Funções embutidas¶
O interpretador do Python possui várias funções e tipos embutidos que sempre estão disponíveis. A seguir listamos todas as funções em ordem alfabética.
Funções embutidas |
||||
---|---|---|---|---|
-
abs
(x)¶ Retorna o valor absoluto de um número. O argumento pode ser um inteiro ou um número de ponto flutuante. Se o argumento é um número complexo, sua magnitude é retornada. Se x define
__abs__()
,abs(x)
retornax.__abs__()
.
-
all
(iterable)¶ Retorna
True
se todos os elementos de iterable são verdadeiros (ou se iterable estiver vazio). Equivalente a:def all(iterable): for element in iterable: if not element: return False return True
-
any
(iterable)¶ Retorna
True
se algum elemento de iterable for verdadeiro. Se iterable estiver vazio, retornaFalse
. Equivalente a:def any(iterable): for element in iterable: if element: return True return False
-
ascii
(object)¶ Como
repr()
, retorna uma string contendo uma representação imprimível de um objeto, mas faz escape de caracteres não-ASCII na string retornada porrepr()
usando sequências de escapes\x
,\u
or\U
. Isto gera uma string similar ao que é retornado porrepr()
no Python 2.
-
bin
(x)¶ Converte um número inteiro para uma string de binários prefixada com “0b”. O resultado é uma expressão Python válida. Se x não é um objeto Python
int
, ele tem que definir um método__index__()
que devolve um inteiro. Alguns exemplos:>>> bin(3) '0b11' >>> bin(-10) '-0b1010'
Se o prefixo “0b” é desejado ou não, você pode usar uma das seguintes maneiras.
>>> format(14, '#b'), format(14, 'b') ('0b1110', '1110') >>> f'{14:#b}', f'{14:b}' ('0b1110', '1110')
Veja também
format()
para mais informações.
-
class
bool
([x])¶ Devolve um valor Booleano, isto é,
True
ouFalse
. x é convertida usando o procedimento de teste de verdade padrão. Se x é falso ou foi omitido, isso devolveFalse
; senãoTrue
. A classebool
é uma subclasse deint
(veja Tipos numéricos — int, float, complex). Ela não pode ser usada para criar outra subclasse. Suas únicas instâncias sãoFalse
eTrue
(veja Valores Booleanos).Alterado na versão 3.7: x é agora um parâmetro somente posicional.
-
breakpoint
(*args, **kws)¶ Esta função coloca você no depurador no local da chamada. Especificamente, ela chama
sys.breakpointhook()
, passandoargs
ekws
diretamente. Por padrão,sys.breakpointhook()
chamapdb.set_trace()
não esperando nenhum argumento. Neste caso, isso é puramente uma função de conveniência para você não precisar importarpdb
explicitamente ou digitar mais código para entrar no depurador. Contudo,sys.breakpointhook()
pode ser configurado para alguma outra função ebreakpoint()
irá automaticamente chamá-la, permitindo você ir para o depurador de sua escolha.Levanta um evento de auditoria
builtins.breakpoint
com o argumentobreakpointhook
.Novo na versão 3.7.
-
class
bytearray
([source[, encoding[, errors]]]) Retorna um novo vetor de bytes. A classe
bytearray
é uma sequência mutável de inteiros no intervalo 0 <= x < 256. Ela tem a maior parte dos métodos mais comuns de sequências mutáveis, descritas em Tipos sequências mutáveis, assim como a maior parte dos métodos que o tipobytes
tem, veja Operações com Bytes e Bytearray.O parâmetro opcional source pode ser usado para inicializar o vetor de algumas maneiras diferentes:
Se é uma string, você deve informar o parâmetro encoding (e opcionalmente, errors);
bytearray()
então converte a string para bytes usandostr.encode()
.Se é um inteiro, o vetor terá esse tamanho e será inicializado com bytes nulos.
Se é um objeto em conformidade com a interface de buffer, um buffer somente leitura do objeto será usado para inicializar o vetor de bytes.
Se é um iterável, deve ser um iterável de inteiros no intervalo
0 <= x < 256
, que serão usados como o conteúdo inicial do vetor.
Sem nenhum argumento, um vetor de tamanho 0 é criado.
Veja também Tipos de Sequência Binária — bytes, bytearray, memoryview e Objetos Bytearray.
-
class
bytes
([source[, encoding[, errors]]]) Retorna um novo objeto “bytes”, que é uma sequência imutável de inteiros no intervalo
0 <= x < 256
.bytes
é uma versão imutável debytearray
– tem os mesmos métodos de objetos imutáveis e o mesmo comportamento de índices e fatiamento.Consequentemente, argumentos do construtor são interpretados como os de
bytearray()
.Objetos bytes também podem ser criados com literais, veja Literais de string e bytes.
Veja também Tipos de Sequência Binária — bytes, bytearray, memoryview, Objetos Bytes, e Operações com Bytes e Bytearray.
-
callable
(object)¶ Devolve
True
se o argumento object parece ser chamável,False
caso contrário. Se devolveTrue
, ainda é possível que a chamada falhe, mas se éFalse
, chamar object nunca será bem sucedido. Note que classes são chamáveis (chamar uma classe devolve uma nova instância); instâncias são chamáveis se suas classes possuem um método__call__()
.Novo na versão 3.2: Esta função foi removida na versão 3.0, mas retornou no Python 3.2.
-
chr
(i)¶ Retorna o caractere que é apontado pelo inteiro i no código Unicode. Por exemplo,
chr(97)
retorna a string'a'
, enquantochr(8364)
retorna a string'€'
. É o inverso deord()
.O intervalo válido para o argumento vai de 0 até 1.114.111 (0x10FFFF na base 16). Será lançada uma exceção
ValueError
se i estiver fora desse intervalo.
-
@
classmethod
¶ Transforma um método em um método de classe.
Um método de classe recebe a classe como primeiro argumento implícito, exatamente como uma método de instância recebe a instância. Para declarar um método de classe, faça dessa forma:
class C: @classmethod def f(cls, arg1, arg2, ...): ...
O termo
@classmethod
é uma função decoradora – veja Definições de função para detalhes.Um método de classe pode ser chamado tanto da classe (como em
C.f()
) quanto da instância (como emC().f()
). A instância é ignorada, exceto por sua classe. Se um método de classe é chamado por uma classe derivada, o objeto da classe derivada é passado como primeiro argumento implícito.Métodos de classe são diferentes de métodos estáticos em C++ ou Java. Se você quer saber desses, veja
staticmethod()
.Para mais informações sobre métodos de classe, veja A hierarquia de tipos padrão.
-
compile
(source, filename, mode, flags=0, dont_inherit=False, optimize=-1)¶ Compila o argumento source em código ou objeto AST. Objetos código podem ser executados por
exec()
oueval()
. source pode ser uma string normal, uma string byte, ou um objeto AST. Consulte a documentação do móduloast
para saber como trabalhar com objetos AST.O argumento filename deve ser o arquivo de onde o código será lido; passe algum valor reconhecível se isso não foi lido de um arquivo (
'<string>'
é comumente usado).O argumento mode especifica qual o tipo de código deve ser compilado; pode ser
'exec'
se source consiste em uma sequência de instruções,'eval'
se consiste de uma única expressão, ou'single'
se consiste de uma única instrução interativa (neste último caso, instruções que são avaliadas para alguma coisa diferente deNone
serão exibidas).Os argumentos opcionais flags e dont_inherit controlam qual instrução futura afeta a compilação de source. Se nenhum está presente (ou ambos são zero) o código é compilado com as instruções futuras que estão agindo no código que está chamando
compile()
. Se o argumento flags é fornecido, mas dont_inherit não é (ou é zero) então a instrução futura especificada por flags são usada em adição àquelas que seriam usada de qualquer forma. Se dont_inherit é um inteiro diferente de zero então o argumento flags define as instruções futuras que serão utilizadas – as instruções futuras atuando sobre o código que chama “compile” são ignoradas.Instruções futuras são especificadas por bits, assim pode ocorrer uma operação OU bit a bit para especificar múltiplas instruções. O sinalizador necessário para especificar um dado recurso pode ser encontrada no atributo
compiler_flag
na instância_Feature
do módulo__future__
.O argumento opcional flags também controla se é o código para compilar pode conter em nível superior
await
,async for
easync with
. Quando o bitast.PyCF_ALLOW_TOP_LEVEL_AWAIT
é definido, o código-objeto devolvido temCO_COROUTINE
definido emco_code
, e pode ser interativamente executado viaawait eval(code_object)
.O argumento optimize especifica o nível de otimização do compilador; o valor padrão de
-1
seleciona o nível de otimização do interpretador dado pela opção-O
. Níveis explícitos são0
(nenhuma otimização;__debug__
é verdadeiro),1
(instruçõesassert
são removidas,__debug__
é falso) ou2
(strings de documentação também são removidas).Essa função levanta
SyntaxError
se o código para compilar é inválido, eValueError
se o código contém bytes nulos.Se você quer analisar código Python em sua representação AST, veja
ast.parse()
.Levanta um evento de auditoria
compile
com argumentossource
,filename
.Nota
Quando compilando uma string com código multi-linhas em modo
'single'
ou'eval'
, entrada deve ser terminada por ao menos um caractere de nova linhas. Isso é para facilitar a detecção de instruções completas e incompletas no módulocode
.Aviso
É possível quebrar o interpretador Python com uma string suficientemente grande/complexa ao compilar para um objeto AST, devido limitações do tamanho da pilha no compilador AST do Python.
Alterado na versão 3.2: Permitido uso de marcadores de novas linhas no estilo Windows e Mac. Além disso, em modo
'exec'
a entrada não precisa mais terminar com uma nova linha. Também foi adicionado o parâmetro optimize.Alterado na versão 3.5: Anteriormente,
TypeError
era levantada quando havia bytes nulos em source.Novo na versão 3.8:
ast.PyCF_ALLOW_TOP_LEVEL_AWAIT
agora pode ser passado em flags para habilitar o suporte em nível superior aawait
,async for
, easync with
.
-
class
complex
([real[, imag]])¶ Retorna um número completo com o valor real + imag*1j ou converte uma string ou número para um número complexo. Se o primeiro parâmetro é uma string, ele será interpretado como um número complexo e a função deve ser chamada sem um segundo parâmetro. O segundo parâmetro nunca deve ser uma string. Cada argumento pode ser qualquer tipo numérico (incluindo complexo). Se imag é omitido, seu valor padrão é zero e a construção funciona como uma conversão numérica, similar a
int
efloat
. Se os dois argumentos são omitidos, retorna0j
.Para um objeto Python
x
qualquer,complex(x)
delega parax.__complex__()
. Se__complex__()
não está definido então a chamada é repassada para__float__()
. Se__float__()
não está definido então a chamada é, novamente, repassada para__index__()
.Nota
Quando convertendo a partir de uma string, a string não pode conter espaços em branco em torno
+
central ou do operador-
. Por exemplo,complex('1+2j')
funciona, mascomplex('1 + 2j')
levantaValueError
.O tipo complexo está descrito em Tipos numéricos — int, float, complex.
Alterado na versão 3.6: Agrupar dígitos com sublinhados como em literais de código é permitido.
Alterado na versão 3.8: Chamadas para
__index__()
se__complex__()
e__float__()
não estão definidas.
-
delattr
(object, name)¶ Essa função está relacionada com
setattr()
. Os argumentos são um objeto e uma string. A string deve ser o nome de um dos atributos do objeto. A função remove o atributo indicado, desde que o objeto permita. Por exemplo,delattr(x, 'foobar')
é equivalente adel x.foobar
.
-
class
dict
(**kwarg) -
class
dict
(mapping, **kwarg) -
class
dict
(iterable, **kwarg) Cria um novo dicionário. O objeto
dict
é a classe do dicionário. Vejadict
e Tipo mapeamento — dict para documentação sobre esta classe.Para outros contêineres, consulte as classes embutidas
list
,set
etuple
, bem como o módulocollections
.
-
dir
([object])¶ Sem argumentos, devolve a lista de nomes no escopo local atual. Com um argumento, tentará devolver uma lista de atributos válidos para esse objeto.
Se o objeto tiver um método chamado
__dir__()
, esse método será chamado e deve devolver a lista de atributos. Isso permite que objetos que implementam uma função personalizada__getattr__()
ou__getattribute__()
personalizem a maneira comodir()
relata seus atributos.Se o objeto não fornecer
__dir__()
, a função tentará o melhor possível para coletar informações do atributo__dict__
do objeto, se definido, e do seu objeto de tipo. A lista resultante não está necessariamente completa e pode ser imprecisa quando o objeto possui um__getattr__()
personalizado.O mecanismo padrão
dir()
se comporta de maneira diferente com diferentes tipos de objetos, pois tenta produzir as informações mais relevantes e não completas:Se o objeto for um objeto de módulo, a lista conterá os nomes dos atributos do módulo.
Se o objeto for um objeto de tipo ou classe, a lista conterá os nomes de seus atributos e recursivamente os atributos de suas bases.
Caso contrário, a lista conterá os nomes dos atributos do objeto, os nomes dos atributos da classe e recursivamente os atributos das classes base da classe.
A lista resultante é alfabeticamente ordenada. Por exemplo:
>>> import struct >>> dir() # show the names in the module namespace ['__builtins__', '__name__', 'struct'] >>> dir(struct) # show the names in the struct module ['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__initializing__', '__loader__', '__name__', '__package__', '_clearcache', 'calcsize', 'error', 'pack', 'pack_into', 'unpack', 'unpack_from'] >>> class Shape: ... def __dir__(self): ... return ['area', 'perimeter', 'location'] >>> s = Shape() >>> dir(s) ['area', 'location', 'perimeter']
Nota
Como
dir()
é fornecido principalmente como uma conveniência para uso em um prompt interativo, ele tenta fornecer um conjunto interessante de nomes mais do que tenta fornecer um conjunto de nomes definido de forma rigorosa ou consistente, e seu comportamento detalhado pode mudar nos lançamentos. Por exemplo, os atributos de metaclasse não estão na lista de resultados quando o argumento é uma classe.
-
divmod
(a, b)¶ Toma dois números (não complexos) como argumentos e devolve um par de números que consiste em seu quociente e restante ao usar a divisão inteira. Com tipos de operandos mistos, as regras para operadores aritméticos binários se aplicam. Para números inteiros, o resultado é o mesmo que
(a // b, a % b)
. Para números de ponto flutuante, o resultado é(q, a % b)
, onde q geralmente émath.floor(a / b)
, mas pode ser 1 a menos que isso. Em qualquer caso,q * b + a % b
está muito próximo de a, sea % b
é diferente de zero, tem o mesmo sinal que b e0 <= abs(a % b) < abs(b)
.
-
enumerate
(iterable, start=0)¶ Devolve um objeto enumerado. iterable deve ser uma sequência, um iterador ou algum outro objeto que suporte a iteração. O método
__next__()
do iterador retornado porenumerate()
devolve uma tupla contendo uma contagem (a partir de start, cujo padrão é 0) e os valores obtidos na iteração sobre iterable.>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter'] >>> list(enumerate(seasons)) [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')] >>> list(enumerate(seasons, start=1)) [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]
Equivalente a:
def enumerate(sequence, start=0): n = start for elem in sequence: yield n, elem n += 1
-
eval
(expression[, globals[, locals]])¶ Os argumentos são uma sequência de caracteres e globais e locais opcionais. Se fornecido, globals deve ser um dicionário. Se fornecido, locals pode ser qualquer objeto de mapeamento.
O argumento expression é analisado e avaliado como uma expressão Python (tecnicamente falando, uma lista de condições) usando os dicionários globals e locals como espaços de nomes globais e locais. Se o dicionário globals estiver presente e não contiver um valor para a chave
__builtins__
, uma referência ao dicionário do módulo embutidobuiltins
será inserida sob essa chave antes de expression ser analisado. Isso significa que expression normalmente tem acesso total ao módulo padrãobuiltins
e ambientes restritos são propagados. Se o dicionário locals for omitido, o padrão será o dicionário globals. Se os dois dicionários forem omitidos, a expressão será executada com os globals e locals no ambiente em queeval()
é chamado. Observe que eval() não tem acesso a escopos aninhados (não locais) no ambiente anexo.O valor de retorno é o resultado da expressão avaliada. Erros de sintaxe são relatados como exceções. Exemplo:
>>> x = 1 >>> eval('x+1') 2
Esta função também pode ser usada para executar objetos de código arbitrários (como os criados por
compile()
). Nesse caso, passe um objeto de código em vez de uma string. Se o objeto de código foi compilado com'exec'
como o argumento mode, o valor de retorno deeval()
seráNone
.Dicas: a execução dinâmica de instruções é suportada pela função
exec()
. As funçõesglobals()
elocals()
retornam o dicionário global e local atual, respectivamente, o que pode ser útil para ser usado poreval()
ouexec()
.Veja
ast.literal_eval()
para uma função que pode avaliar com segurança strings com expressões contendo apenas literais.Levanta um evento de auditoria
exec
com argumentocode_object
.
-
exec
(object[, globals[, locals]])¶ Esta função tem suporte a execução dinâmica de código Python. O parâmetro object deve ser ou uma string ou um objeto contendo código. Se for uma string, a mesma é analisada como um conjunto de instruções Python, o qual é então executado (exceto caso um erro de sintaxe ocorra). 1 Se for um objeto com código, ele é simplesmente executado. Em todos os casos, espera-se que o código a ser executado seja válido como um arquivo de entrada (veja a seção “Arquivo de Entrada” no Manual de Referência). Tenha cuidado que as instruções
nonlocal
,yield
, andreturn
não podem ser usadas fora das definições de funções mesmo dentro do contexto do código passado para a funçãoexec()
. O valor de retorno é sempreNone
.Em todos os casos, se os parâmetros opcionais são omitidos, o código é executado no escopo atual. Se somente globals é fornecido, deve ser um dicionário (e não uma subclasse de dicionário), que será usado tanto para as variáveis globais quanto para locais. Se globals e locals são fornecidos, eles são usados para as variáveis globais e locais, respectivamente. Se fornecido, locals pode ser qualquer objeto de mapeamento. Lembre que no nível de módulo, globais e locais são o mesmo dicionário. Se o exec recebe dois objetos separados como globals and locals, o código será executado como se estivesse embutido em uma definição de classe.
Se o dicionário globals não contém um valor para a chave
__builtins__
, a referência para o dicionário do módulo embutidobuiltins
é inserido com essa chave. A maneira que você pode controlar quais embutidos estão disponíveis para o código executado é inserindo seu próprio__builtins__
dicionário em globals antes de passar paraexec()
.Levanta um evento de auditoria
exec
com argumentocode_object
.
-
filter
(function, iterable)¶ Constrói um iterador a partir dos elementos de iterable para os quais function retorna verdadeiro. iterable pode ser uma sequência, um contêiner que com suporte a iteração, ou um iterador. Se function for
None
, a função identidade será usada, isto é, todos os elementos de iterable que são falsos são removidos.Note que
filter(function, iterable)
é equivalente a expressão geradora(item for item in iterable if function(item))
se function não forNone
e(item for item in iterable if item)
se function forNone
.Veja
itertools.filterfalse()
para a função complementar que devolve elementos de iterable para os quais function devolve falso.
-
class
float
([x])¶ Devolve um número de ponto flutuante construído a partir de um número ou string x.
Se o argumento é uma string, ele deve conter um número decimal, opcionalmente precedido por um sinal, e opcionalmente possuir espaço em branco. O sinal opcional pode ser
'+'
ou'-'
; um sinal de'+'
não tem efeito no valor produzido. O argumento também pode ser uma string representando um NaN (indica que não é numero), ou infinito positivo/negativo. Mais precisamente, a entrada deve estar em conformidade com a seguinte gramática depois que caracteres em branco são removidos do início e do final da mesma:sign ::= "+" | "-" infinity ::= "Infinity" | "inf" nan ::= "nan" numeric_value ::=
floatnumber
|infinity
|nan
numeric_string ::= [sign
]numeric_value
Aqui
floatnumber
é a forma literal de um ponto flutuante Python, descrito em Literais de ponto flutuante. Caso isso não seja significativo, então, por exemplo, “inf”, “Inf”, “INFINITY” e “iNfINity” são todas formas escritas válidas para infinito positivo.Caso contrário, se o argumento é um inteiro ou um número de ponto flutuante, um número de ponto flutuante com o mesmo valor (com a precisão de ponto flutuante de Python) é devolvido. Se o argumento está fora do intervalo de um ponto flutuante Python, uma exceção
OverflowError
será lançada.Para um objeto Python genérico
x
,float(x)
delega para o métodox.__float__()
. Se__float__()
não estiver definido, então ele delega para o método__index__()
.Se nenhum argumento for fornecido, será retornado
0.0
.Exemplos:
>>> float('+1.23') 1.23 >>> float(' -12345\n') -12345.0 >>> float('1e-003') 0.001 >>> float('+1E6') 1000000.0 >>> float('-Infinity') -inf
O tipo float é descrito em Tipos numéricos — int, float, complex.
Alterado na versão 3.6: Agrupar dígitos com sublinhados como em literais de código é permitido.
Alterado na versão 3.7: x é agora um parâmetro somente posicional.
Alterado na versão 3.8: Chamada para
__index__()
se__float__()
não está definido.
-
format
(value[, format_spec])¶ Converte um valor value em uma representação “formatada”, controlado por format_spec. A interpretação de format_spec dependerá do tipo do argumento value, no entanto, há uma sintaxe de formatação padrão usada pela maioria dos tipos embutidos: Minilinguagem de especificação de formato.
O format_spec padrão é uma string vazia que geralmente produz o mesmo efeito que chamar
str(value)
.Uma chamada de
format(value, format_spec)
é convertida emtype(value).__format__(value, format_spec)
, que ignora o dicionário da instância ao pesquisar o método__format__()
devalue
. Uma exceçãoTypeError
é levantada se a pesquisa do método atingirobject
e o format_spec não estiver vazio, ou se o format_spec ou o valor de retorno não forem strings.Alterado na versão 3.4:
object().__format__(format_spec)
levanta umTypeError
se format_spec não for uma string vazia.
-
class
frozenset
([iterable]) Devolve um novo objeto
frozenset
, opcionalmente com elementos obtidos de iterable.frozenset
é uma classe embutida. Vejafrozenset
e Tipo conjuntos — set, frozenset para documentação sobre essas classes.Para outros contêineres veja as classes embutidas
set
,list
,tuple
, edict
, assim como o módulocollections
.
-
getattr
(object, name[, default])¶ Devolve o valor do atributo name de object. name deve ser uma string. Se a string é o nome de um dos atributos do objeto, o resultado é o valor de tal atributo. Por exemplo,
getattr(x, 'foobar')
é equivalente ax.foobar
. Se o atributo não existir, default é devolvido se tiver sido fornecido, caso contrário a exceçãoAttributeError
é levantada.
-
globals
()¶ Devolve um dicionário representando a tabela de símbolos global atual. É sempre o dicionário do módulo atual (dentro de uma função ou método, é o módulo onde está definido, não o módulo do qual é chamado).
-
hasattr
(object, name)¶ Os argumentos são um objeto e uma string. O resultado é
True
se a string é o nome de um dos atributos do objeto, eFalse
se ela não for. (Isto é implementado chamandogetattr(object, name)
e vendo se levanta umAttributeError
ou não.)
-
hash
(object)¶ Retorna o valor hash de um objeto (se houver um). Valores hash são números inteiros. Eles são usados para rapidamente comparar chaves de dicionários durante uma pesquisa em um dicionário. Valores numéricos que ao serem comparados são iguais, possuem o mesmo valor hash (mesmo que eles sejam de tipos diferentes, como é o caso de 1 e 1.0).
Nota
Para objetos com métodos
__hash__()
personalizados, fique atento quehash()
trunca o valor devolvido baseado no comprimento de bits da máquina hospedeira. Veja__hash__()
para mais detalhes.
-
help
([object])¶ Invoca o sistema de ajuda embutido. (Esta função é destinada para uso interativo.) Se nenhum argumento é passado, o sistema interativo de ajuda inicia no interpretador do console. Se o argumento é uma string, então a string é pesquisada como o nome de um módulo, função, classe, método, palavra-chave, ou tópico de documentação, e a página de ajuda é exibida no console. Se o argumento é qualquer outro tipo de objeto, uma página de ajuda para o objeto é gerada.
Note que se uma barra(/) aparecer na lista de parâmetros de uma função, quando invocando
help()
, significa que os parâmetros anteriores a barra são apenas posicionais. Para mais informações, veja the FAQ entry on positional-only parameters.Esta função é adicionada ao espaço de nomes embutido pelo módulo
site
.
-
hex
(x)¶ Converte um número inteiro para uma string hexadecimal em letras minúsculas pré-fixada com “0x”. Se x não é um objeto
int
do Python, ele tem que definir um método__index__()
que retorne um inteiro. Alguns exemplos:>>> hex(255) '0xff' >>> hex(-42) '-0x2a'
Se você quer converter um número inteiro para uma string hexadecimal em letras maiúsculas ou minúsculas, com prefixo ou sem, você pode usar qualquer uma das seguintes maneiras:
>>> '%#x' % 255, '%x' % 255, '%X' % 255 ('0xff', 'ff', 'FF') >>> format(255, '#x'), format(255, 'x'), format(255, 'X') ('0xff', 'ff', 'FF') >>> f'{255:#x}', f'{255:x}', f'{255:X}' ('0xff', 'ff', 'FF')
Veja também
format()
para mais informações.Veja também
int()
para converter uma string hexadecimal para um inteiro usando a base 16.Nota
Para obter uma string hexadecimal de um ponto flutuante, use o método
float.hex()
.
-
id
(object)¶ Devolve a “identidade” de um objeto. Ele é um inteiro, o qual é garantido que será único e constante para este objeto durante todo o seu ciclo de vida. Dois objetos com ciclos de vida não sobrepostos podem ter o mesmo valor para
id()
.CPython implementation detail: This is the address of the object in memory.
Levanta um evento de auditoria
builtins.id
com o argumentoid
.
-
input
([prompt])¶ Se o argumento prompt estiver presente, escreve na saída padrão sem uma nova linha ao final. A função então lê uma linha da fonte de entrada, converte a mesma para uma string (removendo o caractere de nova linha ao final), e devolve isso. Quando o final do arquivo (EOF / end-of-file) é encontrado, um erro
EOFError
é levantado. Exemplo:>>> s = input('--> ') --> Monty Python's Flying Circus >>> s "Monty Python's Flying Circus"
Se o módulo
readline
foi carregado, entãoinput()
usará ele para prover edição de linhas elaboradas e funcionalidades de histórico.Levanta um evento de auditoria
builtins.input
com argumentoprompt
.Levanta um evento de auditoria
builtins.input/result
com argumentoresult
.
-
class
int
([x])¶ -
class
int
(x, base=10) Devolve um objeto inteiro construído a partir de um número ou string x, ou devolve
0
se nenhum argumento foi fornecido. Se x definir um método__int__()
, entãoint(x)
retornax.__int__()
. Se x definir um método__index__()
, então ele retornax.__index__()
. Se x definir um método__trunc__()
, então ele retornax.__trunc__()
. Para números de ponto flutuante, isto trunca o número na direção do zero.Se x não é um número ou se base é fornecida, então x deve ser uma string, instância de
bytes
oubytearray
representando um inteiro literal em base base. Opcionalmente, o literal pode ser precedido por+
ou-
(sem espaço entre eles) e cercado por espaços em branco. Um literal base-n consiste de dígitos de 0 até n-1, coma
atéz
(ouA
atéZ
) com valores de 10 até 35. A base padrão é 10. Os valores permitidos são 0 e 2–36. Literais em base-2, -8, e -16 podem ser opcionalmente prefixado com0b
/0B
,0o
/0O
, ou0x
/0X
, assim como literais inteiros. Base 0 significa que será interpretado exatamente como um literal, ou seja, as bases são, na verdade, 2, 8, 10, ou 16, e queint('010', 0)
não é legal, enquantoint('010')
é, assim comoint('010', 8)
.O tipo inteiro está descrito em Tipos numéricos — int, float, complex.
Alterado na versão 3.4: Se base não é uma instância de
int
e o objeto base tem um métodobase.__index__
, então esse método é chamado para obter um inteiro para a base. Versões anteriores usavambase.__int__
ao invés debase.__index__
.Alterado na versão 3.6: Agrupar dígitos com sublinhados como em literais de código é permitido.
Alterado na versão 3.7: x é agora um parâmetro somente posicional.
Alterado na versão 3.8: Utiliza
__index__()
caso__int__()
não seja definido.Alterado na versão 3.8.14: Entradas de strings
int
e representações de strings podem ser limitadas para ajudar a evitar ataques de negação de serviço. Uma exceçãoValueError
é levantada quando o limite é excedido durante a conversão de uma string x em umint
ou quando a conversão de umint
em uma string excede o limite. Consulte a documentação sobre limitação de comprimento de conversão de string em inteiro.
-
isinstance
(object, classinfo)¶ Devolve
True
se o argumento object é uma instância do argumento classinfo, ou de uma subclasse dele (direta, indireta ou virtual). Se object não é um objeto do tipo dado, a função sempre devolveFalse
. Se classinfo é uma tupla de tipos de objetos (ou recursivamente, como outras tuplas), devolveTrue
se object é uma instância de qualquer um dos tipos. Se classinfo não é um tipo ou tupla de tipos ou outras tuplas, é lançada uma exceçãoTypeError
.
-
issubclass
(class, classinfo)¶ Devolve
True
se class é uma subclasse (direta, indireta ou virtual) de classinfo. Uma classe é considerada uma subclasse dela mesma. classinfo pode ser uma tupla de objetos de classes, e neste caso cada entrada em classinfo será verificada. Em qualquer outro caso, uma exceção do tipoTypeError
é levantada.
-
iter
(object[, sentinel])¶ Devolve um objeto iterador. O primeiro argumento é interpretado muito diferentemente dependendo da presença do segundo argumento. Sem um segundo argumento, object deve ser uma coleção de objetos com suporte ao protocolo de iteração (o método
__iter__()
), ou ele deve ter suporte ao protocolo de sequência (o método__getitem__()
com argumentos inteiros começando em0
). Se ele não tem suporte nenhum desses protocolos, umTypeError
é levantado. Se o segundo argumento, sentinel, é fornecido, então object deve ser um objeto chamável. O iterador criado neste caso irá chamar object sem nenhum argumento para cada chamada para o seu método__next__()
; se o valor devolvido é igual a sentinel, entãoStopIteration
será levantado, caso contrário o valor será devolvido.Veja também Tipos iteradores.
Uma aplicação útil da segunda forma de
iter()
é para construir um bloco de leitura. Por exemplo, ler blocos de comprimento fixo de um arquivo binário de banco de dados até que o final do arquivo seja atingido:from functools import partial with open('mydata.db', 'rb') as f: for block in iter(partial(f.read, 64), b''): process_block(block)
-
len
(s)¶ Devolve o comprimento (o número de itens) de um objeto. O argumento pode ser uma sequência (tal como uma string, bytes, tupla, lista, ou um intervalo) ou uma coleção (tal como um dicionário, conjunto, ou conjunto imutável).
-
class
list
([iterable]) Ao invés de ser uma função,
list
é na verdade um tipo de sequência mutável, conforme documentado em Listas e Tipos sequências — list, tuple, range.
-
locals
()¶ Atualiza e devolve um dicionário representando a tabela de símbolos locais atual. Variáveis livres são devolvidas por
locals()
quando ele é chamado em blocos de função, mas não em blocos de classes. Perceba que no nível dos módulos,locals()
eglobals()
são o mesmo dicionário.Nota
O conteúdo deste dicionário não deve ser modificado; as alterações podem não afetar os valores das variáveis locais e livres usadas pelo interpretador.
-
map
(function, iterable, ...)¶ Devolve um iterador que aplica function para cada item de iterable, gerando os resultados. Se argumentos iterable adicionais são passados, function deve ter a mesma quantidade de argumentos e ela é aplicada aos itens de todos os iteráveis em paralelo. Com múltiplos iteráveis, o iterador para quando o iterador mais curto é encontrado. Para casos onde os parâmetros de entrada da função já estão organizados em tuplas, veja
itertools.starmap()
.
-
max
(iterable, *[, key, default])¶ -
max
(arg1, arg2, *args[, key]) Devolve o maior item em um iterável ou o maior de dois ou mais argumentos.
Se um argumento posicional é fornecido, ele deve ser um iterável. O maior item no iterável é retornado. Se dois ou mais argumentos posicionais são fornecidos, o maior dos argumentos posicionais é devolvido.
Existem dois parâmetros somente-nomeados opcionais. O parâmetro key especifica uma função de ordenamento de um argumento, como aquelas usadas por
list.sort()
. O parâmetro default especifica um objeto a ser devolvido se o iterável fornecido estiver vazio. Se o iterável estiver vazio, e default não foi fornecido, uma exceçãoValueError
é levantada.Se múltiplos itens são máximos, a função devolve o primeiro encontrado. Isto é consistente com outras ferramentas de ordenamento que preservam a estabilidade, tais como
sorted(iterable, key=keyfunc, reverse=True)[0]
eheapq.nlargest(1, iterable, key=keyfunc)
.Novo na versão 3.4: O parâmetro somente-nomeado default.
Alterado na versão 3.8: O valor de key pode ser
None
.
-
class
memoryview
(obj) Devolve um objeto de “visão da memória” criado a partir do argumento fornecido. Veja Memory Views para mais informações.
-
min
(iterable, *[, key, default])¶ -
min
(arg1, arg2, *args[, key]) Devolve o menor item de um iterável ou o menor de dois ou mais argumentos.
Se um argumento posicional é fornecido, ele deve ser um iterável. O menor item no iterável é devolvido. Se dois ou mais argumentos posicionais são fornecidos, o menor dos argumentos posicionais é devolvido.
Existem dois parâmetros somente-nomeados opcionais. O parâmetro key especifica uma função de ordenamento de um argumento, como aquelas usadas por
list.sort()
. O parâmetro default especifica um objeto a ser devolvido se o iterável fornecido estiver vazio. Se o iterável estiver vazio, e default não foi fornecido, uma exceçãoValueError
é levantada.Se múltiplos itens são mínimos, a função devolve o primeiro encontrado. Isto é consistente com outras ferramentas de ordenamento que preservam a estabilidade, tais como
sorted(iterable, key=keyfunc)[0]
eheapq.nsmallest(1, iterable, key=keyfunc)
.Novo na versão 3.4: O parâmetro somente-nomeado default.
Alterado na versão 3.8: O valor de key pode ser
None
.
-
next
(iterator[, default])¶ Recupera o próximo item do iterator chamando o seu método
__next__()
. Se default foi fornecido, ele é devolvido caso o iterável tenha sido percorrido por completo, caso contrárioStopIteration
é levantada.
-
class
object
¶ Devolve um novo objeto sem funcionalidades.
object
é a classe base para todas as classes. Ela tem os métodos que são comuns para todas as instâncias de classes Python. Esta função não aceita nenhum argumento.
-
oct
(x)¶ Converte um número inteiro para uma string em base octal, pré-fixada com “0o”. O resultado é uma expressão Python válida. Se x não for um objeto
int
Python, ele tem que definir um método__index__()
que devolve um inteiro. Por exemplo:>>> oct(8) '0o10' >>> oct(-56) '-0o70'
Se você quiser converter um número inteiro para uma string octal, com o prefixo “0o” ou não, você pode usar qualquer uma das formas a seguir.
>>> '%#o' % 10, '%o' % 10 ('0o12', '12') >>> format(10, '#o'), format(10, 'o') ('0o12', '12') >>> f'{10:#o}', f'{10:o}' ('0o12', '12')
Veja também
format()
para mais informações.
-
open
(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)¶ Abre file e retorna um objeto arquivo correspondente. Se o arquivo não puder ser aberto, uma
OSError
é levantada. Veja Leitura e escrita de arquivos para mais exemplos de como usar esta função.file é um objeto caminho ou similar fornecendo o caminho (absoluto ou relativo ao diretório de trabalho atual) do arquivo que será aberto, ou de um inteiro descritor de arquivo a ser manipulado (Se um descritor de arquivo é fornecido, ele é fechado quando o objeto de I/O retornado é fechado, a não ser que closefd esteja marcado como
False
).mode é uma string opcional que especifica o modo no qual o arquivo é aberto. O valor padrão é
'r'
, o qual significa abrir para leitura em modo texto. Outros valores comuns são'w'
para escrever (truncando o arquivo se ele já existe),'x'
para criação exclusiva e'a'
para anexar (o qual em alguns sistemas Unix, significa que todas as escritas anexam ao final do arquivo independentemente da posição de busca atual). No modo texto, se encoding não for especificada, a codificação usada é independente de plataforma:locale.getpreferredencoding(False)
é chamada para obter a codificação da localidade atual (Para ler e escrever bytes diretamente, use o modo binário e não especifique encoding). Os modos disponíveis são:Caractere
Significado
'r'
abre para leitura (padrão)
'w'
abre para escrita, truncando o arquivo primeiro (removendo tudo o que estiver contido no mesmo)
'x'
abre para criação exclusiva, falhando caso o arquivo exista
'a'
abre para escrita, anexando ao final do arquivo caso o mesmo exista
'b'
modo binário
't'
modo texto (padrão)
'+'
aberto para atualização (leitura e escrita)
O modo padrão é
'r'
(abre para leitura de texto, sinônimo de'rt'
). Modos'w+'
e'w+b'
abrem e truncam o arquivo. Modos'r+'
e'r+b'
abrem o arquivo sem truncar o mesmo.Conforme mencionado em Visão Geral, Python diferencia entre entrada/saída binária e de texto. Arquivos abertos em modo binário (incluindo
'b'
no parâmetro mode) retornam o conteúdo como objetosbytes
sem usar nenhuma decodificação. No modo texto (o padrão, ou quando't'
é incluído no parâmetro mode), o conteúdo do arquivo é retornado comostr
, sendo os bytes primeiramente decodificados usando uma codificação dependente da plataforma, ou usando a codificação definida em encoding se fornecida.Existe um modo de caractere adicional permitido,
'U'
, o qual não tem mais nenhum efeito, e é considerado como descontinuado. Ele anteriormente habilitava novas linhas universais no modo texto, o que se tornou o comportamento padrão no Python 3.0. Consulte a documentação do parâmetro newline para maiores detalhes.Nota
Python não depende da noção básica do sistema operacional sobre arquivos de texto; todo processamento é feito pelo próprio Python, e é então independente de plataforma.
buffering é um inteiro opcional usado para definir a política de buffering. Passe o valor 0 para desativar o buffering (permitido somente em modo binário), passe 1 para selecionar buffering de linha (permitido somente em modo texto), e um inteiro > 1 para indicar o tamanho em bytes de um buffer com tamanho fixo. Quando nenhum valor é fornecido no argumento buffering, a política de buffering padrão funciona conforme as seguintes regras:
Arquivos binários são armazenados em pedaços de tamanho fixo; o tamanho do buffer é escolhido usando uma heurística que tenta determinar o “tamanho de bloco” subjacente do dispositivo, e usa
io.DEFAULT_BUFFER_SIZE
caso não consiga. Em muitos sistemas, o buffer possuirá tipicamente 4096 ou 8192 bytes de comprimento.Arquivos de texto “interativos” (arquivos para os quais
isatty()
retornamTrue
) usam buffering de linha. Outros arquivos de texto usam a política descrita acima para arquivos binários.
encoding é o nome da codificação usada para codificar ou decodificar o arquivo. Isto deve ser usado apenas no modo texto. A codificação padrão depende da plataforma (seja qual valor
locale.getpreferredencoding()
retornar), mas qualquer codificador de texto suportado pelo Python pode ser usada. Veja o módulocodecs
para a lista de codificações suportadas.errors é uma string opcional que especifica como erros de codificação e de decodificação devem ser tratados — isso não pode ser utilizado no modo binário. Uma variedade de tratadores de erro padrão estão disponíveis (listados em Error Handlers), apesar que qualquer nome para tratamento de erro registrado com
codecs.register_error()
também é válido. Os nomes padrões incluem:'strict'
para levantar uma exceçãoValueError
se existir um erro de codificação. O valor padrãoNone
tem o mesmo efeito.'ignore'
ignora erros. Note que ignorar erros de código pode levar à perda de dados.'replace'
faz um marcador de substituição (tal como'?'
) ser inserido onde existem dados malformados.'surrogateescape'
representará quaisquer bytes incorretos, conforme códigos apontados na área privada de uso da tabela Unicode, indo desde U+DC80 até U+DCFF. Esses códigos privados serão então convertidos de volta para os mesmos bytes quando o tratamento de erro parasurrogateescape
é usado ao escrever dados. Isto é útil para processar arquivos com uma codificação desconhecida.'xmlcharrefreplace'
é suportado apenas ao gravar em um arquivo. Os caracteres não suportados pela codificação são substituídos pela referência de caracteres XML apropriada&#nnn;
.'backslashreplace'
substitui dados malformados pela sequência de escape utilizando contrabarra do Python.'namereplace'
(também é suportado somente quando estiver escrevendo) substitui caractere não suportados com sequências de escape\N{...}
.
newline controla como o modo de novas linhas universais funciona (se aplica apenas ao modo texto). Ele pode ser
None
,''
,'\n'
,'\r'
e'\r\n'
. Ele funciona da seguinte forma:Ao ler a entrada do fluxo, se newline for
None
, o modo universal de novas linhas será ativado. As linhas na entrada podem terminar em'\n'
,'\r'
ou'\r\n'
, e são traduzidas para'\n'
antes de retornar ao chamador. Se for''
, o modo de novas linhas universais será ativado, mas as terminações de linha serão retornadas ao chamador sem tradução. Se houver algum dos outros valores legais, as linhas de entrada são finalizadas apenas pela string especificada e a finalização da linha é retornada ao chamador sem tradução.Ao gravar a saída no fluxo, se newline for
None
, quaisquer caracteres'\n'
gravados serão traduzidos para o separador de linhas padrão do sistema,os.linesep
. Se newline for''
ou'\n'
, nenhuma tradução ocorrerá. Se newline for um dos outros valores legais, qualquer caractere'\n'
escrito será traduzido para a string especificada.
Se closefd for
False
e um descritor de arquivo em vez de um nome de arquivo for fornecido, o descritor de arquivo subjacente será mantido aberto quando o arquivo for fechado. Se um nome de arquivo for fornecido closefd deve serTrue
(o padrão), caso contrário, um erro será levantado.Um abridor personalizado pode ser usado passando um chamável como opener. O descritor de arquivo subjacente para o objeto arquivo é obtido chamando opener com (file, flags). opener deve retornar um descritor de arquivo aberto (passando
os.open
como opener resulta em funcionalidade semelhante à passagem deNone
).O arquivo recém-criado é non-inheritable.
O exemplo a seguir usa o parâmetro dir_fd da função
os.open()
para abrir um arquivo relativo a um determinado diretório:>>> import os >>> dir_fd = os.open('somedir', os.O_RDONLY) >>> def opener(path, flags): ... return os.open(path, flags, dir_fd=dir_fd) ... >>> with open('spamspam.txt', 'w', opener=opener) as f: ... print('This will be written to somedir/spamspam.txt', file=f) ... >>> os.close(dir_fd) # don't leak a file descriptor
O tipo de objeto arquivo retornado pela função
open()
depende do modo. Quandoopen()
é usado para abrir um arquivo no modo texto ('w'
,'r'
,'wt'
,'rt'
, etc.), retorna uma subclasse deio.TextIOBase
(especificamenteio.TextIOWrapper
). Quando usada para abrir um arquivo em modo binário com buffer, a classe retornada é uma subclasse deio.BufferedIOBase
. A classe exata varia: no modo binário de leitura, ele retorna umaio.BufferedReader
; nos modos binário de gravação e binário anexado, ele retorna umio.BufferedWriter
e, no modo leitura/gravação, retorna umio.BufferedRandom
. Quando o buffer está desativado, o fluxo bruto, uma subclasse deio.RawIOBase
,io.FileIO
, é retornado.Veja também os módulos de para lidar com arquivos, tais como,
fileinput
,io
(ondeopen()
é declarado),os
,os.path
,tempfile
, eshutil
.Levanta um evento de auditoria
open
com os argumentosfile
,mode
,flags
.Os argumentos
mode
eflags
podem ter sido modificados ou inferidos a partir da chamada original.Alterado na versão 3.3:O parâmetro opener foi adicionado.
O modo
'x'
foi adicionado.IOError
costumava ser levantado, agora ele é um codinome paraOSError
.FileExistsError
agora é levantado se o arquivo aberto no modo de criação exclusivo ('x'
) já existir.
Alterado na versão 3.4:O arquivo agora é não herdável.
Deprecated since version 3.4, will be removed in version 3.9: O modo
'U'
.Alterado na versão 3.5:Se a chamada de sistema é interrompida e o tratador de sinal não levanta uma exceção, a função agora tenta novamente a chamada de sistema em vez de levantar uma exceção
InterruptedError
(consulte PEP 475 para entender a justificativa).O tratador de erros
'namereplace'
foi adicionado.
Alterado na versão 3.6:Suporte adicionado para aceitar objetos implementados
os.PathLike
.No Windows, a abertura de um buffer do console pode retornar uma subclasse de
io.RawIOBase
que não sejaio.FileIO
.
-
ord
(c)¶ Dada uma string que representa um caractere Unicode, retorna um número inteiro representando o ponto de código Unicode desse caractere. Por exemplo,
ord('a')
retorna o número inteiro97
eord('€')
(sinal do Euro) retorna8364
. Este é o inverso dechr()
.
-
pow
(base, exp[, mod])¶ Retorna base à potência de exp; se mod estiver presente, retorna base à potência exp, módulo mod (calculado com mais eficiência do que
pow(base, exp) % mod
). A forma de dois argumentospow(base, exp)
é equivalente a usar o operador de potência:base**exp
.Os argumentos devem ter tipos numéricos. Com tipos de operandos mistos, aplicam-se as regras de coerção para operadores aritméticos binários. Para operandos
int
, o resultado tem o mesmo tipo que os operandos (após coerção), a menos que o segundo argumento seja negativo; nesse caso, todos os argumentos são convertidos em ponto flutuante e um resultado ponto flutuante é entregue. Por exemplo,10**2
retorna100
, mas10**-2
retorna0.01
.Para operandos
int
base e exp, se mod estiver presente, mod também deve ser do tipo inteiro e mod deve ser diferente de zero. Se mod estiver presente e exp for negativo, base deve ser relativamente primo para mod. Nesse caso,pow(inv_base, -exp, mod)
é retornado, onde inv_base é um inverso ao base módulo mod.Aqui está um exemplo de computação de um inverso para
38
módulo97
:>>> pow(38, -1, mod=97) 23 >>> 23 * 38 % 97 == 1 True
Alterado na versão 3.8: Para operandos
int
, a forma de três argumentos depow
agora permite que o segundo argumento seja negativo, permitindo o cálculo de inversos modulares.Alterado na versão 3.8: Permite argumentos de palavra reservada. Anteriormente, apenas argumentos posicionais eram suportados.
-
print
(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)¶ Exibe objects no fluxo de texto arquivo, separado por sep e seguido por end. sep, end, file e flush, se houver, devem ser fornecidos como argumentos nomeados.
Todos os argumentos que não são nomeados são convertidos em strings como
str()
faz e gravados no fluxo, separados por sep e seguidos por end. sep e end devem ser strings; eles também podem serNone
, o que significa usar os valores padrão. Se nenhum object for fornecido,print()
escreverá apenas end.O argumento file deve ser um objeto com um método
write(string)
; se ele não estiver presente ouNone
, entãosys.stdout
será usado. Como argumentos exibidos no console são convertidos para strings de texto,print()
não pode ser usado com objetos de arquivo em modo binário. Para esses casos, usefile.write(...)
ao invés.Se a saída é armazenada em um buffer é usualmente determinado por file, mas se o argumento nomeado flush é verdadeiro, o fluxo de saída é forçosamente descarregado.
Alterado na versão 3.3: Adicionado o argumento nomeado flush.
-
class
property
(fget=None, fset=None, fdel=None, doc=None)¶ Retorna um atributo de propriedade.
fget é uma função para obter o valor de um atributo. fset é uma função para definir um valor para um atributo. fdel é uma função para deletar um valor de um atributo. E doc cria um docstring para um atributo.
Um uso comum é para definir um atributo gerenciável
x
:class C: def __init__(self): self._x = None def getx(self): return self._x def setx(self, value): self._x = value def delx(self): del self._x x = property(getx, setx, delx, "I'm the 'x' property.")
Se c é uma instância de C,
c.x
irá invocar o método getter,c.x = value
irá invocar o método setter, edel c.x
o método deleter.Se fornecido, doc será a docstring do atributo definido por property. Caso contrário, a property copiará a docstring de fget (se ela existir). Isso torna possível criar facilmente propriedades apenas para leitura usando
property()
como um decorador:class Parrot: def __init__(self): self._voltage = 100000 @property def voltage(self): """Get the current voltage.""" return self._voltage
O decorador
@property
transforma o métodovoltage()
em um “getter” para um atributo somente leitura com o mesmo nome, e define a docstring de voltage para “Get the current voltage.”Um objeto property possui métodos
getter
,setter
, edeleter
usáveis como decoradores, que criam uma cópia da property com o assessor correspondente a função definida para a função com decorador. Isso é explicado melhor com um exemplo:class C: def __init__(self): self._x = None @property def x(self): """I'm the 'x' property.""" return self._x @x.setter def x(self, value): self._x = value @x.deleter def x(self): del self._x
Esse código é exatamente equivalente ao primeiro exemplo. Tenha certeza de nas funções adicionais usar o mesmo nome que a property original (
x
neste caso).O objeto property retornado também tem os atributos
fget
,fset
, efdel
correspondendo aos argumentos do construtor.Alterado na versão 3.5: Agora é possível escrever nas docstrings de objetos property.
-
class
range
(stop) -
class
range
(start, stop[, step]) Em vez de ser uma função,
range
é realmente um tipo de sequência imutável, conforme documentado em Intervalos e Tipos sequências — list, tuple, range.
-
repr
(object)¶ Retorna uma string contendo uma representação imprimível de um objeto. Para muitos tipos, essa função tenta retornar uma string que produziria um objeto com o mesmo valor quando passado para
eval()
, caso contrário, a representação é uma string entre colchetes angulares que contém o nome do tipo do objeto juntamente com informações adicionais, geralmente incluindo o nome e o endereço do objeto. Uma classe pode controlar o que essa função retorna para suas instâncias, definindo um método__repr__()
.
-
reversed
(seq)¶ Retorna um iterador reverso. seq deve ser um objeto que possui o método
__reversed__()
ou suporta o protocolo de sequência (o método__len__()
e o método__getitem__()
com argumentos inteiros começando em0
).
-
round
(number[, ndigits])¶ Retorna number arredondado para ndigits precisão após o ponto decimal. Se ndigits for omitido ou for
None
, ele retornará o número inteiro mais próximo de sua entrada.Para os tipos embutidos com suporte a
round()
, os valores são arredondados para o múltiplo mais próximo de 10 para a potência de menos ndigit; se dois múltiplos são igualmente próximos, o arredondamento é feito para a opção par (por exemplo,round(0.5)
eround(-0.5)
são0
eround(1.5)
é2
). Qualquer valor inteiro é válido para ndigits (positivo, zero ou negativo). O valor de retorno é um número inteiro se ndigits for omitido ouNone
. Caso contrário, o valor de retorno tem o mesmo tipo que number.Para um objeto Python geral
number
,round
delega paranumber.__round__
.Nota
O comportamento de
round()
para pontos flutuantes pode ser surpreendente: por exemplo,round(2.675, 2)
fornece2.67
em vez do esperado2.68
. Isso não é um bug: é resultado do fato de que a maioria das frações decimais não pode ser representada exatamente como um ponto flutuante. Veja Aritmética de ponto flutuante: problemas e limitações para mais informações.
-
class
set
([iterable]) Retorna um novo objeto
set
, opcionalmente com elementos retirados de iterable.set
é uma classe embutida. Vejaset
e Tipo conjuntos — set, frozenset para documentação sobre esta classe.Para outros contêineres, consulte as classes embutidas
frozenset
,list
,tuple
edict
, bem como o módulocollections
.
-
setattr
(object, name, value)¶ Esta é a contrapartida de
getattr()
. Os argumentos são um objeto, uma string e um valor arbitrário. A string pode nomear um atributo existente ou um novo atributo. A função atribui o valor ao atributo, desde que o objeto permita. Por exemplo,setattr(x, 'foobar', 123)
é equivalente ax.foobar = 123
.
-
class
slice
(stop)¶ -
class
slice
(start, stop[, step]) Retorna um objeto slice representando o conjunto de índices especificado por
range(start, stop, step)
. Os argumentos start e step são padronizados comoNone
. Os objetos fatia têm atributos de dados somente leiturastart
,stop
estep
, que meramente retornam os valores do argumento (ou o padrão). Eles não têm outra funcionalidade explícita; no entanto, eles são usados pelo Python numérico e outras extensões de terceiros. Os objetos slice também são gerados quando a sintaxe de indexação estendida é usada. Por exemplo:a[start:stop:step]
oua[start:stop, i]
. Vejaitertools.islice()
para uma versão alternativa que retorna um iterador.
-
sorted
(iterable, *, key=None, reverse=False)¶ Retorna uma nova lista classificada dos itens em iterable.
Possui dois argumentos opcionais que devem ser especificados como argumentos nomeados.
key especifica a função de um argumento usado para extrair uma chave de comparação de cada elemento em iterable (por exemplo,
key=str.lower
). O valor padrão éNone
(compara os elementos diretamente).reverse é um valor booleano. Se definido igual a
True
, então os elementos da lista são classificados como se cada comparação estivesse invertida.Usa
functools.cmp_to_key()
para converter a função das antigas cmp para uma função key.A função embutida
sorted()
é garantida como estável. Uma ordenação é estável se garantir não alterar a ordem relativa dos elementos que se comparam da mesma forma — isso é útil para ordenar em várias passagens (por exemplo, ordenar por departamento e depois por nível de salário).Para exemplos de classificação e um breve tutorial de classificação, veja HowTo - Ordenação.
-
@
staticmethod
¶ Transforma um método em método estático.
Um método estático não recebe um primeiro argumento implícito. Para declarar um método estático, use este idioma:
class C: @staticmethod def f(arg1, arg2, ...): ...
A forma
@staticmethod
é uma função de decorador – veja Definições de função para detalhes.Um método estático pode ser chamado na classe (tal como
C.f()
) ou em uma instância (tal comoC().f()
).Métodos estáticos em Python são similares àqueles encontrados em Java ou C++. Veja também
classmethod()
para uma variante útil na criação de construtores de classe alternativos.Como todos os decoradores, também é possível chamar
staticmethod
como uma função regular e fazer algo com seu resultado. Isso é necessário em alguns casos em que você precisa de uma referência para uma função de um corpo de classe e deseja evitar a transformação automática em método de instância. Para esses casos, use este idioma:class C: builtin_open = staticmethod(open)
Para mais informações sobre métodos estáticos, consulte A hierarquia de tipos padrão.
-
class
str
(object='') -
class
str
(object=b'', encoding='utf-8', errors='strict') Retorna uma versão
str
de object. Consultestr()
para detalhes.str
é uma classe de string embutida. Para informações gerais sobre strings, consulte Tipo sequência de texto — str.
-
sum
(iterable, /, start=0)¶ Soma start e os itens de um iterable da esquerda para a direita e retornam o total. Os itens do iterable são normalmente números e o valor inicial não pode ser uma string.
Para alguns casos de uso, existem boas alternativas para
sum()
. A maneira rápida e preferida de concatenar uma sequência de strings é chamando''.join(sequence)
. Para adicionar valores de ponto flutuante com precisão estendida, consultemath.fsum()
. Para concatenar uma série de iteráveis, considere usaritertools.chain()
.Alterado na versão 3.8: O parâmetro start pode ser especificado como um argumento nomeado.
-
super
([type[, object-or-type]])¶ Retorna um objeto proxy que delega chamadas de método a uma classe pai ou irmão do type. Isso é útil para acessar métodos herdados que foram substituídos em uma classe.
O object-or-type determina a ordem de resolução de métodos a ser pesquisada. A pesquisa inicia a partir da classe logo após o type.
Por exemplo, se
__mro__
de object-or-type éD -> B -> C -> A -> object
e o valor de type éB
, entãosuper()
procura porC -> A -> object
.O atributo
__mro__
do object-or-type lista a ordem de pesquisa de resolução de método usada porgetattr()
esuper()
. O atributo é dinâmico e pode mudar sempre que a hierarquia da herança é atualizada.Se o segundo argumento for omitido, o objeto super retornado é desacoplado. Se o segundo argumento é um objeto,
isinstance(obj, type)
deve ser verdadeiro. Se o segundo argumento é um tipo,issubclass(type2, type)
deve ser verdadeiro (isto é útil para classmethods).Existem dois casos de uso típicos para super. Em uma hierarquia de classes com herança única, super pode ser usado para se referir a classes-pai sem nomeá-las explicitamente, tornando o código mais sustentável. Esse uso é paralelo ao uso de super em outras linguagens de programação.
O segundo caso de uso é oferecer suporte à herança múltipla cooperativa em um ambiente de execução dinâmica. Esse caso de uso é exclusivo do Python e não é encontrado em idiomas ou linguagens compiladas estaticamente que suportam apenas herança única. Isso torna possível implementar “diagramas em losango”, onde várias classes base implementam o mesmo método. Um bom design exige que tais implementações tenham a mesma assinatura de chamada em todos os casos (porque a ordem das chamadas é determinada em tempo de execução, porque essa ordem se adapta às alterações na hierarquia de classes e porque essa ordem pode incluir classes de irmãos desconhecidas antes do tempo de execução).
Nos dois casos de uso, uma chamada típica de superclasse se parece com isso:
class C(B): def method(self, arg): super().method(arg) # This does the same thing as: # super(C, self).method(arg)
Além das pesquisas de método,
super()
também funciona para pesquisas de atributo. Um possível caso de uso para isso é chamar descritores em uma classe pai ou irmã.Observe que
super()
é implementada como parte do processo de vinculação para procura explícita de atributos com ponto, tal comosuper().__getitem__(nome)
. Ela faz isso implementando seu próprio método__getattribute__()
para pesquisar classes em uma ordem predizível que possui suporte a herança múltipla cooperativa. Logo,super()
não é definida para procuras implícitas usando instruções ou operadores comosuper()[name]
.Observe também que, além da forma de argumento zero,
super()
não se limita ao uso de métodos internos. O formulário de dois argumentos especifica exatamente os argumentos e faz as referências apropriadas. O formulário de argumento zero funciona apenas dentro de uma definição de classe, pois o compilador preenche os detalhes necessários para recuperar corretamente a classe que está sendo definida, além de acessar a instância atual para métodos comuns.Para sugestões práticas sobre como projetar classes cooperativas usando
super()
, consulte o guia para uso de super().
-
class
tuple
([iterable]) Ao invés de ser uma função,
tuple
é na verdade um tipo de sequência imutável, conforme documentado em Tuplas e Tipos sequências — list, tuple, range.
-
class
type
(object)¶ -
class
type
(name, bases, dict, **kwds) Com um argumento, retorna o tipo de um object. O valor de retorno é um tipo de objeto e geralmente o mesmo objeto retornado por
object.__class__
.A função embutida
isinstance()
é recomendada para testar o tipo de um objeto, porque ela leva sub-classes em consideração.Com três argumentos, retorna um novo objeto type. Esta é essencialmente a forma dinâmica da instrução
class
. A string name é o nome da classe e se torna o atributo__name__
. A tupla bases contém as classes bases e se torna o atributo__bases__
; se vazio,object
, a base final de todas as classes é adicionada. O dicionário dict contém definições de atributo e método para o corpo da classe; ele pode ser copiado ou envolto antes de se tornar o atributo__dict__
. As duas instruções a seguir criam objetostype
idênticos:>>> class X: ... a = 1 ... >>> X = type('X', (), dict(a=1))
Veja também Objetos tipo.
Argumentos nomeados fornecidos para a forma de três argumentos são passados para a máquina metaclasse apropriada (geralmente
__init_subclass__()
) da mesma forma que palavras-chave em uma definição de classe (além de metaclasse) fariam.Veja também Personalizando a criação de classe.
Alterado na versão 3.6: Sub-classes de
type
que não fazem sobrecarga detype.__new__
não podem mais usar a forma com apenas um argumento para obter o tipo de um objeto.
-
vars
([object])¶ Retorna o atributo
__dict__
para um módulo, classe, instância, or qualquer outro objeto com um atributo__dict__
.Objetos como modelos e instâncias têm um atributo atualizável
__dict__
; porém, outros projetos podem ter restrições de escrita em seus atributos__dict__
(por exemplo, classes usam umtypes.MappingProxyType
para prevenir atualizações diretas a dicionário).Sem um argumento,
vars()
funciona comolocals()
. Perceba que, o dicionário locals é apenas útil para leitura, pelo fato de alterações no dicionário locals serem ignoradas.Uma exceção
TypeError
é levantada se um objeto é especificado, mas ela não tem um atributo__dict__
(por exemplo, se sua classe define o atributo__slots__
).
-
zip
(*iterables)¶ Produz um iterador que agrega elementos de cada um dos iteráveis.
Retorna um iterador de tuplas, onde a iª tupla contém o iº elemento de cada uma das sequências de argumentos ou iteráveis. O iterador é parado quando a menor entrada iterável é esgotada. Com um único argumento iterável, ele retorna um iterador de 1 tupla. Sem argumentos, ele retorna um iterador vazio. Equivalente a:
def zip(*iterables): # zip('ABCD', 'xy') --> Ax By sentinel = object() iterators = [iter(it) for it in iterables] while iterators: result = [] for it in iterators: elem = next(it, sentinel) if elem is sentinel: return result.append(elem) yield tuple(result)
A ordem de avaliação da esquerda para a direita dos iteráveis é garantida. Isso possibilita um idioma para agrupar uma série de dados em grupos de comprimento n usando
zip(*[iter(s)]*n)
. Isso repete o mesmo iteradorn
vezes, para que cada tupla de saída tenha o resultado den
chamadas ao iterador. Isso tem o efeito de dividir a entrada em pedaços de comprimento n.zip()
deve ser usado apenas com entradas de comprimento diferente quando você não se importa com valores inigualáveis à direita de iteráveis mais longos. Se esses valores forem importantes, useitertools.zip_longest()
.zip()
em conjunto com o operador*
pode ser usado para descompactar uma lista:>>> x = [1, 2, 3] >>> y = [4, 5, 6] >>> zipped = zip(x, y) >>> list(zipped) [(1, 4), (2, 5), (3, 6)] >>> x2, y2 = zip(*zip(x, y)) >>> x == list(x2) and y == list(y2) True
-
__import__
(name, globals=None, locals=None, fromlist=(), level=0)¶ Nota
Esta é uma função avançada que não é necessária na programação diária do Python, ao contrário de
importlib.import_module()
.Esta função é chamada pela instrução
import
. Ela pode ser substituída (importando o módulobuiltins
e atribuindo abuiltins.__import__
) para alterar a semântica da instruçãoimport
, mas isso é fortemente desencorajado, pois geralmente é mais simples usar ganchos de importação (consulte PEP 302) para atingir os mesmos objetivos e não causa problemas com o código que pressupõe que a implementação de importação padrão esteja em uso. O uso direto de__import__()
também é desencorajado em favor deimportlib.import_module()
.A função importa o módulo name, potencialmente usando os dados globals e locals para determinar como interpretar o nome em um contexto de pacote. O fromlist fornece os nomes de objetos ou submódulos que devem ser importados do módulo, fornecidos por name. A implementação padrão não usa seu argumento locals e usa seus globals apenas para determinar o contexto do pacote da instrução
import
.level especifica se é necessário usar importações absolutas ou relativas.
0
(o padrão) significa apenas realizar importações absolutas. Valores positivos para level indicam o número de diretórios pai a serem pesquisados em relação ao diretório do módulo que chama__import__()
(consulte PEP 328 para obter detalhes).Quando a variável name está no formato
package.module
, normalmente, o pacote de nível superior (o nome até o primeiro ponto) é retornado, não o módulo nomeado por name. No entanto, quando um argumento fromlist não vazio é fornecido, o módulo nomeado por name é retornado.Por exemplo, a instrução
importar spam
resulta em bytecode semelhante ao seguinte código:spam = __import__('spam', globals(), locals(), [], 0)
A instrução
import spam.ham
resulta nesta chamada:spam = __import__('spam.ham', globals(), locals(), [], 0)
Observe como
__import__()
retorna o módulo de nível superior aqui, porque este é o objeto vinculado a um nome pela instruçãoimport
.Por outro lado, a instrução
from spam.ham import eggs, sausage as saus
resulta em_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0) eggs = _temp.eggs saus = _temp.sausage
Aqui, o módulo
spam.ham
é retornado de__import__()
. A partir desse objeto, os nomes a serem importados são recuperados e atribuídos aos seus respectivos nomes.Se você simplesmente deseja importar um módulo (potencialmente dentro de um pacote) pelo nome, use
importlib.import_module()
.Alterado na versão 3.3: Valores negativos para level não são mais suportados (o que também altera o valor padrão para 0).
Notas de rodapé
- 1
Observe que o analisador sintático aceita apenas a convenção de fim de linha no estilo Unix. Se você estiver lendo o código de um arquivo, use o modo de conversão de nova linha para converter novas linhas no estilo Windows ou Mac.