dataclasses — Data Classes

Código fuente: Lib/dataclasses.py


This module provides a decorator and functions for automatically adding generated special methods such as __init__() and __repr__() to user-defined classes. It was originally described in PEP 557.

Las variables miembro a utilizar en estos métodos generados son definidas teniendo en cuenta anotaciones de tipo PEP 526. Por ejemplo, en este código:

from dataclasses import dataclass

@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

will add, among other things, a __init__() that looks like:

def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
    self.name = name
    self.unit_price = unit_price
    self.quantity_on_hand = quantity_on_hand

Note that this method is automatically added to the class: it is not directly specified in the InventoryItem definition shown above.

Nuevo en la versión 3.7.

Contenidos del módulo

@dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)

This function is a decorator that is used to add generated special methods to classes, as described below.

The @dataclass decorator examines the class to find fields. A field is defined as a class variable that has a type annotation. With two exceptions described below, nothing in @dataclass examines the type specified in the variable annotation.

El orden de los campos en los métodos generados es el mismo en el que se encuentran en la definición de la clase.

The @dataclass decorator will add various «dunder» methods to the class, described below. If any of the added methods already exist in the class, the behavior depends on the parameter, as documented below. The decorator returns the same class that it is called on; no new class is created.

If @dataclass is used just as a simple decorator with no parameters, it acts as if it has the default values documented in this signature. That is, these three uses of @dataclass are equivalent:

@dataclass
class C:
    ...

@dataclass()
class C:
    ...

@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False,
           match_args=True, kw_only=False, slots=False, weakref_slot=False)
class C:
    ...

The parameters to @dataclass are:

  • init: If true (the default), a __init__() method will be generated.

    If the class already defines __init__(), this parameter is ignored.

  • repr: If true (the default), a __repr__() method will be generated. The generated repr string will have the class name and the name and repr of each field, in the order they are defined in the class. Fields that are marked as being excluded from the repr are not included. For example: InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10).

    If the class already defines __repr__(), this parameter is ignored.

  • eq: If true (the default), an __eq__() method will be generated. This method compares the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type.

    If the class already defines __eq__(), this parameter is ignored.

  • order: If true (the default is False), __lt__(), __le__(), __gt__(), and __ge__() methods will be generated. These compare the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type. If order is true and eq is false, a ValueError is raised.

    If the class already defines any of __lt__(), __le__(), __gt__(), or __ge__(), then TypeError is raised.

  • unsafe_hash: If False (the default), a __hash__() method is generated according to how eq and frozen are set.

    __hash__() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a __hash__() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of __eq__(), and the values of the eq and frozen flags in the @dataclass decorator.

    By default, @dataclass will not implicitly add a __hash__() method unless it is safe to do so. Neither will it add or change an existing explicitly defined __hash__() method. Setting the class attribute __hash__ = None has a specific meaning to Python, as described in the __hash__() documentation.

    If __hash__() is not explicitly defined, or if it is set to None, then @dataclass may add an implicit __hash__() method. Although not recommended, you can force @dataclass to create a __hash__() method with unsafe_hash=True. This might be the case if your class is logically immutable but can still be mutated. This is a specialized use case and should be considered carefully.

    Here are the rules governing implicit creation of a __hash__() method. Note that you cannot both have an explicit __hash__() method in your dataclass and set unsafe_hash=True; this will result in a TypeError.

    If eq and frozen are both true, by default @dataclass will generate a __hash__() method for you. If eq is true and frozen is false, __hash__() will be set to None, marking it unhashable (which it is, since it is mutable). If eq is false, __hash__() will be left untouched meaning the __hash__() method of the superclass will be used (if the superclass is object, this means it will fall back to id-based hashing).

  • frozen: If true (the default is False), assigning to fields will generate an exception. This emulates read-only frozen instances. If __setattr__() or __delattr__() is defined in the class, then TypeError is raised. See the discussion below.

  • match_args: If true (the default is True), the __match_args__ tuple will be created from the list of parameters to the generated __init__() method (even if __init__() is not generated, see above). If false, or if __match_args__ is already defined in the class, then __match_args__ will not be generated.

Nuevo en la versión 3.10.

  • kw_only: If true (the default value is False), then all fields will be marked as keyword-only. If a field is marked as keyword-only, then the only effect is that the __init__() parameter generated from a keyword-only field must be specified with a keyword when __init__() is called. There is no effect on any other aspect of dataclasses. See the parameter glossary entry for details. Also see the KW_ONLY section.

Nuevo en la versión 3.10.

  • slots: If true (the default is False), __slots__ attribute will be generated and new class will be returned instead of the original one. If __slots__ is already defined in the class, then TypeError is raised.

Nuevo en la versión 3.10.

Distinto en la versión 3.11: If a field name is already included in the __slots__ of a base class, it will not be included in the generated __slots__ to prevent overriding them. Therefore, do not use __slots__ to retrieve the field names of a dataclass. Use fields() instead. To be able to determine inherited slots, base class __slots__ may be any iterable, but not an iterator.

  • weakref_slot: If true (the default is False), add a slot named «__weakref__», which is required to make an instance weakref-able. It is an error to specify weakref_slot=True without also specifying slots=True.

Nuevo en la versión 3.11.

Los fields pueden especificar un valor por defecto opcionalmente, simplemente usando la sintaxis normal de Python:

@dataclass
class C:
    a: int       # 'a' has no default value
    b: int = 0   # assign a default value for 'b'

In this example, both a and b will be included in the added __init__() method, which will be defined as:

def __init__(self, a: int, b: int = 0):

Si, en la definición de una clase, a un campo con valor por defecto le sigue un campo sin valor por defecto será lanzada una excepción TypeError. Esto se aplica también a la implementación de una clase única o como resultado de herencia de clases.

dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, kw_only=MISSING)

For common and simple use cases, no other functionality is required. There are, however, some dataclass features that require additional per-field information. To satisfy this need for additional information, you can replace the default field value with a call to the provided field() function. For example:

@dataclass
class C:
    mylist: list[int] = field(default_factory=list)

c = C()
c.mylist += [1, 2, 3]

Como se muestra arriba, el valor MISSING es un objeto centinela que se usa para detectar si el usuario proporciona algunos parámetros. Este centinela se utiliza porque None es un valor válido para algunos parámetros con un significado distinto. Ningún código debe utilizar directamente el valor MISSING.

The parameters to field() are:

  • default: If provided, this will be the default value for this field. This is needed because the field() call itself replaces the normal position of the default value.

  • default_factory: If provided, it must be a zero-argument callable that will be called when a default value is needed for this field. Among other purposes, this can be used to specify fields with mutable default values, as discussed below. It is an error to specify both default and default_factory.

  • init: If true (the default), this field is included as a parameter to the generated __init__() method.

  • repr: If true (the default), this field is included in the string returned by the generated __repr__() method.

  • hash: This can be a bool or None. If true, this field is included in the generated __hash__() method. If None (the default), use the value of compare: this would normally be the expected behavior. A field should be considered in the hash if it’s used for comparisons. Setting this value to anything other than None is discouraged.

    Una posible razón para definir hash=False y compare=True podría ser el caso en el que computar el valor hash para dicho campo es costoso pero el campo es necesario para los métodos de comparación, siempre que existan otros campos que contribuyen al valor hash del tipo. Incluso si un campo se excluye del hash, se seguirá utilizando a la hora de comparar.

  • compare: If true (the default), this field is included in the generated equality and comparison methods (__eq__(), __gt__(), et al.).

  • metadata: This can be a mapping or None. None is treated as an empty dict. This value is wrapped in MappingProxyType() to make it read-only, and exposed on the Field object. It is not used at all by Data Classes, and is provided as a third-party extension mechanism. Multiple third-parties can each have their own key, to use as a namespace in the metadata.

  • kw_only: If true, this field will be marked as keyword-only. This is used when the generated __init__() method’s parameters are computed.

Nuevo en la versión 3.10.

If the default value of a field is specified by a call to field(), then the class attribute for this field will be replaced by the specified default value. If default is not provided, then the class attribute will be deleted. The intent is that after the @dataclass decorator runs, the class attributes will all contain the default values for the fields, just as if the default value itself were specified. For example, after:

@dataclass
class C:
    x: int
    y: int = field(repr=False)
    z: int = field(repr=False, default=10)
    t: int = 20

The class attribute C.z will be 10, the class attribute C.t will be 20, and the class attributes C.x and C.y will not be set.

class dataclasses.Field

Field objects describe each defined field. These objects are created internally, and are returned by the fields() module-level method (see below). Users should never instantiate a Field object directly. Its documented attributes are:

  • name: The name of the field.

  • type: The type of the field.

  • default, default_factory, init, repr, hash, compare, metadata, and kw_only have the identical meaning and values as they do in the field() function.

Pueden existir otros atributos, pero son privados y no deberían ser considerados ni depender de ellos.

dataclasses.fields(class_or_instance)

Retorna una tupla de objetos Field que definen los campos para esta clase de datos. Acepta tanto una clase de datos como una instancia de esta. Lanza una excepción TypeError si se le pasa cualquier otro objeto. No retorna pseudocampos, que son ClassVar o InitVar.

dataclasses.asdict(obj, *, dict_factory=dict)

Converts the dataclass obj to a dict (by using the factory function dict_factory). Each dataclass is converted to a dict of its fields, as name: value pairs. dataclasses, dicts, lists, and tuples are recursed into. Other objects are copied with copy.deepcopy().

Example of using asdict() on nested dataclasses:

@dataclass
class Point:
     x: int
     y: int

@dataclass
class C:
     mylist: list[Point]

p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}

c = C([Point(0, 0), Point(10, 4)])
assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}

To create a shallow copy, the following workaround may be used:

{field.name: getattr(obj, field.name) for field in fields(obj)}

asdict() raises TypeError if obj is not a dataclass instance.

dataclasses.astuple(obj, *, tuple_factory=tuple)

Converts the dataclass obj to a tuple (by using the factory function tuple_factory). Each dataclass is converted to a tuple of its field values. dataclasses, dicts, lists, and tuples are recursed into. Other objects are copied with copy.deepcopy().

Continuando con el ejemplo anterior:

assert astuple(p) == (10, 20)
assert astuple(c) == ([(0, 0), (10, 4)],)

To create a shallow copy, the following workaround may be used:

tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))

astuple() raises TypeError if obj is not a dataclass instance.

dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False, module=None)

Creates a new dataclass with name cls_name, fields as defined in fields, base classes as given in bases, and initialized with a namespace as given in namespace. fields is an iterable whose elements are each either name, (name, type), or (name, type, Field). If just name is supplied, typing.Any is used for type. The values of init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, and weakref_slot have the same meaning as they do in @dataclass.

If module is defined, the __module__ attribute of the dataclass is set to that value. By default, it is set to the module name of the caller.

This function is not strictly required, because any Python mechanism for creating a new class with __annotations__ can then apply the @dataclass function to convert that class to a dataclass. This function is provided as a convenience. For example:

C = make_dataclass('C',
                   [('x', int),
                     'y',
                    ('z', int, field(default=5))],
                   namespace={'add_one': lambda self: self.x + 1})

Es equivalente a:

@dataclass
class C:
    x: int
    y: 'typing.Any'
    z: int = 5

    def add_one(self):
        return self.x + 1
dataclasses.replace(obj, /, **changes)

Creates a new object of the same type as obj, replacing fields with values from changes. If obj is not a Data Class, raises TypeError. If keys in changes are not field names of the given dataclass, raises TypeError.

The newly returned object is created by calling the __init__() method of the dataclass. This ensures that __post_init__(), if present, is also called.

Init-only variables without default values, if any exist, must be specified on the call to replace() so that they can be passed to __init__() and __post_init__().

It is an error for changes to contain any fields that are defined as having init=False. A ValueError will be raised in this case.

Be forewarned about how init=False fields work during a call to replace(). They are not copied from the source object, but rather are initialized in __post_init__(), if they’re initialized at all. It is expected that init=False fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a custom replace() (or similarly named) method which handles instance copying.

dataclasses.is_dataclass(obj)

Retorna True si su parámetro es una clase de datos o una instancia de una, en caso contrario retorna False.

Si se necesita conocer si una clase es una instancia de dataclass (y no una clase de datos en si misma), se debe agregar una verificación adicional para not isinstance(obj, type):

def is_dataclass_instance(obj):
    return is_dataclass(obj) and not isinstance(obj, type)
dataclasses.MISSING

Un valor centinela que significa que falta un default o default_factory.

dataclasses.KW_ONLY

A sentinel value used as a type annotation. Any fields after a pseudo-field with the type of KW_ONLY are marked as keyword-only fields. Note that a pseudo-field of type KW_ONLY is otherwise completely ignored. This includes the name of such a field. By convention, a name of _ is used for a KW_ONLY field. Keyword-only fields signify __init__() parameters that must be specified as keywords when the class is instantiated.

En este ejemplo, los campos y y z se marcarán como campos de solo palabras clave:

@dataclass
class Point:
    x: float
    _: KW_ONLY
    y: float
    z: float

p = Point(0, y=1.5, z=2.0)

In a single dataclass, it is an error to specify more than one field whose type is KW_ONLY.

Nuevo en la versión 3.10.

exception dataclasses.FrozenInstanceError

Raised when an implicitly defined __setattr__() or __delattr__() is called on a dataclass which was defined with frozen=True. It is a subclass of AttributeError.

Procesamiento posterior a la inicialización

dataclasses.__post_init__()

When defined on the class, it will be called by the generated __init__(), normally as self.__post_init__(). However, if any InitVar fields are defined, they will also be passed to __post_init__() in the order they were defined in the class. If no __init__() method is generated, then __post_init__() will not automatically be called.

Entre otros usos, esto permite inicializar valores de campo que dependen de uno o más campos. Por ejemplo:

@dataclass
class C:
    a: float
    b: float
    c: float = field(init=False)

    def __post_init__(self):
        self.c = self.a + self.b

The __init__() method generated by @dataclass does not call base class __init__() methods. If the base class has an __init__() method that has to be called, it is common to call this method in a __post_init__() method:

class Rectangle:
    def __init__(self, height, width):
      self.height = height
      self.width = width

@dataclass
class Square(Rectangle):
    side: float

    def __post_init__(self):
        super().__init__(self.side, self.side)

Note, however, that in general the dataclass-generated __init__() methods don’t need to be called, since the derived dataclass will take care of initializing all fields of any base class that is a dataclass itself.

See the section below on init-only variables for ways to pass parameters to __post_init__(). Also see the warning about how replace() handles init=False fields.

Variables de clase

One of the few places where @dataclass actually inspects the type of a field is to determine if a field is a class variable as defined in PEP 526. It does this by checking if the type of the field is typing.ClassVar. If a field is a ClassVar, it is excluded from consideration as a field and is ignored by the dataclass mechanisms. Such ClassVar pseudo-fields are not returned by the module-level fields() function.

Variable de solo inicialización

Another place where @dataclass inspects a type annotation is to determine if a field is an init-only variable. It does this by seeing if the type of a field is of type dataclasses.InitVar. If a field is an InitVar, it is considered a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields() function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the optional __post_init__() method. They are not otherwise used by dataclasses.

Por ejemplo, supongamos que se va a inicializar un campo desde una base de datos, de no proporcionarse un valor al crear la clase:

@dataclass
class C:
    i: int
    j: int | None = None
    database: InitVar[DatabaseType | None] = None

    def __post_init__(self, database):
        if self.j is None and database is not None:
            self.j = database.lookup('j')

c = C(10, database=my_database)

In this case, fields() will return Field objects for i and j, but not for database.

Instancias congeladas

It is not possible to create truly immutable Python objects. However, by passing frozen=True to the @dataclass decorator you can emulate immutability. In that case, dataclasses will add __setattr__() and __delattr__() methods to the class. These methods will raise a FrozenInstanceError when invoked.

There is a tiny performance penalty when using frozen=True: __init__() cannot use simple assignment to initialize fields, and must use __setattr__().

Herencia

When the dataclass is being created by the @dataclass decorator, it looks through all of the class’s base classes in reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes. An example:

@dataclass
class Base:
    x: Any = 15.0
    y: int = 0

@dataclass
class C(Base):
    z: int = 10
    x: int = 15

The final list of fields is, in order, x, y, z. The final type of x is int, as specified in class C.

The generated __init__() method for C will look like:

def __init__(self, x: int = 15, y: int = 0, z: int = 10):

Re-ordering of keyword-only parameters in __init__()

After the parameters needed for __init__() are computed, any keyword-only parameters are moved to come after all regular (non-keyword-only) parameters. This is a requirement of how keyword-only parameters are implemented in Python: they must come after non-keyword-only parameters.

In this example, Base.y, Base.w, and D.t are keyword-only fields, and Base.x and D.z are regular fields:

@dataclass
class Base:
    x: Any = 15.0
    _: KW_ONLY
    y: int = 0
    w: int = 1

@dataclass
class D(Base):
    z: int = 10
    t: int = field(kw_only=True, default=0)

The generated __init__() method for D will look like:

def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):

Tenga en cuenta que los parámetros se han reordenado a partir de cómo aparecen en la lista de campos: los parámetros derivados de los campos regulares son seguidos por los parámetros derivados de los campos de solo palabras clave.

The relative ordering of keyword-only parameters is maintained in the re-ordered __init__() parameter list.

Funciones fábrica por defecto

If a field() specifies a default_factory, it is called with zero arguments when a default value for the field is needed. For example, to create a new instance of a list, use:

mylist: list = field(default_factory=list)

If a field is excluded from __init__() (using init=False) and the field also specifies default_factory, then the default factory function will always be called from the generated __init__() function. This happens because there is no other way to give the field an initial value.

Valores por defecto mutables

Python almacena los valores miembros por defecto en atributos de clase. Considera este ejemplo, sin usar clases de datos:

class C:
    x = []
    def add(self, element):
        self.x.append(element)

o1 = C()
o2 = C()
o1.add(1)
o2.add(2)
assert o1.x == [1, 2]
assert o1.x is o2.x

Note that the two instances of class C share the same class variable x, as expected.

Usando clases de datos, si este código fuera válido:

@dataclass
class D:
    x: list = []      # This code raises ValueError
    def add(self, element):
        self.x.append(element)

generaría un código similar a:

class D:
    x = []
    def __init__(self, x=x):
        self.x = x
    def add(self, element):
        self.x.append(element)

assert D().x is D().x

This has the same issue as the original example using class C. That is, two instances of class D that do not specify a value for x when creating a class instance will share the same copy of x. Because dataclasses just use normal Python class creation they also share this behavior. There is no general way for Data Classes to detect this condition. Instead, the @dataclass decorator will raise a ValueError if it detects an unhashable default parameter. The assumption is that if a value is unhashable, it is mutable. This is a partial solution, but it does protect against many common errors.

Usar las funciones de fábrica por defecto es una forma de crear nuevas instancias de tipos mutables como valores por defecto para campos:

@dataclass
class D:
    x: list = field(default_factory=list)

assert D().x is not D().x

Distinto en la versión 3.11: Instead of looking for and disallowing objects of type list, dict, or set, unhashable objects are now not allowed as default values. Unhashability is used to approximate mutability.

Campos tipo descriptor

Los campos a los que se asigna objetos descriptor como valor por defecto tienen los siguientes comportamientos especiales:

  • The value for the field passed to the dataclass’s __init__() method is passed to the descriptor’s __set__() method rather than overwriting the descriptor object.

  • Similarly, when getting or setting the field, the descriptor’s __get__() or __set__() method is called rather than returning or overwriting the descriptor object.

  • To determine whether a field contains a default value, @dataclass will call the descriptor’s __get__() method using its class access form: descriptor.__get__(obj=None, type=cls). If the descriptor returns a value in this case, it will be used as the field’s default. On the other hand, if the descriptor raises AttributeError in this situation, no default value will be provided for the field.

class IntConversionDescriptor:
    def __init__(self, *, default):
        self._default = default

    def __set_name__(self, owner, name):
        self._name = "_" + name

    def __get__(self, obj, type):
        if obj is None:
            return self._default

        return getattr(obj, self._name, self._default)

    def __set__(self, obj, value):
        setattr(obj, self._name, int(value))

@dataclass
class InventoryItem:
    quantity_on_hand: IntConversionDescriptor = IntConversionDescriptor(default=100)

i = InventoryItem()
print(i.quantity_on_hand)   # 100
i.quantity_on_hand = 2.5    # calls __set__ with 2.5
print(i.quantity_on_hand)   # 2

Tenga en cuenta que si un campo está anotado con un tipo de descriptor, pero no se le asigna un objeto descriptor como valor por defecto, el campo actuará como un campo normal.