turtle — Gráficos Tartaruga

Código-fonte: Lib/turtle.py


Introdução

Gráficos tartaruga é uma forma popular de apresentar programação para crianças. Era parte da linguagem de programação Logo desenvolvida por Wally Feuzeig, Seymour Papert and Cynthia Solomon em 1967.

Imagine uma tartaruga robótica começando em (0, 0) no plano x-y. Depois de um import turtle, dê-lhe o comando turtle.forward(15), e ela moverá (na tela!) 15 pixels na direção em que está virada (para frente), desenhando uma linha à medida que ela se move. Digite o comando turtle.right(25), e faça ela girar, no lugar, 25 graus no sentido horário.

Ao combinar esses comandos similares, formas intrincadas e imagens podem ser desenhadas facilmente.

O módulo turtle é uma reimplementação estendida de um módulo de mesmo nome da distribuição padrão do Python até a versão Python 2.5.

Ele tenta manter as características do antigo módulo turtle e ser (quase) 100% compatível com ele. Isso significa, em primeiro lugar, permitir que o programador iniciante use todos os comandos, classes e métodos interativamente ao usar o módulo de dentro do IDLE executado com a chave -n.

O módulo turtle fornece gráficos rudimentares, tanto para programação orientada a objetos quanto procedural. Como ele usa o tkinter como módulo gráfico, ele necessita de uma versão do instalada do Python que suporta o Tk.

A interface orientada a objetos usa essencialmente duas classes (e duas subclasses):

  1. A classe TurtleScreen define as janelas gráficas como um parque de diversões para as tartarugas de desenho. Seu construtor precisa de um tkinter.Canvas ou um ScrolledCanvas como argumento. Deve ser usado quando turtle é usado como parte de algum aplicativo.

    A função Screen() retorna um objeto singleton de uma subclasse TurtleScreen. Esta função deve ser usada quando turtle é usado como uma ferramenta autônoma para fazer gráficos. Como um objeto singleton, não é possível herdar de sua classe.

    Todos os métodos de TurtleScreen/Screen também existem como funções, ou seja, como parte da interface orientada a procedimentos.

  2. RawTurtle (pedido: RawPen) define objetos Turtle que desenham em uma TurtleScreen. Seu construtor precisa de um Canvas, ScrolledCanvas ou TurtleScreen como argumento, para que os objetos RawTurtle saibam onde desenhar.

    Derivada de RawTurtle é a subclasse Turtle (alias: Pen), que se baseia “na” instância Screen que é criada automaticamente, se ainda não estiver presente.

    Todos os métodos de RawTurtle/Turtle também existem como funções, isto é, parte de uma interface procedural orientada à objeto.

A interface procedural fornece funções que são derivadas dos métodos das classes Screen e Turtle. Eles têm os mesmos nomes que os métodos correspondentes. Um objeto de tela é criado automaticamente sempre que uma função derivada de um método de tela é chamada. Um objeto turtle (sem nome) é criado automaticamente sempre que qualquer uma das funções derivadas de um método Turtle é chamada.

Para usar várias tartarugas em uma tela, é preciso usar a interface orientada a objetos.

Nota

Na documentação a seguir, a lista de argumentos para funções é fornecida. Os métodos, é claro, têm o primeiro argumento adicional self que é omitido aqui.

Visão geral dos métodos Turtle e Screen disponíveis

Métodos de Turtle

Movimentos de Turtle
Movimento e desenho
Fala o estado de Turtle
Configuração e Medidas
Controle da Caneta
Estado do Desenho
Controle da Cor
Preenchimento
Mais sobre o Controle do Desenho
Estado da Tartaruga
Visibilidade
Aparência
Eventos Utilizados
Métodos Especiais da Tartaruga

Métodos de TurtleScreen/Screen

Controle da Janela
Controle da animação
Usando os eventos de tela
Configurações e métodos especiais
Métodos de entrada
Métodos específicos para Screen

Métodos de RawTurtle/Turtle e funções correspondentes

A maioria dos exemplos desta seção referem-se a uma instância Turtle chamada turtle.

Movimentos de Turtle

turtle.forward(distance)
turtle.fd(distance)
Parâmetros

distance – um número (inteiro ou ponto flutuante)

Move a tartaruga para frente pela distance especificada, na direção em que a tartaruga está indo.

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)
turtle.back(distance)
turtle.bk(distance)
turtle.backward(distance)
Parâmetros

distance – um número

Move a tartaruga para trás por distance, na direção oposta à direção em que a tartaruga está indo. Não muda o rumo da tartaruga.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)
turtle.right(angle)
turtle.rt(angle)
Parâmetros

angle – um número (inteiro ou ponto flutuante)

Vira a tartaruga à direita por unidades de angle. (As unidades são por padrão graus, mas podem ser definidas através das funções degrees() e radians().) A orientação do ângulo depende do modo tartaruga, veja mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0
turtle.left(angle)
turtle.lt(angle)
Parâmetros

angle – um número (inteiro ou ponto flutuante)

Vira a tartaruga à esquerda por unidades de angle. (As unidades são por padrão graus, mas podem ser definidas através das funções degrees() e radians().) A orientação do ângulo depende do modo tartaruga, veja mode().

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0
turtle.goto(x, y=None)
turtle.setpos(x, y=None)
turtle.setposition(x, y=None)
Parâmetros
  • x – um número ou um par/vetor de números

  • y – um número ou None

Se y for None, x deve ser um par de coordenadas ou uma classe Vec2D (por exemplo, como retornado pela função pos()).

Move a tartaruga para uma posição absoluta. Caso a caneta esteja virada para baixo, traça a linha. Não altera a orientação da tartaruga.

 >>> tp = turtle.pos()
 >>> tp
 (0.00,0.00)
 >>> turtle.setpos(60,30)
 >>> turtle.pos()
 (60.00,30.00)
 >>> turtle.setpos((20,80))
 >>> turtle.pos()
 (20.00,80.00)
 >>> turtle.setpos(tp)
 >>> turtle.pos()
 (0.00,0.00)
turtle.setx(x)
Parâmetros

x – um número (inteiro ou ponto flutuante)

Define a primeira coordenada da tartaruga para x, deixa a segunda coordenada inalterada.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)
turtle.sety(y)
Parâmetros

y – um número (inteiro ou ponto flutuante)

Defina a segunda coordenada da tartaruga para y, deixa a primeira coordenada inalterada.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)
turtle.setheading(to_angle)
turtle.seth(to_angle)
Parâmetros

to_angle – um número (inteiro ou ponto flutuante)

Define a orientação da tartaruga para to_angle. Aqui estão algumas direções mais comuns em graus:

modo padrão

modo logo

0 - leste

0 - norte

90 - norte

90 - leste

180 - oeste

180 - sul

270 - sul

270 - oeste

>>> turtle.setheading(90)
>>> turtle.heading()
90.0
turtle.home()

Move a tartaruga para a origem – coordenadas (0,0) – e define seu rumo para sua orientação inicial (que depende do modo, veja mode()).

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
turtle.circle(radius, extent=None, steps=None)
Parâmetros
  • radius – um número

  • extent – um número (ou None)

  • steps – um inteiro (ou None)

Desenha um círculo com dado radius. O centro são as unidades de radius à esquerda da tartaruga; extent – um ângulo – determina qual parte do círculo é desenhada. Se extent não for fornecida, desenha o círculo inteiro. Se extent não for um círculo completo, uma extremidade do arco será a posição atual da caneta. Desenha o arco no sentido anti-horário se radius for positivo, caso contrário, no sentido horário. Finalmente, a direção da tartaruga é alterada pela quantidade de extent.

Como o círculo é aproximado por um polígono regular inscrito, steps determina o número de passos a serem usados. Caso não seja informado, será calculado automaticamente. Pode ser usado para desenhar polígonos regulares.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180)  # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0
turtle.dot(size=None, *color)
Parâmetros
  • size – um inteiro >= 1 (caso seja fornecido)

  • color – uma string de cores ou uma tupla de cores numéricas

Desenha um ponto circular com diâmetro size, usando color. Se size não for fornecido, o máximo de pensize+4 e 2*pensize será usado.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0
turtle.stamp()

Carimba uma cópia da forma da tartaruga na tela na posição atual da tartaruga. Retorna um stamp_id para esse carimbo, que pode ser usado para excluí-lo chamando clearstamp(stamp_id).

>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)
turtle.clearstamp(stampid)
Parâmetros

stampid – um inteiro, deve ser o valor de retorno da chamada de stamp() anterior

Exclui o carimbo com o stamp fornecido.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)
turtle.clearstamps(n=None)
Parâmetros

n – um inteiro (ou None)

Exclui todos ou o primeiro/último n dos selos da tartaruga. Se n for None, exclui todos os carimbos, se n > 0 exclui os primeiros n carimbos, senão se n < 0 exclui os últimos n carimbos.

>>> for i in range(8):
...     turtle.stamp(); turtle.fd(30)
13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()
turtle.undo()

Desfaz (repetidamente) a(s) última(s) ação(ões) da tartaruga. O número de ações de desfazer disponíveis é determinado pelo tamanho do buffer de desfazer.

>>> for i in range(4):
...     turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
...     turtle.undo()
turtle.speed(speed=None)
Parâmetros

speed – um inteiro no intervalo 0..10 ou uma string de velocidade (veja abaixo)

Define a velocidade da tartaruga para um valor inteiro no intervalo 0..10. Se nenhum argumento for fornecido, retorna a velocidade atual.

Se a entrada for um número maior que 10 ou menor que 0,5, a velocidade é definida como 0. As strings de velocidade são mapeadas para valores de velocidade da seguinte forma:

  • “fastest”: 0

  • “fast”: 10

  • “normal”: 6

  • “slow”: 3

  • “slowest”: 1

Velocidades de 1 a 10 tornam a animação cada vez mais rápida, tanto para o desenho da linha como para a rotação da tartaruga.

Atenção: speed = 0 significa que nenhuma animação ocorre. Para frente/trás faz a tartaruga pular e da mesma forma para esquerda/direita faz a tartaruga girar instantaneamente.

>>> turtle.speed()
3
>>> turtle.speed('normal')
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

Fala o estado de Turtle

turtle.position()
turtle.pos()

Retorna a localização atual da tartaruga (x,y) (como um vetor Vec2D).

>>> turtle.pos()
(440.00,-0.00)
turtle.towards(x, y=None)
Parâmetros
  • x – um número ou um par/vetor de números ou uma instância de tartaruga

  • y – um número caso x seja um número, senão None

Retorna o ângulo entre a linha da posição da tartaruga para a posição especificada por (x,y), o vetor ou a outra tartaruga. Isso depende da orientação inicial da tartaruga, que depende do modo - “standard”/”world” ou “logo”.

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0
turtle.xcor()

Retorna a coordenada X da tartaruga.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)
>>> print(round(turtle.xcor(), 5))
64.27876
turtle.ycor()

Retorna a coordenada Y da tartaruga.

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.pos())
(50.00,86.60)
>>> print(round(turtle.ycor(), 5))
86.60254
turtle.heading()

Retorna o título atual da tartaruga (o valor depende do modo da tartaruga, veja mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0
turtle.distance(x, y=None)
Parâmetros
  • x – um número ou um par/vetor de números ou uma instância de tartaruga

  • y – um número caso x seja um número, senão None

Retorna a distância da tartaruga para (x,y), o vetor dado, ou a outra tartaruga dada, em unidades de passo de tartaruga.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

Configurações de medida

turtle.degrees(fullcircle=360.0)
Parâmetros

fullcircle – um número

Define as unidades de medição do ângulo, ou seja, defina o número de “graus” para um círculo completo. O valor padrão é 360 graus.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0

Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0
turtle.radians()

Define as unidades de medida de ângulo para radianos. Equivalente a degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

Controle da Caneta

Estado do Desenho

turtle.pendown()
turtle.pd()
turtle.down()

Desce a caneta - desenha ao se mover.

turtle.penup()
turtle.pu()
turtle.up()

Levanta a caneta – sem qualquer desenho ao se mover.

turtle.pensize(width=None)
turtle.width(width=None)
Parâmetros

width – um número positivo

Define a espessura da linha para width ou retorne-a. Se resizemode estiver definido como “auto” e a forma de tartaruga for um polígono, esse polígono será desenhado com a mesma espessura de linha. Se nenhum argumento for fornecido, o tamanho da pena atual será retornado.

>>> turtle.pensize()
1
>>> turtle.pensize(10)   # from here on lines of width 10 are drawn
turtle.pen(pen=None, **pendict)
Parâmetros
  • pen – um dicionário com algumas ou todas as chaves listadas abaixo

  • pendict – um ou mais argumentos nomeados com as chaves listadas abaixo como palavras-chave

Retorna ou define os atributos da caneta em um “dicionário da caneta” com os seguintes pares de chave/valor:

  • “shown”: True/False

  • “pendown”: True/False

  • “pencolor”: string de cores ou tupla de cores

  • “fillcolor”: string de cores ou tupla de cores

  • “pensize”: número positivo

  • “speed”: número na faixa de 0..10

  • “resizemode”: “auto”, “user” ou “noresize”

  • “stretchfactor”: (número positivo, número positivo)

  • “outline”: número positivo

  • “tilt”: número

Este dicionário pode ser usado como argumento para uma chamada subsequente para pen() para restaurar o estado da caneta anterior. Além disso, um ou mais desses atributos podem ser fornecidos como argumentos nomeados. Isso pode ser usado para definir vários atributos de caneta em uma instrução.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),
 ('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
 ('shearfactor', 0.0), ('shown', True), ('speed', 9),
 ('stretchfactor', (1.0, 1.0)), ('tilt', 0.0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow')]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())[:3]
[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red')]
turtle.isdown()

Retorna True se a caneta estiver abaixada, False se estiver levantada.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

Controle da Cor

turtle.pencolor(*args)

Retorna ou define a cor da caneta ou pencolor.

São permitidos quatro formatos de entrada:

pencolor()

Retorna a cor da caneta atual como string de especificação de cor ou como uma tupla (veja o exemplo). Pode ser usado como entrada para outra chamada color/pencolor/fillcolor.

pencolor(colorstring)

Define pencolor como colorstring, que é uma string de especificação de cor Tk, como "red", "yellow" ou "#33cc8c".

pencolor((r, g, b))

Define a cor da caneta como a cor RGB representada pela tupla r, g, e b. Os valores de r, g, and b precisam estar na faixa 0..colormode, onde colormode é 1.0 ou 255 (ver colormode()).

pencolor(r, g, b)

Define a cor da caneta como a cor RGB representada por r, g, e b. Os valores de r, g, and b precisam estar na faixa 0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.

 >>> colormode()
 1.0
 >>> turtle.pencolor()
 'red'
 >>> turtle.pencolor("brown")
 >>> turtle.pencolor()
 'brown'
 >>> tup = (0.2, 0.8, 0.55)
 >>> turtle.pencolor(tup)
 >>> turtle.pencolor()
 (0.2, 0.8, 0.5490196078431373)
 >>> colormode(255)
 >>> turtle.pencolor()
 (51.0, 204.0, 140.0)
 >>> turtle.pencolor('#32c18f')
 >>> turtle.pencolor()
 (50.0, 193.0, 143.0)
turtle.fillcolor(*args)

Retorna ou define o fillcolor.

São permitidos quatro formatos de entrada:

fillcolor()

Return the current fillcolor as color specification string, possibly in tuple format (see example). May be used as input to another color/pencolor/fillcolor call.

fillcolor(colorstring)

Set fillcolor to colorstring, which is a Tk color specification string, such as "red", "yellow", or "#33cc8c".

fillcolor((r, g, b))

Set fillcolor to the RGB color represented by the tuple of r, g, and b. Each of r, g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

fillcolor(r, g, b)

Set fillcolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range 0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor.

 >>> turtle.fillcolor("violet")
 >>> turtle.fillcolor()
 'violet'
 >>> turtle.pencolor()
 (50.0, 193.0, 143.0)
 >>> turtle.fillcolor((50, 193, 143))  # Integers, not floats
 >>> turtle.fillcolor()
 (50.0, 193.0, 143.0)
 >>> turtle.fillcolor('#ffffff')
 >>> turtle.fillcolor()
 (255.0, 255.0, 255.0)
turtle.color(*args)

Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as follows:

color()

Return the current pencolor and the current fillcolor as a pair of color specification strings or tuples as returned by pencolor() and fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b)

Inputs as in pencolor(), set both, fillcolor and pencolor, to the given value.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and analogously if the other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.

 >>> turtle.color("red", "green")
 >>> turtle.color()
 ('red', 'green')
 >>> color("#285078", "#a0c8f0")
 >>> color()
 ((40.0, 80.0, 120.0), (160.0, 200.0, 240.0))

Veja também: Método da tela colormode().

Preenchimento

turtle.filling()

Retorna fillstate (True se estiver preenchido, False caso contrário).

 >>> turtle.begin_fill()
 >>> if turtle.filling():
 ...    turtle.pensize(5)
 ... else:
 ...    turtle.pensize(3)
turtle.begin_fill()

To be called just before drawing a shape to be filled.

turtle.end_fill()

Fill the shape drawn after the last call to begin_fill().

Whether or not overlap regions for self-intersecting polygons or multiple shapes are filled depends on the operating system graphics, type of overlap, and number of overlaps. For example, the Turtle star above may be either all yellow or have some white regions.

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

Mais sobre o Controle do Desenho

turtle.reset()

Delete the turtle’s drawings from the screen, re-center the turtle and set variables to the default values.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
turtle.clear()

Delete the turtle’s drawings from the screen. Do not move turtle. State and position of the turtle as well as drawings of other turtles are not affected.

turtle.write(arg, move=False, align='left', font=('Arial', 8, 'normal'))
Parâmetros
  • arg – object to be written to the TurtleScreen

  • move – True/False

  • align – uma das Strings “left”, “center” ou right”

  • font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle position according to align (“left”, “center” or “right”) and with the given font. If move is true, the pen is moved to the bottom-right corner of the text. By default, move is False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

Estado da Tartaruga

Visibilidade

turtle.hideturtle()
turtle.ht()

Make the turtle invisible. It’s a good idea to do this while you’re in the middle of doing some complex drawing, because hiding the turtle speeds up the drawing observably.

>>> turtle.hideturtle()
turtle.showturtle()
turtle.st()

Tornar a tartaruga visível.

>>> turtle.showturtle()
turtle.isvisible()

Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

Aparência

turtle.shape(name=None)
Parâmetros

name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape with name must exist in the TurtleScreen’s shape dictionary. Initially there are the following polygon shapes: “arrow”, “turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to deal with shapes see Screen method register_shape().

>>> turtle.shape()
'classic'
>>> turtle.shape("turtle")
>>> turtle.shape()
'turtle'
turtle.resizemode(rmode=None)
Parâmetros

rmode – uma das Strings “auto”, “user”, “noresize”

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode is not given, return current resizemode. Different resizemodes have the following effects:

  • “auto”: adapta a aparência da tartaruga correspondente ao valor do pensize.

  • “user”: adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth (outline), which are set by shapesize().

  • “noresize”: no adaption of the turtle’s appearance takes place.

resizemode("user") is called by shapesize() when used with arguments.

>>> turtle.resizemode()
'noresize'
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
'auto'
turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)
Parâmetros
  • stretch_wid – número positivo

  • stretch_len – número positivo

  • outline – número positivo

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to “user”. If and only if resizemode is set to “user”, the turtle will be displayed stretched according to its stretchfactors: stretch_wid is stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction of its orientation, outline determines the width of the shapes’s outline.

>>> turtle.shapesize()
(1.0, 1.0, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)
turtle.shearfactor(shear=None)
Parâmetros

shear – número (opcional)

Set or return the current shearfactor. Shear the turtleshape according to the given shearfactor shear, which is the tangent of the shear angle. Do not change the turtle’s heading (direction of movement). If shear is not given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines parallel to the heading of the turtle are sheared.

 >>> turtle.shape("circle")
 >>> turtle.shapesize(5,2)
 >>> turtle.shearfactor(0.5)
 >>> turtle.shearfactor()
 0.5
turtle.tilt(angle)
Parâmetros

angle – um número

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)
>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)
turtle.settiltangle(angle)
Parâmetros

angle – um número

Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

Obsoleto desde a versão 3.1.

turtle.tiltangle(angle=None)
Parâmetros

angle – um número (opcional)

Set or return the current tilt-angle. If angle is given, rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not change the turtle’s heading (direction of movement). If angle is not given: return the current tilt-angle, i. e. the angle between the orientation of the turtleshape and the heading of the turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0
turtle.shapetransform(t11=None, t12=None, t21=None, t22=None)
Parâmetros
  • t11 – um número (opcional)

  • t12 – um número (opcional)

  • t21 – um número (opcional)

  • t12 – um número (opcional)

Set or return the current transformation matrix of the turtle shape.

If none of the matrix elements are given, return the transformation matrix as a tuple of 4 elements. Otherwise set the given elements and transform the turtleshape according to the matrix consisting of first row t11, t12 and second row t21, t22. The determinant t11 * t22 - t12 * t21 must not be zero, otherwise an error is raised. Modify stretchfactor, shearfactor and tiltangle according to the given matrix.

>>> turtle = Turtle()
>>> turtle.shape("square")
>>> turtle.shapesize(4,2)
>>> turtle.shearfactor(-0.5)
>>> turtle.shapetransform()
(4.0, -1.0, -0.0, 2.0)
turtle.get_shapepoly()

Return the current shape polygon as tuple of coordinate pairs. This can be used to define a new shape or components of a compound shape.

>>> turtle.shape("square")
>>> turtle.shapetransform(4, -1, 0, 2)
>>> turtle.get_shapepoly()
((50, -20), (30, 20), (-50, 20), (-30, -20))

Eventos Utilizados

turtle.onclick(fun, btn=1, add=None)
Parâmetros
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example for the anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
...     left(180)
...
>>> onclick(turn)  # Now clicking into the turtle will turn it.
>>> onclick(None)  # event-binding will be removed
turtle.onrelease(fun, btn=1, add=None)
Parâmetros
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):
...     def glow(self,x,y):
...         self.fillcolor("red")
...     def unglow(self,x,y):
...         self.fillcolor("")
...
>>> turtle = MyTurtle()
>>> turtle.onclick(turtle.glow)     # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.
turtle.ondrag(fun, btn=1, add=None)
Parâmetros
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing handdrawings (if pen is down).

Métodos Especiais da Tartaruga

turtle.begin_poly()

Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

turtle.end_poly()

Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be connected with the first vertex.

turtle.get_poly()

Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)
turtle.clone()

Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()
turtle.getturtle()
turtle.getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the “anonymous turtle”:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>
turtle.getscreen()

Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for that object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")
turtle.setundobuffer(size)
Parâmetros

size – um inteiro ou None

Set or disable undobuffer. If size is an integer, an empty undobuffer of given size is installed. size gives the maximum number of turtle actions that can be undone by the undo() method/function. If size is None, the undobuffer is disabled.

>>> turtle.setundobuffer(42)
turtle.undobufferentries()

Return number of entries in the undobuffer.

>>> while undobufferentries():
...     undo()

Formas compostas

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper class Shape explicitly as described below:

  1. Create an empty Shape object of type “compound”.

  2. Add as many components to this object as desired, using the addcomponent() method.

    Por exemplo:

    >>> s = Shape("compound")
    >>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
    >>> s.addcomponent(poly1, "red", "blue")
    >>> poly2 = ((0,0),(10,-5),(-10,-5))
    >>> s.addcomponent(poly2, "blue", "red")
    
  3. Now add the Shape to the Screen’s shapelist and use it:

    >>> register_shape("myshape", s)
    >>> shape("myshape")
    

Nota

The Shape class is used internally by the register_shape() method in different ways. The application programmer has to deal with the Shape class only when using compound shapes like shown above!

Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Controle da Janela

turtle.bgcolor(*args)
Parâmetros

args – a color string or three numbers in the range 0..colormode or a 3-tuple of such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
'orange'
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128.0, 0.0, 128.0)
turtle.bgpic(picname=None)
Parâmetros

picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the corresponding image as background. If picname is "nopic", delete background image, if present. If picname is None, return the filename of the current backgroundimage.

>>> screen.bgpic()
'nopic'
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"
turtle.clear()

Nota

This TurtleScreen method is available as a global function only under the name clearscreen. The global function clear is a different one derived from the Turtle method clear.

turtle.clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its initial state: white background, no background image, no event bindings and tracing on.

turtle.reset()

Nota

This TurtleScreen method is available as a global function only under the name resetscreen. The global function reset is another one derived from the Turtle method reset.

turtle.resetscreen()

Reset all Turtles on the Screen to their initial state.

turtle.screensize(canvwidth=None, canvheight=None, bg=None)
Parâmetros
  • canvwidth – positive integer, new width of canvas in pixels

  • canvheight – positive integer, new height of canvas in pixels

  • bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the turtles are drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use the scrollbars. With this method, one can make visible those parts of a drawing which were outside the canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

turtle.setworldcoordinates(llx, lly, urx, ury)
Parâmetros
  • llx – a number, x-coordinate of lower left corner of canvas

  • lly – a number, y-coordinate of lower left corner of canvas

  • urx – a number, x-coordinate of upper right corner of canvas

  • ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode “world” if necessary. This performs a screen.reset(). If mode “world” is already active, all drawings are redrawn according to the new coordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
...     left(10)
...
>>> for _ in range(8):
...     left(45); fd(2)   # a regular octagon

Controle da animação

turtle.delay(delay=None)
Parâmetros

delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two consecutive canvas updates.) The longer the drawing delay, the slower the animation.

Argumentos opcionais:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5
turtle.tracer(n=None, delay=None)
Parâmetros
  • n – inteiro não-negativo

  • delay – inteiro não-negativo

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular screen update is really performed. (Can be used to accelerate the drawing of complex graphics.) When called without arguments, returns the currently stored value of n. Second argument sets delay value (see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
...     fd(dist)
...     rt(90)
...     dist += 2
turtle.update()

Perform a TurtleScreen update. To be used when tracer is turned off.

Veja também o método RawTurtle/Turtle speed().

Usando os eventos de tela

turtle.listen(xdummy=None, ydummy=None)

Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to be able to pass listen() to the onclick method.

turtle.onkey(fun, key)
turtle.onkeyrelease(fun, key)
Parâmetros
  • fun – a function with no arguments or None

  • key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to be able to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():
...     fd(50)
...     lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()
turtle.onkeypress(fun, key=None)
Parâmetros
  • fun – a function with no arguments or None

  • key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Remark: in order to be able to register key-events, TurtleScreen must have focus. (See method listen().)

>>> def f():
...     fd(50)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()
turtle.onclick(fun, btn=1, add=None)
turtle.onscreenclick(fun, btn=1, add=None)
Parâmetros
  • fun – a function with two arguments which will be called with the coordinates of the clicked point on the canvas

  • btn – number of the mouse-button, defaults to 1 (left mouse button)

  • addTrue or False – if True, a new binding will be added, otherwise it will replace a former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>>                             # make the turtle move to the clicked point.
>>> screen.onclick(None)        # remove event binding again

Nota

This TurtleScreen method is available as a global function only under the name onscreenclick. The global function onclick is another one derived from the Turtle method onclick.

turtle.ontimer(fun, t=0)
Parâmetros
  • fun – um função sem nenhum argumento

  • t – um número >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True
>>> def f():
...     if running:
...         fd(50)
...         lt(60)
...         screen.ontimer(f, 250)
>>> f()   ### makes the turtle march around
>>> running = False
turtle.mainloop()
turtle.done()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a turtle graphics program. Must not be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive use of turtle graphics.

>>> screen.mainloop()

Métodos de entrada

turtle.textinput(title, prompt)
Parâmetros
  • title – string

  • prompt – string

Pop up a dialog window for input of a string. Parameter title is the title of the dialog window, prompt is a text mostly describing what information to input. Return the string input. If the dialog is canceled, return None.

>>> screen.textinput("NIM", "Name of first player:")
turtle.numinput(title, prompt, default=None, minval=None, maxval=None)
Parâmetros
  • title – string

  • prompt – string

  • default – número (opcional)

  • minval – número (opcional)

  • maxval – número (opcional)

Pop up a dialog window for input of a number. title is the title of the dialog window, prompt is a text mostly describing what numerical information to input. default: default value, minval: minimum value for input, maxval: maximum value for input. The number input must be in the range minval .. maxval if these are given. If not, a hint is issued and the dialog remains open for correction. Return the number input. If the dialog is canceled, return None.

>>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

Configurações e métodos especiais

turtle.mode(mode=None)
Parâmetros

mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode is not given, current mode is returned.

Mode “standard” is compatible with old turtle. Mode “logo” is compatible with most Logo turtle graphics. Mode “world” uses user-defined “world coordinates”. Attention: in this mode angles appear distorted if x/y unit-ratio doesn’t equal 1.

Modo

Título inicial da tartaruga

ângulos positivos

“standard”

para a direita (east)

counterclockwise

“logo”

upward (north)

sentido horário

>>> mode("logo")   # resets turtle heading to north
>>> mode()
'logo'
turtle.colormode(cmode=None)
Parâmetros

cmode – um dos valroes 1.0 ou 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in the range 0..*cmode*.

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):
     ...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)
turtle.getcanvas()

Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas object ...>
turtle.getshapes()

Retorna uma lista dos nomes de todas as formas de tartarugas disponíveis no momento.

>>> screen.getshapes()
['arrow', 'blank', 'circle', ..., 'turtle']
turtle.register_shape(name, shape=None)
turtle.addshape(name, shape=None)

Há três maneiras diferentes de chamar essa função:

  1. name is the name of a gif-file and shape is None: Install the corresponding image shape.

    >>> screen.register_shape("turtle.gif")
    

    Nota

    Image shapes do not rotate when turning the turtle, so they do not display the heading of the turtle!

  2. name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding polygon shape.

    >>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))
    
  3. name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding compound shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing the command shape(shapename).

turtle.turtles()

Retorne uma lista de tartarugas na tela.

>>> for turtle in screen.turtles():
...     turtle.color("red")
turtle.window_height()

Retorna a altura da janela da tartaruga.

>>> screen.window_height()
480
turtle.window_width()

Retorna a largura da janela da tartaruga.

>>> screen.window_width()
640

Methods specific to Screen, not inherited from TurtleScreen

turtle.bye()

Shut the turtlegraphics window.

turtle.exitonclick()

Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False (default value), also enter mainloop. Remark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True in turtle.cfg. In this case IDLE’s own mainloop is active also for the client script.

turtle.setup(width=_CFG['width'], height=_CFG['height'], startx=_CFG['leftright'], starty=_CFG['topbottom'])

Set the size and position of the main window. Default values of arguments are stored in the configuration dictionary and can be changed via a turtle.cfg file.

Parâmetros
  • width – if an integer, a size in pixels, if a float, a fraction of the screen; default is 50% of screen

  • height – if an integer, the height in pixels, if a float, a fraction of the screen; default is 75% of screen

  • startx – if positive, starting position in pixels from the left edge of the screen, if negative from the right edge, if None, center window horizontally

  • starty – if positive, starting position in pixels from the top edge of the screen, if negative from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>>              # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>>              # sets window to 75% of screen by 50% of screen and centers
turtle.title(titlestring)
Parâmetros

titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

Classes Públicas

class turtle.RawTurtle(canvas)
class turtle.RawPen(canvas)
Parâmetros

canvas – a tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of Turtle/RawTurtle”.

class turtle.Turtle

Subclass of RawTurtle, has the same interface but draws on a default Screen object created automatically when needed for the first time.

class turtle.TurtleScreen(cv)
Parâmetros

cv – uma tkinter.Canvas

Provides screen oriented methods like setbg() etc. that are described above.

class turtle.Screen

Subclass of TurtleScreen, with four methods added.

class turtle.ScrolledCanvas(master)
Parâmetros

master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-canvas with scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class turtle.Shape(type_, data)
Parâmetros

type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

type_

data

“polygon”

a polygon-tuple, i.e. a tuple of pairs of coordinates

“image”

an image (in this form only used internally!)

“compound”

None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)
Parâmetros
  • poly – a polygon, i.e. a tuple of pairs of numbers

  • fill – a color the poly will be filled with

  • outline – a color for the poly’s outline (if given)

Exemplo:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Formas compostas.

class turtle.Vec2D(x, y)

A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for turtle graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

  • a + b vetor adicional

  • a - b subtração de vetor

  • a * b produto interno

  • k * a e a * k multiplicação com escalar

  • abs(a) valor absoluto de um

  • rotação a.rotate(angle)

Ajuda e Configuração

Como usar a Ajuda

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these can be used as online-help via the Python help facilities:

  • When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-/method calls.

  • Calling help() on methods or functions displays the docstrings:

    >>> help(Screen.bgcolor)
    Help on method bgcolor in module turtle:
    
    bgcolor(self, *args) unbound turtle.Screen method
        Set or return backgroundcolor of the TurtleScreen.
    
        Arguments (if given): a color string or three numbers
        in the range 0..colormode or a 3-tuple of such numbers.
    
    
          >>> screen.bgcolor("orange")
          >>> screen.bgcolor()
          "orange"
          >>> screen.bgcolor(0.5,0,0.5)
          >>> screen.bgcolor()
          "#800080"
    
    >>> help(Turtle.penup)
    Help on method penup in module turtle:
    
    penup(self) unbound turtle.Turtle method
        Pull the pen up -- no drawing when moving.
    
        Aliases: penup | pu | up
    
        No argument
    
        >>> turtle.penup()
    
  • The docstrings of the functions which are derived from methods have a modified form:

    >>> help(bgcolor)
    Help on function bgcolor in module turtle:
    
    bgcolor(*args)
        Set or return backgroundcolor of the TurtleScreen.
    
        Arguments (if given): a color string or three numbers
        in the range 0..colormode or a 3-tuple of such numbers.
    
        Example::
    
          >>> bgcolor("orange")
          >>> bgcolor()
          "orange"
          >>> bgcolor(0.5,0,0.5)
          >>> bgcolor()
          "#800080"
    
    >>> help(penup)
    Help on function penup in module turtle:
    
    penup()
        Pull the pen up -- no drawing when moving.
    
        Aliases: penup | pu | up
    
        No argument
    
        Example:
        >>> penup()
    

These modified docstrings are created automatically together with the function definitions that are derived from the methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are the docstrings of the public methods of the classes Screen and Turtle.

turtle.write_docstringdict(filename='turtle_docstringdict')
Parâmetros

filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has to be called explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be written to the Python script filename.py. It is intended to serve as a template for translation of the docstrings into different languages.

If you (or your students) want to use turtle with online help in your native language, you have to translate the docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to retain best possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better fits to your needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be read at import time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen
title = Python Turtle Graphics
using_IDLE = False

Breve explicação das entradas selecionadas:

  • The first four lines correspond to the arguments of the Screen.setup() method.

  • Line 5 and 6 correspond to the arguments of the method Screen.screensize().

  • shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

  • If you want to use no fillcolor (i.e. make the turtle transparent), you have to write fillcolor = "" (but all nonempty strings must not have quotes in the cfg-file).

  • If you want to reflect the turtle its state, you have to use resizemode = auto.

  • If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py will be loaded at import time (if present on the import path, e.g. in the same directory as turtle).

  • The entries exampleturtle and examplescreen define the names of these objects as they occur in the docstrings. The transformation of method-docstrings to function-docstrings will delete these names from the docstrings.

  • using_IDLE: Set this to True if you regularly work with IDLE and its -n switch (“no subprocess”). This will prevent exitonclick() to enter the mainloop.

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current working directory. The latter will override the settings of the first one.

The Lib/turtledemo directory contains a turtle.cfg file. You can study it as an example and see its effects when running the demos (preferably not from within the demo-viewer).

turtledemo — Scripts de Demonstração

The turtledemo package includes a set of demo scripts. These scripts can be run and viewed using the supplied demo viewer as follows:

python -m turtledemo

Alternatively, you can run the demo scripts individually. For example,

python -m turtledemo.bytedesign

The turtledemo package directory contains:

  • A demo viewer __main__.py which can be used to view the sourcecode of the scripts and run them at the same time.

  • Multiple scripts demonstrating different features of the turtle module. Examples can be accessed via the Examples menu. They can also be run standalone.

  • A turtle.cfg file which serves as an example of how to write and use such files.

Os scripts de demonstração são:

Nome

Descrição

Recursos

bytedesign

Padrão de gráficos de tartaruga clássico complexo

tracer(), delay, update()

chaos

graphs Verhulst dynamics, shows that computer’s computations can generate results sometimes against the common sense expectations

coordenadas mundiais

relógio

Relógio analógico que mostra o horário do seu computador

tartarugas como as mãos do relógio, ontimer

colormixer

experimento com r, g, b

ondrag()

forest

3 breadth-first trees

randomization

fractalcurves

Curvas de Hilbert & Koch

recursão

lindenmayer

ethnomathematics (indian kolams)

L-System

minimal_hanoi

Torres de Hanoi

Tartarugas retângulos como discos de Hanói (shape, shapesize)

nim

play the classical nim game with three heaps of sticks against the computer.

turtles as nimsticks, event driven (mouse, keyboard)

paint

programa de desenho super minimalista

onclick()

peça

elementar

tartaruga: aparência e animação

penrose

aperiodic tiling with kites and darts

stamp()

planet_and_moon

simulação do sistema gravitacional

formas compostas, Vec2D

round_dance

dancing turtles rotating pairwise in opposite direction

compound shapes, clone shapesize, tilt, get_shapepoly, update

sorting_animate

visual demonstration of different sorting methods

simple alignment, randomization

tree

a (graphical) breadth first tree (using generators)

clone()

two_canvases

desenho simples

tartarugas em duas telas

wikipedia

um padrão do artigo Wikipédia sobre gráficos de tartaruga

clone(), undo()

yinyang

outro exemplo elementar

circle()

Diverta-se!

Modificações desde a versão do Python 2.6

  • The methods Turtle.tracer(), Turtle.window_width() and Turtle.window_height() have been eliminated. Methods with these names and functionality are now available only as methods of Screen. The functions derived from these remain available. (In fact already in Python 2.6 these methods were merely duplications of the corresponding TurtleScreen/Screen-methods.)

  • The method Turtle.fill() has been eliminated. The behaviour of begin_fill() and end_fill() have changed slightly: now every filling-process must be completed with an end_fill() call.

  • A method Turtle.filling() has been added. It returns a boolean value: True if a filling process is under way, False otherwise. This behaviour corresponds to a fill() call without arguments in Python 2.6.

Modificações desde a versão do Python 3.0

  • The methods Turtle.shearfactor(), Turtle.shapetransform() and Turtle.get_shapepoly() have been added. Thus the full range of regular linear transforms is now available for transforming turtle shapes. Turtle.tiltangle() has been enhanced in functionality: it now can be used to get or set the tiltangle. Turtle.settiltangle() has been deprecated.

  • The method Screen.onkeypress() has been added as a complement to Screen.onkey() which in fact binds actions to the keyrelease event. Accordingly the latter has got an alias: Screen.onkeyrelease().

  • The method Screen.mainloop() has been added. So when working only with Screen and Turtle objects one must not additionally import mainloop() anymore.

  • Two input methods has been added Screen.textinput() and Screen.numinput(). These popup input dialogs and return strings and numbers respectively.

  • Two example scripts tdemo_nim.py and tdemo_round_dance.py have been added to the Lib/turtledemo directory.