeVar('T')
    Vec = Annotated[list[tuple[T, T]], MaxLen(10)]
    V = Vec[int]
    
    V == Annotated[list[tuple[int, int]], MaxLen(10)]
    

Nuevo en la versión 3.9.

Building generic types

These are not used in annotations. They are building blocks for creating generic types.

class typing.Generic

Clase base abstracta para tipos genéricos.

Un tipo genérico se declara habitualmente heredando de una instancia de esta clase con una o más variables de tipo. Por ejemplo, un tipo de mapeo genérico se podría definir como:

class Mapping(Generic[KT, VT]):
    def __getitem__(self, key: KT) -> VT:
        ...
        # Etc.

Entonces, esta clase se puede usar como sigue:

X = TypeVar('X')
Y = TypeVar('Y')

def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
    try:
        return mapping[key]
    except KeyError:
        return default
class typing.TypeVar

Variable de tipo.

Uso:

T = TypeVar('T')  # Can be anything
A = TypeVar('A', str, bytes)  # Must be str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See Generic for more information on generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> Sequence[T]:
    """Return a list containing n references to x."""
    return [x]*n

def longest(x: A, y: A) -> A:
    """Return the longest of two strings."""
    return x if len(x) >= len(y) else y

La signatura de los ejemplos anteriores es esencialmente la superposición de (str, str) -> str y (bytes, bytes) -> bytes. Nótese también que aunque los argumentos sean instancias de alguna subclase de str, el tipo retornado aún será una simple str.

En tiempo de ejecución, isinstance(x, T) lanzará una excepción TypeError. En general, isinstance() y issubclass() no se deben usar con variables de tipo.

Las variables de tipo pueden ser marcadas como covariantes o contravariantes pasando covariant=True o contravariant=True, respectivamente. Véase PEP 484 para más detalles. Por defecto, las variables de tipo son invariantes. Opcionalmente, una variable de tipo puede especificar un límite superior usando bound=<type>. Esto significa que el tipo (explícitamente o implícitamente) tiene que ser una subclase del tipo limite, véase PEP 484.

typing.AnyStr

AnyStr es una variable de tipo definida como AnyStr = TypeVar('AnyStr', str, bytes).

Su objetivo es ser usada por funciones que pueden aceptar cualquier tipo de cadena de texto sin permitir mezclar diferentes tipos al mismo tiempo. Por ejemplo:

def concat(a: AnyStr, b: AnyStr) -> AnyStr:
    return a + b

concat(u"foo", u"bar")  # Ok, output has type 'unicode'
concat(b"foo", b"bar")  # Ok, output has type 'bytes'
concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes
class typing.Protocol(Generic)

Clase base para clases protocolo. Las clases protocolo se definen así:

class Proto(Protocol):
    def meth(self) -> int:
        ...

Tales clases son usadas principalmente con validadores estáticos de tipos que detectan subtipado estructural (duck-typing estático), por ejemplo:

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

Véase PEP 544 para más detalles. Las clases protocolo decoradas con runtime_checkable() (que se explica más adelante) se comportan como protocolos simplistas en tiempo de ejecución que solo comprueban la presencia de atributos dados, ignorando su firma de tipo.

Las clases protocolo pueden ser genéricas, por ejemplo:

class GenProto(Protocol[T]):
    def meth(self) -> T:
        ...

Nuevo en la versión 3.8.

@typing.runtime_checkable

Marca una clase protocolo como aplicable en tiempo de ejecución (lo convierte en un runtime protocol).

Such a protocol can be used with isinstance() and issubclass(). This raises TypeError when applied to a non-protocol class. This allows a simple-minded structural check, very similar to «one trick ponies» in collections.abc such as Iterable. For example:

@runtime_checkable
class Closable(Protocol):
    def close(self): ...

assert isinstance(open('/some/file'), Closable)

Nota

runtime_checkable() will check only the presence of the required methods, not their type signatures! For example, builtins.complex implements __float__(), therefore it passes an issubclass() check against SupportsFloat. However, the complex.__float__ method exists only to raise a TypeError with a more informative message.

Nuevo en la versión 3.8.

Other special directives

These are not used in annotations. They are building blocks for declaring types.

class typing.NamedTuple

Versión para anotación de tipos de collections.namedtuple().

Uso:

class Employee(NamedTuple):
    name: str
    id: int

Esto es equivalente a:

Employee = collections.namedtuple('Employee', ['name', 'id'])

Para proporcionar a un campo un valor por defecto se puede asignar en el cuerpo de la clase:

class Employee(NamedTuple):
    name: str
    id: int = 3

employee = Employee('Guido')
assert employee.id == 3

Los campos con un valor por defecto deben ir después de los campos sin valor por defecto.

La clase resultante tiene un atributo extra __annotations__ que proporciona un diccionario que mapea el nombre de los campos con su tipo. (Lo nombres de los campo están en el atributo _fields y sus valores por defecto en el atributo _field_defaults, ambos parte de la API de namedtuple.)

Las subclases de NamedTuple también pueden tener docstrings y métodos:

class Employee(NamedTuple):
    """Represents an employee."""
    name: str
    id: int = 3

    def __repr__(self) -> str:
        return f'<Employee {self.name}, id={self.id}>'

Uso retrocompatible:

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

Distinto en la versión 3.6: Soporte añadido para la sintaxis de anotación de variables propuesto en PEP 526.

Distinto en la versión 3.6.1: Soporte añadido para valores por defecto, métodos y docstrings.

Distinto en la versión 3.8: Los atributos _field_types y __annotations__ son simples diccionarios en vez de instancias de OrderedDict.

Distinto en la versión 3.9: Removed the _field_types attribute in favor of the more standard __annotations__ attribute which has the same information.

typing.NewType(name, tp)

A helper function to indicate a distinct type to a typechecker, see NewType. At runtime it returns a function that returns its argument. Usage:

UserId = NewType('UserId', int)
first_user = UserId(1)

Nuevo en la versión 3.5.2.

class typing.TypedDict(dict)

Special construct to add type hints to a dictionary. At runtime it is a plain dict.

TypedDict declares a dictionary type that expects all of its instances to have a certain set of keys, where each key is associated with a value of a consistent type. This expectation is not checked at runtime but is only enforced by type checkers. Usage:

class Point2D(TypedDict):
    x: int
    y: int
    label: str

a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check

assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

Se puede acceder a la información de tipo para introspección vía Point2D.__annotations__ y Point2D.__total__. Para poder utilizar esta características con versiones antiguas de Python que no soporten PEP 526, TypedDict proporciona adicionalmente dos formatos sintácticos equivalentes:

Point2D = TypedDict('Point2D', x=int, y=int, label=str)
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

Por defecto, todas las claves deben estar presentes en un TypedDict. Es posible anularlo especificando el parámetro total. De esta manera:

class point2D(TypedDict, total=False):
    x: int
    y: int

Esto significa que un TypedDict point2D puede omitir cualquiera de sus claves. Un validador de tipos solo se esperará un valor literal False o True como valor del argumento total. True es el valor por defecto, y hace que todos los elementos definidos en el cuerpo de la clases sean obligatorios.

Véase PEP 589 para más ejemplos y reglas detalladas del uso de TypedDict.

Nuevo en la versión 3.8.

Generic concrete collections

Corresponding to built-in types

class typing.Dict(dict, MutableMapping[KT, VT])

Una versión genérica de dict. Útil para anotar tipos de retorno. Para anotar argumentos es preferible usar un tipo abstracto de colección como Mapping.

Este tipo se puede usar de la siguiente manera:

def count_words(text: str) -> Dict[str, int]:
    ...

Obsoleto desde la versión 3.9: builtins.dict now supports []. See PEP 585 and Generic Alias Type.

class typing.List(list, MutableSequence[T])

Versión genérica de list. Útil para anotar tipos de retorno. Para anotar argumentos es preferible usar un tipo abstracto de colección como Sequence o Iterable.

Este tipo se puede usar del siguiente modo:

T = TypeVar('T', int, float)

def vec2(x: T, y: T) -> List[T]:
    return [x, y]

def keep_positives(vector: Sequence[T]) -> List[T]:
    return [item for item in vector if item > 0]

Obsoleto desde la versión 3.9: builtins.list now supports []. See PEP 585 and Generic Alias Type.

class typing.Set(set, MutableSet[T])

Una versión genérica de builtins.set. Útil para anotar tipos de retornos. Para anotar argumentos es preferible usar un tipo abstracto de colección como AbstractSet.

Obsoleto desde la versión 3.9: builtins.set now supports []. See PEP 585 and Generic Alias Type.

class typing.FrozenSet(frozenset, AbstractSet[T_co])

Una versión genérica de builtins.frozenset.

Obsoleto desde la versión 3.9: builtins.frozenset now supports []. See PEP 585 and Generic Alias Type.

Nota

Tuple is a special form.

Corresponding to types in collections

class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

Una versión genérica de collections.defaultdict.

Nuevo en la versión 3.5.2.

Obsoleto desde la versión 3.9: collections.defaultdict now supports []. See PEP 585 and Generic Alias Type.

class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])

Una versión genérica de collections.OrderedDict.

Nuevo en la versión 3.7.2.

Obsoleto desde la versión 3.9: collections.OrderedDict now supports []. See PEP 585 and Generic Alias Type.

class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])

Una versión genérica de collections.ChainMap.

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.1.

Obsoleto desde la versión 3.9: collections.ChainMap now supports []. See PEP 585 and Generic Alias Type.

class typing.Counter(collections.Counter, Dict[T, int])

Una versión genérica de collections.Counter.

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.1.

Obsoleto desde la versión 3.9: collections.Counter now supports []. See PEP 585 and Generic Alias Type.

class typing.Deque(deque, MutableSequence[T])

Una versión genérica de collections.deque.

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.1.

Obsoleto desde la versión 3.9: collections.deque now supports []. See PEP 585 and Generic Alias Type.

Other concrete types

class typing.IO
class typing.TextIO
class typing.BinaryIO

Generic type IO[AnyStr] and its subclasses TextIO(IO[str]) and BinaryIO(IO[bytes]) represent the types of I/O streams such as returned by open(). These types are also in the typing.io namespace.

class typing.Pattern
class typing.Match

These type aliases correspond to the return types from re.compile() and re.match(). These types (and the corresponding functions) are generic in AnyStr and can be made specific by writing Pattern[str], Pattern[bytes], Match[str], or Match[bytes]. These types are also in the typing.re namespace.

Obsoleto desde la versión 3.9: Classes Pattern and Match from re now support []. See PEP 585 and Generic Alias Type.

class typing.Text

Text es un alias para str. Ésta disponible para proporcionar un mecanismo compatible hacia delante para código en Python 2: en Python 2, Text es un alias de unicode.

Úsese Text para indicar que un valor debe contener una cadena de texto Unicode de manera que sea compatible con Python 2 y Python 3:

def add_unicode_checkmark(text: Text) -> Text:
    return text + u' \u2713'

Nuevo en la versión 3.5.2.

Abstract Base Classes

Corresponding to collections in collections.abc

class typing.AbstractSet(Sized, Collection[T_co])

Una versión genérica de collections.abc.Set.

Obsoleto desde la versión 3.9: collections.abc.Set now supports []. See PEP 585 and Generic Alias Type.

class typing.ByteString(Sequence[int])

Una versión genérica de collections.abc.ByteString.

This type represents the types bytes, bytearray, and memoryview of byte sequences.

Como abreviación para este tipo, bytes se puede usar para anotar argumentos de cualquiera de los tipos mencionados arriba.

Obsoleto desde la versión 3.9: collections.abc.ByteString now supports []. See PEP 585 and Generic Alias Type.

class typing.Collection(Sized, Iterable[T_co], Container[T_co])

Una versión genérica de collections.abc.Collection

Nuevo en la versión 3.6.0.

Obsoleto desde la versión 3.9: collections.abc.Collection now supports []. See PEP 585 and Generic Alias Type.

class typing.Container(Generic[T_co])

Una versión genérica de collections.abc.Container.

Obsoleto desde la versión 3.9: collections.abc.Container now supports []. See PEP 585 and Generic Alias Type.

class typing.ItemsView(MappingView, Generic[KT_co, VT_co])

Una versión genérica de collections.abc.ItemsView.

Obsoleto desde la versión 3.9: collections.abc.ItemsView now supports []. See PEP 585 and Generic Alias Type.

class typing.KeysView(MappingView[KT_co], AbstractSet[KT_co])

Una versión genérica de collections.abc.KeysView.

Obsoleto desde la versión 3.9: collections.abc.KeysView now supports []. See PEP 585 and Generic Alias Type.

class typing.Mapping(Sized, Collection[KT], Generic[VT_co])

Una versión genérica de collections.abc.Mapping. Este tipo se puede usar de la siguiente manera:

def get_position_in_index(word_list: Mapping[str, int], word: str) -> int:
    return word_list[word]

Obsoleto desde la versión 3.9: collections.abc.Mapping now supports []. See PEP 585 and Generic Alias Type.

class typing.MappingView(Sized, Iterable[T_co])

Una versión genérica de collections.abc.MappingView.

Obsoleto desde la versión 3.9: collections.abc.MappingView now supports []. See PEP 585 and Generic Alias Type.

class typing.MutableMapping(Mapping[KT, VT])

Una versión genérica de collections.abc.MutableMapping.

Obsoleto desde la versión 3.9: collections.abc.MutableMapping now supports []. See PEP 585 and Generic Alias Type.

class typing.MutableSequence(Sequence[T])

Una versión genérica de collections.abc.MutableSequence.

Obsoleto desde la versión 3.9: collections.abc.MutableSequence now supports []. See PEP 585 and Generic Alias Type.

class typing.MutableSet(AbstractSet[T])

Una versión genérica de collections.abc.MutableSet.

Obsoleto desde la versión 3.9: collections.abc.MutableSet now supports []. See PEP 585 and Generic Alias Type.

class typing.Sequence(Reversible[T_co], Collection[T_co])

Una versión genérica de collections.abc.Sequence.

Obsoleto desde la versión 3.9: collections.abc.Sequence now supports []. See PEP 585 and Generic Alias Type.

class typing.ValuesView(MappingView[VT_co])

Una versión genérica de collections.abc.ValuesView.

Obsoleto desde la versión 3.9: collections.abc.ValuesView now supports []. See PEP 585 and Generic Alias Type.

Corresponding to other types in collections.abc

class typing.Iterable(Generic[T_co])

Una versión genérica de collections.abc.Iterable.

Obsoleto desde la versión 3.9: collections.abc.Iterable now supports []. See PEP 585 and Generic Alias Type.

class typing.Iterator(Iterable[T_co])

Una versión genérica de collections.abc.Iterator.

Obsoleto desde la versión 3.9: collections.abc.Iterator now supports []. See PEP 585 and Generic Alias Type.

class typing.Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

Un generador puede ser anotado con el tipo genérico Generator[YieldType, SendType, ReturnType]. Por ejemplo:

def echo_round() -> Generator[int, float, str]:
    sent = yield 0
    while sent >= 0:
        sent = yield round(sent)
    return 'Done'

Nótese que en contraste con muchos otros genéricos en el módulo typing, el SendType de Generator se comporta como contravariante, no covariante ni invariante.

Si tu generador solo retornará valores con yield, establece SendType y ReturnType como None:

def infinite_stream(start: int) -> Generator[int, None, None]:
    while True:
        yield start
        start += 1

Opcionalmente, anota tu generador con un tipo de retorno de Iterable[YieldType] o Iterator[YieldType]:

def infinite_stream(start: int) -> Iterator[int]:
    while True:
        yield start
        start += 1

Obsoleto desde la versión 3.9: collections.abc.Generator now supports []. See PEP 585 and Generic Alias Type.

class typing.Hashable

Un alias de collections.abc.Hashable

class typing.Reversible(Iterable[T_co])

Una versión genérica de collections.abc.Reversible.

Obsoleto desde la versión 3.9: collections.abc.Reversible now supports []. See PEP 585 and Generic Alias Type.

class typing.Sized

Un alias de collections.abc.Sized

Asynchronous programming

class typing.Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co])

Una versión genérica de collections.abc.Coroutine.y orden de las variables de tipo se corresponde con aquellas de Generator, por ejemplo:

from collections.abc import Coroutine
c = None # type: Coroutine[list[str], str, int]
...
x = c.send('hi') # type: list[str]
async def bar() -> None:
    x = await c # type: int

Nuevo en la versión 3.5.3.

Obsoleto desde la versión 3.9: collections.abc.Coroutine now supports []. See PEP 585 and Generic Alias Type.

class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])

Un generador asíncrono se puede anotar con el tipo genérico AsyncGenerator[YieldType, SendType]. Por ejemplo:

async def echo_round() -> AsyncGenerator[int, float]:
    sent = yield 0
    while sent >= 0.0:
        rounded = await round(sent)
        sent = yield rounded

A diferencia de los generadores normales, los generadores asíncronos no pueden retornar un valor, por lo que no hay un parámetro de tipo``ReturnType``. Igual que Generator, SendType se comporta como contravariante.

Si tu generador solo retornará valores con yield, establece el SendType como None:

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
    while True:
        yield start
        start = await increment(start)

Opcionalmente, anota el generador con un tipo de retorno AsyncIterable[YieldType] o AsyncIterator[YieldType]:

async def infinite_stream(start: int) -> AsyncIterator[int]:
    while True:
        yield start
        start = await increment(start)

Nuevo en la versión 3.6.1.

Obsoleto desde la versión 3.9: collections.abc.AsyncGenerator now supports []. See PEP 585 and Generic Alias Type.

class typing.AsyncIterable(Generic[T_co])

Una versión genérica de collections.abc.AsyncIterable.

Nuevo en la versión 3.5.2.

Obsoleto desde la versión 3.9: collections.abc.AsyncIterable now supports []. See PEP 585 and Generic Alias Type.

class typing.AsyncIterator(AsyncIterable[T_co])

Una versión genérica de collections.abc.AsyncIterator.

Nuevo en la versión 3.5.2.

Obsoleto desde la versión 3.9: collections.abc.AsyncIterator now supports []. See PEP 585 and Generic Alias Type.

class typing.Awaitable(Generic[T_co])

Una versión genérica de collections.abc.Awaitable.

Nuevo en la versión 3.5.2.

Obsoleto desde la versión 3.9: collections.abc.Awaitable now supports []. See PEP 585 and Generic Alias Type.

Context manager types

class typing.ContextManager(Generic[T_co])

Una versión genérica de contextlib.AbstractContextManager.

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.0.

Obsoleto desde la versión 3.9: contextlib.AbstractContextManager now supports []. See PEP 585 and Generic Alias Type.

class typing.AsyncContextManager(Generic[T_co])

Una versión genérica de contextlib.AbstractAsyncContextManager.

Nuevo en la versión 3.5.4.

Nuevo en la versión 3.6.2.

Obsoleto desde la versión 3.9: contextlib.AbstractAsyncContextManager now supports []. See PEP 585 and Generic Alias Type.

Protocols

These protocols are decorated with runtime_checkable().

class typing.SupportsAbs

Una ABC con un método abstracto __abs__ que es covariante en su tipo retornado.

class typing.SupportsBytes

Una ABC con un método abstracto __bytes__.

class typing.SupportsComplex

Una ABC con un método abstracto __complex__.

class typing.SupportsFloat

Una ABC con un método abstracto __float__.

class typing.SupportsIndex

Una ABC con un método abstracto __index__.

Nuevo en la versión 3.8.

class typing.SupportsInt

Una ABC con un método abstracto __int__.

class typing.SupportsRound

Una ABC con un método abstracto __round__ que es covariantes en su tipo retornado.

Functions and decorators

typing.cast(typ, val)

Convertir un valor a su tipo.

Esto retorna el valor sin modificar. Para el validador de tipos esto indica que el valor de retorno tiene el tipo señalado pero, de manera intencionada, no se comprobará en tiempo de ejecución (para maximizar la velocidad).

@typing.overload

El decorador @overload permite describir funciones y métodos que soportan diferentes combinaciones de tipos de argumento. A una serie de definiciones decoradas con @overload` debe seguir exactamente una definición no decorada con ``@overload (para la misma función o método). Las definiciones decoradas con @overload son solo para beneficio del validador de tipos, ya que serán sobrescritas por la definición no decorada con @overload. Esta última se usa en tiempo de ejecución y debería ser ignorada por el validador de tipos. En tiempo de ejecución, llamar a una función decorada con @overload lanzará directamente NotImplementedError. Un ejemplo de sobrecarga que proporciona un tipo más preciso se puede expresar con una unión o una variable de tipo:

@overload
def process(response: None) -> None:
    ...
@overload
def process(response: int) -> tuple[int, str]:
    ...
@overload
def process(response: bytes) -> str:
    ...
def process(response):
    <actual implementation>

Véase PEP 484 para más detalle, y compárese con otras semánticas de tipado.

@typing.final

Un decorador que indica a los validadores de tipos que el método decorado no se puede sobreescribir, o que la clase decorada no se puede derivar (subclassed). Por ejemplo:

class Base:
    @final
    def done(self) -> None:
        ...
class Sub(Base):
    def done(self) -> None:  # Error reported by type checker
          ...

@final
class Leaf:
    ...
class Other(Leaf):  # Error reported by type checker
    ...

No hay comprobación en tiempo de ejecución para estas propiedades. Véase PEP 591 para más detalles.

Nuevo en la versión 3.8.

@typing.no_type_check

Un decorador para indicar que la anotaciones no deben ser comprobadas como indicadores de tipo.

Esto funciona como un decorator (decorador) de clase o función. Con una clase, se aplica recursivamente a todos los métodos definidos en dichas clase (pero no a lo métodos definidos en sus superclases y subclases).

Esto modifica la función o funciones in situ.

@typing.no_type_check_decorator

Un decorador que asigna a otro decorador el efecto de no_type_check() (no comprobar tipo).

Esto hace que el decorador decorado añada el efecto de no_type_check() a la función decorada.

@typing.type_check_only

Un decorador que marca una clase o función como no disponible en tiempo de ejecución.

Este decorador no está disponible en tiempo de ejecución. Existe principalmente para marcar clases que se definen en archivos stub para cuando una implementación retorna una instancia de una clase privada:

@type_check_only
class Response:  # private or not available at runtime
    code: int
    def get_header(self, name: str) -> str: ...

def fetch_response() -> Response: ...

Nótese que no se recomienda retornar instancias de clases privadas. Normalmente es preferible convertirlas en clases públicas.

Introspection helpers

typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)

Retorna un diccionario que contiene indicaciones de tipo para una función, método, módulo o objeto clase.

Habitualmente, esto es lo mismo que obj.__annotations__. Además, las referencias indicadas como cadenas de texto se gestionan evaluándolas en los espacios de nombres``globals`` y locals. Si es necesario, se añade``Optional[t]`` para anotar una función o método, si se establece None como valor por defecto. Para una clase C, se retorna un diccionario construido por la combinación de __annotations__ y C.__mro en orden inverso.

The function recursively replaces all Annotated[T, ...] with T, unless include_extras is set to True (see Annotated for more information). For example:

class Student(NamedTuple):
    name: Annotated[str, 'some marker']

get_type_hints(Student) == {'name': str}
get_type_hints(Student, include_extras=False) == {'name': str}
get_type_hints(Student, include_extras=True) == {
    'name': Annotated[str, 'some marker']
}

Distinto en la versión 3.9: Added include_extras parameter as part of PEP 593.

typing.get_args(tp)
typing.get_origin(tp)

Provee introspección básica para tipos genéricos y construcciones especiales de tipado.

For a typing object of the form X[Y, Z, ...] these functions return X and (Y, Z, ...). If X is a generic alias for a builtin or collections class, it gets normalized to the original class. If X is a Union or Literal contained in another generic type, the order of (Y, Z, ...) may be different from the order of the original arguments [Y, Z, ...] due to type caching. For unsupported objects return None and () correspondingly. Examples:

assert get_origin(Dict[str, int]) is dict
assert get_args(Dict[int, str]) == (int, str)

assert get_origin(Union[int, str]) is Union
assert get_args(Union[int, str]) == (int, str)

Nuevo en la versión 3.8.

class typing.ForwardRef

A class used for internal typing representation of string forward references. For example, List["SomeClass"] is implicitly transformed into List[ForwardRef("SomeClass")]. This class should not be instantiated by a user, but may be used by introspection tools.

Nota

PEP 585 generic types such as list["SomeClass"] will not be implicitly transformed into list[ForwardRef("SomeClass")] and thus will not automatically resolve to list[SomeClass].

Nuevo en la versión 3.7.4.

Constant

typing.TYPE_CHECKING

Una constante especial que se asume como cierta (True) por validadores estáticos de tipos de terceros. Es falsa (False) en tiempo de ejecución. Uso:

if TYPE_CHECKING:
    import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:
    local_var: expensive_mod.AnotherType = other_fun()

The first type annotation must be enclosed in quotes, making it a «forward reference», to hide the expensive_mod reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.

Nota

If from __future__ import annotations is used in Python 3.7 or later, annotations are not evaluated at function definition time. Instead, they are stored as strings in __annotations__, This makes it unnecessary to use quotes around the annotation. (see PEP 563).

Nuevo en la versión 3.5.2.