math — Funções matemáticas


Este módulo fornece acesso às funções matemáticas definidas pelo padrão C.

Essas funções não podem ser usadas com números complexos; use as funções de mesmo nome do módulo cmath se você precisar de suporte para números complexos. A distinção entre funções que suportam números complexos e aquelas que não suportam é feita uma vez que a maioria dos usuários não quer aprender a matemática necessária para entender números complexos. Receber uma exceção em vez de um resultado complexo permite a detecção antecipada do número complexo inesperado usado como parâmetro, para que o programador possa determinar como e por que ele foi gerado em primeiro lugar.

As funções a seguir são fornecidas por este módulo. Exceto quando explicitamente indicado de outra forma, todos os valores de retorno são pontos flutuantes.

Number-theoretic and representation functions

ceil(x)

Ceiling of x, the smallest integer greater than or equal to x

comb(n, k)

Number of ways to choose k items from n items without repetition and without order

copysign(x, y)

Magnitude (absolute value) of x with the sign of y

fabs(x)

Absolute value of x

factorial(n)

n factorial

floor (x)

Floor of x, the largest integer less than or equal to x

fma(x, y, z)

Fused multiply-add operation: (x * y) + z

fmod(x, y)

Remainder of division x / y

frexp(x)

Mantissa and exponent of x

fsum(iterable)

Sum of values in the input iterable

gcd(*integers)

Greatest common divisor of the integer arguments

isclose(a, b, rel_tol, abs_tol)

Check if the values a and b are close to each other

isfinite(x)

Check if x is neither an infinity nor a NaN

isinf(x)

Check if x is a positive or negative infinity

isnan(x)

Check if x is a NaN (not a number)

isqrt(n)

Integer square root of a nonnegative integer n

lcm(*integers)

Least common multiple of the integer arguments

ldexp(x, i)

x * (2**i), inverse of function frexp()

modf(x)

Fractional and integer parts of x

nextafter(x, y, steps)

Floating-point value steps steps after x towards y

perm(n, k)

Number of ways to choose k items from n items without repetition and with order

prod(iterable, start)

Product of elements in the input iterable with a start value

remainder(x, y)

Remainder of x with respect to y

sumprod(p, q)

Sum of products from two iterables p and q

trunc(x)

Integer part of x

ulp(x)

Value of the least significant bit of x

Power and logarithmic functions

cbrt(x)

Cube root of x

exp(x)

e raised to the power x

exp2(x)

2 raised to the power x

expm1(x)

e raised to the power x, minus 1

log(x, base)

Logarithm of x to the given base (e by default)

log1p(x)

Natural logarithm of 1+x (base e)

log2(x)

Base-2 logarithm of x

log10(x)

Base-10 logarithm of x

pow(x, y)

x raised to the power y

sqrt(x)

Square root of x

Trigonometric functions

acos(x)

Arc cosine of x

asin(x)

Arc sine of x

atan(x)

Arc tangent of x

atan2(y, x)

atan(y / x)

cos(x)

Cosine of x

dist(p, q)

Euclidean distance between two points p and q given as an iterable of coordinates

hypot(*coordinates)

Euclidean norm of an iterable of coordinates

sin(x)

Sine of x

tan(x)

Tangent of x

Angular conversion

degrees(x)

Convert angle x from radians to degrees

radians(x)

Convert angle x from degrees to radians

Hyperbolic functions

acosh(x)

Inverse hyperbolic cosine of x

asinh(x)

Inverse hyperbolic sine of x

atanh(x)

Inverse hyperbolic tangent of x

cosh(x)

Hyperbolic cosine of x

sinh(x)

Hyperbolic sine of x

tanh(x)

Hyperbolic tangent of x

Special functions

erf(x)

Error function at x

erfc(x)

Complementary error function at x

gamma(x)

Gamma function at x

lgamma(x)

Natural logarithm of the absolute value of the Gamma function at x

Constants

pi

π = 3.141592…

e

e = 2.718281…

tau

τ = 2π = 6.283185…

inf

Positive infinity

nan

“Not a number” (NaN)

Funções de teoria dos números e de representação

math.ceil(x)

Retorna o teto de x, o menor inteiro maior ou igual que x. Se x não é um float, delega para x.__ceil__, que deve retornar um valor do tipo Integral.

math.comb(n, k)

Retorna o número de maneiras de escolher k itens de n itens sem repetição e sem ordem.

Avalia para n! / (k! * (n - k)!) quando k <= n e avalia para zero quando k > n.

Também conhecido como coeficiente binomial pois é equivalente ao coeficiente do k-ésimo termo na expansão polionomial (1 + x)ⁿ

Levanta TypeError se algum dos argumentos não for inteiro. Levanta ValueError se algum dos argumentos for negativo.

Adicionado na versão 3.8.

math.copysign(x, y)

Retorna um ponto flutuante com a magnitude (valor absoluto) de x, mas o sinal de y. Em plataformas que suportam zeros com sinal, copysign(1.0, -0.0) retorna -1.0.

math.fabs(x)

Retorna o valor absoluto de x.

math.factorial(n)

Retorna o fatorial de n como um inteiro. Levanta ValueError se n não for um inteiro ou for negativo.

Alterado na versão 3.10: Números de ponto flutuate com valor integral (como 5.0) não são mais aceitos.

math.floor(x)

Retorna o chão de x, o maior inteiro menor ou igual a x. Se x não é um ponto flutuante, delega para x.__floor__, que deve retornar um valor do tipo Integral

math.fma(x, y, z)

Operação de multiplicação-adição combinada. Retorna (x * y) + z, calculado de forma a obter o mesmo resultado que seria obtido se o cálculo desfrutasse de precisão e limites infinitos, seguido de um único arredondamento para o formato float. Esta operação frequentemente oferece acurácia melhor do que a expressão direta (x * y) + z ofereceria.

Esta função segue a especificação da operação fusedMultiplyAdd descrita no padrão IEEE 754. O padrão deixa um caso a ser definido pela implementação, que são os resultados de fma(0, inf, nan) e fma(inf, 0, nan). Nestes casos, math.fma retorna NaN, e não levanta nenhuma exceção.

Adicionado na versão 3.13.

math.fmod(x, y)

Retorna fmod(x, y), conforme definido pela biblioteca C da plataforma. Observe que a expressão Python x % y pode não retornar o mesmo resultado. A intenção do padrão C é que fmod(x, y) seja exatamente (matematicamente; com precisão infinita) igual a x - n*y para algum inteiro n de modo que o resultado tenha o mesmo sinal que x e magnitude menor que abs(y). O x % y do Python retorna um resultado com o sinal de y, e pode não ser exatamente computável para argumentos de ponto flutuante. Por exemplo, fmod(-1e-100, 1e100) é -1e-100, mas o resultado de -1e-100 % 1e100 do Python é 1e100-1e-100, que não pode ser representado exatamente como um ponto flutuante, e é arredondado para o surpreendente 1e100. Por esta razão, a função fmod() é geralmente preferida ao trabalhar com pontos flutuantes, enquanto o x % y do Python é preferido ao trabalhar com inteiros.

math.frexp(x)

Retorna a mantissa e o expoente de x como o par (m, e). m é um ponto flutuante e e é um inteiro tal que x == m * 2**e exatamente. Se x for zero, retorna (0.0, 0), caso contrário, 0.5 <= abs(m) < 1. Isso é usado para “separar” a representação interna de um ponto flutuante de forma portátil.

math.fsum(iterable)

Retorna uma soma precisa dos valores de ponto flutuante no iterável. Evita perda de precisão rastreando várias somas parciais intermediárias.

A precisão do algoritmo depende das garantias aritméticas do IEEE-754 e do caso típico em que o modo de arredondamento é meio par. Em algumas compilações que não são do Windows, a biblioteca C subjacente usa adição de precisão estendida e pode ocasionalmente arredondar uma soma intermediária fazendo com que ela introduza um erro no bit menos significativo.

Para uma discussão mais aprofundada e duas abordagens alternativas, consulte o ASPN cookbook recipes for accurate floating point summation.

math.gcd(*integers)

Retorna o maior divisor comum dos argumentos inteiros especificados. Se algum dos argumentos for diferente de zero, o valor retornado será o maior inteiro positivo que é um divisor de todos os argumentos. Se todos os argumentos forem zero, o valor retornado será 0. gcd() sem argumentos retorna 0.

Adicionado na versão 3.5.

Alterado na versão 3.9: Adicionado suporte para um número arbitrário de argumentos. Anteriormente, apenas dois argumentos eram suportados.

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

Retorna True se os valores a e b estiverem próximos e False caso contrário.

Whether or not two values are considered close is determined according to given absolute and relative tolerances. If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be nonnegative and less than 1.0.

abs_tol is the absolute tolerance; it defaults to 0.0 and it must be nonnegative. When comparing x to 0.0, isclose(x, 0) is computed as abs(x) <= rel_tol  * abs(x), which is False for any x and rel_tol less than 1.0. So add an appropriate positive abs_tol argument to the call.

Os valores especiais do IEEE 754 de NaN, inf e -inf serão tratados de acordo com as regras do IEEE. Especificamente, NaN não é considerado próximo a qualquer outro valor, incluindo NaN. inf e -inf são considerados apenas próximos a si mesmos.

Adicionado na versão 3.5.

Ver também

PEP 485 – Uma função para testar igualdade aproximada

math.isfinite(x)

Retorna True se x não for um infinito nem um NaN, e False caso contrário. (Observe que 0.0 é considerado finito.)

Adicionado na versão 3.2.

math.isinf(x)

Retorna True se x for um infinito positivo ou negativo, e False caso contrário.

math.isnan(x)

Retorna True se x for um NaN (não um número), e False caso contrário.

math.isqrt(n)

Retorna a raiz quadrada inteira do inteiro não negativo n. Este é o piso da raiz quadrada exata de n, ou equivalentemente o maior inteiro a tal que a² ≤ n.

Para algumas aplicações, pode ser mais conveniente ter o menor número inteiro a tal que n ≤ a² ou, em outras palavras, o teto da raiz quadrada exata de n. Para n positivo, isso pode ser calculado usando a = 1 + isqrt(n - 1).

Adicionado na versão 3.8.

math.lcm(*integers)

Retorna o mínimo múltiplo comum dos argumentos inteiros especificados. Se todos os argumentos forem diferentes de zero, o valor retornado será o menor inteiro positivo que é um múltiplo de todos os argumentos. Se algum dos argumentos for zero, o valor retornado será 0. lcm() sem argumentos retorna 1.

Adicionado na versão 3.9.

math.ldexp(x, i)

Retorna x * (2**i). Este é essencialmente o inverso da função frexp().

math.modf(x)

Retorna as partes fracionárias e inteiras de x. Ambos os resultados carregam o sinal de x e são pontos flutuantes.

math.nextafter(x, y, steps=1)

Retorna o valor de ponto flutuante com steps passos após x em direção a y.

Se x for igual a y, retorna y, a menos que steps seja zero.

Exemplos:

  • math.nextafter(x, math.inf) sobe: em direção ao infinito positivo.

  • math.nextafter(x, -math.inf) desce: em direção ao menos infinito.

  • math.nextafter(x, 0.0) vai em direção a zero.

  • math.nextafter(x, math.copysign(math.inf, x)) se afasta do zero.

Veja também math.ulp.()

Adicionado na versão 3.9.

Alterado na versão 3.12: Adicionado o argumento steps.

math.perm(n, k=None)

Retorna o número de maneiras de escolher k itens de n itens sem repetição e com ordem.

Avalia para n! / (n - k)! quando k <= n e avalia para zero quando k > n.

Se k não for especificado ou for None, k usará o padrão n e a função retornará n!.

Levanta TypeError se algum dos argumentos não for inteiro. Levanta ValueError se algum dos argumentos for negativo.

Adicionado na versão 3.8.

math.prod(iterable, *, start=1)

Calcula o produto de todos os elementos na entrada iterable. O valor start padrão para o produto é 1.

Quando o iterável estiver vazio, retorna o valor de start. Esta função deve ser usada especificamente com valores numéricos e pode rejeitar tipos não numéricos.

Adicionado na versão 3.8.

math.remainder(x, y)

Retorna o resto no estilo IEEE 754 de x em relação a y. Para o finito x e o finito diferente de zero y, esta é a diferença x - n*y, onde n é o número inteiro mais próximo do valor exato do quociente x / y . Se x / y está exatamente no meio do caminho entre dois inteiros consecutivos, o inteiro par mais próximo é usado para n. O resto r = remainder(x, y) assim sempre satisfaz abs(r) <= 0.5 * abs(y).

Casos especiais seguem IEEE 754: em particular, remainder(x, math.inf) é x para qualquer x finito, e remainder(x, 0) e remainder(math.inf, x) levantam ValueError para qualquer x não NaN. Se o resultado da operação remainder for zero, esse zero terá o mesmo sinal de x.

Em plataformas que usam ponto flutuante binário do IEEE 754, o resultado dessa operação é sempre exatamente representável: nenhum erro de arredondamento é introduzido.

Adicionado na versão 3.7.

math.sumprod(p, q)

Retorna a soma dos produtos dos valores de dois iteráveis p e q.

Levanta ValueError se as entradas não tiverem o mesmo comprimento.

Aproximadamente equivalente a:

sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))

Para entradas float e mistas int/float, os produtos intermediários e as somas são calculados com precisão estendida.

Adicionado na versão 3.12.

math.trunc(x)

Retorna x com a parte fracionária removida, deixando a parte inteira. Isso arredonda para 0: trunc() é equivalente a floor() para x positivos, e equivalentes a ceil() para x negativos. Se x não é um ponto flutuante, então delega para x.__trunc__, cujo qual deve retornar um valor do tipo Integral.

math.ulp(x)

Retorna o valor do bit menos significativo do ponto flutuante x:

  • Se x for um NaN (não um número), retorna x.

  • Se x for negativo, retorna ulp(-x).

  • Se x for um infinito positivo, retorna x.

  • Se x for igual a zero, retorna o menor valor flutuante positivo desnormalizado representável (menor que o ponto flutuante de valor mínimo positivo normalizado, sys.float_info.min).

  • Se x for igual ao maior ponto flutuante positivo representável, retorna o valor do bit menos significativo de x, tal que o primeiro ponto flutuante menor que x seja x - ulp(x).

  • Caso contrário (x é um número finito positivo), retorna o valor do bit menos significativo de x, de modo que o primeiro ponto flutuante maior que x seja x + ulp(x).

ULP significa “Unit in the Last Place” ou, em português, unidade na última posição.

Veja também math.nextafter() e sys.float_info.epsilon.

Adicionado na versão 3.9.

Observe que frexp() e modf() têm um padrão de chamada/retorno diferente de seus equivalentes C: elas pegam um único argumento e retornam um par de valores, ao invés de retornar seu segundo valor de retorno por meio de um “parâmetro de saída” (não existe tal coisa em Python).

Para as funções ceil(), floor() e modf(), observe que todos os números de ponto flutuante de magnitude suficientemente grande são inteiros exatos. Os pontos flutuantes do Python normalmente não carregam mais do que 53 bits de precisão (o mesmo que o tipo duplo da plataforma C), caso em que qualquer ponto flutuante x com abs(x) >= 2**52 necessariamente não tem bits fracionários.

Funções de potência e logarítmicas

math.cbrt(x)

Retorna a raiz cúbica de x.

Adicionado na versão 3.11.

math.exp(x)

Retorna e elevado à potência x, onde e = 2.718281… é a base dos logaritmos naturais. Isso geralmente é mais preciso do que math.e ** x ou pow(math.e, x).

math.exp2(x)

Retorna 2 elevado a x

Adicionado na versão 3.11.

math.expm1(x)

Retorna e elevado à potência x, menos 1. Aqui e é a base dos logaritmos naturais. Para pequenos pontos flutuantes x, a subtração em exp(x) - 1 pode resultar em uma perda significativa de precisão; a função expm1() fornece uma maneira de calcular essa quantidade com precisão total:

>>> from math import exp, expm1
>>> exp(1e-5) - 1  # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5)    # result accurate to full precision
1.0000050000166668e-05

Adicionado na versão 3.2.

math.log(x[, base])

Com um argumento, retorna o logaritmo natural de x (para base e).

Com dois argumentos, retorna o logaritmo de x para a base fornecida, calculada como log(x)/log(base).

math.log1p(x)

Retorna o logaritmo natural de 1+x (base e). O resultado é calculado de forma precisa para x próximo a zero.

math.log2(x)

Retorna o logaritmo de base 2 de x. Isso geralmente é mais preciso do que log(x, 2).

Adicionado na versão 3.3.

Ver também

int.bit_length() retorna o número de bits necessários para representar um inteiro em binário, excluindo o sinal e os zeros à esquerda.

math.log10(x)

Retorna o logaritmo de base 10 de x. Isso geralmente é mais preciso do que log(x, 10).

math.pow(x, y)

Return x raised to the power y. Exceptional cases follow the IEEE 754 standard as far as possible. In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises ValueError.

Ao contrário do operador embutido **, math.pow() converte ambos os seus argumentos para o tipo float. Use ** ou a função embutida pow() para calcular potências inteiras exatas.

Alterado na versão 3.11: Os casos especiais pow(0.0, -inf) e pow(-0.0, -inf) foram alterados para retornar inf ao invés de retornarem ValueError, para ter consistencia com a IEEE 754.

math.sqrt(x)

Retorna a raiz quadrada de x.

Funções trigonométricas

math.acos(x)

Retorna o arco cosseno de x, em radianos. O resultado está entre 0 e pi.

math.asin(x)

Retorna o arco seno de x, em radianos. O resultado está entre -pi/2 e pi/2.

math.atan(x)

Retorna o arco tangente de x, em radianos. O resultado está entre -pi/2 e pi/2.

math.atan2(y, x)

Retorna atan(y / x), em radianos. O resultado está entre -pi e pi. O vetor no plano da origem ao ponto (x, y) faz este ângulo com o eixo X positivo. O ponto de atan2() é que os sinais de ambas as entradas são conhecidos por ele, então ele pode calcular o quadrante correto para o ângulo. Por exemplo, atan(1) e atan2(1, 1) são ambos pi/4, mas atan2(-1, -1) é -3*pi/4.

math.cos(x)

Retorna o cosseno de x radianos.

math.dist(p, q)

Retorna a distância euclidiana entre dois pontos p e q, cada um dado como uma sequência (ou iterável) de coordenadas. Os dois pontos devem ter a mesma dimensão.

Aproximadamente equivalente a:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

Adicionado na versão 3.8.

math.hypot(*coordinates)

Retorna a norma euclidiana, sqrt(sum(x**2 for x in coordinates)). Este é o comprimento do vetor da origem até o ponto dado pelas coordenadas.

Para um ponto bidimensional (x, y), isso é equivalente a calcular a hipotenusa de um triângulo retângulo usando o teorema de Pitágoras, sqrt(x*x + y*y).

Alterado na versão 3.8: Adicionado suporte para pontos n-dimensionais. Anteriormente, apenas o caso bidimensional era suportado.

Alterado na versão 3.10: Melhorou a precisão do algoritmo para que o erro máximo seja inferior a 1 ulp (unidade no último lugar). Mais tipicamente, o resultado é quase sempre arredondado corretamente para 1/2 ulp.

math.sin(x)

Retorna o seno de x radianos.

math.tan(x)

Retorna o tangente de x radianos.

Conversão angular

math.degrees(x)

Converte o ângulo x de radianos para graus.

math.radians(x)

Converte o ângulo x de graus para radianos.

Funções hiperbólicas

Funções hiperbólicas são análogas às funções trigonométricas baseadas em hipérboles em vez de círculos.

math.acosh(x)

Retorna o cosseno hiperbólico inverso de x.

math.asinh(x)

Retorna o seno hiperbólico inverso de x.

math.atanh(x)

Retorna a tangente hiperbólica inversa de x.

math.cosh(x)

Retorna o cosseno hiperbólico de x.

math.sinh(x)

Retorna o seno hiperbólico de x.

math.tanh(x)

Retorna a tangente hiperbólica de x.

Funções especiais

math.erf(x)

Retorna a função erro em x.

A função erf() pode ser usada para calcular funções estatísticas tradicionais, como a distribuição normal padrão cumulativa:

def phi(x):
    'Função de distribuição cumulativa para a distribuição normal padrão.'
    return (1.0 + erf(x / sqrt(2.0))) / 2.0

Adicionado na versão 3.2.

math.erfc(x)

Retorna a função erro complementar em x. A função erro complementar é definida como 1.0 - erf(x). É usado para grandes valores de x onde uma subtração de um causaria uma perda de significância.

Adicionado na versão 3.2.

math.gamma(x)

Retorna a função gama em x.

Adicionado na versão 3.2.

math.lgamma(x)

Retorna o logaritmo natural do valor absoluto da função gama em x.

Adicionado na versão 3.2.

Constantes

math.pi

A constante matemática π = 3.141592…, para a precisão disponível.

math.e

A constante matemática e = 2.718281…, para a precisão disponível.

math.tau

A constante matemática τ = 6.283185…, para a precisão disponível. Tau é uma constante de círculo igual a 2π, a razão entre a circunferência de um círculo e seu raio. Para saber mais sobre Tau, confira o vídeo Pi is (still) Wrong de Vi Hart, e comece a comemorar o dia do Tau comendo duas vezes mais torta!

Adicionado na versão 3.6.

math.inf

Um infinito positivo de ponto flutuante. (Para infinito negativo, use -math.inf.) Equivalente à saída de float('inf').

Adicionado na versão 3.5.

math.nan

Um valor de ponto flutuante “não é um número” (NaN). Equivalente à saída de float('nan'). Devido aos requisitos do padrão IEEE-754, math.nan e float('nan') não são considerados para ser igual a qualquer outro valor numérico, incluindo eles próprios. Para verificar se um número é NaN, use a função isnan() para testar NaNs em vez de is ou ==. Exemplo:

>>> import math
>>> math.nan == math.nan
False
>>> float('nan') == float('nan')
False
>>> math.isnan(math.nan)
True
>>> math.isnan(float('nan'))
True

Adicionado na versão 3.5.

Alterado na versão 3.11: Agora está sempre disponível

Detalhes da implementação do CPython: O módulo math consiste principalmente em invólucros finos em torno das funções da biblioteca matemática C da plataforma. O comportamento em casos excepcionais segue o Anexo F da norma C99 quando apropriado. A implementação atual levantará ValueError para operações inválidas como sqrt(-1.0) ou log(0.0) (onde C99 Anexo F recomenda sinalizar operação inválida ou divisão por zero), e OverflowError para resultados que estouram (por exemplo, exp(1000.0)). Um NaN não será retornado de nenhuma das funções acima, a menos que um ou mais dos argumentos de entrada sejam um NaN; nesse caso, a maioria das funções retornará um NaN, mas (novamente seguindo C99 Anexo F) há algumas exceções a esta regra, por exemplo, pow(float('nan'), 0.0) ou hypot(float('nan'), float('inf')).

Observe que o Python não faz nenhum esforço para distinguir NaNs de sinalização de NaNs silenciosos, e o comportamento para NaNs de sinalização permanece não especificado. O comportamento típico é tratar todos os NaNs como se estivessem quietos.

Ver também

Módulo cmath

Versões de números complexos de muitas dessas funções.