random --- 生成伪随机数

源码: Lib/random.py


该模块实现了各种分布的伪随机数生成器。

对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。

在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。

几乎所有模块函数都依赖于基本函数 random(),它在左开右闭区间 0.0 <= X < 1.0 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度的浮点数并且周期为 2**19937-1。 其在 C 中的这个底层实现既快速又线程安全。 Mersenne Twister 是目前经过最广泛测试的随机数生成器之一。 但是,因为是完全确定性的,它不适用于所有目的,并且完全不适用于加密目的。

这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。

如果你想使用自己设计的不同的基本生成器那么也可以子类化 Random 类:请参阅该类的文档了解详情。

random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。

警告

不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。

参见

M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.

Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。

簿记功能

random.seed(a=None, version=2)

初始化随机数生成器。

如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。

如果 a 是 int 类型,则直接使用。

对于版本2(默认的),strbytesbytearray 对象转换为 int 并使用它的所有位。

对于版本1(用于从旧版本的Python再现随机序列),用于 strbytes 的算法生成更窄的种子范围。

在 3.2 版本发生变更: 已移至版本2方案,该方案使用字符串种子中的所有位。

在 3.11 版本发生变更: seed 必须是下列类型之一: None, int, float, str, bytesbytearray

random.getstate()

返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。

random.setstate(state)

state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。

用于字节数据的函数

random.randbytes(n)

生成 n 个随机字节。

此方法不可用于生成安全凭据。 那应当使用 secrets.token_bytes()

在 3.9 版本加入.

整数用函数

random.randrange(stop)
random.randrange(start, stop[, step])

Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn't actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should not be used because the function may use them in unexpected ways.

在 3.2 版本发生变更: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像 int(random()*n) 这样的形式,它可以产生稍微不均匀的分布。

自 3.10 版本弃用: The automatic conversion of non-integer types to equivalent integers is deprecated. Currently randrange(10.0) is losslessly converted to randrange(10). In the future, this will raise a TypeError.

自 3.10 版本弃用: The exception raised for non-integer values such as randrange(10.5) or randrange('10') will be changed from ValueError to TypeError.

random.randint(a, b)

返回随机整数 N 满足 a <= N <= b。相当于 randrange(a, b+1)

random.getrandbits(k)

Returns a non-negative Python integer with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.

在 3.9 版本发生变更: 此方法现在接受零作为 k 的值。

序列用函数

random.choice(seq)

从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError

random.choices(population, weights=None, *, cum_weights=None, k=1)

population 中有重复地随机选取元素,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError

如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重 [10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。

如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weightscum_weights

weightscum_weights 可使用 random() 所返回的能与 float 值进行相互运算的任何数字类型(包括整数、浮点数、分数但不包括 decimal)。 权重值应当非负且为有限的数值。 如果所有的权重值均为零则会引发 ValueError

对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。

在 3.6 版本加入.

在 3.9 版本发生变更: 如果所有权重均为负值则将引发 ValueError

random.shuffle(x)

就地将序列 x 随机打乱位置。

要改变一个不可变的序列并返回一个新的打乱列表,请使用 sample(x, k=len(x))

请注意,即使对于小的 len(x)x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。

在 3.11 版本发生变更: 移除了可选的形参 random

random.sample(population, k, *, counts=None)

返回从总体序列中选取的唯一元素的长度为 k 的列表。 用于无重复的随机抽样。

返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。

总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。

重复的元素可以一个个地直接列出,或使用可选的仅限关键字形参 counts 来指定。 例如,sample(['red', 'blue'], counts=[4, 2], k=5) 等价于 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)

要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60)

如果样本大小大于总体大小,则引发 ValueError

在 3.9 版本发生变更: 增加了 counts 形参。

在 3.11 版本发生变更: population 必须为一个序列。 不再支持将集合自动转换为列表。

实值分布

以下函数生成特定的实值分布。如常用数学实践中所使用的那样,函数形参以分布方程中的相应变量命名,大多数这些方程都可以在任何统计学教材中找到。

random.random()

返回 0.0 <= X < 1.0 范围内的下一个随机浮点数。

random.uniform(a, b)

返回一个随机浮点数 N ,当 a <= ba <= N <= b ,当 b < ab <= N <= a

终点值 b 可能包括或不包括在该范围内,具体取决于表达式 a + (b-a) * random() 的浮点舍入结果。

random.triangular(low, high, mode)

返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 modelowhigh 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。

random.betavariate(alpha, beta)

Beta 分布。 参数的条件是 alpha > 0beta > 0。 返回值的范围介于 0 和 1 之间。

random.expovariate(lambd)

指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。

random.gammavariate(alpha, beta)

Gamma 分布。 (不是 gamma 函数!) shape 和 scale 形参,即 alphabeta,必须为正值。 (调用规范有变动并且有些源码会将 'beta' 定义为逆向的 scale)。

概率分布函数是:

          x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) =  --------------------------------------
            math.gamma(alpha) * beta ** alpha
random.gauss(mu=0.0, sigma=1.0)

正态分布,也称高斯分布。 mu 为平均值,而 sigma 为标准差。 此函数要稍快于下面所定义的 normalvariate() 函数。

多线程注意事项:当两个线程同时调用此方法时,它们有可能将获得相同的返回值。 这可以通过三种办法来避免。 1) 让每个线程使用不同的随机数生成器实例。 2) 在所有调用外面加锁。 3) 改用速度较慢但是线程安全的 normalvariate() 函数。

在 3.11 版本发生变更: 现在 musigma 均有默认参数。

random.lognormvariate(mu, sigma)

对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigmamu 可以是任何值,sigma 必须大于零。

random.normalvariate(mu=0.0, sigma=1.0)

正态分布。 mu 是平均值,sigma 是标准差。

在 3.11 版本发生变更: 现在 musigma 均有默认参数。

random.vonmisesvariate(mu, kappa)

冯·米塞斯分布。 mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2*pi 的范围内减小到均匀的随机角度。

random.paretovariate(alpha)

帕累托分布。 alpha 是形状参数。

random.weibullvariate(alpha, beta)

威布尔分布。 alpha 是比例参数,beta 是形状参数。

替代生成器

class random.Random([seed])

该类实现了 random 模块所用的默认伪随机数生成器。

在 3.11 版本发生变更: 之前 seed 可以是任何可哈希对象。 现在它被限制为: None, int, float, str, bytesbytearray

Random 的子类如果想要使用不同的基本生成器则应当重载下列方法:

seed(a=None, version=2)

在子类中重写此方法以自定义 Random 实例的 seed() 行为。

getstate()

在子类中重写此方法以自定义 Random 实例的 getstate() 行为。

setstate(state)

在子类中重写此方法以自定义 Random 实例的 setstate() 行为。

random()

在子类中重写此方法以自定义 Random 实例的 random() 行为。

作为可选项,自定义的生成器子类还可以提供下列方法:

getrandbits(k)

在子类中重写此方法以自定义 Random 实例的 getrandbits() 行为。

class random.SystemRandom([seed])

使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate()setstate() 方法如果被调用则引发 NotImplementedError

关于再现性的说明

Sometimes it is useful to be able to reproduce the sequences given by a pseudo-random number generator. By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:

  • 如果添加了新的播种方法,则将提供向后兼容的播种机。

  • 当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。

例子

基本示例:

>>> random()                          # Random float:  0.0 <= x < 1.0
0.37444887175646646

>>> uniform(2.5, 10.0)                # Random float:  2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate(1 / 5)                # Interval between arrivals averaging 5 seconds
5.148957571865031

>>> randrange(10)                     # Integer from 0 to 9 inclusive
7

>>> randrange(0, 101, 2)              # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw'])   # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()
>>> shuffle(deck)                     # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]

模拟:

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value:  ten, jack, queen, or king.
>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> dealt.count('tens') / 20
0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
...     return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
...     return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958

statistical bootstrapping 的示例,使用重新采样和替换来估计一个样本的均值的置信区间:

# https://www.thoughtco.com/example-of-bootstrapping-3126155
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
      f'interval from {means[5]:.1f} to {means[94]:.1f}')

使用 重新采样排列测试 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:

# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)

n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
    shuffle(combined)
    new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')

多服务器队列的到达时间和服务交付模拟:

from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles

average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3

waits = []
arrival_time = 0.0
servers = [0.0] * num_servers  # time when each server becomes available
heapify(servers)
for i in range(1_000_000):
    arrival_time += expovariate(1.0 / average_arrival_interval)
    next_server_available = servers[0]
    wait = max(0.0, next_server_available - arrival_time)
    waits.append(wait)
    service_duration = max(0.0, gauss(average_service_time, stdev_service_time))
    service_completed = arrival_time + wait + service_duration
    heapreplace(servers, service_completed)

print(f'Mean wait: {mean(waits):.1f}   Max wait: {max(waits):.1f}')
print('Quartiles:', [round(q, 1) for q in quantiles(waits)])

参见

Statistics for Hackers Jake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、洗牌和交叉验证。

Economics SimulationPeter Norvig 编写的市场模拟,它演示了对此模块所提供的许多工具和分布(gauss, uniform, sample, betavariate, choice, triangular 和 randrange)的高效运用。

A Concrete Introduction to Probability (using Python)Peter Norvig 撰写的教程,其中涉及概率论基础、如何编写模拟以及如何使用 Python 进行数据分析等内容。

例程

这些例程演示了如何有效地使用 itertools 模块中的组合迭代器进行随机选取:

def random_product(*args, repeat=1):
    "Random selection from itertools.product(*args, **kwds)"
    pools = [tuple(pool) for pool in args] * repeat
    return tuple(map(random.choice, pools))

def random_permutation(iterable, r=None):
    "Random selection from itertools.permutations(iterable, r)"
    pool = tuple(iterable)
    r = len(pool) if r is None else r
    return tuple(random.sample(pool, r))

def random_combination(iterable, r):
    "Random selection from itertools.combinations(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.sample(range(n), r))
    return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
    "Choose r elements with replacement.  Order the result to match the iterable."
    # Result will be in set(itertools.combinations_with_replacement(iterable, r)).
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.choices(range(n), k=r))
    return tuple(pool[i] for i in indices)

默认的 random() 返回在 0.0 ≤ x < 1.0 范围内 2⁻⁵³ 的倍数。 所有这些数值间隔相等并能精确表示为 Python 浮点数。 但是在此间隔上有许多其他可表示浮点数是不可能的选择。 例如,0.05954861408025609 就不是 2⁻⁵³ 的整数倍。

以下规范程序采取了一种不同的方式。 在间隔上的所有浮点数都是可能的选择。 它们的尾数取值来自 2⁵² ≤ 尾数 < 2⁵³ 范围内整数的均匀分布。 指数取值则来自几何分布,其中小于 -53 的指数的出现频率为下一个较大指数的一半。

from random import Random
from math import ldexp

class FullRandom(Random):

    def random(self):
        mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
        exponent = -53
        x = 0
        while not x:
            x = self.getrandbits(32)
            exponent += x.bit_length() - 32
        return ldexp(mantissa, exponent)

该类中所有的 实值分布 都将使用新的方法:

>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544

该规范程序在概念上等效于在 0.0 ≤ x < 1.0 范围内对所有 2⁻¹⁰⁷⁴ 的倍数进行选择的算法。 所有这样的数字间隔都相等,但大多必须向下舍入为最接近的 Python 浮点数表示形式。 (2⁻¹⁰⁷⁴ 这个数值是等于 math.ulp(0.0) 的未经正规化的最小正浮点数。)

参见

生成伪随机浮点数值 为 Allen B. Downey 所撰写的描述如何生成相比通过 random() 正常生成的数值更细粒度浮点数的论文。