collections --- 容器資料型態

原始碼: Lib/collections/__init__.py


這個模組實作了一些特別的容器資料型態,用來替代 Python 一般內建的容器,例如 dictlistsettuple

namedtuple()

用來建立一個欄位擁有名字的 tuple 子類別的函數

deque

一個類似 list 的容器,可以快速的在頭尾加入元素與取出元素。

ChainMap

一個像是 dict 的類別,用來為多個 mapping 建立單一的 view 。

Counter

dict 的子類別,用來計算可 hash 物件的數量。

OrderedDict

dict 的子類別,會記錄物件被加入的順序。

defaultdict

dict 的子類別,在值不存在 dict 當中時會呼叫一個產生函式。

UserDict

封装了字典对象,简化了字典子类化

UserList

封装了列表对象,简化了列表子类化

UserString

封装了字符串对象,简化了字符串子类化

Deprecated since version 3.3, will be removed in version 3.10: 已将 容器抽象基类 移至 collections.abc 模块。 为了保持向下兼容性,它们在 Python 3.9 版的这个模块中仍然存在。

ChainMap objects

3.3 版新加入.

ChainMap 类将多个映射迅速地链到一起,这样它们就可以作为一个单元处理。这通常比创建一个新字典再重复地使用 update() 要快得多。

这个类可以用于模拟嵌套作用域,并且对模版化有用。

class collections.ChainMap(*maps)

一个 ChainMap 将多个字典或者其他映射组合在一起,创建一个单独的可更新的视图。 如果没有指定任何 maps,一个空字典会被作为 maps。这样,每个新链至少包含一个映射。

底层映射被存储在一个列表中。这个列表是公开的,可以通过 maps 属性存取和更新。没有其他的状态。

搜索查询底层映射,直到一个键被找到。不同的是,写,更新和删除只操作第一个映射。

一个 ChainMap 通过引用合并底层映射。 所以,如果一个底层映射更新了,这些更改会反映到 ChainMap

支持所有常用字典方法。另外还有一个 maps 属性(attribute),一个创建子上下文的方法(method), 一个存取它们首个映射的属性(property):

maps

一个可以更新的映射列表。这个列表是按照第一次搜索到最后一次搜索的顺序组织的。它是仅有的存储状态,可以被修改。列表最少包含一个映射。

new_child(m=None)

返回一个新的 ChainMap 类,包含了一个新映射(map),后面跟随当前实例的全部映射(map)。如果 m 被指定,它就成为不同新的实例,就是在所有映射前加上 m,如果没有指定,就加上一个空字典,这样的话一个 d.new_child() 调用等价于 ChainMap({}, *d.maps) 。这个方法用于创建子上下文,不改变任何父映射的值。

3.4 版更變: 添加了可选的 m 形参。

parents

属性返回一个新的 ChainMap 包含所有的当前实例的映射,除了第一个。这样可以在搜索的时候跳过第一个映射。 使用的场景类似在 nested scopes 嵌套作用域中使用 nonlocal 关键词。用例也可以类比内建函数 super() 。一个 d.parents 的引用等价于 ChainMap(*d.maps[1:])

注意,一个 ChainMap() 的迭代顺序是通过从后往前扫描所有映射来确定的:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}
>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}
>>> list(ChainMap(adjustments, baseline))
['music', 'art', 'opera']

使得顺序与从最后一个映射开始调用一系列 dict.update() 得到的字典的迭代顺序相同:

>>> combined = baseline.copy()
>>> combined.update(adjustments)
>>> list(combined)
['music', 'art', 'opera']

也參考

ChainMap 例子和方法

这一节提供了多个使用链映射的案例。

模拟Python内部lookup链的例子

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

让用户指定的命令行参数优先于环境变量,优先于默认值的例子

import os, argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = {k: v for k, v in vars(namespace).items() if v is not None}

combined = ChainMap(command_line_args, os.environ, defaults)
print(combined['color'])
print(combined['user'])

ChainMap 类模拟嵌套上下文的例子

c = ChainMap()        # Create root context
d = c.new_child()     # Create nested child context
e = c.new_child()     # Child of c, independent from d
e.maps[0]             # Current context dictionary -- like Python's locals()
e.maps[-1]            # Root context -- like Python's globals()
e.parents             # Enclosing context chain -- like Python's nonlocals

d['x'] = 1            # Set value in current context
d['x']                # Get first key in the chain of contexts
del d['x']            # Delete from current context
list(d)               # All nested values
k in d                # Check all nested values
len(d)                # Number of nested values
d.items()             # All nested items
dict(d)               # Flatten into a regular dictionary

ChainMap 类只更新链中的第一个映射,但lookup会搜索整个链。 然而,如果需要深度写和删除,也可以很容易的通过定义一个子类来实现它

class DeepChainMap(ChainMap):
    'Variant of ChainMap that allows direct updates to inner scopes'

    def __setitem__(self, key, value):
        for mapping in self.maps:
            if key in mapping:
                mapping[key] = value
                return
        self.maps[0][key] = value

    def __delitem__(self, key):
        for mapping in self.maps:
            if key in mapping:
                del mapping[key]
                return
        raise KeyError(key)

>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange'         # update an existing key two levels down
>>> d['snake'] = 'red'           # new keys get added to the topmost dict
>>> del d['elephant']            # remove an existing key one level down
>>> d                            # display result
DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

Counter 物件

提供一個計數工具支援方便且快速的對應 ,舉例:

>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
...     cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())
>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
 ('you', 554),  ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
class collections.Counter([iterable-or-mapping])

一个 Counter 是一个 dict 的子类,用于计数可哈希对象。它是一个集合,元素像字典键(key)一样存储,它们的计数存储为值。计数可以是任何整数值,包括0和负数。 Counter 类有点像其他语言中的 bags或multisets。

被計數的元素來自一個 iterable 或是被其他的 mapping (or counter) 初始化。

>>> c = Counter()                           # a new, empty counter
>>> c = Counter('gallahad')                 # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2})      # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8)             # a new counter from keyword args

Counter 物件擁有一個字典的使用介面,除了遇到 Counter 中沒有的值時會回傳計數 0 取代 KeyError 這點不同。

>>> c = Counter(['eggs', 'ham'])
>>> c['bacon']                              # count of a missing element is zero
0

將一個值的計數設為 0 並不會真的從 counter 中刪除這個元素,使用 del 來刪除元素。

>>> c['sausage'] = 0                        # counter entry with a zero count
>>> del c['sausage']                        # del actually removes the entry

3.1 版新加入.

3.7 版更變: 作为 dict 的子类,Counter 继承了记住插入顺序的功能。 Counter 对象进行数学运算时同样会保持顺序。 结果会先按每个元素在运算符左边的出现时间排序,然后再按其在运算符右边的出现时间排序。

除了字典的方法外,Counter 物件額外支援三個新方法。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。 元素会按首次出现的顺序返回。 如果一个元素的计数值小于一,elements() 将会忽略它。

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
most_common([n])

返回一个列表,其中包含 n 个最常见的元素及出现次数,按常见程度由高到低排序。 如果 n 被省略或为 Nonemost_common() 将返回计数器中的 所有 元素。 计数值相等的元素按首次出现的顺序排序:

>>> Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]
subtract([iterable-or-mapping])

减去一个 可迭代对象映射对象 (或 counter) 中的元素。类似于 dict.update() 但是是减去而非替换。输入和输出都可以是 0 或负数。

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

3.2 版新加入.

通常字典方法都可用于 Counter 对象,除了有两个方法工作方式与字典并不相同。

fromkeys(iterable)

这个类方法没有在 Counter 中实现。

update([iterable-or-mapping])

加上一个 可迭代对象映射对象 (或 counter) 中的元素。类似于 dict.update() 但是是加上而非替换。另外,可迭代对象 应当是一个元素序列,而不是一个 (key, value) 对的序列。

Counter 对象的常用案例

sum(c.values())                 # total of all counts
c.clear()                       # reset all counts
list(c)                         # list unique elements
set(c)                          # convert to a set
dict(c)                         # convert to a regular dictionary
c.items()                       # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1]       # n least common elements
+c                              # remove zero and negative counts

提供了几个数学操作,可以结合 Counter 对象,以生产 multisets (计数器中大于0的元素)。 加和减,结合计数器,通过加上或者减去元素的相应计数。交集和并集返回相应计数的最小或最大值。每种操作都可以接受带符号的计数,但是输出会忽略掉结果为零或者小于零的计数。

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d                       # add two counters together:  c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d                       # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d                       # intersection:  min(c[x], d[x]) 
Counter({'a': 1, 'b': 1})
>>> c | d                       # union:  max(c[x], d[x])
Counter({'a': 3, 'b': 2})

单目加和减(一元操作符)意思是从空计数器加或者减去。

>>> c = Counter(a=2, b=-4)
>>> +c
Counter({'a': 2})
>>> -c
Counter({'b': 4})

3.3 版新加入: 添加了对一元加,一元减和位置集合操作的支持。

備註

计数器主要是为了表达运行的正的计数而设计;但是,小心不要预先排除负数或者其他类型。为了帮助这些用例,这一节记录了最小范围和类型限制。

  • Counter 类是一个字典的子类,不限制键和值。值用于表示计数,但你实际上 可以 存储任何其他值。

  • most_common() 方法在值需要排序的时候用。

  • 参与原地操作如 c[key] += 1 的值的类型只需要支持加和减,所以分数、小数和 decimals 都可以用,也支持负数。update()subtract() 当然也一样,输入和输出都支持 0 和 负数。

  • 多集方法是专为只会遇到正值的使用情况设计的。输入可以是 0 或负数,但只输出计数为正的值。没有类型限制,但值的类型需支持加、减和比较操作。

  • elements() 方法要求正整数计数。忽略0和负数计数。

也參考

  • Bag class 在 Smalltalk。

  • Wikipedia 链接 Multisets.

  • C++ multisets 教程和例子。

  • 数学操作和多集合用例,参考 Knuth, Donald. The Art of Computer Programming Volume II, Section 4.6.3, Exercise 19

  • 在给定数量和集合元素枚举所有不同的多集合,参考 itertools.combinations_with_replacement()

    map(Counter, combinations_with_replacement('ABC', 2)) # --> AA AB AC BB BC CC
    

deque 对象

class collections.deque([iterable[, maxlen]])

返回一个新的双向队列对象,从左到右初始化(用方法 append()) ,从 iterable (迭代对象) 数据创建。如果 iterable 没有指定,新队列为空。

Deque队列是由栈或者queue队列生成的(发音是 “deck”,”double-ended queue”的简称)。Deque 支持线程安全,内存高效添加(append)和弹出(pop),从两端都可以,两个方向的大概开销都是 O(1) 复杂度。

虽然 list 对象也支持类似的操作,但它们优化的是定长操作,而 pop(0)insert(0, v) 将改变底层数据的大小和位置,引起 O(n) 的内存移动开销。

如果 maxlen 没有指定或者是 None ,deques 可以增长到任意长度。否则,deque就限定到指定最大长度。一旦限定长度的deque满了,当新项加入时,同样数量的项就从另一端弹出。限定长度deque提供类似Unix filter tail 的功能。它们同样可以用与追踪最近的交换和其他数据池活动。

双向队列(deque)对象支持以下方法:

append(x)

添加 x 到右端。

appendleft(x)

添加 x 到左端。

clear()

移除所有元素,使其长度为0.

copy()

创建一份浅拷贝。

3.5 版新加入.

count(x)

计算 deque 中元素等于 x 的个数。

3.2 版新加入.

extend(iterable)

扩展deque的右侧,通过添加iterable参数中的元素。

extendleft(iterable)

扩展deque的左侧,通过添加iterable参数中的元素。注意,左添加时,在结果中iterable参数中的顺序将被反过来添加。

index(x[, start[, stop]])

返回 x 在 deque 中的位置(在索引 start 之后,索引 stop 之前)。 返回第一个匹配项,如果未找到则引发 ValueError

3.5 版新加入.

insert(i, x)

在位置 i 插入 x

如果插入会导致一个限长 deque 超出长度 maxlen 的话,就引发一个 IndexError

3.5 版新加入.

pop()

移去并且返回一个元素,deque 最右侧的那一个。 如果没有元素的话,就引发一个 IndexError

popleft()

移去并且返回一个元素,deque 最左侧的那一个。 如果没有元素的话,就引发 IndexError

remove(value)

移除找到的第一个 value。 如果没有的话就引发 ValueError

reverse()

将deque逆序排列。返回 None

3.2 版新加入.

rotate(n=1)

向右循环移动 n 步。 如果 n 是负数,就向左循环。

如果deque不是空的,向右循环移动一步就等价于 d.appendleft(d.pop()) , 向左循环一步就等价于 d.append(d.popleft())

Deque对象同样提供了一个只读属性:

maxlen

Deque的最大尺寸,如果没有限定的话就是 None

3.1 版新加入.

除了以上操作,deque 还支持迭代、封存、len(d)reversed(d)copy.copy(d)copy.deepcopy(d)、成员检测运算符 in 以及下标引用例如通过 d[0] 访问首个元素等。 索引访问在两端的复杂度均为 O(1) 但在中间则会低至 O(n)。 如需快速随机访问,请改用列表。

Deque从版本3.5开始支持 __add__(), __mul__(), 和 __imul__()

示例:

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print(elem.upper())
G
H
I

>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'

>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):
    File "<pyshell#6>", line 1, in -toplevel-
        d.pop()
IndexError: pop from an empty deque

>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

deque 用法

这一节展示了deque的多种用法。

限长deque提供了类似Unix tail 过滤功能

def tail(filename, n=10):
    'Return the last n lines of a file'
    with open(filename) as f:
        return deque(f, n)

另一个用法是维护一个近期添加元素的序列,通过从右边添加和从左边弹出

def moving_average(iterable, n=3):
    # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable)
    d = deque(itertools.islice(it, n-1))
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

一个 轮询调度器 可以通过在 deque 中放入迭代器来实现。值从当前迭代器的位置0被取出并暂存(yield)。 如果这个迭代器消耗完毕,就用 popleft() 将其从对列中移去;否则,就通过 rotate() 将它移到队列的末尾

def roundrobin(*iterables):
    "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
    iterators = deque(map(iter, iterables))
    while iterators:
        try:
            while True:
                yield next(iterators[0])
                iterators.rotate(-1)
        except StopIteration:
            # Remove an exhausted iterator.
            iterators.popleft()

rotate() 方法提供了一种方式来实现 deque 切片和删除。 例如, 一个纯的Python del d[n] 实现依赖于 rotate() 来定位要弹出的元素

def delete_nth(d, n):
    d.rotate(-n)
    d.popleft()
    d.rotate(n)

要实现 deque 切片, 使用一个类似的方法,应用 rotate() 将目标元素放到左边。通过 popleft() 移去老的条目(entries),通过 extend() 添加新的条目, 然后反向 rotate。这个方法可以最小代价实现命令式的栈操作,诸如 dup, drop, swap, over, pick, rot, 和 roll

defaultdict 对象

class collections.defaultdict([default_factory[, ...]])

返回一个新的类似字典的对象。 defaultdict 是内置 dict 类的子类。它重载了一个方法并添加了一个可写的实例变量。其余的功能与 dict 类相同,此处不再重复说明。

本对象包含一个名为 default_factory 的属性,构造时,第一个参数用于为该属性提供初始值,默认为 None。所有其他参数(包括关键字参数)都相当于传递给 dict 的构造函数。

defaultdict 对象除了支持标准 dict 的操作,还支持以下方法作为扩展:

__missing__(key)

如果 default_factory 属性为 None,则调用本方法会抛出 KeyError 异常,附带参数 key

如果 default_factory 不为 None,则它会被(不带参数地)调用来为 key 提供一个默认值,这个值和 key 作为一对键值对被插入到字典中,并作为本方法的返回值返回。

如果调用 default_factory 时抛出了异常,这个异常会原封不动地向外层传递。

在无法找到所需键值时,本方法会被 dict 中的 __getitem__() 方法调用。无论本方法返回了值还是抛出了异常,都会被 __getitem__() 传递。

注意,__missing__() 不会__getitem__() 以外的其他方法调用。意味着 get() 会像正常的 dict 那样返回 None,而不是使用 default_factory

defaultdict 对象支持以下实例变量:

default_factory

本属性由 __missing__() 方法来调用。如果构造对象时提供了第一个参数,则本属性会被初始化成那个参数,如果未提供第一个参数,则本属性为 None

defaultdict 例子

使用 list 作为 default_factory,很轻松地将(键-值对组成的)序列转换为(键-列表组成的)字典:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
...     d[k].append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

当每个键第一次遇见时,它还没有在字典里面,所以自动创建该条目,即调用 default_factory 方法,返回一个空的 listlist.append() 操作添加值到这个新的列表里。当再次存取该键时,就正常操作,list.append() 添加另一个值到列表中。这个计数比它的等价方法 dict.setdefault() 要快速和简单:

>>> d = {}
>>> for k, v in s:
...     d.setdefault(k, []).append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

设置 default_factoryint,使 defaultdict 用于计数(类似其他语言中的 bag 或 multiset):

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
...     d[k] += 1
...
>>> sorted(d.items())
[('i', 4), ('m', 1), ('p', 2), ('s', 4)]

当一个字母首次遇到时,它会查询失败,则 default_factory 会调用 int() 来提供一个整数 0 作为默认值。后续的自增操作建立起对每个字母的计数。

函数 int() 总是返回 0,这是常数函数的特殊情况。一个更快和灵活的方法是使用 lambda 函数,可以提供任何常量值(不只是0):

>>> def constant_factory(value):
...     return lambda: value
>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')
>>> '%(name)s %(action)s to %(object)s' % d
'John ran to <missing>'

设置 default_factoryset 使 defaultdict 用于构建 set 集合:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
...     d[k].add(v)
...
>>> sorted(d.items())
[('blue', {2, 4}), ('red', {1, 3})]

namedtuple() 命名元组的工厂函数

命名元组赋予每个位置一个含义,提供可读性和自文档性。它们可以用于任何普通元组,并添加了通过名字获取值的能力,通过索引值也是可以的。

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

返回一个新的元组子类,名为 typename 。这个新的子类用于创建类元组的对象,可以通过字段名来获取属性值,同样也可以通过索引和迭代获取值。子类实例同样有文档字符串(类名和字段名)另外一个有用的 __repr__() 方法,以 name=value 格式列明了元组内容。

field_names 是一个像 [‘x’, ‘y’] 一样的字符串序列。另外 field_names 可以是一个纯字符串,用空白或逗号分隔开元素名,比如 'x y' 或者 'x, y'

任何有效的Python 标识符都可以作为字段名,除了下划线开头的那些。有效标识符由字母,数字,下划线组成,但首字母不能是数字或下划线,另外不能是关键词 keyword 比如 class, for, return, global, pass, 或 raise

如果 rename 为真, 无效字段名会自动转换成位置名。比如 ['abc', 'def', 'ghi', 'abc'] 转换成 ['abc', '_1', 'ghi', '_3'] , 消除关键词 def 和重复字段名 abc

defaults 可以为 None 或者是一个默认值的 iterable 。如果一个默认值域必须跟其他没有默认值的域在一起出现,defaults 就应用到最右边的参数。比如如果域名 ['x', 'y', 'z'] 和默认值 (1, 2) ,那么 x 就必须指定一个参数值 ,y 默认值 1z 默认值 2

如果 module 值有定义,命名元组的 __module__ 属性值就被设置。

具名元组实例毋需字典来保存每个实例的不同属性,所以它们轻量,占用的内存和普通元组一样。

3.1 版更變: 添加了对 rename 的支持。

3.6 版更變: verboserename 参数成为 仅限关键字参数.

3.6 版更變: 添加了 module 参数。

3.7 版更變: 移除了 verbose 形参和 _source 属性。

3.7 版更變: 添加了 defaults 参数和 _field_defaults 属性。

>>> # Basic example
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
>>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
33
>>> x, y = p                # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y               # fields also accessible by name
33
>>> p                       # readable __repr__ with a name=value style
Point(x=11, y=22)

命名元组尤其有用于赋值 csv sqlite3 模块返回的元组

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
    print(emp.name, emp.title)

import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):
    print(emp.name, emp.title)

除了继承元组的方法,命名元组还支持三个额外的方法和两个属性。为了防止字段名冲突,方法和属性以下划线开始。

classmethod somenamedtuple._make(iterable)

类方法从存在的序列或迭代实例创建一个新实例。

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)
somenamedtuple._asdict()

返回一个新的 dict ,它将字段名称映射到它们对应的值:

>>> p = Point(x=11, y=22)
>>> p._asdict()
{'x': 11, 'y': 22}

3.1 版更變: 返回一个 OrderedDict 而不是 dict

3.8 版更變: 返回一个常规 dict 而不是 OrderedDict。 因为自 Python 3.7 起,常规字典已经保证有序。 如果需要 OrderedDict 的额外特性,推荐的解决方案是将结果转换为需要的类型: OrderedDict(nt._asdict())

somenamedtuple._replace(**kwargs)

返回一个新的命名元组实例,并将指定域替换为新的值

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
somenamedtuple._fields

字符串元组列出了字段名。用于提醒和从现有元组创建一个新的命名元组类型。

>>> p._fields            # view the field names
('x', 'y')

>>> Color = namedtuple('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)
somenamedtuple._field_defaults

字典将字段名称映射到默认值。

>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults
{'balance': 0}
>>> Account('premium')
Account(type='premium', balance=0)

要获取这个名字域的值,使用 getattr() 函数 :

>>> getattr(p, 'x')
11

转换一个字典到命名元组,使用 ** 两星操作符 (所述如 解包实参列表):

>>> d = {'x': 11, 'y': 22}
>>> Point(**d)
Point(x=11, y=22)

因为一个命名元组是一个正常的Python类,它可以很容易的通过子类更改功能。这里是如何添加一个计算域和定宽输出打印格式:

>>> class Point(namedtuple('Point', ['x', 'y'])):
...     __slots__ = ()
...     @property
...     def hypot(self):
...         return (self.x ** 2 + self.y ** 2) ** 0.5
...     def __str__(self):
...         return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7):
...     print(p)
Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

上面的子类设置 __slots__ 为一个空元组。通过阻止创建实例字典保持了较低的内存开销。

子类化对于添加和存储新的名字域是无效的。应当通过 _fields 创建一个新的命名元组来实现它:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

文档字符串可以自定义,通过直接赋值给 __doc__ 属性:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])
>>> Book.__doc__ += ': Hardcover book in active collection'
>>> Book.id.__doc__ = '13-digit ISBN'
>>> Book.title.__doc__ = 'Title of first printing'
>>> Book.authors.__doc__ = 'List of authors sorted by last name'

3.5 版更變: 文档字符串属性变成可写。

也參考

  • 请参阅 typing.NamedTuple ,以获取为命名元组添加类型提示的方法。 它还使用 class 关键字提供了一种优雅的符号:

    class Component(NamedTuple):
        part_number: int
        weight: float
        description: Optional[str] = None
    
  • 对于以字典为底层的可变域名, 参考 types.SimpleNamespace()

  • dataclasses 模块提供了一个装饰器和一些函数,用于自动将生成的特殊方法添加到用户定义的类中。

OrderedDict 对象

有序词典就像常规词典一样,但有一些与排序操作相关的额外功能。由于内置的 dict 类获得了记住插入顺序的能力(在 Python 3.7 中保证了这种新行为),它们变得不那么重要了。

一些与 dict 的不同仍然存在:

  • 常规的 dict 被设计为非常擅长映射操作。 跟踪插入顺序是次要的。

  • OrderedDict 旨在擅长重新排序操作。 空间效率、迭代速度和更新操作的性能是次要的。

  • 算法上, OrderedDict 可以比 dict 更好地处理频繁的重新排序操作。 这使其适用于跟踪最近的访问(例如在 LRU cache 中)。

  • 对于 OrderedDict ,相等操作检查匹配顺序。

  • OrderedDict 类的 popitem() 方法有不同的签名。它接受一个可选参数来指定弹出哪个元素。

  • OrderedDict 类有一个 move_to_end() 方法,可以有效地将元素移动到任一端。

  • Python 3.8之前, dict 缺少 __reversed__() 方法。

class collections.OrderedDict([items])

返回一个 dict 子类的实例,它具有专门用于重新排列字典顺序的方法。

3.1 版新加入.

popitem(last=True)

有序字典的 popitem() 方法移除并返回一个 (key, value) 键值对。 如果 last 值为真,则按 LIFO 后进先出的顺序返回键值对,否则就按 FIFO 先进先出的顺序返回键值对。

move_to_end(key, last=True)

将现有 key 移动到有序字典的任一端。 如果 last 为真值(默认)则将元素移至末尾;如果 last 为假值则将元素移至开头。如果 key 不存在则会触发 KeyError:

>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'

3.2 版新加入.

相对于通常的映射方法,有序字典还另外提供了逆序迭代的支持,通过 reversed()

OrderedDict 之间的相等测试是顺序敏感的,实现为 list(od1.items())==list(od2.items())OrderedDict 对象和其他的 Mapping 的相等测试,是顺序敏感的字典测试。这允许 OrderedDict 替换为任何字典可以使用的场所。

3.5 版更變: OrderedDict 的项(item),键(key)和值(value) 视图 现在支持逆序迭代,通过 reversed()

3.6 版更變: PEP 468 赞成将关键词参数的顺序保留, 通过传递给 OrderedDict 构造器和它的 update() 方法。

OrderedDict 例子和用法

创建记住键值 最后 插入顺序的有序字典变体很简单。 如果新条目覆盖现有条目,则原始插入位置将更改并移至末尾:

class LastUpdatedOrderedDict(OrderedDict):
    'Store items in the order the keys were last added'

    def __setitem__(self, key, value):
        super().__setitem__(key, value)
        self.move_to_end(key)

一个 OrderedDict 对于实现 functools.lru_cache() 的变体也很有用:

class LRU(OrderedDict):
    'Limit size, evicting the least recently looked-up key when full'

    def __init__(self, maxsize=128, /, *args, **kwds):
        self.maxsize = maxsize
        super().__init__(*args, **kwds)

    def __getitem__(self, key):
        value = super().__getitem__(key)
        self.move_to_end(key)
        return value

    def __setitem__(self, key, value):
        if key in self:
            self.move_to_end(key)
        super().__setitem__(key, value)
        if len(self) > self.maxsize:
            oldest = next(iter(self))
            del self[oldest]

UserDict 对象

UserDict 类是用作字典对象的外包装。对这个类的需求已部分由直接创建 dict 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的字典可以作为属性来访问。

class collections.UserDict([initialdata])

模拟一个字典类。这个实例的内容保存为一个正常字典, 可以通过 UserDict 实例的 data 属性存取。如果提供了 initialdata 值, data 就被初始化为它的内容;注意一个 initialdata 的引用不会被保留作为其他用途。

UserDict 实例提供了以下属性作为扩展方法和操作的支持:

data

一个真实的字典,用于保存 UserDict 类的内容。

UserList 对象

这个类封装了列表对象。它是一个有用的基础类,对于你想自定义的类似列表的类,可以继承和覆盖现有的方法,也可以添加新的方法。这样我们可以对列表添加新的行为。

对这个类的需求已部分由直接创建 list 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的列表可以作为属性来访问。

class collections.UserList([list])

模拟一个列表。这个实例的内容被保存为一个正常列表,通过 UserListdata 属性存取。实例内容被初始化为一个 list 的copy,默认为 [] 空列表。 list 可以是迭代对象,比如一个Python列表,或者一个 UserList 对象。

UserList 提供了以下属性作为可变序列的方法和操作的扩展:

data

一个 list 对象用于存储 UserList 的内容。

子类化的要求: UserList 的子类需要提供一个构造器,可以无参数调用,或者一个参数调用。返回一个新序列的列表操作需要创建一个实现类的实例。它假定了构造器可以以一个参数进行调用,这个参数是一个序列对象,作为数据源。

如果一个分离的类不希望依照这个需求,所有的特殊方法就必须重写;请参照源代码进行修改。

UserString 对象

UserString 类是用作字符串对象的外包装。对这个类的需求已部分由直接创建 str 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的字符串可以作为属性来访问。

class collections.UserString(seq)

模拟一个字符串对象。这个实例对象的内容保存为一个正常字符串,通过 UserStringdata 属性存取。实例内容初始化设置为 seq 的copy。seq 参数可以是任何可通过内建 str() 函数转换为字符串的对象。

UserString 提供了以下属性作为字符串方法和操作的额外支持:

data

一个真正的 str 对象用来存放 UserString 类的内容。

3.5 版更變: 新方法 __getnewargs__, __rmod__, casefold, format_map, isprintable, 和 maketrans