typing
— Suporte para dicas de tipo¶
Novo na versão 3.5.
Código-fonte: Lib/typing.py
Nota
O tempo de execução do Python não força anotações de tipos de variáveis e funções. Elas podem ser usadas por ferramentas de terceiros como verificadores de tipo, IDEs, linters, etc.
This module provides runtime support for type hints. The most fundamental
support consists of the types Any
, Union
, Callable
,
TypeVar
, and Generic
. For a full specification, please see
PEP 484. For a simplified introduction to type hints, see PEP 483.
A função abaixo recebe e retorna uma string e é anotada como a seguir:
def greeting(name: str) -> str:
return 'Hello ' + name
Na função greeting
, é esperado que o argumento name
seja do tipo str
e o retorno do tipo str
. Subtipos são aceitos como argumentos.
Novos recursos são frequentemente adicionados ao módulo typing
. O pacote typing_extensions provê suporte retroativo a estes novos recursos em versões anteriores do Python.
Ver também
For a quick overview of type hints, refer to this cheat sheet.
The “Type System Reference” section of https://mypy.readthedocs.io/ – since the Python typing system is standardised via PEPs, this reference should broadly apply to most Python type checkers, although some parts may still be specific to mypy.
The documentation at https://typing.readthedocs.io/ serves as useful reference for type system features, useful typing related tools and typing best practices.
PEPs Relevantes¶
Since the initial introduction of type hints in PEP 484 and PEP 483, a number of PEPs have modified and enhanced Python’s framework for type annotations. These include:
- PEP 544: Protocols: Structural subtyping (static duck typing)
Introduzindo
Protocol
e o decorador@runtime_checkable
.
- PEP 585: Type Hinting Generics In Standard Collections
Introducing
types.GenericAlias
and the ability to use standard library classes as generic types
- PEP 604: Allow writing union types as
X | Y
Introducing
types.UnionType
and the ability to use the binary-or operator|
to signify a union of types
- PEP 604: Allow writing union types as
- PEP 612: Parameter Specification Variables
Introducing
ParamSpec
andConcatenate
Apelidos de tipo¶
Um apelido de tipo é definido ao atribuir o tipo ao apelido. Nesse exemplo, Vector
e list[float]
serão tratados como sinônimos intercambiáveis:
Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
Apelidos de tipo são úteis para simplificar assinaturas de tipo complexas. Por exemplo:
from collections.abc import Sequence
ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
...
Note que None
como uma dica de tipo é um caso especial e é substituído por type(None)
.
NewType¶
Utilize o auxiliar NewType
para criar tipos únicos:
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
O verificador de tipo estático tratará o novo tipo como se fosse uma subclasse do tipo original. Isso é útil para ajudar a encontrar erros de lógica:
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
Você ainda pode executar todas as operações int
em uma variável do tipo UserId
, mas o resultado sempre será do tipo int
. Isso permite que você passe um UserId
em qualquer ocasião que int
possa ser esperado, mas previne que você acidentalmente crie um UserId
de uma forma inválida:
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Note que essas verificações são aplicadas apenas pelo verificador de tipo estático. Em tempo de execução, a instrução Derived = NewType('Derived', Base)
irá tornar Derived
um chamável que retornará imediatamente qualquer parâmetro que você passar. Isso significa que a expressão Derived(some_value)
não cria uma nova classe ou introduz sobrecarga além de uma chamada regular de função.instrução
Mais precisamente, a expressão some_value is Derived(some_value)
é sempre verdadeira em tempo de execução.
É inválido criar um subtipo de Derived
:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
No entanto, é possível criar um NewType
baseado em um ‘derivado’ NewType
:
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
e a verificação de tipos para ProUserId
funcionará como esperado.
Veja PEP 484 para mais detalhes.
Nota
Relembre que o uso de um apelido de tipo declara que dois tipos serão equivalentes entre si. Efetuar Alias = Original
irá fazer o verificador de tipo estático tratar Alias
como sendo exatamente equivalente a Original
em todos os casos. Isso é útil quando você deseja simplificar assinaturas de tipo complexas.
Em contraste, NewType
declara que um tipo será subtipo de outro. Efetuando Derived = NewType('Derived', Original)
irá fazer o verificador de tipo estático tratar Derived
como uma subclasse de Original
, o que significa que um valor do tipo Original
não pode ser utilizado onde um valor do tipo Derived
é esperado. Isso é útil quando você deseja evitar erros de lógica com custo mínimo de tempo de execução.
Novo na versão 3.5.2.
Alterado na versão 3.10: NewType
é agora uma classe ao invés de uma função. Há algum custo adicional de tempo de execução ao chamar NewType
ao invés de uma função regular. Entretanto, esse custo será reduzido na 3.11.0.
Callable¶
Frameworks que esperam funções de retorno com assinaturas específicas podem ter seus tipos indicados usando Callable[[Arg1Type, Arg2Type], ReturnType]
.
Por exemplo:
from collections.abc import Callable
def feeder(get_next_item: Callable[[], str]) -> None:
# Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
# Body
async def on_update(value: str) -> None:
# Body
callback: Callable[[str], Awaitable[None]] = on_update
É possível declarar o tipo de retorno de um chamável sem especificar a assinatura da chamada, substituindo por reticências literais a lista de argumentos na dica de tipo: Callable[..., ReturnType]
.
Chamáveis que recebem outros chamáveis como argumentos podem indicar que seus tipos de parâmetro dependem uns dos outros usando ParamSpec
. Além disso, se esse chamável adiciona ou remove argumentos de outros chamáveis, o operador Concatenate
pode ser usado. Eles assumem a forma de Callable[ParamSpecVariable, ReturnType]
e Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]
, respectivamente.
Alterado na versão 3.10: Callable
agora oferece suporte a ParamSpec
e Concatenate
. Veja PEP 612 para mais detalhes.
Ver também
A documentação para ParamSpec
e Concatenate
contém exemplos de uso em Callable
.
Genéricos¶
Since type information about objects kept in containers cannot be statically inferred in a generic way, abstract base classes have been extended to support subscription to denote expected types for container elements.
from collections.abc import Mapping, Sequence
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parameterized by using a factory available in typing
called TypeVar
.
from collections.abc import Sequence
from typing import TypeVar
T = TypeVar('T') # Declare type variable
def first(l: Sequence[T]) -> T: # Generic function
return l[0]
Tipos genéricos definidos pelo usuário¶
Uma classe definida pelo usuário pode ser definica como uma classe genérica.
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
Generic[T]
as a base class defines that the class LoggedVar
takes a
single type parameter T
. This also makes T
valid as a type within the
class body.
The Generic
base class defines __class_getitem__()
so
that LoggedVar[T]
is valid as a type:
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
Um tipo genérico pode ter qualquer número de tipos de variáveis. Todas as variedades de TypeVar
são permitidas como parâmetros para um tipo genérico:
from typing import TypeVar, Generic, Sequence
T = TypeVar('T', contravariant=True)
B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)
class WeirdTrio(Generic[T, B, S]):
...
Cada tipo dos argumentos para Generic
devem ser distintos. Assim, os seguintes exemplos são inválidos:
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
You can use multiple inheritance with Generic
:
from collections.abc import Sized
from typing import TypeVar, Generic
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type variables could be fixed:
from collections.abc import Mapping
from typing import TypeVar
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
Neste caso MyDict
possui um único parâmetro, T
.
Using a generic class without specifying type parameters assumes
Any
for each position. In the following example, MyIterable
is
not generic but implicitly inherits from Iterable[Any]
:
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
User defined generic type aliases are also supported. Examples:
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
Alterado na versão 3.7: Generic
não possui mais uma metaclasse personalizada.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form Generic[P]
. The behavior is consistent
with type variables’ described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a ParamSpec
:
>>> from typing import Generic, ParamSpec, TypeVar
>>> T = TypeVar('T')
>>> P = ParamSpec('P')
>>> class Z(Generic[T, P]): ...
...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will accept
parameter lists in the forms X[[Type1, Type2, ...]]
and also
X[Type1, Type2, ...]
for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent:
>>> class X(Generic[P]): ...
...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]
Do note that generics with ParamSpec
may not have correct
__parameters__
after substitution in some cases because they
are intended primarily for static type checking.
Alterado na versão 3.10: Generic
agora pode ser parametrizado através de expressões de parâmetros. Veja ParamSpec
e PEP 612 para mais detalhes.
Uma classe genérica definida pelo usuário pode ter ABCs como classes base sem conflito de metaclasse. Não há suporte a metaclasses genéricas. O resultado da parametrização de genéricos é armazenado em cache, e a maioria dos tipos no módulo typing são hasheáveis e comparáveis em termos de igualdade.
O tipo Any
¶
Um tipo especial de tipo é Any
. Um verificador de tipo estático tratará cada tipo como sendo compatível com Any
e Any
como sendo compatível com todos os tipos.
Isso significa que é possível realizar qualquer operação ou chamada de método sobre um valor do tipo Any
e atribuí-lo a qualquer variável:
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Observe que nenhuma verificação de tipo é realizada ao atribuir um valor do tipo Any
a um tipo mais preciso. Por exemplo, o verificador de tipo estático não relatou um erro ao atribuir a
a s
mesmo que s
tenha sido declarado como sendo do tipo str
e receba um valor int
em tempo de execução!
Além disso, todas as funções sem um tipo de retorno ou tipos de parâmetro terão como padrão implicitamente o uso de Any
:
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
Este comportamento permite que Any
seja usado como uma saída de emergência quando você precisar misturar código tipado dinamicamente e estaticamente.
Compare o comportamento de Any
com o comportamento de object
. Semelhante a Any
, todo tipo é um subtipo de object
. No entanto, ao contrário de Any
, o inverso não é verdadeiro: object
não é um subtipo de qualquer outro tipo.
Isso significa que quando o tipo de um valor é object
, um verificador de tipo rejeitará quase todas as operações nele, e atribuí-lo a uma variável (ou usá-la como valor de retorno) de um tipo mais especializado é um tipo erro. Por exemplo:
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
Use object
para indicar que um valor pode ser de qualquer tipo de maneira segura. Use Any
para indicar que um valor é tipado dinamicamente.
Subtipagem nominal vs estrutural¶
Inicialmente a PEP 484 definiu o sistema de tipos estáticos do Python como usando subtipagem nominal. Isto significa que uma classe A
é permitida onde uma classe B
é esperada se e somente se A
for uma subclasse de B
.
Este requisito anteriormente também se aplicava a classes base abstratas, como Iterable
. O problema com essa abordagem é que uma classe teve que ser marcada explicitamente para suportá-los, o que não é pythônico e diferente do que normalmente seria feito em código Python de tipo dinamicamente idiomático. Por exemplo, isso está em conformidade com PEP 484:
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
PEP 544 permite resolver este problema permitindo que os usuários escrevam o código acima sem classes base explícitas na definição de classe, permitindo que Bucket
seja implicitamente considerado um subtipo de Sized
e Iterable[int]
por verificador de tipo estático. Isso é conhecido como subtipagem estrutural (ou tipagem pato estática):
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
Além disso, ao criar uma subclasse de uma classe especial Protocol
, um usuário pode definir novos protocolos personalizados para aproveitar ao máximo a subtipagem estrutural (veja exemplos abaixo).
Conteúdo do módulo¶
The module defines the following classes, functions and decorators.
Nota
This module defines several types that are subclasses of pre-existing
standard library classes which also extend Generic
to support type variables inside []
.
These types became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support []
.
The redundant types are deprecated as of Python 3.9 but no deprecation warnings will be issued by the interpreter. It is expected that type checkers will flag the deprecated types when the checked program targets Python 3.9 or newer.
The deprecated types will be removed from the typing
module
in the first Python version released 5 years after the release of Python 3.9.0.
See details in PEP 585—Type Hinting Generics In Standard Collections.
Tipos primitivos especiais¶
Tipos especiais¶
These can be used as types in annotations and do not support []
.
-
typing.
Any
¶ Tipo especial que indica um tipo irrestrito.
-
typing.
NoReturn
¶ Special type indicating that a function never returns. For example:
from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way')
Novo na versão 3.5.4.
Novo na versão 3.6.2.
-
typing.
TypeAlias
¶ Special annotation for explicitly declaring a type alias. For example:
from typing import TypeAlias Factors: TypeAlias = list[int]
See PEP 613 for more details about explicit type aliases.
Novo na versão 3.10.
Formas especiais¶
These can be used as types in annotations using []
, each having a unique syntax.
-
typing.
Tuple
¶ Tuple type;
Tuple[X, Y]
is the type of a tuple of two items with the first item of type X and the second of type Y. The type of the empty tuple can be written asTuple[()]
.Example:
Tuple[T1, T2]
is a tuple of two elements corresponding to type variables T1 and T2.Tuple[int, float, str]
is a tuple of an int, a float and a string.To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g.
Tuple[int, ...]
. A plainTuple
is equivalent toTuple[Any, ...]
, and in turn totuple
.Obsoleto desde a versão 3.9:
builtins.tuple
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
typing.
Union
¶ Tipo de união;
Union[X, Y]
é equivalente aX | Y
e significa X ou Y.Para definir uma união, use, por exemplo.
Union[int, str]
ou a abreviaturaint | str
. Usar essa abreviação é recomendado. Detalhes:Os argumentos devem ser tipos e deve haver pelo menos um.
As uniões de uniões são achatadas, por exemplo:
Union[Union[int, str], float] == Union[int, str, float]
As uniões de um único argumento desaparecem, por exemplo:
Union[int] == int # The constructor actually returns int
Argumento redundantes são pulados, e.g.:
Union[int, str, int] == Union[int, str] == int | str
Ao comparar uniões, a ordem de argumentos é ignorada. Por exemplo:
Union[int, str] == Union[str, int]
Você não pode estender ou instanciar uma
Union
Você não pode escrever
Union[X][Y]
.
Alterado na versão 3.7: Não remova subclasses explícitas de uniões em tempo de execução.
Alterado na versão 3.10: Uniões agora podem ser escritas com
X | Y
. Veja expressões de união de tipos.
-
typing.
Optional
¶ Optional type.
Optional[X]
equivale aX | None
(ouUnion[X, None]
).Note que isso não é o mesmo conceito de um argumento opcional, que possui um valor por padrão. Um argumento opcional com padrão não requer o qualificador
Optional
em sua anotação de tipo só por ser opcional. Por exemplo:def foo(arg: int = 0) -> None: ...
Por outro lado, se um valor explícito de
None
for permitido, o uso deOptional
é apropriado, seja o argumento opcional ou não. Por exemplo:def foo(arg: Optional[int] = None) -> None: ...
Alterado na versão 3.10: Optional agora pode ser escrito como
X | None
. Veja expressões de união de tipos.
-
typing.
Callable
¶ Callable type;
Callable[[int], str]
is a function of (int) -> str.The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types or an ellipsis; the return type must be a single type.
There is no syntax to indicate optional or keyword arguments; such function types are rarely used as callback types.
Callable[..., ReturnType]
(literal ellipsis) can be used to type hint a callable taking any number of arguments and returningReturnType
. A plainCallable
is equivalent toCallable[..., Any]
, and in turn tocollections.abc.Callable
.Chamáveis que recebem outros chamáveis como argumentos podem indicar que seus tipos de parâmetro dependem uns dos outros usando
ParamSpec
. Além disso, se esse chamável adiciona ou remove argumentos de outros chamáveis, o operadorConcatenate
pode ser usado. Eles assumem a forma deCallable[ParamSpecVariable, ReturnType]
eCallable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]
, respectivamente.Obsoleto desde a versão 3.9:
collections.abc.Callable
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.Alterado na versão 3.10:
Callable
agora oferece suporte aParamSpec
eConcatenate
. Veja PEP 612 para mais detalhes.Ver também
The documentation for
ParamSpec
andConcatenate
provide examples of usage withCallable
.
-
typing.
Concatenate
¶ Used with
Callable
andParamSpec
to type annotate a higher order callable which adds, removes, or transforms parameters of another callable. Usage is in the formConcatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]
.Concatenate
is currently only valid when used as the first argument to aCallable
. The last parameter toConcatenate
must be aParamSpec
.Por exemplo, para anotar um decorador
with_lock
que oferece uma instância dethreading.Lock
para a função decorada,Concatenate
pode ser usado para indicar quewith_lock
espera um chamável cujo primeiro argumento tem tipoLock
, e retorna um chamável com uma assinatura de tipos diferente. Neste caso, oParamSpec
indica que os tipos dos parâmetros do chamável retornado dependem dos tipos dos parâmetros do chamável de entrada:from collections.abc import Callable from threading import Lock from typing import Concatenate, ParamSpec, TypeVar P = ParamSpec('P') R = TypeVar('R') # Use this lock to ensure that only one thread is executing a function # at any time. my_lock = Lock() def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]: '''A type-safe decorator which provides a lock.''' def inner(*args: P.args, **kwargs: P.kwargs) -> R: # Provide the lock as the first argument. return f(my_lock, *args, **kwargs) return inner @with_lock def sum_threadsafe(lock: Lock, numbers: list[float]) -> float: '''Add a list of numbers together in a thread-safe manner.''' with lock: return sum(numbers) # We don't need to pass in the lock ourselves thanks to the decorator. sum_threadsafe([1.1, 2.2, 3.3])
Novo na versão 3.10.
Ver também
-
class
typing.
Type
(Generic[CT_co])¶ A variable annotated with
C
may accept a value of typeC
. In contrast, a variable annotated withType[C]
may accept values that are classes themselves – specifically, it will accept the class object ofC
. For example:a = 3 # Has type 'int' b = int # Has type 'Type[int]' c = type(a) # Also has type 'Type[int]'
Note that
Type[C]
is covariant:class User: ... class BasicUser(User): ... class ProUser(User): ... class TeamUser(User): ... # Accepts User, BasicUser, ProUser, TeamUser, ... def make_new_user(user_class: Type[User]) -> User: # ... return user_class()
The fact that
Type[C]
is covariant implies that all subclasses ofC
should implement the same constructor signature and class method signatures asC
. The type checker should flag violations of this, but should also allow constructor calls in subclasses that match the constructor calls in the indicated base class. How the type checker is required to handle this particular case may change in future revisions of PEP 484.The only legal parameters for
Type
are classes,Any
, type variables, and unions of any of these types. For example:def new_non_team_user(user_class: Type[BasicUser | ProUser]): ...
Type[Any]
is equivalent toType
which in turn is equivalent totype
, which is the root of Python’s metaclass hierarchy.Novo na versão 3.5.2.
Obsoleto desde a versão 3.9:
builtins.type
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
typing.
Literal
¶ A type that can be used to indicate to type checkers that the corresponding variable or function parameter has a value equivalent to the provided literal (or one of several literals). For example:
def validate_simple(data: Any) -> Literal[True]: # always returns True ... MODE = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: MODE) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker
Literal[...]
não é subclasse. Em tempo de execução, permite-se um valor arbitrário como argumento de tipo paraLiteral[...]
, mas verificadores de tipo podem impor restrições. Veja PEP 586 para mais detalhes sobre tipos literais.Novo na versão 3.8.
-
typing.
ClassVar
¶ Uma construção especial de tipagem para marcar variáveis de classe.
Como introduzido na PEP 526, uma variável cuja anotação de tipo tem um invólucro ClassVar indica que um dado atributo deve ser usado como uma variável de classe, e que ele não deve ser definido em instâncias dessa classe. Modo de usar:
class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVar
aceita apenas tipos e não pode ser subscrita posteriormente.ClassVar
não é uma classe, e não deve ser usada comisinstance()
ouissubclass()
.ClassVar
não muda com o comportamento do Python em tempo de execução, mas pode ser usada por verificadores de tipos de terceiros. Por exemplo, um verificador de tipos pode sinalizar que o seguinte código é errado:enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
Novo na versão 3.5.3.
-
typing.
Final
¶ A special typing construct to indicate to type checkers that a name cannot be re-assigned or overridden in a subclass. For example:
MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker
Não há verificação em tempo de execução dessas propriedades. Veja PEP 591 para mais detalhes.
Novo na versão 3.8.
-
typing.
Annotated
¶ A type, introduced in PEP 593 (
Flexible function and variable annotations
), to decorate existing types with context-specific metadata (possibly multiple pieces of it, asAnnotated
is variadic). Specifically, a typeT
can be annotated with metadatax
via the typehintAnnotated[T, x]
. This metadata can be used for either static analysis or at runtime. If a library (or tool) encounters a typehintAnnotated[T, x]
and has no special logic for metadatax
, it should ignore it and simply treat the type asT
. Unlike theno_type_check
functionality that currently exists in thetyping
module which completely disables typechecking annotations on a function or a class, theAnnotated
type allows for both static typechecking ofT
(which can safely ignorex
) together with runtime access tox
within a specific application.Ultimately, the responsibility of how to interpret the annotations (if at all) is the responsibility of the tool or library encountering the
Annotated
type. A tool or library encountering anAnnotated
type can scan through the annotations to determine if they are of interest (e.g., usingisinstance()
).When a tool or a library does not support annotations or encounters an unknown annotation it should just ignore it and treat annotated type as the underlying type.
It’s up to the tool consuming the annotations to decide whether the client is allowed to have several annotations on one type and how to merge those annotations.
Since the
Annotated
type allows you to put several annotations of the same (or different) type(s) on any node, the tools or libraries consuming those annotations are in charge of dealing with potential duplicates. For example, if you are doing value range analysis you might allow this:T1 = Annotated[int, ValueRange(-10, 5)] T2 = Annotated[T1, ValueRange(-20, 3)]
Passing
include_extras=True
toget_type_hints()
lets one access the extra annotations at runtime.The details of the syntax:
O primeiro argumento de
Annotated
deve ser um tipo válidoMultiple type annotations are supported (
Annotated
supports variadic arguments):Annotated[int, ValueRange(3, 10), ctype("char")]
Annotated
must be called with at least two arguments (Annotated[int]
is not valid)The order of the annotations is preserved and matters for equality checks:
Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[ int, ctype("char"), ValueRange(3, 10) ]
Nested
Annotated
types are flattened, with metadata ordered starting with the innermost annotation:Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[ int, ValueRange(3, 10), ctype("char") ]
Duplicated annotations are not removed:
Annotated[int, ValueRange(3, 10)] != Annotated[ int, ValueRange(3, 10), ValueRange(3, 10) ]
Annotated
can be used with nested and generic aliases:T = TypeVar('T') Vec = Annotated[list[tuple[T, T]], MaxLen(10)] V = Vec[int] V == Annotated[list[tuple[int, int]], MaxLen(10)]
Novo na versão 3.9.
-
typing.
TypeGuard
¶ Special typing form used to annotate the return type of a user-defined type guard function.
TypeGuard
only accepts a single type argument. At runtime, functions marked this way should return a boolean.TypeGuard
aims to benefit type narrowing – a technique used by static type checkers to determine a more precise type of an expression within a program’s code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a “type guard”:def is_str(val: str | float): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ...
Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use
TypeGuard[...]
as its return type to alert static type checkers to this intention.Usar
-> TypeGuard
informa ao verificador de tipo estático que, para uma determinada função:O valor de retorno é um booleano.
Se o valor de retorno for
True
, o tipo de seu argumento é o tipo dentro deTypeGuard
.
Por exemplo:
def is_str_list(val: List[object]) -> TypeGuard[List[str]]: '''Determines whether all objects in the list are strings''' return all(isinstance(x, str) for x in val) def func1(val: List[object]): if is_str_list(val): # Type of ``val`` is narrowed to ``List[str]``. print(" ".join(val)) else: # Type of ``val`` remains as ``List[object]``. print("Not a list of strings!")
If
is_str_list
is a class or instance method, then the type inTypeGuard
maps to the type of the second parameter aftercls
orself
.In short, the form
def foo(arg: TypeA) -> TypeGuard[TypeB]: ...
, means that iffoo(arg)
returnsTrue
, thenarg
narrows fromTypeA
toTypeB
.Nota
TypeB
need not be a narrower form ofTypeA
– it can even be a wider form. The main reason is to allow for things like narrowingList[object]
toList[str]
even though the latter is not a subtype of the former, sinceList
is invariant. The responsibility of writing type-safe type guards is left to the user.TypeGuard
também funciona com tipos variáveis. Consulte a PEP 647 para obter mais detalhes.Novo na versão 3.10.
Building generic types¶
These are not used in annotations. They are building blocks for creating generic types.
-
class
typing.
Generic
¶ Classe base abstrata para tipos genéricos
A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
Esta classe pode ser utilizada como segue:
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
-
class
typing.
TypeVar
¶ Tipo variável.
Uso:
T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See
Generic
for more information on generic types. Generic functions work as follows:def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def print_capitalized(x: S) -> S: """Print x capitalized, and return x.""" print(x.capitalize()) return x def concatenate(x: A, y: A) -> A: """Add two strings or bytes objects together.""" return x + y
Note that type variables can be bound, constrained, or neither, but cannot be both bound and constrained.
Constrained type variables and bound type variables have different semantics in several important ways. Using a constrained type variable means that the
TypeVar
can only ever be solved as being exactly one of the constraints given:a = concatenate('one', 'two') # Ok, variable 'a' has type 'str' b = concatenate(StringSubclass('one'), StringSubclass('two')) # Inferred type of variable 'b' is 'str', # despite 'StringSubclass' being passed in c = concatenate('one', b'two') # error: type variable 'A' can be either 'str' or 'bytes' in a function call, but not both
Using a bound type variable, however, means that the
TypeVar
will be solved using the most specific type possible:print_capitalized('a string') # Ok, output has type 'str' class StringSubclass(str): pass print_capitalized(StringSubclass('another string')) # Ok, output has type 'StringSubclass' print_capitalized(45) # error: int is not a subtype of str
Type variables can be bound to concrete types, abstract types (ABCs or protocols), and even unions of types:
U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
Bound type variables are particularly useful for annotating
classmethods
that serve as alternative constructors. In the following example (by Raymond Hettinger), the type variableC
is bound to theCircle
class through the use of a forward reference. Using this type variable to annotate thewith_circumference
classmethod, rather than hardcoding the return type asCircle
, means that a type checker can correctly infer the return type even if the method is called on a subclass:import math C = TypeVar('C', bound='Circle') class Circle: """An abstract circle""" def __init__(self, radius: float) -> None: self.radius = radius # Use a type variable to show that the return type # will always be an instance of whatever ``cls`` is @classmethod def with_circumference(cls: type[C], circumference: float) -> C: """Create a circle with the specified circumference""" radius = circumference / (math.pi * 2) return cls(radius) class Tire(Circle): """A specialised circle (made out of rubber)""" MATERIAL = 'rubber' c = Circle.with_circumference(3) # Ok, variable 'c' has type 'Circle' t = Tire.with_circumference(4) # Ok, variable 't' has type 'Tire' (not 'Circle')
At runtime,
isinstance(x, T)
will raiseTypeError
. In general,isinstance()
andissubclass()
should not be used with types.Type variables may be marked covariant or contravariant by passing
covariant=True
orcontravariant=True
. See PEP 484 for more details. By default, type variables are invariant.
-
class
typing.
ParamSpec
(name, *, bound=None, covariant=False, contravariant=False)¶ Parameter specification variable. A specialized version of
type variables
.Uso:
P = ParamSpec('P')
Variáveis de especificação de parâmetro existem principalmente para o benefício de verificadores de tipo estático. São usadas para encaminhar os tipos de parâmetros de um chamável para outro chamável – um padrão comumente encontrado em funções e decoradores de ordem superior. Só são válidas quando usados em
Concatenate
, ou como o primeiro argumento paraCallable
, ou como parâmetro para genéricos definidos pelo usuário. ConsulteGeneric
para obter mais informações sobre tipos genéricos.Por exemplo, para adicionar um registro básico de eventos a uma função, é possível criar um decorador
add_logging
para registrar chamadas de função. A variável de especificação de parâmetro informa ao verificador de tipos que o chamável passado para o decorador e o novo chamável retornado por ele têm parâmetros de tipo interdependentes:from collections.abc import Callable from typing import TypeVar, ParamSpec import logging T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y
Without
ParamSpec
, the simplest way to annotate this previously was to use aTypeVar
with boundCallable[..., Any]
. However this causes two problems:O verificador de tipos não consegue verificar a função
inner
, porque*args
e**kwargs
precisam ter tipoAny
.cast()
pode ser exigida no corpo do decoradoradd_logging
ao retornar a funçãoinner
, ou o verificador de tipo estático deverá ser instruído a ignorar oreturn inner
.
-
args
¶
-
kwargs
¶ Como
ParamSpec
capturar tanto parâmetros posicionais quanto parâmetros nomeados,P.args
eP.kwargs
podem ser usados para dividir umParamSpec
em seus componentes.P.args
representa a tupla de parâmetros posicionais em uma determinada chamada e só deve ser usada para anotar*args
.P.kwargs
representa o mapeamento de parâmetros nomeados para seus valores em uma determinada chamada, e só deve ser usado para anotar**kwargs
. Ambos os atributos exigem que o parâmetro anotado esteja em escopo. Em tempo de execução,P.args
eP.kwargs
são instâncias, respectivamente, deParamSpecArgs
eParamSpecKwargs
.
Variáveis de especificação de parâmetros criadas com
covariant=True
oucontravariant=True
podem ser usadas para declarar tipos genéricos covariantes ou contravariantes. O argumentobound
também é aceito, semelhante aoTypeVar
. Porém, a semântica real dessas palavras reservadas ainda não foi decidida.Novo na versão 3.10.
Nota
Somente variáveis de especificação de parâmetro definidas em escopo global podem ser serializadas com pickle.
Ver também
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
).Callable
andConcatenate
.
-
typing.
ParamSpecArgs
¶
-
typing.
ParamSpecKwargs
¶ Tipos dos argumentos e dos argumentos nomeados de um
ParamSpec
. O atributoP.args
de umParamSpec
é uma instância deParamSpecArgs
, e o atributoP.kwargs
é uma instância deParamSpecKwargs
. São destinados à introspecção em tempo de execução, e não têm nenhum significado especial para o verificador de tipo estático.Calling
get_origin()
on either of these objects will return the originalParamSpec
:P = ParamSpec("P") get_origin(P.args) # returns P get_origin(P.kwargs) # returns P
Novo na versão 3.10.
-
typing.
AnyStr
¶ AnyStr
is aconstrained type variable
defined asAnyStr = TypeVar('AnyStr', str, bytes)
.It is meant to be used for functions that may accept any kind of string without allowing different kinds of strings to mix. For example:
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat(u"foo", u"bar") # Ok, output has type 'unicode' concat(b"foo", b"bar") # Ok, output has type 'bytes' concat(u"foo", b"bar") # Error, cannot mix unicode and bytes
-
class
typing.
Protocol
(Generic)¶ Base class for protocol classes. Protocol classes are defined like this:
class Proto(Protocol): def meth(self) -> int: ...
Essas classes são usadas principalmente com verificadores de tipo estático que reconhecem a subtipagem estrutural (tipagem pato estática). Por exemplo,:
class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check
Consulte a PEP 544 para obter mais detalhes. Classes de protocolo decoradas com
runtime_checkable()
(descritas posteriormente) funcionam como protocolos em tempo de execução simples, somente verificando a presença de determinados atributos, e ignorando suas assinaturas de tipo.Classes de protocolo podem ser genéricas. Por exemplo:
class GenProto(Protocol[T]): def meth(self) -> T: ...
Novo na versão 3.8.
-
@
typing.
runtime_checkable
¶ Marca uma classe de protocolo como um protocolo de tempo de execução.
Such a protocol can be used with
isinstance()
andissubclass()
. This raisesTypeError
when applied to a non-protocol class. This allows a simple-minded structural check, very similar to “one trick ponies” incollections.abc
such asIterable
. For example:@runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) @runtime_checkable class Named(Protocol): name: str import threading assert isinstance(threading.Thread(name='Bob'), Named)
Nota
runtime_checkable()
will check only the presence of the required methods or attributes, not their type signatures or types. For example,ssl.SSLObject
is a class, therefore it passes anissubclass()
check againstCallable
. However, thessl.SSLObject.__init__
method exists only to raise aTypeError
with a more informative message, therefore making it impossible to call (instantiate)ssl.SSLObject
.Nota
A verificação
isinstance()
sobre um protocolo verificável em tempo de execução pode ser surpreendentemente lenta se comparada a uma verificaçãoisinstance()
sobre outros tipos de classe. Considere usar expressões alternativas, como chamar a funçãohasattr()
para realizar verificações estruturais em código sensível a desempenho.Novo na versão 3.8.
Outras diretivas especiais¶
These are not used in annotations. They are building blocks for declaring types.
-
class
typing.
NamedTuple
¶ Versão tipada de
collections.namedtuple()
.Uso:
class Employee(NamedTuple): name: str id: int
Isso equivale a:
Employee = collections.namedtuple('Employee', ['name', 'id'])
Para dar um valor padrão a um campo, você pode atribuir um valor a ele no corpo da classe:
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
Campos com valores padrão devem vir depois de quaisquer campos sem valores padrão.
A classe resultante tem um atributo extra
__annotations__
que fornece um dicionário que mapeia os nomes de campos para os tipos de campos. (Os nomes de campos estão no atributo_fields
e os valores padrão estão no atributo_field_defaults
, e ambos fazem parte da API denamedtuple()
.)Subclasses de
NamedTuple
também podem ter docstrings e métodos:class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
Uso retrocompatível:
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
Alterado na versão 3.6: Adiciona suporte à sintaxe de anotação de variáveis da PEP 526.
Alterado na versão 3.6.1: Adiciona suporte a valores padrão, métodos, e docstrings.
Alterado na versão 3.8: Os atributos
_field_types
e__annotations__
agora são dicionários regulares em vez de instâncias deOrderedDict
.Alterado na versão 3.9: Remove o atributo
_field_types
em favor do atributo mais padrão__annotations__
que tem as mesmas informações.
-
class
typing.
NewType
(name, tp)¶ A helper class to indicate a distinct type to a typechecker, see NewType. At runtime it returns an object that returns its argument when called. Usage:
UserId = NewType('UserId', int) first_user = UserId(1)
Novo na versão 3.5.2.
Alterado na versão 3.10:
NewType
agora é uma classe em vez de uma função.
-
class
typing.
TypedDict
(dict)¶ Uma construção especial para adicionar dicas de tipo a um dicionário. Em tempo de execução, é um simples
dict
.TypedDict
declara um tipo dicionário que espera que todas as suas instâncias tenham um determinado conjunto de chaves, onde cada chave está associada a um valor de um tipo consistente. Essa expectativa não é verificada em tempo de execução, mas é imposta apenas por verificadores de tipos. Modo de usar:class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
To allow using this feature with older versions of Python that do not support PEP 526,
TypedDict
supports two additional equivalent syntactic forms:Point2D = TypedDict('Point2D', x=int, y=int, label=str) Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
The functional syntax should also be used when any of the keys are not valid identifiers, for example because they are keywords or contain hyphens. Example:
# raises SyntaxError class Point2D(TypedDict): in: int # 'in' is a keyword x-y: int # name with hyphens # OK, functional syntax Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
By default, all keys must be present in a
TypedDict
. It is possible to override this by specifying totality. Usage:class Point2D(TypedDict, total=False): x: int y: int
Isso significa que um
Point2D
TypedDict
pode ter qualquer uma de suas chaves omitidas. Espera-se que um verificador de tipos apenas permita os literaisFalse
ouTrue
como valores do argumentototal
.True
é o padrão, e todos os itens definidos no corpo da classe tornam-se obrigatórios.É possível que um tipo
TypedDict
herde de um ou mais tiposTypedDict
usando a sintaxe baseada em classes. Modo de usar:class Point3D(Point2D): z: int
Point3D
tem três itens:x
,y
ez
. Equivale a esta definição:class Point3D(TypedDict): x: int y: int z: int
A
TypedDict
cannot inherit from a non-TypedDict
class, notably includingGeneric
. For example:class X(TypedDict): x: int class Y(TypedDict): y: int class Z(object): pass # A non-TypedDict class class XY(X, Y): pass # OK class XZ(X, Z): pass # raises TypeError T = TypeVar('T') class XT(X, Generic[T]): pass # raises TypeError
Um
TypedDict
pode ser introspeccionado por meio de dicionários de anotações (consulte Boas práticas para anotações para obter mais informações sobre as melhores práticas de anotações),__total__
,__required_keys__
e__optional_keys__
.-
__total__
¶ Point2D.__total__
gives the value of thetotal
argument. Example:>>> from typing import TypedDict >>> class Point2D(TypedDict): pass >>> Point2D.__total__ True >>> class Point2D(TypedDict, total=False): pass >>> Point2D.__total__ False >>> class Point3D(Point2D): pass >>> Point3D.__total__ True
-
__required_keys__
¶ Novo na versão 3.9.
-
__optional_keys__
¶ Point2D.__required_keys__
andPoint2D.__optional_keys__
returnfrozenset
objects containing required and non-required keys, respectively. Currently the only way to declare both required and non-required keys in the sameTypedDict
is mixed inheritance, declaring aTypedDict
with one value for thetotal
argument and then inheriting it from anotherTypedDict
with a different value fortotal
. Usage:>>> class Point2D(TypedDict, total=False): ... x: int ... y: int ... >>> class Point3D(Point2D): ... z: int ... >>> Point3D.__required_keys__ == frozenset({'z'}) True >>> Point3D.__optional_keys__ == frozenset({'x', 'y'}) True
Novo na versão 3.9.
Consulte PEP 589 para obter mais exemplos e regras detalhadas sobre o uso de
TypedDict
.Novo na versão 3.8.
-
Generic concrete collections¶
Corresponding to built-in types¶
-
class
typing.
Dict
(dict, MutableMapping[KT, VT])¶ A generic version of
dict
. Useful for annotating return types. To annotate arguments it is preferred to use an abstract collection type such asMapping
.This type can be used as follows:
def count_words(text: str) -> Dict[str, int]: ...
Obsoleto desde a versão 3.9:
builtins.dict
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
List
(list, MutableSequence[T])¶ Generic version of
list
. Useful for annotating return types. To annotate arguments it is preferred to use an abstract collection type such asSequence
orIterable
.This type may be used as follows:
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0]
Obsoleto desde a versão 3.9:
builtins.list
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Set
(set, MutableSet[T])¶ A generic version of
builtins.set
. Useful for annotating return types. To annotate arguments it is preferred to use an abstract collection type such asAbstractSet
.Obsoleto desde a versão 3.9:
builtins.set
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
FrozenSet
(frozenset, AbstractSet[T_co])¶ A generic version of
builtins.frozenset
.Obsoleto desde a versão 3.9:
builtins.frozenset
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
Nota
Tuple
is a special form.
Corresponding to types in collections
¶
-
class
typing.
DefaultDict
(collections.defaultdict, MutableMapping[KT, VT])¶ A generic version of
collections.defaultdict
.Novo na versão 3.5.2.
Obsoleto desde a versão 3.9:
collections.defaultdict
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
OrderedDict
(collections.OrderedDict, MutableMapping[KT, VT])¶ A generic version of
collections.OrderedDict
.Novo na versão 3.7.2.
Obsoleto desde a versão 3.9:
collections.OrderedDict
agora oferece suporte a subscrição ([]
). consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
ChainMap
(collections.ChainMap, MutableMapping[KT, VT])¶ A generic version of
collections.ChainMap
.Novo na versão 3.5.4.
Novo na versão 3.6.1.
Obsoleto desde a versão 3.9:
collections.ChainMap
agora oferece suporte a subscrição ([]
). consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Counter
(collections.Counter, Dict[T, int])¶ A generic version of
collections.Counter
.Novo na versão 3.5.4.
Novo na versão 3.6.1.
Obsoleto desde a versão 3.9:
collections.Counter
agora oferece suporte a subscrição ([]
). consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Deque
(deque, MutableSequence[T])¶ A generic version of
collections.deque
.Novo na versão 3.5.4.
Novo na versão 3.6.1.
Obsoleto desde a versão 3.9:
collections.deque
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
Other concrete types¶
-
class
typing.
IO
¶ -
class
typing.
TextIO
¶ -
class
typing.
BinaryIO
¶ O tipo genérico
IO[AnyStr]
e suas subclassesTextIO(IO[str])
eBinaryIO(IO[bytes])
representam os tipos de fluxos de E/S, como os retornados poropen()
.Descontinuado desde a versão 3.8, será removido na versão 3.13: The
typing.io
namespace is deprecated and will be removed. These types should be directly imported fromtyping
instead.
-
class
typing.
Pattern
¶ -
class
typing.
Match
¶ These type aliases correspond to the return types from
re.compile()
andre.match()
. These types (and the corresponding functions) are generic inAnyStr
and can be made specific by writingPattern[str]
,Pattern[bytes]
,Match[str]
, orMatch[bytes]
.Descontinuado desde a versão 3.8, será removido na versão 3.13: The
typing.re
namespace is deprecated and will be removed. These types should be directly imported fromtyping
instead.Obsoleto desde a versão 3.9: Classes
Pattern
eMatch
dere
agora suporte[]
. Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Text
¶ Text
is an alias forstr
. It is provided to supply a forward compatible path for Python 2 code: in Python 2,Text
is an alias forunicode
.Use
Text
para indicar que um valor deve conter uma string unicode de forma compatível com Python 2 e Python 3:def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
Novo na versão 3.5.2.
Classes Bases Abstratas¶
Corresponding to collections in collections.abc
¶
-
class
typing.
AbstractSet
(Collection[T_co])¶ A generic version of
collections.abc.Set
.Obsoleto desde a versão 3.9:
collections.abc.Set
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
ByteString
(Sequence[int])¶ A generic version of
collections.abc.ByteString
.Este tipo representa os tipos
bytes
,bytearray
ememoryview
de sequências de bytes.As a shorthand for this type,
bytes
can be used to annotate arguments of any of the types mentioned above.Obsoleto desde a versão 3.9:
collections.abc.ByteString
now supports subscripting ([]
). See PEP 585 and Tipo Generic Alias.
-
class
typing.
Collection
(Sized, Iterable[T_co], Container[T_co])¶ A generic version of
collections.abc.Collection
Novo na versão 3.6.0.
Obsoleto desde a versão 3.9:
collections.abc.Collection
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Container
(Generic[T_co])¶ A generic version of
collections.abc.Container
.Obsoleto desde a versão 3.9:
collections.abc.Container
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
ItemsView
(MappingView, AbstractSet[tuple[KT_co, VT_co]])¶ A generic version of
collections.abc.ItemsView
.Obsoleto desde a versão 3.9:
collections.abc.ItemsView
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
KeysView
(MappingView, AbstractSet[KT_co])¶ A generic version of
collections.abc.KeysView
.Obsoleto desde a versão 3.9:
collections.abc.KeysView
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Mapping
(Collection[KT], Generic[KT, VT_co])¶ A generic version of
collections.abc.Mapping
. This type can be used as follows:def get_position_in_index(word_list: Mapping[str, int], word: str) -> int: return word_list[word]
Obsoleto desde a versão 3.9:
collections.abc.Mapping
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
MappingView
(Sized)¶ A generic version of
collections.abc.MappingView
.Obsoleto desde a versão 3.9:
collections.abc.MappingView
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
MutableMapping
(Mapping[KT, VT])¶ A generic version of
collections.abc.MutableMapping
.Obsoleto desde a versão 3.9:
collections.abc.MutableMapping
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
MutableSequence
(Sequence[T])¶ A generic version of
collections.abc.MutableSequence
.Obsoleto desde a versão 3.9:
collections.abc.MutableSequence
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
MutableSet
(AbstractSet[T])¶ A generic version of
collections.abc.MutableSet
.Obsoleto desde a versão 3.9:
collections.abc.MutableSet
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Sequence
(Reversible[T_co], Collection[T_co])¶ A generic version of
collections.abc.Sequence
.Obsoleto desde a versão 3.9:
collections.abc.Sequence
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
ValuesView
(MappingView, Collection[_VT_co])¶ A generic version of
collections.abc.ValuesView
.Obsoleto desde a versão 3.9:
collections.abc.ValuesView
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
Corresponding to other types in collections.abc
¶
-
class
typing.
Iterable
(Generic[T_co])¶ A generic version of
collections.abc.Iterable
.Obsoleto desde a versão 3.9:
collections.abc.Iterable
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Iterator
(Iterable[T_co])¶ A generic version of
collections.abc.Iterator
.Obsoleto desde a versão 3.9:
collections.abc.Iterator
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Generator
(Iterator[T_co], Generic[T_co, T_contra, V_co])¶ A generator can be annotated by the generic type
Generator[YieldType, SendType, ReturnType]
. For example:def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done'
Note that unlike many other generics in the typing module, the
SendType
ofGenerator
behaves contravariantly, not covariantly or invariantly.If your generator will only yield values, set the
SendType
andReturnType
toNone
:def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1
Alternatively, annotate your generator as having a return type of either
Iterable[YieldType]
orIterator[YieldType]
:def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1
Obsoleto desde a versão 3.9:
collections.abc.Generator
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Hashable
¶ An alias to
collections.abc.Hashable
.
-
class
typing.
Reversible
(Iterable[T_co])¶ A generic version of
collections.abc.Reversible
.Obsoleto desde a versão 3.9:
collections.abc.Reversible
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Sized
¶ An alias to
collections.abc.Sized
.
Asynchronous programming¶
-
class
typing.
Coroutine
(Awaitable[V_co], Generic[T_co, T_contra, V_co])¶ A generic version of
collections.abc.Coroutine
. The variance and order of type variables correspond to those ofGenerator
, for example:from collections.abc import Coroutine c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere x = c.send('hi') # Inferred type of 'x' is list[str] async def bar() -> None: y = await c # Inferred type of 'y' is int
Novo na versão 3.5.3.
Obsoleto desde a versão 3.9:
collections.abc.Coroutine
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
AsyncGenerator
(AsyncIterator[T_co], Generic[T_co, T_contra])¶ An async generator can be annotated by the generic type
AsyncGenerator[YieldType, SendType]
. For example:async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded
Unlike normal generators, async generators cannot return a value, so there is no
ReturnType
type parameter. As withGenerator
, theSendType
behaves contravariantly.If your generator will only yield values, set the
SendType
toNone
:async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start)
Alternatively, annotate your generator as having a return type of either
AsyncIterable[YieldType]
orAsyncIterator[YieldType]
:async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start)
Novo na versão 3.6.1.
Obsoleto desde a versão 3.9:
collections.abc.AsyncGenerator
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
AsyncIterable
(Generic[T_co])¶ Uma versão genérica de
collections.abc.AsyncIterable
.Novo na versão 3.5.2.
Obsoleto desde a versão 3.9:
collections.abc.AsyncIterable
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
AsyncIterator
(AsyncIterable[T_co])¶ A generic version of
collections.abc.AsyncIterator
.Novo na versão 3.5.2.
Obsoleto desde a versão 3.9:
collections.abc.AsyncIterator
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
Awaitable
(Generic[T_co])¶ A generic version of
collections.abc.Awaitable
.Novo na versão 3.5.2.
Obsoleto desde a versão 3.9:
collections.abc.Awaitable
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
Context manager types¶
-
class
typing.
ContextManager
(Generic[T_co])¶ A generic version of
contextlib.AbstractContextManager
.Novo na versão 3.5.4.
Novo na versão 3.6.0.
Obsoleto desde a versão 3.9:
contextlib.AbstractContextManager
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
-
class
typing.
AsyncContextManager
(Generic[T_co])¶ A generic version of
contextlib.AbstractAsyncContextManager
.Novo na versão 3.5.4.
Novo na versão 3.6.2.
Obsoleto desde a versão 3.9:
contextlib.AbstractAsyncContextManager
agora oferece suporte a subscrição ([]
). Consulte PEP 585 e Tipo Generic Alias.
Protocolos¶
These protocols are decorated with runtime_checkable()
.
-
class
typing.
SupportsAbs
¶ Um ABC com um método abstrato
__abs__
que é covariante em seu tipo de retorno.
-
class
typing.
SupportsBytes
¶ Um ABC com um método abstrato
__bytes__
.
-
class
typing.
SupportsComplex
¶ Um ABC com um método abstrato
__complex__
.
-
class
typing.
SupportsFloat
¶ Um ABC com um método abstrato
__float__
.
-
class
typing.
SupportsIndex
¶ Um ABC com um método abstrato
__index__
.Novo na versão 3.8.
-
class
typing.
SupportsInt
¶ Um ABC com um método abstrato
__int__
.
-
class
typing.
SupportsRound
¶ Uma ABC com um método abstrato
__round__
que é covariante em seu tipo de retorno.
Funções e decoradores¶
-
typing.
cast
(typ, val)¶ Define um valor para um tipo.
Isso retorna o valor inalterado. Para o verificador de tipos, isso indica que o valor de retorno tem o tipo designado, mas em tempo de execução não verificamos nada intencionalmente (queremos que isso seja o mais rápido possível).
-
@
typing.
overload
¶ The
@overload
decorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload
-decorated definitions must be followed by exactly one non-@overload
-decorated definition (for the same function/method). The@overload
-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload
-decorated definition, while the latter is used at runtime but should be ignored by a type checker. At runtime, calling a@overload
-decorated function directly will raiseNotImplementedError
. An example of overload that gives a more precise type than can be expressed using a union or a type variable:@overload def process(response: None) -> None: ... @overload def process(response: int) -> tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): <actual implementation>
Consulte PEP 484 para mais detalhes e uma comparação com outras semânticas de tipagem.
-
@
typing.
final
¶ A decorator to indicate to type checkers that the decorated method cannot be overridden, and the decorated class cannot be subclassed. For example:
class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ...
Não há verificação em tempo de execução dessas propriedades. Veja PEP 591 para mais detalhes.
Novo na versão 3.8.
-
@
typing.
no_type_check
¶ Decorador para indicar que anotações não são dicas de tipo.
This works as class or function decorator. With a class, it applies recursively to all methods defined in that class (but not to methods defined in its superclasses or subclasses).
This mutates the function(s) in place.
-
@
typing.
no_type_check_decorator
¶ Decorador para dar a outro decorador o efeito
no_type_check()
.Isso envolve o decorador com algo que envolve a função decorada em
no_type_check()
.
-
@
typing.
type_check_only
¶ Decorator to mark a class or function to be unavailable at runtime.
This decorator is itself not available at runtime. It is mainly intended to mark classes that are defined in type stub files if an implementation returns an instance of a private class:
@type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ...
Observe que retornar instâncias de classes privadas não é recomendado. Normalmente, é preferível tornar essas classes públicas.
Introspection helpers¶
-
typing.
get_type_hints
(obj, globalns=None, localns=None, include_extras=False)¶ Retorna um dicionário contendo dicas de tipo para uma função, método, módulo ou objeto classe.
This is often the same as
obj.__annotations__
. In addition, forward references encoded as string literals are handled by evaluating them inglobals
andlocals
namespaces. If necessary,Optional[t]
is added for function and method annotations if a default value equal toNone
is set. For a classC
, return a dictionary constructed by merging all the__annotations__
alongC.__mro__
in reverse order.The function recursively replaces all
Annotated[T, ...]
withT
, unlessinclude_extras
is set toTrue
(seeAnnotated
for more information). For example:class Student(NamedTuple): name: Annotated[str, 'some marker'] get_type_hints(Student) == {'name': str} get_type_hints(Student, include_extras=False) == {'name': str} get_type_hints(Student, include_extras=True) == { 'name': Annotated[str, 'some marker'] }
Nota
get_type_hints()
does not work with imported type aliases that include forward references. Enabling postponed evaluation of annotations (PEP 563) may remove the need for most forward references.Alterado na versão 3.9: Added
include_extras
parameter as part of PEP 593.
-
typing.
get_args
(tp)¶
-
typing.
get_origin
(tp)¶ Provide basic introspection for generic types and special typing forms.
For a typing object of the form
X[Y, Z, ...]
these functions returnX
and(Y, Z, ...)
. IfX
is a generic alias for a builtin orcollections
class, it gets normalized to the original class. IfX
is a union orLiteral
contained in another generic type, the order of(Y, Z, ...)
may be different from the order of the original arguments[Y, Z, ...]
due to type caching. For unsupported objects returnNone
and()
correspondingly. Examples:assert get_origin(Dict[str, int]) is dict assert get_args(Dict[int, str]) == (int, str) assert get_origin(Union[int, str]) is Union assert get_args(Union[int, str]) == (int, str)
Novo na versão 3.8.
-
typing.
is_typeddict
(tp)¶ Verifica se um tipo é um
TypedDict
.Por exemplo:
class Film(TypedDict): title: str year: int is_typeddict(Film) # => True is_typeddict(list | str) # => False
Novo na versão 3.10.
-
class
typing.
ForwardRef
¶ A class used for internal typing representation of string forward references. For example,
List["SomeClass"]
is implicitly transformed intoList[ForwardRef("SomeClass")]
. This class should not be instantiated by a user, but may be used by introspection tools.Nota
Tipos genéricos da PEP 585 como
list["SomeClass"]
não serão transformados implicitamente emlist[ForwardRef("SomeClass")]
e, portanto, não serão resolvidos automaticamente paralist[SomeClass]
.Novo na versão 3.7.4.
Constante¶
-
typing.
TYPE_CHECKING
¶ A special constant that is assumed to be
True
by 3rd party static type checkers. It isFalse
at runtime. Usage:if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
A primeira anotação de tipo deve ser colocada entre aspas, tornando-a uma “referência ao futuro”, para esconder do interpretador a referência ao módulo
expensive_mod
. As anotações de tipos em variáveis locais não são avaliadas, então a segunda anotação não precisa ser colocada entre aspas.Nota
Se
from __future__ import annotations
for usado, anotações não serão avaliadas no momento de definição de funções. Em vez disso, elas são armazenadas como string em__annotations__
. Isso torna desnecessário o uso de aspas em anotações (consulte PEP 563).Novo na versão 3.5.2.