FAQ sobre programação

Perguntas gerais

Existe um depurador a nível de código-fonte que possua pontos de interrupção (breakpoints), single-stepping, etc.?

Sim.

Vários depuradores para Python estão descritos abaixo, e a função embutida breakpoint() permite que você caia em qualquer um desses pontos.

O módulo pdb é um depurador em modo Console simples, mas adequado, para o Python. Faz parte da biblioteca padrão do Python e está documentado no manual de referencia da biblioteca. Você também pode construir do seu próprio depurador usando o código do pdb como um exemplo.

O IDLE é um ambiente interativo de desenvolvimento que faz parte da distribuição padrão do Python (normalmente acessível como Tools/scripts/idle3), e inclui um depurador gráfico.

O PythonWin é uma IDE feita para o Python que inclui um depurador gráfico baseado no pdb. O depurador do PythonWin colore os pontos de interrupção e tem alguns recursos legais, como a depuração de programas que não são PythonWin. O PythonWin está disponível como parte do projeto pywin32 e como parte da distribuição ActivePython.

Eric é uma IDE construída com PyQt e o componente de edição Scintilla.

trepan3k é um depurador similar ao gdb.

Visual Studio Code é uma IDE com ferramentas de depuração integrada com softwares de controle de versão.

Há uma série de IDE comerciais para desenvolvimento com o Python que inclui depuradores gráficos. Dentre tantas temos:

Existem ferramentas para ajudar a encontrar bugs ou fazer análise estática de desempenho?

Sim.

Pylint e Pyflakes fazem verificações básicas que te ajudarão a encontrar erros mais cedo.

Verificadores de tipo estático como Mypy, Pyre e Pytype conseguem verificar dicas de tipo em código-fonte Python.

Como posso criar um binário independente a partir de um script Python?

Você não precisa possuir a capacidade de compilar o código Python para C se o que deseja é um programa autônomo que os usuários possam baixar e executar sem ter que instalar a distribuição Python primeiro. Existem várias ferramentas que determinam o conjunto de módulos exigidos por um programa e vinculam esses módulos ao binário do Python para produzir um único executável.

Uma delas é usar a ferramenta freeze, que está incluída na árvore de código-fonte Python como Tools/freeze. Ela converte o bytecode de Python em vetores de C. Com um compilador de C, você consegue incorporar todos os seus módulos em um novo programa, que é então vinculado aos módulos-padrão de Python.

A freeze trabalha percorrendo seu código recursivamente, procurando por instruções de importação (ambas as formas), e procurando por módulos tanto no caminho padrão do Python, quanto por módulos embutidos no diretório fonte. Ela então transforma o bytecode de módulos Python em código C (inicializadores de vetor que podem ser transformados em objetos código usando o módulo marshal), e depois cria um arquivo de configurações personalizado que só contém os módulos embutidos usados no programa. A ferramenta então compila os códigos C e os vincula como o resto do interpretador Python, formando um binário autônomo que funciona exatamente como seu script.

Os pacotes a seguir podem ajudar com a criação dos executáveis do console e da GUI:

Existem padrões para a codificação ou um guia de estilo utilizado pela comunidade Python?

Sim. O guia de estilo esperado para módulos e biblioteca padrão possui o nome de PEP8 e você pode acessar a sua documentação em PEP 8.

Núcleo da linguagem

Porque recebo o erro UnboundLocalError quando a variável possui um valor associado?

Pode ser uma surpresa obter a exceção UnboundLocalError em um código previamente funcional quando adicionamos uma instrução de atribuição em algum lugar no corpo de uma função.

Este código:

>>> x = 10
>>> def bar():
...     print(x)
...
>>> bar()
10

funciona, mas este código:

>>> x = 10
>>> def foo():
...     print(x)
...     x += 1

resulta em uma UnboundLocalError:

>>> foo()
Traceback (most recent call last):
  ...
UnboundLocalError: local variable 'x' referenced before assignment

Isso acontece porque, quando atribuímos um valor a uma variável em determinado escopo, essa variável torna-se local desse escopo, acabando por esconder qualquer outra variável de mesmo nome no escopo externo. Como a última instrução em foo atribui um novo valor a x, o interpretador a reconhece como uma variável local. Consequentemente, quando o print(x) anterior tentar exibir a variável local não inicializada, um erro aparece.

No exemplo acima, podemos acessar a variável do escopo externo declarando-a como global:

>>> x = 10
>>> def foobar():
...     global x
...     print(x)
...     x += 1
...
>>> foobar()
10

Esta declaração explícita é necessária para lembrarmos que estamos modificando o valor da variável no escopo externo (ao contrário da situação superficialmente análoga com variáveis de classe e instância):

>>> print(x)
11

Podemos fazer algo parecido num escopo aninhado usando a palavra reservada nonlocal:

>>> def foo():
...    x = 10
...    def bar():
...        nonlocal x
...        print(x)
...        x += 1
...    bar()
...    print(x)
...
>>> foo()
10
11

Quais são as regras para variáveis locais e globais em Python?

Em Python, as variáveis que são apenas utilizadas (referenciadas) dentro de uma função são implicitamente globais. Se uma variável for associada a um valor em qualquer lugar dentro do corpo da função, presume-se que a mesma seja local, a menos que seja explicitamente declarada como global.

Embora um pouco surpreendente no início, um momento de consideração explica isso. Por um lado, exigir global para variáveis atribuídas fornece uma barreira contra efeitos colaterais indesejados. Por outro lado, se global fosse necessário para todas as referências globais, você estaria usando global o tempo todo. Você teria que declarar como global todas as referências a uma função embutida ou a um componente de um módulo importado. Essa desordem anularia a utilidade da declaração de global para identificar efeitos colaterais.

Por que os lambdas definidos em um laço com valores diferentes retornam o mesmo resultado?

Suponha que se utilize um laço for para definir algumas funções lambdas (ou mesmo funções simples), por exemplo.:

>>> squares = []
>>> for x in range(5):
...     squares.append(lambda: x**2)

Isso oferece uma lista que contém 5 lambdas que calculam x**2. Você pensar que, quando invocado, os mesmos retornam, respectivamente, 0, 1, 4, 9, e 16. No entanto, quando realmente tentar, vai ver que todos retornam 16:

>>> squares[2]()
16
>>> squares[4]()
16

Isso acontece porque x não é local para os lambdas, mas é definido no escopo externo, e é acessado quando o lambda for chamado — não quando é definido. No final do laço, o valor de x será 4, e então, todas as funções agora retornarão 4**2, ou seja, 16. Também é possível verificar isso alterando o valor de x e vendo como os resultados dos lambdas mudam:

>>> x = 8
>>> squares[2]()
64

Para evitar isso, é necessário salvar os valores nas variáveis locais para os lambdas, para que eles não dependam do valor de x global:

>>> squares = []
>>> for x in range(5):
...     squares.append(lambda n=x: n**2)

Aqui, n=x cria uma nova variável n local para o lambda e é calculada quando o lambda é definido para que ele tenha o mesmo valor que x tem nesse ponto no laço. Isso significa que o valor de n será 0 no primeiro “ciclo” do lambda, 1 no segundo “ciclo”, 2 no terceiro, e assim por diante. Portanto, cada lambda agora retornará o resultado correto:

>>> squares[2]()
4
>>> squares[4]()
16

Observe que esse comportamento não é peculiar dos lambdas, o mesmo também ocorre com as funções regulares.

Como definir variáveis globais dentro de módulos?

A maneira canônica de compartilhar informações entre módulos dentro de um único programa é criando um módulo especial (geralmente chamado de config ou cfg). Basta importar o módulo de configuração em todos os módulos da sua aplicação; o módulo ficará disponível como um nome global. Como há apenas uma instância de cada módulo, todas as alterações feitas no objeto do módulo se refletem em todos os lugares. Por exemplo:

config.py:

x = 0   # Default value of the 'x' configuration setting

mod.py:

import config
config.x = 1

main.py:

import config
import mod
print(config.x)

Note que usar um módulo também é a base para a implementação do padrão de projeto Singleton, pela mesma razão.

Quais são as “melhores práticas” quando fazemos uso da importação de módulos?

Em geral, não use from nomemódulo import *. Isso desorganiza o espaço de nomes do importador e torna muito mais difícil para as ferramentas de análise estática detectarem nomes indefinidos.

Faça a importação de módulos na parte superior do arquivo. Isso deixa claro quais outros módulos nosso código necessita e evita dúvidas sobre, por exemplo, se o nome do módulo está no escopo. Usar uma importação por linha facilita a adição e exclusão de importações de módulos, porém, usar várias importações num única linha, ocupa menos espaço da tela.

É uma boa prática importar os módulos na seguinte ordem:

  1. módulos da biblioteca padrão – por exemplo: sys, os, argparse e re

  2. módulos de biblioteca de terceiros (qualquer instalação feita contida no repositório de códigos na pasta site-packages) – por exemplo: dateutil, requests e PIL.Image

  3. módulos desenvolvidos localmente

Às vezes, é necessário transferir as importações para uma função ou classe para evitar problemas com importação circular. Gordon McMillan diz:

As importações circulares vão bem onde ambos os módulos utilizam a forma de importação “import <módulo>”. Elas falham quando o 2º módulo quer pegar um nome do primeiro (“from módulo import nome”) e a importação está no nível superior. Isso porque os nomes no primeiro ainda não estão disponíveis, porque o 1º módulo está ocupado importando o 2º.

Nesse caso, se o segundo módulo for usado apenas numa função, a importação pode ser facilmente movida para dentro do escopo dessa função. No momento em que a importação for chamada, o primeiro módulo terá finalizado a inicialização e o segundo módulo poderá ser importado sem maiores complicações.

Também poderá ser necessário mover as importações para fora do nível superior do código se alguns dos módulos forem específicos de uma determinada plataforma (SO). Nesse caso, talvez nem seja possível importar todos os módulos na parte superior do arquivo. Nessas situações devemos importar os módulos que são específicos de cada plataforma antes de necessitar utilizar os mesmos.

Apenas mova as importações para um escopo local, como dentro da definição de função, se for necessário resolver algum tipo de problema, como, por exemplo, evitar importações circulares ou tentar reduzir o tempo de inicialização do módulo. Esta técnica é especialmente útil se muitas das importações forem desnecessárias, dependendo de como o programa é executado. Também podemos desejar mover as importações para uma função se os módulos forem usados somente nessa função. Note que carregar um módulo pela primeira vez pode ser demorado devido ao tempo de inicialização de cada módulo, no entanto, carregar um módulo várias vezes é praticamente imperceptível, tendo somente o custo de processamento de pesquisas no dicionário de nomes. Mesmo que o nome do módulo tenha saído do escopo, o módulo provavelmente estará disponível em sys.modules.

Por que os valores padrão são compartilhados entre objetos?

Este tipo de erro geralmente pega programadores neófitos. Considere esta função:

def foo(mydict={}):  # Danger: shared reference to one dict for all calls
    ... compute something ...
    mydict[key] = value
    return mydict

Na primeira vez que chamar essa função, meudict vai conter um único item. Na segunda vez, meudict vai conter dois itens porque, quando foo() começar a ser executado, meudict começará com um item já existente.

Muitas vezes, espera-se que ao invocar uma função sejam criados novos objetos referente aos valores padrão. Isso não é o que acontece. Os valores padrão são criados exatamente uma vez, quando a função está sendo definida. Se esse objeto for alterado, como o dicionário neste exemplo, as chamadas subsequentes para a essa função se referirão a este objeto alterado.

Por definição, objetos imutáveis, como números, strings, tuplas e o None, estão protegidos de sofrerem alteração. Alterações em objetos mutáveis, como dicionários, listas e instâncias de classe, podem levar à confusão.

Por causa desse recurso, é uma boa prática de programação para evitar o uso de objetos mutáveis contendo valores padrão. Em vez disso, utilize None como o valor padrão e dentro da função, verifique se o parâmetro é None e crie uma nova lista, dicionário ou o que quer que seja. Por exemplo, escreva o seguinte código:

def foo(mydict={}):
    ...

mas:

def foo(mydict=None):
    if mydict is None:
        mydict = {}  # create a new dict for local namespace

Esse recurso pode ser útil. Quando se tem uma função que consome muito tempo para calcular, uma técnica comum é armazenar em cache os parâmetros e o valor resultante de cada chamada para a função e retornar o valor em cache se o mesmo valor for solicitado novamente. Isso se chama “memoizar”, e pode ser implementado da seguinte forma:

# Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(arg1, arg2, *, _cache={}):
    if (arg1, arg2) in _cache:
        return _cache[(arg1, arg2)]

    # Calculate the value
    result = ... expensive computation ...
    _cache[(arg1, arg2)] = result           # Store result in the cache
    return result

Pode-se usar uma variável global contendo um dicionário ao invés do valor padrão; isso é uma questão de gosto.

Como passo parâmetros opcionais ou parâmetros nomeados de uma função para outra?

Colete os argumentos usando os especificadores * ou ** na lista de parâmetros da função. Isso faz com que os argumentos posicionais como tupla e os argumentos nomeados sejam passados como um dicionário. Você pode, também, passar esses argumentos ao invocar outra função usando * e **:

def f(x, *args, **kwargs):
    ...
    kwargs['width'] = '14.3c'
    ...
    g(x, *args, **kwargs)

Qual a diferença entre argumentos e parâmetros?

Parâmetros são definidos pelos nomes que aparecem na definição da função, enquanto argumentos são os valores que serão passados para a função no momento em que esta estiver sendo invocada. Os parâmetros irão definir quais os tipos de argumentos que uma função pode receber. Por exemplo, dada a definição da função:

def func(foo, bar=None, **kwargs):
    pass

foo, bar e kwargs são parâmetros de func. Dessa forma, ao invocar func, por exemplo:

func(42, bar=314, extra=somevar)

os valores 42, 314, e algumvalor são os argumentos.

Por que ao alterar a lista ‘y’ também altera a lista ‘x’?

Se você escreveu um código como:

>>> x = []
>>> y = x
>>> y.append(10)
>>> y
[10]
>>> x
[10]

pode estar se perguntando por que acrescentar um elemento a y também mudou x.

Há dois fatores que produzem esse resultado:

  1. As variáveis são simplesmente nomes que referem-se a objetos. Usar y = x não cria uma cópia da lista. Isso cria uma nova variável y que faz referência ao mesmo objeto ao qual x está se referindo. Isso significa que existe apenas um objeto (a lista) e que ambos x e y fazem referência a ele.

  2. Listas são objetos mutáveis, o que significa que você pode alterar o seu conteúdo.

Após a chamada para append(), o conteúdo do objeto mutável mudou de [] para [10]. Uma vez que ambas as variáveis referem-se ao mesmo objeto, usar qualquer um dos nomes acessará o valor modificado [10].

Se por acaso, atribuímos um objeto imutável a x:

>>> x = 5  # ints are immutable
>>> y = x
>>> x = x + 1  # 5 can't be mutated, we are creating a new object here
>>> x
6
>>> y
5

podemos ver que nesse caso x e y não são mais iguais. Isso ocorre porque os números inteiros são imutáveis, e quando fazemos x = x + 1 não estamos mudando o int 5 e incrementando o seu valor. Em vez disso, estamos criando um novo objeto (o int 6) e atribuindo-o a x (isto é, mudando para o objeto no qual x se refere). Após esta atribuição, temos dois objetos (os ints 6 e 5) e duas variáveis que referem-se a elas (x agora se refere a 6, mas y ainda refere-se a 5).

Algumas operações (por exemplo, y.append(10) e y.sort()) alteram o objeto, enquanto operações superficialmente semelhantes (por exemplo, y = y + [10] e sorted(y)) criam um novo objeto. Em geral, em Python (e em todos os casos na biblioteca padrão) um método que causa mutação em um objeto retornará None para ajudar a evitar confundir os dois tipos de operações. Portanto, se você escrever por engano y.sort() pensando que lhe dará uma cópia ordenada de y, você terminará com None, o que provavelmente fará com que seu programa gere um erro facilmente diagnosticado.

No entanto, há uma classe de operações em que a mesma operação às vezes tem comportamentos diferentes com tipos diferentes: os operadores de atribuição aumentada. Por exemplo, += transforma listas, mas não tuplas ou ints (uma_lista += [1, 2, 3] equivale a uma_lista.extend([1, 2, 3]) a transforma uma_lista, sendo que alguma_tupla += (1, 2, 3) e algum_int += 1 cria novos objetos).

Em outras palavras:

  • Se tivermos um objeto mutável (list, dict, set, etc.), podemos usar algumas operações específicas para alterá-lo e todas as variáveis que fazem referência a ele verão também a mudança.

  • Caso tenhamos um objeto imutável (str, int, tuple, etc.), todas as variáveis que se referem a ele sempre verão o mesmo valor, mas as operações que transformam-se nesses valores sempre retornarão novos objetos.

Caso queira saber se duas variáveis fazem referência ao mesmo objeto ou não, pode-se usar o operador is ou a função embutida id().

Como escrevo uma função com parâmetros de saída (chamada por referência)?

Lembre-se de que os argumentos são passados por atribuição em Python. Uma vez que a atribuição apenas cria referências a objetos, não existe apelido entre um nome de argumento no chamador e no chamado e, portanto, não há referência de chamada por si. É possível alcançar o efeito desejado de várias maneiras.

  1. Retornando um tupla com os resultados:

    >>> def func1(a, b):
    ...     a = 'new-value'        # a and b are local names
    ...     b = b + 1              # assigned to new objects
    ...     return a, b            # return new values
    ...
    >>> x, y = 'old-value', 99
    >>> func1(x, y)
    ('new-value', 100)
    

    Esta é quase sempre a solução mais clara.

  2. Utilizando variáveis globais. Essa forma não é segura para thread e, portanto, não é recomendada.

  3. Pela passagem de um objeto mutável (que possa ser alterado internamente):

    >>> def func2(a):
    ...     a[0] = 'new-value'     # 'a' references a mutable list
    ...     a[1] = a[1] + 1        # changes a shared object
    ...
    >>> args = ['old-value', 99]
    >>> func2(args)
    >>> args
    ['new-value', 100]
    
  4. Pela passagem de um dicionário que sofra mutação:

    >>> def func3(args):
    ...     args['a'] = 'new-value'     # args is a mutable dictionary
    ...     args['b'] = args['b'] + 1   # change it in-place
    ...
    >>> args = {'a': 'old-value', 'b': 99}
    >>> func3(args)
    >>> args
    {'a': 'new-value', 'b': 100}
    
  5. Ou agrupando valores numa instância de classe:

    >>> class Namespace:
    ...     def __init__(self, /, **args):
    ...         for key, value in args.items():
    ...             setattr(self, key, value)
    ...
    >>> def func4(args):
    ...     args.a = 'new-value'        # args is a mutable Namespace
    ...     args.b = args.b + 1         # change object in-place
    ...
    >>> args = Namespace(a='old-value', b=99)
    >>> func4(args)
    >>> vars(args)
    {'a': 'new-value', 'b': 100}
    

    Quase nunca existe uma boa razão para complicar isso.

A sua melhor escolha será retornar uma tupla contendo os múltiplos resultados.

Como fazer uma função de ordem superior em Python?

Existem duas opções: pode-se usar escopos aninhados ou usar objetos chamáveis. Por exemplo, suponha que queira definir linear(a,b), o qual retorna uma função f(x) que calcula o valor a*x+b. Usando escopos aninhados, temos:

def linear(a, b):
    def result(x):
        return a * x + b
    return result

Ou utilizando um objeto chamável:

class linear:

    def __init__(self, a, b):
        self.a, self.b = a, b

    def __call__(self, x):
        return self.a * x + self.b

Em ambos os casos:

taxes = linear(0.3, 2)

resulta em um objeto chamável, onde taxes(10e6) == 0.3 * 10e6 + 2.

A abordagem do objeto chamável tem a desvantagem de que é um pouco mais lenta e resulta num código ligeiramente mais longo. No entanto, note que uma coleção de chamáveis pode compartilhar sua assinatura via herança:

class exponential(linear):
    # __init__ inherited
    def __call__(self, x):
        return self.a * (x ** self.b)

Objetos podem encapsular o estado para vários métodos:

class counter:

    value = 0

    def set(self, x):
        self.value = x

    def up(self):
        self.value = self.value + 1

    def down(self):
        self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

Aqui inc(), dec() e reset() funcionam como funções que compartilham a mesma variável contadora.

Como faço para copiar um objeto no Python?

Basicamente, tente utilizar a função copy.copy() ou a função copy.deepcopy() para casos gerais. Nem todos os objetos podem ser copiados, mas a maioria poderá.

Alguns objetos podem ser copiados com mais facilidade. Os dicionários têm um método copy():

newdict = olddict.copy()

As sequências podem ser copiadas através do uso de fatiamento:

new_l = l[:]

Como posso encontrar os métodos ou atributos de um objeto?

Para uma instância x de uma classe definida pelo usuário, dir(x) retorna uma lista organizada alfabeticamente dos nomes contidos, os atributos da instância e os métodos e atributos definidos por sua classe.

Como que o meu código pode descobrir o nome de um objeto?

De um modo geral, não pode, porque os objetos realmente não têm nomes. Essencialmente, a atribuição sempre liga um nome a um valor; o mesmo é verdade para as instruções def e class, mas nesse caso o valor é um chamável. Considere o seguinte código:

>>> class A:
...     pass
...
>>> B = A
>>> a = B()
>>> b = a
>>> print(b)
<__main__.A object at 0x16D07CC>
>>> print(a)
<__main__.A object at 0x16D07CC>

Provavelmente, a classe tem um nome: mesmo que seja vinculada a dois nomes e invocada através do nome B, a instância criada ainda é relatada como uma instância da classe A. No entanto, é impossível dizer se o nome da instância é a ou b, uma vez que ambos os nomes estão vinculados ao mesmo valor.

De um modo geral, não deveria ser necessário que o seu código “conheça os nomes” de valores específicos. A menos que se escreva deliberadamente programas introspectivos, isso geralmente é uma indicação de que uma mudança de abordagem pode ser benéfica.

Em comp.lang.python, Fredrik Lundh deu uma excelente analogia em resposta a esta pergunta:

Da mesma forma que você pega o nome daquele gato que encontrou na sua varanda: o próprio gato (objeto) não pode lhe dizer o seu nome, e ele realmente não se importa – então, a única maneira de descobrir como ele se chama é perguntar a todos os seus vizinhos (espaços de nomes) se é o gato deles (objeto)…

….e não fique surpreso se você descobrir que é conhecido por muitos nomes, ou até mesmo nenhum nome.

O que há com a precedência do operador vírgula?

A vírgula não é um operador em Python. Considere este código:

>>> "a" in "b", "a"
(False, 'a')

Uma vez que a vírgula não seja um operador, mas um separador entre as expressões acima, o código será avaliado como se tivéssemos entrado:

("a" in "b"), "a"

não:

"a" in ("b", "a")

O mesmo é verdade para as várias operações de atribuição (=, += etc). Eles não são operadores de verdade mas delimitadores sintáticos em instruções de atribuição.

Existe um equivalente ao operador ternário “?:” do C?

Sim, existe. A sintaxe é a seguinte:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Antes que essa sintaxe fosse introduzida no Python 2.5, uma expressão comum era usar operadores lógicos:

[expression] and [on_true] or [on_false]

No entanto, essa forma não é segura, pois pode dar resultados inesperados quando quando_verdadeiro tiver um valor booleano falso. Portanto, é sempre melhor usar a forma ... if ... else ....

É possível escrever instruções de uma só linha ofuscadas em Python?

Sim. Normalmente, isso é feito aninhando lambda dentro de lambda. Veja os três exemplos a seguir, ligeiramente adaptados de Ulf Bartelt:

from functools import reduce

# Primes < 1000
print(list(filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))))

# First 10 Fibonacci numbers
print(list(map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

# Mandelbrot set
print((lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+'\n'+y,map(lambda y,
Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(Io-Iu)/Sy),range(Sy
))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24))
#    \___ ___/  \___ ___/  |   |   |__ lines on screen
#        V          V      |   |______ columns on screen
#        |          |      |__________ maximum of "iterations"
#        |          |_________________ range on y axis
#        |____________________________ range on x axis

Não tente isso em casa, crianças!

O que a barra(/) na lista de parâmetros de uma função significa?

Uma barra na lista de argumentos de uma função indica que os parâmetros anteriores a ela são somente-posicionais. Os parâmetros somente-posicionais são aqueles que não têm nome utilizável externamente. Ao chamar uma função que aceita parâmetros somente-posicionais, os argumentos são mapeados para parâmetros com base apenas em sua posição. Por exemplo, divmod() é uma função que aceita parâmetros somente-posicionais. Sua documentação tem esta forma:

>>> help(divmod)
Help on built-in function divmod in module builtins:

divmod(x, y, /)
    Return the tuple (x//y, x%y).  Invariant: div*y + mod == x.

A barra no final da lista de parâmetros significa que ambos os parâmetros são somente-posicionais. Assim, chamar divmod() com argumentos nomeados levaria a um erro:

>>> divmod(x=3, y=4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

Números e strings

Como faço para especificar números inteiros hexadecimais e octais?

Para especificar um dígito no formato octal, preceda o valor octal com um zero e, em seguida, um “o” minúsculo ou maiúsculo. Por exemplo, para definir a variável “a” para o valor octal “10” (8 em decimal), digite:

>>> a = 0o10
>>> a
8

Hexadecimal é bem fácil. Basta preceder o número hexadecimal com um zero e, em seguida, um “x” minúsculo ou maiúsculo. Os dígitos hexadecimais podem ser especificados em letras maiúsculas e minúsculas. Por exemplo, no interpretador Python:

>>> a = 0xa5
>>> a
165
>>> b = 0XB2
>>> b
178

Por que -22 // 10 retorna -3?

Esta dúvida é primariamente direcionado pelo desejo de que i % j tenha o mesmo sinal que j. Se quiser isso, e também quiser:

i == (i // j) * j + (i % j)

então a divisão inteira deve retornar o piso. C também requer que essa identidade seja mantida, e então os compiladores que truncarem i // j precisam fazer com que i % j tenham o mesmo sinal que i.

Existem poucos casos de uso reais para i % j quando j é negativo. Quando j é positivo, existem muitos, e em virtualmente todos eles é mais útil para i % j ser >= 0. Se o relógio marca 10 agora, o que dizia há 200 horas? -190 % 12 == 2 é útil, enquanto -190 % 12 == -10 é um bug esperando para morder.

Como obtenho um atributo de um literal int em vez de SyntaxError?

Tentar obter um atributo de um literal int da maneira normal retorna um SyntaxError porque o ponto é visto como um ponto decimal:

>>> 1.__class__
  File "<stdin>", line 1
  1.__class__
   ^
SyntaxError: invalid decimal literal

A solução é separar o literal do ponto com um espaço ou parênteses.

>>> 1 .__class__
<class 'int'>
>>> (1).__class__
<class 'int'>

Como faço para converter uma string em um número?

Para inteiros, use o tipo embutido int(), por exemplo, int('144') == 144. Da mesma forma, float() converterá para um valor do tipo ponto flutuante, por exemplo float('144') == 144.0.

Por padrão, eles interpretam o número como decimal, de modo que int('0144') == 144 é verdadeiro e int('0x144') levanta ValueError. int(string, base) toma a base para converter como um segundo argumento opcional, então int( '0x144', 16) == 324. Se a base for especificada como 0, o número é interpretado usando as regras do Python: um “0o” à esquerda indica octal e “0x” indica um número hexadecimal.

Não use a função embutida eval() se tudo que você precisa é converter strings em números. eval() será significativamente mais lento e apresenta um risco de segurança: alguém pode passar a você uma expressão Python que pode ter efeitos colaterais indesejados. Por exemplo, alguém poderia passar __import__('os').system("rm -rf $HOME") que apagaria seu diretório pessoal.

eval() também tem o efeito de interpretar números como expressões Python, de forma que, por exemplo, eval('09') resulta em um erro de sintaxe porque Python não permite ‘0’ inicial em um número decimal (exceto ‘0’).

Como faço para converter um número em uma string?

Para converter, por exemplo, o número 144 para a string '144', use o construtor do tipo embutido str(). Caso queira uma representação hexadecimal ou octal, use as funções embutidas hex() ou oct(). Para a formatação sofisticada, veja as seções Literais de strings formatadas e Sintaxe das strings de formato, por exemplo, "{:04d}".format(144) produz '0144' e "{:.3f}".format(1.0/3.0) produz '0.333'.

Como faço para modificar uma string internamente?

Você não pode fazer isso porque as strings são objetos imutáveis. Na maioria das situações, você simplesmente deve construir uma nova string a partir das várias partes das quais deseja montá-la. No entanto, caso precise de um objeto com a capacidade de modificar dados Unicode internamente, tente usar a classe io.StringIO ou o módulo array:

>>> import io
>>> s = "Hello, world"
>>> sio = io.StringIO(s)
>>> sio.getvalue()
'Hello, world'
>>> sio.seek(7)
7
>>> sio.write("there!")
6
>>> sio.getvalue()
'Hello, there!'

>>> import array
>>> a = array.array('u', s)
>>> print(a)
array('u', 'Hello, world')
>>> a[0] = 'y'
>>> print(a)
array('u', 'yello, world')
>>> a.tounicode()
'yello, world'

Como faço para invocar funções/métodos através de strings?

Existem várias técnicas.

  • A melhor forma é usar um dicionário que mapeie strings para funções. A principal vantagem desta técnica é que estas strings não precisam corresponder aos nomes das funções. Esta é também a principal técnica utilizada para emular uma construção de instrução estilo case:

    def a():
        pass
    
    def b():
        pass
    
    dispatch = {'go': a, 'stop': b}  # Note lack of parens for funcs
    
    dispatch[get_input()]()  # Note trailing parens to call function
    
  • Usar a função embutida getattr():

    import foo
    getattr(foo, 'bar')()
    

    Observe que a função getattr() funciona com qualquer objeto, incluindo classes, instâncias de classe, módulos e assim por diante.

    A mesma é usado em vários lugares na biblioteca padrão, como este:

    class Foo:
        def do_foo(self):
            ...
    
        def do_bar(self):
            ...
    
    f = getattr(foo_instance, 'do_' + opname)
    f()
    
  • Use locals() para determinar o nome da função:

    def myFunc():
        print("hello")
    
    fname = "myFunc"
    
    f = locals()[fname]
    f()
    

Existe um equivalente em Perl chomp() para remover linhas novas ao final de strings?

Pode-se utilizar S.rstrip("\r\n") para remover todas as ocorrência de qualquer terminador de linha que esteja no final da string S sem remover os espaços em branco. Se a string S representar mais de uma linha, contendo várias linhas vazias no final, os terminadores de linha de todas linhas em branco serão removidos:

>>> lines = ("line 1 \r\n"
...          "\r\n"
...          "\r\n")
>>> lines.rstrip("\n\r")
'line 1 '

Geralmente isso só é desejado ao ler um texto linha por linha, usando S.rstrip() dessa maneira funciona bem.

Existe uma função scanf() ou sscanf() ou algo equivalente?

Não como tal.

Para a análise de entrada simples, a abordagem mais fácil geralmente é dividir a linha em palavras delimitadas por espaços em branco usando o método str.split() de objetos Strings e, em seguida, converter as Strings decimais para valores numéricos usando a função int() ou a função float(). A função split() aceita um parâmetro “sep” opcional que é útil se a linha utilizar algo diferente de espaço em branco como separador.

Para análise de entradas de textos mais complicadas, as expressões regulares são mais poderosas do que a sscanf do C e mais adequadas para essa tarefa.

O que significa o erro ‘UnicodeDecodeError’ ou ‘UnicodeEncodeError’?

Consulte Unicode.

Posso terminar uma string bruta com um número ímpar de contrabarras?

Uma string bruta terminando com um número ímpar de contrabarras vai escapar as aspas da string:

>>> r'C:\this\will\not\work\'
  File "<stdin>", line 1
    r'C:\this\will\not\work\'
         ^
SyntaxError: unterminated string literal (detected at line 1)

Há várias soluções alternativas para isso. Uma delas é usar strings regulares e duplicar as contrabarras:

>>> 'C:\\this\\will\\work\\'
'C:\\this\\will\\work\\'

Outra é concatenar uma string regular contendo uma contrabarra de escape à string bruta:

>>> r'C:\this\will\work' '\\'
'C:\\this\\will\\work\\'

Também é possível usar os.path.join() para acrescentar uma contrabarra no Windows:

>>> os.path.join(r'C:\this\will\work', '')
'C:\\this\\will\\work\\'

Note que, embora uma contrabarra vai “escapar” uma aspa para fins de determinar onde a string bruta termina, nenhum escape ocorre ao interpretar o valor da string bruta. Ou seja, a contrabarra permanece presente no valor da string bruta:

>>> r'backslash\'preserved'
"backslash\\'preserved"

Veja também a especificação na referência da linguagem.

Desempenho

Meu programa está muito lento. Como faço para melhorar o desempenho?

Isso geralmente é algo difícil de conseguir. Primeiro, aqui está uma lista de situações que devemos lembrar para melhorar o desempenho da nossa aplicação antes de buscarmos outras soluções:

  • As características da desempenho podem variar conforme a implementação do Python. Esse FAQ se concentra no CPython.

  • O comportamento pode variar em cada sistemas operacionais, especialmente quando estivermos tratando de E/S ou multi-threading.

  • Sempre devemos encontrar os hot spots em nosso programa antes de tentar otimizar qualquer código (veja o módulo profile).

  • Escrever scripts de benchmark permitirá iterar rapidamente buscando melhorias (veja o módulo timeit).

  • É altamente recomendável ter boa cobertura de código (através de testes de unidade ou qualquer outra técnica) antes de potencialmente apresentar regressões escondidas em otimizações sofisticadas.

Dito isto, existem muitos truques para acelerar nossos códigos Python. Aqui estão alguns dos principais tópicos e que geralmente ajudam a atingir níveis de desempenho aceitáveis:

  • Fazer seus algoritmos rápidos (ou mudando para mais rápidos) podem produzir benefícios maiores que tentar encaixar várias micro-otimizações no seu código.

  • Usar as estruturas de dados corretas. Estude a documentação para Tipos embutidos e o módulo collections.

  • Quando a biblioteca padrão fornecer um tipo primitivo para fazer algo, é provável (embora não garantido) que isso seja mais rápido do que qualquer alternativa que possa surgir. Isso geralmente é verdade para os tipos primitivos escritos em C, como os embutidos e alguns tipos de extensão. Por exemplo, certifique-se de usar o método embutido list.sort() ou a função relacionada sorted() para fazer a ordenação (e veja HowTo - Ordenação para exemplos de uso moderadamente avançado).

  • As abstrações tendem a criar indireções e forçar o interpretador a trabalhar mais. Se os níveis de indireção superarem a quantidade de trabalho útil feito, seu programa ficará mais lento. Você deve evitar a abstração excessiva, especialmente sob a forma de pequenas funções ou métodos (que também são muitas vezes prejudiciais à legibilidade).

Se você atingiu o limite do que Python puro pode permitir, existem ferramentas para levá-lo mais longe. Por exemplo, o Cython pode compilar uma versão ligeiramente modificada do código Python numa extensão C e pode ser usado em muitas plataformas diferentes. O Cython pode tirar proveito da compilação (e anotações tipo opcional) para tornar o seu código significativamente mais rápido do que quando interpretado. Se você está confiante em suas habilidades de programação C, também pode escrever um módulo de extensão de C.

Ver também

A página wiki dedicada a dicas de desempenho.

Qual é a maneira mais eficiente de concatenar muitas strings?

Objetos das classes str e bytes são imutáveis e, portanto, concatenar muitas strings é ineficiente, pois cada concatenação criará um novo objeto. No caso geral, o custo total do tempo de execução é quadrático no comprimento total da string.

Para juntar vários objetos str, a linguagem recomendada colocá-los numa lista e invocar o método str.join():

chunks = []
for s in my_strings:
    chunks.append(s)
result = ''.join(chunks)

(outra forma razoavelmente eficiente é usar a classe io.StringIO)

Para juntar vários objetos bytes, a forma recomendada é estender uma classe bytearray usando a concatenação local (com o operador +=):

result = bytearray()
for b in my_bytes_objects:
    result += b

Sequencias (Tuplas/Listas)

Como faço para converter tuplas em listas?

O construtor de tipo tuple(seq) converte qualquer sequência (na verdade, qualquer iterável) numa tupla com os mesmos itens na mesma ordem.

Por exemplo, tuple([1, 2, 3]) produz (1, 2, 3) e tuple('abc') produz ('a', 'b', 'c'). Se o argumento for uma tupla, a mesma não faz uma cópia, mas retorna o mesmo objeto, por isso é barato invocar a função tuple() quando você não tiver certeza que determinado objeto já é uma tupla.

O construtor de tipos list(seq) converte qualquer sequência ou iterável em uma lista com os mesmos itens na mesma ordem. Por exemplo, list((1, 2, 3)) produz [1, 2, 3] e list('abc') produz ['a', 'b', 'c']. Se o argumento for uma lista, o meso fará uma cópia como em seq[:].

O que é um índice negativo?

Sequências em Python são indexadas com números positivos e números negativos. Para números positivos, 0 é o índice do primeiro elemento, 1 é o índice do segundo elemento e assim por diante. Para números negativos, -1 é índice do último elemento e -2 é o penúltimo (anterior ao último) índice e assim por diante. Pense em seq[-n] como o mesmo que seq[len(seq)-n].

Usar índices negativos pode ser muito conveniente. Por exemplo, S[:-1] é a string inteira exceto pelo seu último caractere, o que é útil para remover o caractere de nova linha no final de uma string.

Como que eu itero uma sequência na ordem inversa?

Use a função embutida reversed():

for x in reversed(sequence):
    ...  # do something with x ...

Isso não vai alterar sua sequência original, mas construir uma nova cópia com a ordem inversa para iteração.

Como que removo itens duplicados de uma lista?

Veja o Python Cookbook para uma longa discussão de várias formas de fazer isso:

Se você não se importar em reordenar a lista, ordene-a e depois examine a partir do final da lista, excluindo duplicatas conforme avança:

if mylist:
    mylist.sort()
    last = mylist[-1]
    for i in range(len(mylist)-2, -1, -1):
        if last == mylist[i]:
            del mylist[i]
        else:
            last = mylist[i]

Se todos os elementos da lista podem ser usados como chaves de conjunto (isto é, eles são todos hasheáveis) isso é muitas vezes mais rápido

mylist = list(set(mylist))

Isso converte a lista em um conjunto, deste modo removendo itens duplicados, e depois de volta em uma lista.

Como remover múltiplos itens de uma lista?

Assim como para remover valores duplicados, explicitamente iterar em uma lista reversa com uma condição de remoção é uma possibilidade. Contudo, é mais fácil e rápido usar substituição de fatias com um iteração reversa implícita ou explícita. Aqui estão três variações.:

mylist[:] = filter(keep_function, mylist)
mylist[:] = (x for x in mylist if keep_condition)
mylist[:] = [x for x in mylist if keep_condition]

A compreensão de lista pode ser a mais rápida.

Como fazer um vetor em Python?

Utilize uma lista:

["this", 1, "is", "an", "array"]

Listas são equivalentes aos vetores de C ou Pascal em termos de complexidade de tempo; a diferença primária é que uma lista em Python pode conter objetos de tipos diferentes.

O módulo array também provê métodos para criar vetores de tipos fixos com representações compactas, mas eles são mais lentos para indexar que listas. Observe também que NumPy e outros pacotes de terceiros definem estruturas semelhantes a arrays com várias características.

Para obter listas ligadas no estilo Lisp, você pode emular células cons usando tuplas:

lisp_list = ("like",  ("this",  ("example", None) ) )

Se mutabilidade é desejada, você pode usar listas no lugar de tuplas. Aqui o análogo de um car Lisp é lista_lisp[0] e o análogo de cdr é lista_lisp[1]. Faça isso somente se você tem certeza que precisa disso, porque isso é usualmente muito mais lento que usar listas Python.

Como faço para criar uma lista multidimensional?

Você provavelmente tentou fazer um vetor multidimensional assim:

>>> A = [[None] * 2] * 3

Isso parece correto se você imprimir:

>>> A
[[None, None], [None, None], [None, None]]

Mas quando atribuíres um valor, o mesmo aparecerá em vários lugares:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

A razão é que replicar uma lista com * não cria cópias, ela apenas cria referências aos objetos existentes. O *3 cria uma lista contendo 3 referências para a mesma lista que contém 2 itens cada. Mudanças numa linha serão mostradas em todas as linhas, o que certamente não é o que você deseja.

A abordagem sugerida é criar uma lista com o comprimento desejado primeiro e, em seguida, preencher cada elemento com uma lista recém-criada:

A = [None] * 3
for i in range(3):
    A[i] = [None] * 2

Isso gera uma lista contendo 3 listas diferentes contendo 2 itens cada. Você também pode usar uma compreensão de lista:

w, h = 2, 3
A = [[None] * w for i in range(h)]

Ou você pode usar uma extensão que provê um tipo de dados matrix; NumPy é o mais conhecido.

How do I apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a list comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function(obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:
    obj.method()

for obj in mylist:
    function(obj)

Porque a_tuple[i] += [‘item’] levanta uma exceção quando a adição funciona?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to mutable objects, but we’ll use a list and += as our exemplar.

Se você escrever:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):
   ...
TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1), producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an error because we can’t change what an element of a tuple points to.

Por baixo, o que a instrução de atribuição aumentada está fazendo é aproximadamente isso:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):
  ...
TypeError: 'tuple' object does not support item assignment

A parte da atribuição da operação que produz o erro, já que a tupla é imutável.

Quando você escreve algo como:

>>> a_tuple = (['foo'], 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):
  ...
TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append worked:

>>> a_tuple[0]
['foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd__() magic method, it gets called when the += augmented assignment is executed, and its return value is what gets used in the assignment statement; and (b) for lists, __iadd__() is equivalent to calling extend() on the list and returning the list. That’s why we say that for lists, += is a “shorthand” for list.extend():

>>> a_list = []
>>> a_list += [1]
>>> a_list
[1]

Isso equivale a:

>>> result = a_list.__iadd__([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list. The end result of the assignment is a no-op, since it is a pointer to the same object that a_list was previously pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):
  ...
TypeError: 'tuple' object does not support item assignment

The __iadd__() succeeds, and thus the list is extended, but even though result points to the same object that a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

I want to do a complicated sort: can you do a Schwartzian Transform in Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps each element to its “sort value”. In Python, use the key argument for the list.sort() method:

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))

Como eu posso ordenar uma lista pelos valores de outra lista?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]
>>> list2 = ["something", "else", "to", "sort"]
>>> pairs = zip(list1, list2)
>>> pairs = sorted(pairs)
>>> pairs
[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]
>>> result
['else', 'sort', 'to', 'something']

Objetos

O que é uma classe?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

O que é um método?

A method is a function on some object x that you normally call as x.name(arguments...). Methods are defined as functions inside the class definition:

class C:
    def meth(self, arg):
        return arg * 2 + self.attribute

O que é o self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a, b, c) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs; the called method will think it is called as meth(x, a, b, c).

Veja também Por que o ‘self’ deve ser usado explicitamente em definições de método e chamadas?.

Como eu verifico se um objeto é uma instância de uma dada classe ou de uma subclasse dela?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a number of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, ...)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or isinstance(obj, (int, float, complex)).

Note that isinstance() also checks for virtual inheritance from an abstract base class. So, the test will return True for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan the MRO of the class:

from collections.abc import Mapping

class P:
     pass

class C(P):
    pass

Mapping.register(P)
>>> c = C()
>>> isinstance(c, C)        # direct
True
>>> isinstance(c, P)        # indirect
True
>>> isinstance(c, Mapping)  # virtual
True

# Actual inheritance chain
>>> type(c).__mro__
(<class 'C'>, <class 'P'>, <class 'object'>)

# Test for "true inheritance"
>>> Mapping in type(c).__mro__
False

Note that most programs do not use isinstance() on user-defined classes very often. If you are developing the classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a function that does something:

def search(obj):
    if isinstance(obj, Mailbox):
        ...  # code to search a mailbox
    elif isinstance(obj, Document):
        ...  # code to search a document
    elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:
    def search(self):
        ...  # code to search a mailbox

class Document:
    def search(self):
        ...  # code to search a document

obj.search()

O que é delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to change the behaviour of just one of its methods. You can create a new class that provides a new implementation of the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves like a file but converts all written data to uppercase:

class UpperOut:

    def __init__(self, outfile):
        self._outfile = outfile

    def write(self, s):
        self._outfile.write(s.upper())

    def __getattr__(self, name):
        return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before calling the underlying self._outfile.write() method. All other methods are delegated to the underlying self._outfile object. The delegation is accomplished via the __getattr__() method; consult the language reference for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must define a __setattr__() method too, and it must do so carefully. The basic implementation of __setattr__() is roughly equivalent to the following:

class X:
    ...
    def __setattr__(self, name, value):
        self.__dict__[name] = value
    ...

Most __setattr__() implementations must modify self.__dict__ to store local state for self without causing an infinite recursion.

Como eu chamo um método definido numa classe base derivada de uma classe que estende ela?

Use a função embutida super():

class Derived(Base):
    def meth(self):
        super().meth()  # calls Base.meth

In the example, super() will automatically determine the instance from which it was called (the self value), look up the method resolution order (MRO) with type(self).__mro__, and return the next in line after Derived in the MRO: Base.

Como eu posso organizar meu código para facilitar a troca da classe base?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of resources) which base class to use. Example:

class Base:
    ...

BaseAlias = Base

class Derived(BaseAlias):
    ...

How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class name in the assignment:

class C:
    count = 0   # number of times C.__init__ called

    def __init__(self):
        C.count = C.count + 1

    def getcount(self):
        return C.count  # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself or by some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named “count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method or not:

C.count = 314

Métodos estáticos são possíveis:

class C:
    @staticmethod
    def static(arg1, arg2, arg3):
        # No 'self' parameter!
        ...

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount():
    return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired encapsulation.

Como eu posso sobrecarregar construtores (ou métodos) em Python?

Essa resposta na verdade se aplica para todos os métodos, mas a pergunta normalmente aparece primeiro no contexto de construtores.

Em C++ escreveríamos

class C {
    C() { cout << "No arguments\n"; }
    C(int i) { cout << "Argument is " << i << "\n"; }
}

Em Python você tem que escrever um único construtor que pega todos os casos usando argumentos padrão. Por exemplo:

class C:
    def __init__(self, i=None):
        if i is None:
            print("No arguments")
        else:
            print("Argument is", i)

Isso não é inteiramente equivalente, mas já está bem próximo.

Você também pode tentar uma lista de argumentos de comprimento variável, por exemplo:

def __init__(self, *args):
    ...

A mesma abordagem funciona para todas as definições de métodos.

Eu tentei usar __spam e recebi um erro sobre _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class private variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam, where classname is the current class name with any leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and private values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at all.

Minha classe define __del__, mas o mesmo não é chamado quando eu excluo o objeto.

Há várias razões possíveis para isto.

The del statement does not necessarily call __del__() – it simply decrements the object’s reference count, and if this reaches zero __del__() is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so your __del__() method may be called at an inconvenient and random time. This is inconvenient if you’re trying to reproduce a problem. Worse, the order in which object’s __del__() methods are executed is arbitrary. You can run gc.collect() to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called whenever you’re done with them. The close() method can then remove attributes that refer to subobjects. Don’t call __del__() directly – __del__() should call close() and close() should make sure that it can be called more than once for the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and sibling references (if they need them!).

Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

Como eu consigo pegar uma lista de todas as instâncias de uma dada classe?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to keep track of all instances by keeping a list of weak references to each instance.

Por que o resultado de id() aparenta não ser único?

The id() builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython, this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly created object is allocated at the same position in memory. This is illustrated by this example:

>>> id(1000) 
13901272
>>> id(2000) 
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the id() call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a) 
13901272
>>> id(b) 
13891296

Quando eu posso depender dos testes de identidade com o operador is?

The is operator tests for object identity. The test a is b is equivalent to id(a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to return a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are three circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is guaranteed that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assignment s[0] = x, it is guaranteed that s[0] is x.

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a = None and b = None, it is guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests should not be used to check constants such as int and str which aren’t guaranteed to be singletons:

>>> a = 1000
>>> b = 500
>>> c = b + 500
>>> a is c
False

>>> a = 'Python'
>>> b = 'Py'
>>> c = b + 'thon'
>>> a is c
False

Do mesmo jeito, novas instâncias de contêineres mutáveis nunca são idênticas:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English in code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create a singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a method that behaves like dict.pop():

_sentinel = object()

def pop(self, key, default=_sentinel):
    if key in self:
        value = self[key]
        del self[key]
        return value
    if default is _sentinel:
        raise KeyError(key)
    return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code from being confused by objects such as float('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__():

def __contains__(self, value):
    for v in self:
        if v is value or v == value:
            return True
    return False

How can a subclass control what data is stored in an immutable instance?

When subclassing an immutable type, override the __new__() method instead of the __init__() method. The latter only runs after an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate(date):
    "Always choose the first day of the month"
    def __new__(cls, year, month, day):
        return super().__new__(cls, year, month, 1)

class NamedInt(int):
    "Allow text names for some numbers"
    xlat = {'zero': 0, 'one': 1, 'ten': 10}
    def __new__(cls, value):
        value = cls.xlat.get(value, value)
        return super().__new__(cls, value)

class TitleStr(str):
    "Convert str to name suitable for a URL path"
    def __new__(cls, s):
        s = s.lower().replace(' ', '-')
        s = ''.join([c for c in s if c.isalnum() or c == '-'])
        return super().__new__(cls, s)

The classes can be used like this:

>>> FirstOfMonthDate(2012, 2, 14)
FirstOfMonthDate(2012, 2, 1)
>>> NamedInt('ten')
10
>>> NamedInt(20)
20
>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

How do I cache method calls?

The two principal tools for caching methods are functools.cached_property() and functools.lru_cache(). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference to the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without bound.

The lru_cache approach works with methods that have hashable arguments. It creates a reference to the instance unless special efforts are made to pass in weak references.

The advantage of the least recently used algorithm is that the cache is bounded by the specified maxsize. The disadvantage is that instances are kept alive until they age out of the cache or until the cache is cleared.

Esse exemplo mostra as várias técnicas:

class Weather:
    "Lookup weather information on a government website"

    def __init__(self, station_id):
        self._station_id = station_id
        # The _station_id is private and immutable

    def current_temperature(self):
        "Latest hourly observation"
        # Do not cache this because old results
        # can be out of date.

    @cached_property
    def location(self):
        "Return the longitude/latitude coordinates of the station"
        # Result only depends on the station_id

    @lru_cache(maxsize=20)
    def historic_rainfall(self, date, units='mm'):
        "Rainfall on a given date"
        # Depends on the station_id, date, and units.

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the cached_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the lru_cache approach work when the station_id is mutable, the class needs to define the __eq__() and __hash__() methods so that the cache can detect relevant attribute updates:

class Weather:
    "Example with a mutable station identifier"

    def __init__(self, station_id):
        self.station_id = station_id

    def change_station(self, station_id):
        self.station_id = station_id

    def __eq__(self, other):
        return self.station_id == other.station_id

    def __hash__(self):
        return hash(self.station_id)

    @lru_cache(maxsize=20)
    def historic_rainfall(self, date, units='cm'):
        'Rainfall on a given date'
        # Depends on the station_id, date, and units.

Módulos

Como faço para criar um arquivo .pyc?

When a module is imported for the first time (or when the source file has changed since the current compiled file was created) a .pyc file containing the compiled code should be created in a __pycache__ subdirectory of the directory containing the .py file. The .pyc file will have a filename that starts with the same name as the .py file, and ends with .pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147 for details.)

One reason that a .pyc file may not be created is a permissions problem with the directory containing the source file, meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re importing a module and Python has the ability (permissions, free space, etc…) to create a __pycache__ subdirectory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no .pyc will be created. For example, if you have a top-level module foo.py that imports another module xyz.py, when you run foo (by typing python foo.py as a shell command), a .pyc will be created for xyz because xyz is imported, but no .pyc file will be created for foo since foo.py isn’t being imported.

If you need to create a .pyc file for foo – that is, to create a .pyc file for a module that is not imported – you can, using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile() function in that module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py')                 

This will write the .pyc to a __pycache__ subdirectory in the same location as foo.py (or you can override that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can do it from the shell prompt by running compileall.py and providing the path of a directory containing Python files to compile:

python -m compileall .

Como encontro o nome do módulo atual?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the value '__main__', the program is running as a script. Many modules that are usually used by importing them also provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main():
    print('Running test...')
    ...

if __name__ == '__main__':
    main()

How can I have modules that mutually import each other?

Suponha que tenhas os seguintes módulos:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

O problema é que o interpretador vai realizar os seguintes passos:

  • main imports foo

  • Empty globals for foo are created

  • foo is compiled and starts executing

  • foo imports bar

  • Empty globals for bar are created

  • bar is compiled and starts executing

  • bar imports foo (which is a no-op since there already is a module named foo)

  • The import mechanism tries to read foo_var from foo globals, to set bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still empty.

The same thing happens when you use import foo, and then try to access foo.foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside functions. Initializations of global variables and class variables should use constants or built-in functions only. This means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

  • exports (globals, functions, and classes that don’t need imported base classes)

  • Declaração import

  • código ativo (incluindo globais que são inicializadas de valores importados)

Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

Essas soluções não são mutualmente exclusivas.

__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?

Consider using the convenience function import_module() from importlib instead:

z = importlib.import_module('x.y.z')

Quando eu edito um módulo importado e o reimporto, as mudanças não aparecem. Por que isso acontece?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload(modname)

Aviso: essa técnica não é 100% a prova de falhas. Em particular, módulos contendo instruções como

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import importlib
>>> import cls
>>> c = cls.C()                # Create an instance of C
>>> importlib.reload(cls)
<module 'cls' from 'cls.py'>
>>> isinstance(c, cls.C)       # isinstance is false?!?
False

A natureza do problema fica clara se você exibir a “identidade” dos objetos da classe:

>>> hex(id(c.__class__))
'0x7352a0'
>>> hex(id(cls.C))
'0x4198d0'