time
--- 时间的访问和转换¶
该模块提供了各种与时间相关的函数。相关功能还可以参阅 datetime
和 calendar
模块。
尽管所有平台皆可使用此模块,但模块内的函数并非所有平台都可用。此模块中定义的大多数函数的实现都是调用其所在平台的C语言库的同名函数。因为这些函数的语义可能因平台而异,所以使用时最好查阅对应平台的相关文档。
下面是一些术语和惯例的解释.
epoch 是时间开始的点,其值取决于平台。对于Unix, epoch 是1970年1月1日00:00:00(UTC)。要找出给定平台上的 epoch ,请查看
time.gmtime(0)
。
术语 纪元秒数 是指自 epoch (纪元)时间点以来经过的总秒数,通常不包括 闰秒。 在所有符合 POSIX 标准的平台上,闰秒都不会记录在总秒数中。
此模块中的函数可能无法处理纪元之前或遥远未来的日期和时间。“遥远未来”的定义由对应的C语言库决定;对于32位系统,它通常是指2038年及以后。
函数
strptime()
在接收到%y
格式代码时可以解析使用 2 位数表示的年份。当解析 2 位数年份时,函数会按照 POSIX 和 ISO C 标准进行年份转换:数值 69--99 被映射为 1969--1999;数值 0--68 被映射为 2000--2068。
UTC是协调世界时(Coordinated Universal Time)的缩写。它以前也被称为格林威治标准时间(GMT)。使用UTC而不是CUT作为缩写是英语与法语(Temps Universel Coordonné)之间妥协的结果,不是什么低级错误。
DST是夏令时(Daylight Saving Time)的缩写,在一年的某一段时间中将当地时间调整(通常)一小时。 DST的规则非常神奇(由当地法律确定),并且每年的起止时间都不同。C语言库中有一个表格,记录了各地的夏令时规则(实际上,为了灵活性,C语言库通常是从某个系统文件中读取这张表)。从这个角度而言,这张表是夏令时规则的唯一权威真理。
由于平台限制,各种实时函数的精度可能低于其值或参数所要求(或给定)的精度。例如,在大多数Unix系统上,时钟频率仅为每秒50或100次。
另一方面,
time()
和sleep()
的精度优于它们的Unix等价物:时间表示为浮点数,time()
返回最准确的时间 (使用Unixgettimeofday()
如果可用),并且sleep()
将接受非零分数的时间(Unixselect()
用于实现此功能,如果可用)。时间值由
gmtime()
,localtime()
和strptime()
返回,并被asctime()
,mktime()
和strftime()
接受,是一个 9 个整数的序列。gmtime()
,localtime()
和strptime()
的返回值还提供各个字段的属性名称。關於這些物件的敘述請見
struct_time
。3.3 版更變: 在平台支持相应的
struct tm
成员时,struct_time
类型被扩展提供tm_gmtoff
和tm_zone
属性。3.6 版更變:
struct_time
的属性tm_gmtoff
和tm_zone
现在可在所有平台上使用。使用以下函数在时间表示之间进行转换:
从
到
使用
自纪元以来的秒数
UTC 的
struct_time
自纪元以来的秒数
本地时间的
struct_time
UTC 的
struct_time
自纪元以来的秒数
本地时间的
struct_time
自纪元以来的秒数
函式¶
-
time.
asctime
([t])¶ 转换由
gmtime()
或localtime()
所返回的struct_time
或相应的表示时间的元组为以下形式的字符串:'Sun Jun 20 23:21:05 1993'
。 日期字段的长度为两个字符,如果日期只有一个数字则会以空格填充,例如:'Wed Jun 9 04:26:40 1993'
。如果未提供 t,则会使用
localtime()
所返回的当前时间。asctime()
不会使用区域设置信息。備註
与同名的C函数不同,
asctime()
不添加尾随换行符。
-
time.
pthread_getcpuclockid
(thread_id)¶ 返回指定的 thread_id 的特定于线程的CPU时间时钟的 clk_id 。
使用
threading.Thread
对象的threading.get_ident()
或ident
属性为 thread_id 获取合适的值。警告
传递无效的或过期的 thread_id 可能会导致未定义的行为,例如段错误。
可用性 : Unix(有关详细信息,请参见 pthread_getcpuclockid(3) 的手册页)。
3.7 版新加入.
-
time.
clock_getres
(clk_id)¶ 返回指定时钟 clk_id 的分辨率(精度)。有关 clk_id 的可接受值列表,请参阅 Clock ID 常量 。
適用:Unix。
3.3 版新加入.
-
time.
clock_gettime
(clk_id) → float¶ 返回指定 clk_id 时钟的时间。有关 clk_id 的可接受值列表,请参阅 Clock ID 常量 。
使用
clock_gettime_ns()
以避免float
类型导致的精度损失。適用:Unix。
3.3 版新加入.
-
time.
clock_gettime_ns
(clk_id) → int¶ 与
clock_gettime()
相似,但返回时间为纳秒。適用:Unix。
3.7 版新加入.
-
time.
clock_settime
(clk_id, time: float)¶ 设置指定 clk_id 时钟的时间。 目前,
CLOCK_REALTIME
是 clk_id 唯一可接受的值。使用
clock_settime_ns()
以避免float
类型导致的精度损失。適用:Unix。
3.3 版新加入.
-
time.
clock_settime_ns
(clk_id, time: int)¶ 与
clock_settime()
相似,但设置时间为纳秒。適用:Unix。
3.7 版新加入.
-
time.
ctime
([secs])¶ 转换以距离初始纪元的秒数表示的时间为以下形式的字符串:
'Sun Jun 20 23:21:05 1993'
代表本地时间。 日期字段的长度为两个字符,如果日期只有一个数字则会以零填充,例如:'Wed Jun 9 04:26:40 1993'
。如果 secs 未提供或为
None
,则使用time()
所返回的当前时间。ctime(secs)
等价于asctime(localtime(secs))
。ctime()
不会使用区域设置信息。
-
time.
get_clock_info
(name)¶ 获取有关指定时钟的信息作为命名空间对象。 支持的时钟名称和读取其值的相应函数是:
'monotonic'
:time.monotonic()
'perf_counter'
:time.perf_counter()
'process_time'
:time.process_time()
'thread_time'
:time.thread_time()
'time'
:time.time()
结果具有以下属性:
adjustable : 如果时钟可以自动更改(例如通过NTP守护程序)或由系统管理员手动更改,则为
True
,否则为False
。implementation : 用于获取时钟值的基础C函数的名称。有关可能的值,请参阅 Clock ID 常量 。
monotonic :如果时钟不能倒退,则为
True
,否则为False
。resolution : 以秒为单位的时钟分辨率(
float
)
3.3 版新加入.
-
time.
gmtime
([secs])¶ 将以自 epoch 开始的秒数表示的时间转换为 UTC 的
struct_time
,其中 dst 标志始终为零。 如果未提供 secs 或为None
,则使用time()
所返回的当前时间。 一秒以内的小数将被忽略。 有关struct_time
对象的说明请参见上文。 有关此函数的逆操作请参阅calendar.timegm()
。
-
time.
localtime
([secs])¶ 与
gmtime()
相似但转换为当地时间。如果未提供 secs 或为None
,则使用由time()
返回的当前时间。当 DST 适用于给定时间时,dst标志设置为1
。localtime()
可能会引发OverflowError
,如果时间戳超出平台 Clocaltime()
或gmtime()
函数支持的范围,并会在localtime()
或gmtime()
失败时引发OSError
。这通常被限制在1970至2038年之间。
-
time.
mktime
(t)¶ 这是
localtime()
的反函数。它的参数是struct_time
或者完整的 9 元组(因为需要 dst 标志;如果它是未知的则使用-1
作为dst标志),它表示 local 的时间,而不是 UTC 。它返回一个浮点数,以便与time()
兼容。如果输入值不能表示为有效时间,则OverflowError
或ValueError
将被引发(这取决于Python或底层C库是否捕获到无效值)。它可以生成时间的最早日期取决于平台。
-
time.
monotonic
() → float¶ (以小数表示的秒为单位)返回一个单调时钟的值,即不能倒退的时钟。 该时钟不受系统时钟更新的影响。 返回值的参考点未被定义,因此只有两次调用之间的差值才是有效的。
使用
monotonic_ns()
以避免float
类型导致的精度损失。3.3 版新加入.
3.5 版更變: 该功能现在始终可用且始终在系统范围内。
3.10 版更變: 在 macOS 上,现在这个函数作用于全系统。
-
time.
monotonic_ns
() → int¶ 与
monotonic()
相似,但是返回时间为纳秒数。3.7 版新加入.
-
time.
perf_counter
() → float¶ (以小数表示的秒为单位)返回一个性能计数器的值,即用于测量较短持续时间的具有最高有效精度的时钟。 它会包括睡眠状态所消耗的时间并且作用于全系统范围。 返回值的参考点未被定义,因此只有两次调用之间的差值才是有效的。
使用
perf_counter_ns()
以避免float
类型导致的精度损失。3.3 版新加入.
3.10 版更變: 在 Windows 上,现在这个函数作用于全系统。
-
time.
perf_counter_ns
() → int¶ 与
perf_counter()
相似,但是返回时间为纳秒。3.7 版新加入.
-
time.
process_time
() → float¶ (以小数表示的秒为单位)返回当前进程的系统和用户 CPU 时间的总计值。 它不包括睡眠状态所消耗的时间。 根据定义它只作用于进程范围。 返回值的参考点未被定义,因此只有两次调用之间的差值才是有效的。
使用
process_time_ns()
以避免float
类型导致的精度损失。3.3 版新加入.
-
time.
process_time_ns
() → int¶ 与
process_time()
相似,但是返回时间为纳秒。3.7 版新加入.
-
time.
sleep
(secs)¶ 调用该方法的线程将被暂停执行 secs 秒。参数可以是浮点数,以表示更为精确的睡眠时长。由于任何捕获到的信号都会终止
sleep()
引发的该睡眠过程并开始执行信号的处理例程,因此实际的暂停时长可能小于请求的时长;此外,由于系统需要调度其他活动,实际暂停时长也可能比请求的时间长。3.5 版更變: 现在,即使该睡眠过程被信号中断,该函数也会保证调用它的线程至少会睡眠 secs 秒。信号处理例程抛出异常的情况除外。(欲了解我们做出这次改变的原因,请参见 PEP 475 )
-
time.
strftime
(format[, t])¶ 转换一个元组或
struct_time
表示的由gmtime()
或localtime()
返回的时间到由 format 参数指定的字符串。如果未提供 t ,则使用由localtime()
返回的当前时间。 format 必须是一个字符串。如果 t 中的任何字段超出允许范围,则引发ValueError
。0是时间元组中任何位置的合法参数;如果它通常是非法的,则该值被强制改为正确的值。
以下指令可以嵌入 format 字符串中。它们显示时没有可选的字段宽度和精度规范,并被
strftime()
结果中的指示字符替换:指令
含意
註解
%a
本地化的缩写星期中每日的名称。
%A
本地化的星期中每日的完整名称。
%b
本地化的月缩写名称。
%B
本地化的月完整名称。
%c
本地化的适当日期和时间表示。
%d
十进制数 [01,31] 表示的月中日。
%H
十进制数 [00,23] 表示的小时(24小时制)。
%I
十进制数 [01,12] 表示的小时(12小时制)。
%j
十进制数 [001,366] 表示的年中日。
%m
十进制数 [01,12] 表示的月。
%M
十进制数 [00,59] 表示的分钟。
%p
本地化的 AM 或 PM 。
(1)
%S
十进制数 [00,61] 表示的秒。
(2)
%U
十进制数 [00,53] 表示的一年中的周数(星期日作为一周的第一天)。 在第一个星期日之前的新年中的所有日子都被认为是在第 0 周。
(3)
%w
十进制数 [0(星期日),6] 表示的周中日。
%W
十进制数 [00,53] 表示的一年中的周数(星期一作为一周的第一天)。 在第一个星期一之前的新年中的所有日子被认为是在第 0 周。
(3)
%x
本地化的适当日期表示。
%X
本地化的适当时间表示。
%y
十进制数 [00,99] 表示的没有世纪的年份。
%Y
十进制数表示的带世纪的年份。
%z
时区偏移以格式 +HHMM 或 -HHMM 形式的 UTC/GMT 的正或负时差指示,其中H表示十进制小时数字,M表示小数分钟数字 [-23:59, +23:59] 。1
%Z
时区名称(如果不存在时区,则不包含字符)。已弃用。 1
%%
字面的
'%'
字符。註解:
当与
strptime()
函数一起使用时,如果使用%I
指令来解析小时,%p
指令只影响输出小时字段。范围真的是
0
到61
;值60
在表示 leap seconds 的时间戳中有效,并且由于历史原因支持值61
。当与
strptime()
函数一起使用时,%U
和%W
仅用于指定星期几和年份的计算。
下面是一个示例,一个与 RFC 2822 Internet电子邮件标准以兼容的日期格式。 1
>>> from time import gmtime, strftime >>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) 'Thu, 28 Jun 2001 14:17:15 +0000'
某些平台可能支持其他指令,但只有此处列出的指令具有 ANSI C 标准化的含义。要查看平台支持的完整格式代码集,请参阅 strftime(3) 文档。
在某些平台上,可选的字段宽度和精度规范可以按照以下顺序紧跟在指令的初始
'%'
之后;这也不可移植。字段宽度通常为2,除了%j
,它是3。
-
time.
strptime
(string[, format])¶ 根据格式解析表示时间的字符串。 返回值为一个被
gmtime()
或localtime()
返回的struct_time
。format 参数使用与
strftime()
相同的指令。 它默认为匹配ctime()
所返回的格式"%a %b %d %H:%M:%S %Y"`
。 如果 string 不能根据 format 来解析,或者解析后它有多余的数据,则会引发ValueError
。 当无法推断出更准确的值时,用于填充任何缺失数据的默认值是(1900, 1, 1, 0, 0, 0, 0, 1, -1)
。 string 和 format 都必须为字符串。例如:
>>> import time >>> time.strptime("30 Nov 00", "%d %b %y") time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)
支持
%Z
指令是基于tzname
中包含的值以及daylight
是否为真。因此,它是特定于平台的,除了识别始终已知的 UTC 和 GMT (并且被认为是非夏令时时区)。仅支持文档中指定的指令。因为每个平台都实现了
strftime()
,它有时会提供比列出的指令更多的指令。但是strptime()
独立于任何平台,因此不一定支持所有未记录为支持的可用指令。
-
class
time.
struct_time
¶ 返回的时间值序列的类型为
gmtime()
、localtime()
和strptime()
。它是一个带有 named tuple 接口的对象:可以通过索引和属性名访问值。 存在以下值:索引
屬性
值
0
tm_year
(例如,1993)
1
tm_mon
range [1, 12]
2
tm_mday
range [1, 31]
3
tm_hour
range [0, 23]
4
tm_min
range [0, 59]
5
tm_sec
range [0, 61]; 见
strftime()
介绍中的 (2)6
tm_wday
range [0, 6] ,周一为 0
7
tm_yday
range [1, 366]
8
tm_isdst
0, 1 或 -1;如下所示
N/A
tm_zone
时区名称的缩写
N/A
tm_gmtoff
以秒为单位的UTC以东偏离
请注意,与C结构不同,月份值是 [1,12] 的范围,而不是 [0,11] 。
在调用
mktime()
时,tm_isdst
可以在夏令时生效时设置为1,而在夏令时不生效时设置为0。 值-1表示这是未知的,并且通常会导致填写正确的状态。当一个长度不正确的元组被传递给期望
struct_time
的函数,或者具有错误类型的元素时,会引发TypeError
。
-
time.
time
() → float¶ 返回以浮点数表示的从 epoch 开始的秒数的时间值。 epoch 的具体日期和 leap seconds 的处理取决于平台。 在 Windows 和大多数 Unix 系统中, epoch 是 1970 年 1 月 1 日 00:00:00 (UTC),并且闰秒将不计入从 epoch 开始的秒数。 这通常被称为 Unix 时间。 要了解给定平台上 epoch 的具体定义,请查看
gmtime(0)
。请注意,即使时间总是作为浮点数返回,但并非所有系统都提供高于1秒的精度。虽然此函数通常返回非递减值,但如果在两次调用之间设置了系统时钟,则它可以返回比先前调用更低的值。
返回的数字
time()
可以通过将其传递给gmtime()
函数或转换为UTC中更常见的时间格式(即年、月、日、小时等)或通过将它传递给localtime()
函数获得本地时间。在这两种情况下都返回一个struct_time
对象,日历日期组件可以从中作为属性访问。
-
time.
thread_time
() → float¶ (以小数表示的秒为单位)返回当前线程的系统和用户 CPU 时间的总计值。 它不包括睡眠状态所消耗的时间。 根据定义它只作用于线程范围。 返回值的参考点未被定义,因此只有两次调用之间的差值才是有效的。
使用
thread_time_ns()
以避免float
类型导致的精度损失。可用性 : Windows、 Linux、 Unix 系统支持
CLOCK_THREAD_CPUTIME_ID
。3.7 版新加入.
-
time.
thread_time_ns
() → int¶ 与
thread_time()
相似,但返回纳秒时间。3.7 版新加入.
-
time.
tzset
()¶ 重置库例程使用的时间转换规则。环境变量
TZ
指定如何完成。它还将设置变量tzname
(来自TZ
环境变量),timezone
(UTC的西部非DST秒),altzone
(UTC以西的DST秒)和daylight
(如果此时区没有任何夏令时规则则为0,如果有夏令时适用的时间,无论过去、现在或未来,则为非零)。適用:Unix。
TZ
环境变量的标准格式是(为了清晰起见,添加了空格):std offset [dst [offset [,start[/time], end[/time]]]]
组件的位置是:
std
和dst
三个或更多字母数字,给出时区缩写。这些将传到 time.tzname
offset
偏移量的形式为:
± hh[:mm[:ss]]
。这表示添加到达UTC的本地时间的值。如果前面有 '-' ,则时区位于本初子午线的东边;否则,在它是西边。如果dst之后没有偏移,则假设夏令时比标准时间提前一小时。start[/time], end[/time]
指示何时更改为DST和从DST返回。开始日期和结束日期的格式为以下之一:
Jn
Julian日 n (1 <= n <= 365)。闰日不计算在内,因此在所有年份中,2月28日是第59天,3月1日是第60天。
n
从零开始的Julian日(0 <= n <= 365)。 闰日计入,可以引用2月29日。
Mm.n.d
一年中 m 月的第 n 周(1 <= n <= 5 ,1 <= m <= 12 ,第 5 周表示 “可能在 m 月第 4 周或第 5 周出现的最后第 d 日”)的第 d 天(0 <= d <= 6)。 第 1 周是第 d 天发生的第一周。 第 0 天是星期天。
time
的格式与offset
的格式相同,但不允许使用前导符号( '-' 或 '+' )。如果没有给出时间,则默认值为02:00:00。
>>> os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0' >>> time.tzset() >>> time.strftime('%X %x %Z') '02:07:36 05/08/03 EDT' >>> os.environ['TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0' >>> time.tzset() >>> time.strftime('%X %x %Z') '16:08:12 05/08/03 AEST'
在许多Unix系统(包括 *BSD , Linux , Solaris 和 Darwin 上),使用系统的区域信息( tzfile(5) )数据库来指定时区规则会更方便。为此,将
TZ
环境变量设置为所需时区数据文件的路径,相对于系统 'zoneinfo' 时区数据库的根目录,通常位于/usr/share/zoneinfo
。 例如,'US/Eastern'
、'Australia/Melbourne'
、'Egypt'
或'Europe/Amsterdam'
。>>> os.environ['TZ'] = 'US/Eastern' >>> time.tzset() >>> time.tzname ('EST', 'EDT') >>> os.environ['TZ'] = 'Egypt' >>> time.tzset() >>> time.tzname ('EET', 'EEST')
Clock ID 常量¶
这些常量用作 clock_getres()
和 clock_gettime()
的参数。
-
time.
CLOCK_BOOTTIME
¶ 与
CLOCK_MONOTONIC
相同,除了它还包括系统暂停的任何时间。这允许应用程序获得一个暂停感知的单调时钟,而不必处理
CLOCK_REALTIME
的复杂性,如果使用settimeofday()
或类似的时间更改时间可能会有不连续性。適用:Linux 2.6.39 以上。
3.7 版新加入.
-
time.
CLOCK_HIGHRES
¶ Solaris OS 有一个
CLOCK_HIGHRES
计时器,试图使用最佳硬件源,并可能提供接近纳秒的分辨率。CLOCK_HIGHRES
是不可调节的高分辨率时钟。適用:Solaris。
3.3 版新加入.
-
time.
CLOCK_MONOTONIC_RAW
¶ 类似于
CLOCK_MONOTONIC
,但可以访问不受NTP调整影响的原始硬件时间。可用性: Linux 2.6.28 和更新版本, macOS 10.12 和更新版本。
3.3 版新加入.
-
time.
CLOCK_UPTIME
¶ 该时间的绝对值是系统运行且未暂停的时间,提供准确的正常运行时间测量,包括绝对值和间隔值。
適用:FreeBSD、OpenBSD 5.5 以上。
3.7 版新加入.
-
time.
CLOCK_UPTIME_RAW
¶ 单调递增的时钟,记录从一个任意起点开始的时间,不受频率或时间调整的影响,并且当系统休眠时将不会递增。
適用:macOS 10.12 以上。
3.8 版新加入.
以下常量是唯一可以发送到 clock_settime()
的参数。
时区常量¶
-
time.
altzone
¶ 本地DST时区的偏移量,以UTC为单位的秒数,如果已定义。如果当地DST时区在UTC以东(如在西欧,包括英国),则是负数。 只有当
daylight
非零时才使用它。 见下面的注释。
-
time.
daylight
¶ 如果定义了DST时区,则为非零。 见下面的注释。
-
time.
timezone
¶ 本地(非DST)时区的偏移量,UTC以西的秒数(西欧大部分地区为负,美国为正,英国为零)。 见下面的注释。
-
time.
tzname
¶ 两个字符串的元组:第一个是本地非DST时区的名称,第二个是本地DST时区的名称。 如果未定义DST时区,则不应使用第二个字符串。 见下面的注释。
備註
对于上述时区常量( altzone
、 daylight
、 timezone
和 tzname
),该值由模块加载时有效的时区规则确定,或者最后一次 tzset()
被调用时,并且在过去的时间可能不正确。建议使用来自 localtime()
结果的 tm_gmtoff
和 tm_zone
来获取时区信息。
也參考
datetime
模組更多面向对象的日期和时间接口。
locale
模組国际化服务。 区域设置会影响
strftime()
和strptime()
中许多格式说明符的解析。calendar
模組一般日历相关功能。这个模块的
timegm()
是函数gmtime()
的反函数。
註解