dataclasses — Data Classes

소스 코드: Lib/dataclasses.py


This module provides a decorator and functions for automatically adding generated special methods such as __init__() and __repr__() to user-defined classes. It was originally described in PEP 557.

The member variables to use in these generated methods are defined using PEP 526 type annotations. For example, this code:

from dataclasses import dataclass

@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

will add, among other things, a __init__() that looks like:

def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
    self.name = name
    self.unit_price = unit_price
    self.quantity_on_hand = quantity_on_hand

Note that this method is automatically added to the class: it is not directly specified in the InventoryItem definition shown above.

버전 3.7에 추가.

Module contents

@dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)

This function is a decorator that is used to add generated special methods to classes, as described below.

The @dataclass decorator examines the class to find fields. A field is defined as a class variable that has a type annotation. With two exceptions described below, nothing in @dataclass examines the type specified in the variable annotation.

생성된 모든 메서드의 필드 순서는 클래스 정의에 나타나는 순서입니다.

The @dataclass decorator will add various “dunder” methods to the class, described below. If any of the added methods already exist in the class, the behavior depends on the parameter, as documented below. The decorator returns the same class that it is called on; no new class is created.

If @dataclass is used just as a simple decorator with no parameters, it acts as if it has the default values documented in this signature. That is, these three uses of @dataclass are equivalent:

@dataclass
class C:
    ...

@dataclass()
class C:
    ...

@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False,
           match_args=True, kw_only=False, slots=False, weakref_slot=False)
class C:
    ...

The parameters to @dataclass are:

  • init: If true (the default), a __init__() method will be generated.

    If the class already defines __init__(), this parameter is ignored.

  • repr: If true (the default), a __repr__() method will be generated. The generated repr string will have the class name and the name and repr of each field, in the order they are defined in the class. Fields that are marked as being excluded from the repr are not included. For example: InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10).

    If the class already defines __repr__(), this parameter is ignored.

  • eq: If true (the default), an __eq__() method will be generated. This method compares the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type.

    If the class already defines __eq__(), this parameter is ignored.

  • order: If true (the default is False), __lt__(), __le__(), __gt__(), and __ge__() methods will be generated. These compare the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type. If order is true and eq is false, a ValueError is raised.

    If the class already defines any of __lt__(), __le__(), __gt__(), or __ge__(), then TypeError is raised.

  • unsafe_hash: If False (the default), a __hash__() method is generated according to how eq and frozen are set.

    __hash__() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a __hash__() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of __eq__(), and the values of the eq and frozen flags in the @dataclass decorator.

    By default, @dataclass will not implicitly add a __hash__() method unless it is safe to do so. Neither will it add or change an existing explicitly defined __hash__() method. Setting the class attribute __hash__ = None has a specific meaning to Python, as described in the __hash__() documentation.

    If __hash__() is not explicitly defined, or if it is set to None, then @dataclass may add an implicit __hash__() method. Although not recommended, you can force @dataclass to create a __hash__() method with unsafe_hash=True. This might be the case if your class is logically immutable but can still be mutated. This is a specialized use case and should be considered carefully.

    Here are the rules governing implicit creation of a __hash__() method. Note that you cannot both have an explicit __hash__() method in your dataclass and set unsafe_hash=True; this will result in a TypeError.

    If eq and frozen are both true, by default @dataclass will generate a __hash__() method for you. If eq is true and frozen is false, __hash__() will be set to None, marking it unhashable (which it is, since it is mutable). If eq is false, __hash__() will be left untouched meaning the __hash__() method of the superclass will be used (if the superclass is object, this means it will fall back to id-based hashing).

  • frozen: If true (the default is False), assigning to fields will generate an exception. This emulates read-only frozen instances. If __setattr__() or __delattr__() is defined in the class, then TypeError is raised. See the discussion below.

  • match_args: If true (the default is True), the __match_args__ tuple will be created from the list of parameters to the generated __init__() method (even if __init__() is not generated, see above). If false, or if __match_args__ is already defined in the class, then __match_args__ will not be generated.

버전 3.10에 추가.

  • kw_only: If true (the default value is False), then all fields will be marked as keyword-only. If a field is marked as keyword-only, then the only effect is that the __init__() parameter generated from a keyword-only field must be specified with a keyword when __init__() is called. There is no effect on any other aspect of dataclasses. See the parameter glossary entry for details. Also see the KW_ONLY section.

버전 3.10에 추가.

  • slots: If true (the default is False), __slots__ attribute will be generated and new class will be returned instead of the original one. If __slots__ is already defined in the class, then TypeError is raised.

버전 3.10에 추가.

버전 3.11에서 변경: If a field name is already included in the __slots__ of a base class, it will not be included in the generated __slots__ to prevent overriding them. Therefore, do not use __slots__ to retrieve the field names of a dataclass. Use fields() instead. To be able to determine inherited slots, base class __slots__ may be any iterable, but not an iterator.

  • weakref_slot: If true (the default is False), add a slot named “__weakref__”, which is required to make an instance weakref-able. It is an error to specify weakref_slot=True without also specifying slots=True.

버전 3.11에 추가.

필드는 선택적으로 일반적인 파이썬 문법을 사용하여 기본값을 지정할 수 있습니다:

@dataclass
class C:
    a: int       # 'a' has no default value
    b: int = 0   # assign a default value for 'b'

In this example, both a and b will be included in the added __init__() method, which will be defined as:

def __init__(self, a: int, b: int = 0):

TypeError will be raised if a field without a default value follows a field with a default value. This is true whether this occurs in a single class, or as a result of class inheritance.

dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, kw_only=MISSING)

For common and simple use cases, no other functionality is required. There are, however, some dataclass features that require additional per-field information. To satisfy this need for additional information, you can replace the default field value with a call to the provided field() function. For example:

@dataclass
class C:
    mylist: list[int] = field(default_factory=list)

c = C()
c.mylist += [1, 2, 3]

As shown above, the MISSING value is a sentinel object used to detect if some parameters are provided by the user. This sentinel is used because None is a valid value for some parameters with a distinct meaning. No code should directly use the MISSING value.

The parameters to field() are:

  • default: If provided, this will be the default value for this field. This is needed because the field() call itself replaces the normal position of the default value.

  • default_factory: If provided, it must be a zero-argument callable that will be called when a default value is needed for this field. Among other purposes, this can be used to specify fields with mutable default values, as discussed below. It is an error to specify both default and default_factory.

  • init: If true (the default), this field is included as a parameter to the generated __init__() method.

  • repr: If true (the default), this field is included in the string returned by the generated __repr__() method.

  • hash: This can be a bool or None. If true, this field is included in the generated __hash__() method. If None (the default), use the value of compare: this would normally be the expected behavior. A field should be considered in the hash if it’s used for comparisons. Setting this value to anything other than None is discouraged.

    hash=False 이지만 compare=True 로 설정하는 한 가지 가능한 이유는, 동등 비교에 포함되는 필드가 해시값을 계산하는 데 비용이 많이 들고, 형의 해시값에 이바지하는 다른 필드가 있는 경우입니다. 필드가 해시에서 제외된 경우에도 비교에는 계속 사용됩니다.

  • compare: If true (the default), this field is included in the generated equality and comparison methods (__eq__(), __gt__(), et al.).

  • metadata: This can be a mapping or None. None is treated as an empty dict. This value is wrapped in MappingProxyType() to make it read-only, and exposed on the Field object. It is not used at all by Data Classes, and is provided as a third-party extension mechanism. Multiple third-parties can each have their own key, to use as a namespace in the metadata.

  • kw_only: If true, this field will be marked as keyword-only. This is used when the generated __init__() method’s parameters are computed.

버전 3.10에 추가.

If the default value of a field is specified by a call to field(), then the class attribute for this field will be replaced by the specified default value. If default is not provided, then the class attribute will be deleted. The intent is that after the @dataclass decorator runs, the class attributes will all contain the default values for the fields, just as if the default value itself were specified. For example, after:

@dataclass
class C:
    x: int
    y: int = field(repr=False)
    z: int = field(repr=False, default=10)
    t: int = 20

The class attribute C.z will be 10, the class attribute C.t will be 20, and the class attributes C.x and C.y will not be set.

class dataclasses.Field

Field objects describe each defined field. These objects are created internally, and are returned by the fields() module-level method (see below). Users should never instantiate a Field object directly. Its documented attributes are:

  • name: The name of the field.

  • type: The type of the field.

  • default, default_factory, init, repr, hash, compare, metadata, and kw_only have the identical meaning and values as they do in the field() function.

다른 어트리뷰트도 있을 수 있지만, 내부적인 것이므로 검사하거나 의존해서는 안 됩니다.

dataclasses.fields(class_or_instance)

데이터 클래스의 필드들을 정의하는 Field 객체들의 튜플을 돌려줍니다. 데이터 클래스나 데이터 클래스의 인스턴스를 받아들입니다. 데이터 클래스 나 데이터 클래스의 인스턴스를 전달하지 않으면 TypeError 를 돌려줍니다. ClassVar 또는 InitVar 인 의사 필드는 반환하지 않습니다.

dataclasses.asdict(obj, *, dict_factory=dict)

Converts the dataclass obj to a dict (by using the factory function dict_factory). Each dataclass is converted to a dict of its fields, as name: value pairs. dataclasses, dicts, lists, and tuples are recursed into. Other objects are copied with copy.deepcopy().

Example of using asdict() on nested dataclasses:

@dataclass
class Point:
     x: int
     y: int

@dataclass
class C:
     mylist: list[Point]

p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}

c = C([Point(0, 0), Point(10, 4)])
assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}

To create a shallow copy, the following workaround may be used:

{field.name: getattr(obj, field.name) for field in fields(obj)}

asdict() raises TypeError if obj is not a dataclass instance.

dataclasses.astuple(obj, *, tuple_factory=tuple)

Converts the dataclass obj to a tuple (by using the factory function tuple_factory). Each dataclass is converted to a tuple of its field values. dataclasses, dicts, lists, and tuples are recursed into. Other objects are copied with copy.deepcopy().

이전 예에서 계속하면:

assert astuple(p) == (10, 20)
assert astuple(c) == ([(0, 0), (10, 4)],)

To create a shallow copy, the following workaround may be used:

tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))

astuple() raises TypeError if obj is not a dataclass instance.

dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False, module=None)

Creates a new dataclass with name cls_name, fields as defined in fields, base classes as given in bases, and initialized with a namespace as given in namespace. fields is an iterable whose elements are each either name, (name, type), or (name, type, Field). If just name is supplied, typing.Any is used for type. The values of init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, and weakref_slot have the same meaning as they do in @dataclass.

If module is defined, the __module__ attribute of the dataclass is set to that value. By default, it is set to the module name of the caller.

This function is not strictly required, because any Python mechanism for creating a new class with __annotations__ can then apply the @dataclass function to convert that class to a dataclass. This function is provided as a convenience. For example:

C = make_dataclass('C',
                   [('x', int),
                     'y',
                    ('z', int, field(default=5))],
                   namespace={'add_one': lambda self: self.x + 1})

는 다음과 동등합니다:

@dataclass
class C:
    x: int
    y: 'typing.Any'
    z: int = 5

    def add_one(self):
        return self.x + 1
dataclasses.replace(obj, /, **changes)

Creates a new object of the same type as obj, replacing fields with values from changes. If obj is not a Data Class, raises TypeError. If keys in changes are not field names of the given dataclass, raises TypeError.

The newly returned object is created by calling the __init__() method of the dataclass. This ensures that __post_init__(), if present, is also called.

Init-only variables without default values, if any exist, must be specified on the call to replace() so that they can be passed to __init__() and __post_init__().

It is an error for changes to contain any fields that are defined as having init=False. A ValueError will be raised in this case.

Be forewarned about how init=False fields work during a call to replace(). They are not copied from the source object, but rather are initialized in __post_init__(), if they’re initialized at all. It is expected that init=False fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a custom replace() (or similarly named) method which handles instance copying.

dataclasses.is_dataclass(obj)

매개변수가 데이터 클래스나 데이터 클래스의 인스턴스면 True를 반환하고, 그렇지 않으면 False를 반환합니다.

(데이터 클래스 자체가 아니라) 데이터 클래스의 인스턴스인지 알아야 한다면 not isinstance(obj, type) 검사를 추가하십시오:

def is_dataclass_instance(obj):
    return is_dataclass(obj) and not isinstance(obj, type)
dataclasses.MISSING

A sentinel value signifying a missing default or default_factory.

dataclasses.KW_ONLY

A sentinel value used as a type annotation. Any fields after a pseudo-field with the type of KW_ONLY are marked as keyword-only fields. Note that a pseudo-field of type KW_ONLY is otherwise completely ignored. This includes the name of such a field. By convention, a name of _ is used for a KW_ONLY field. Keyword-only fields signify __init__() parameters that must be specified as keywords when the class is instantiated.

In this example, the fields y and z will be marked as keyword-only fields:

@dataclass
class Point:
    x: float
    _: KW_ONLY
    y: float
    z: float

p = Point(0, y=1.5, z=2.0)

In a single dataclass, it is an error to specify more than one field whose type is KW_ONLY.

버전 3.10에 추가.

exception dataclasses.FrozenInstanceError

Raised when an implicitly defined __setattr__() or __delattr__() is called on a dataclass which was defined with frozen=True. It is a subclass of AttributeError.

초기화 후처리

dataclasses.__post_init__()

When defined on the class, it will be called by the generated __init__(), normally as self.__post_init__(). However, if any InitVar fields are defined, they will also be passed to __post_init__() in the order they were defined in the class. If no __init__() method is generated, then __post_init__() will not automatically be called.

다른 용도 중에서도, 하나나 그 이상의 다른 필드에 의존하는 필드 값을 초기화하는데 사용할 수 있습니다. 예를 들면:

@dataclass
class C:
    a: float
    b: float
    c: float = field(init=False)

    def __post_init__(self):
        self.c = self.a + self.b

The __init__() method generated by @dataclass does not call base class __init__() methods. If the base class has an __init__() method that has to be called, it is common to call this method in a __post_init__() method:

class Rectangle:
    def __init__(self, height, width):
      self.height = height
      self.width = width

@dataclass
class Square(Rectangle):
    side: float

    def __post_init__(self):
        super().__init__(self.side, self.side)

Note, however, that in general the dataclass-generated __init__() methods don’t need to be called, since the derived dataclass will take care of initializing all fields of any base class that is a dataclass itself.

See the section below on init-only variables for ways to pass parameters to __post_init__(). Also see the warning about how replace() handles init=False fields.

클래스 변수

One of the few places where @dataclass actually inspects the type of a field is to determine if a field is a class variable as defined in PEP 526. It does this by checking if the type of the field is typing.ClassVar. If a field is a ClassVar, it is excluded from consideration as a field and is ignored by the dataclass mechanisms. Such ClassVar pseudo-fields are not returned by the module-level fields() function.

초기화 전용 변수

Another place where @dataclass inspects a type annotation is to determine if a field is an init-only variable. It does this by seeing if the type of a field is of type dataclasses.InitVar. If a field is an InitVar, it is considered a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields() function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the optional __post_init__() method. They are not otherwise used by dataclasses.

예를 들어, 클래스를 만들 때 값이 제공되지 않으면, 필드가 데이터베이스로부터 초기화된다고 가정합시다:

@dataclass
class C:
    i: int
    j: int | None = None
    database: InitVar[DatabaseType | None] = None

    def __post_init__(self, database):
        if self.j is None and database is not None:
            self.j = database.lookup('j')

c = C(10, database=my_database)

In this case, fields() will return Field objects for i and j, but not for database.

고정 인스턴스

It is not possible to create truly immutable Python objects. However, by passing frozen=True to the @dataclass decorator you can emulate immutability. In that case, dataclasses will add __setattr__() and __delattr__() methods to the class. These methods will raise a FrozenInstanceError when invoked.

There is a tiny performance penalty when using frozen=True: __init__() cannot use simple assignment to initialize fields, and must use __setattr__().

계승

When the dataclass is being created by the @dataclass decorator, it looks through all of the class’s base classes in reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes. An example:

@dataclass
class Base:
    x: Any = 15.0
    y: int = 0

@dataclass
class C(Base):
    z: int = 10
    x: int = 15

The final list of fields is, in order, x, y, z. The final type of x is int, as specified in class C.

The generated __init__() method for C will look like:

def __init__(self, x: int = 15, y: int = 0, z: int = 10):

Re-ordering of keyword-only parameters in __init__()

After the parameters needed for __init__() are computed, any keyword-only parameters are moved to come after all regular (non-keyword-only) parameters. This is a requirement of how keyword-only parameters are implemented in Python: they must come after non-keyword-only parameters.

In this example, Base.y, Base.w, and D.t are keyword-only fields, and Base.x and D.z are regular fields:

@dataclass
class Base:
    x: Any = 15.0
    _: KW_ONLY
    y: int = 0
    w: int = 1

@dataclass
class D(Base):
    z: int = 10
    t: int = field(kw_only=True, default=0)

The generated __init__() method for D will look like:

def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):

Note that the parameters have been re-ordered from how they appear in the list of fields: parameters derived from regular fields are followed by parameters derived from keyword-only fields.

The relative ordering of keyword-only parameters is maintained in the re-ordered __init__() parameter list.

기본 팩토리 함수

If a field() specifies a default_factory, it is called with zero arguments when a default value for the field is needed. For example, to create a new instance of a list, use:

mylist: list = field(default_factory=list)

If a field is excluded from __init__() (using init=False) and the field also specifies default_factory, then the default factory function will always be called from the generated __init__() function. This happens because there is no other way to give the field an initial value.

가변 기본값

파이썬은 기본 멤버 변숫값을 클래스 어트리뷰트에 저장합니다. 데이터 클래스를 사용하지 않는 이 예제를 생각해보세요:

class C:
    x = []
    def add(self, element):
        self.x.append(element)

o1 = C()
o2 = C()
o1.add(1)
o2.add(2)
assert o1.x == [1, 2]
assert o1.x is o2.x

Note that the two instances of class C share the same class variable x, as expected.

데이터 클래스를 사용해서, 만약 이 코드가 올바르다면:

@dataclass
class D:
    x: list = []      # This code raises ValueError
    def add(self, element):
        self.x.append(element)

비슷한 코드를 생성합니다:

class D:
    x = []
    def __init__(self, x=x):
        self.x = x
    def add(self, element):
        self.x.append(element)

assert D().x is D().x

This has the same issue as the original example using class C. That is, two instances of class D that do not specify a value for x when creating a class instance will share the same copy of x. Because dataclasses just use normal Python class creation they also share this behavior. There is no general way for Data Classes to detect this condition. Instead, the @dataclass decorator will raise a ValueError if it detects an unhashable default parameter. The assumption is that if a value is unhashable, it is mutable. This is a partial solution, but it does protect against many common errors.

기본 팩토리 함수를 사용하면 필드의 기본값으로 가변형의 새 인스턴스를 만들 수 있습니다:

@dataclass
class D:
    x: list = field(default_factory=list)

assert D().x is not D().x

버전 3.11에서 변경: Instead of looking for and disallowing objects of type list, dict, or set, unhashable objects are now not allowed as default values. Unhashability is used to approximate mutability.

Descriptor-typed fields

Fields that are assigned descriptor objects as their default value have the following special behaviors:

  • The value for the field passed to the dataclass’s __init__() method is passed to the descriptor’s __set__() method rather than overwriting the descriptor object.

  • Similarly, when getting or setting the field, the descriptor’s __get__() or __set__() method is called rather than returning or overwriting the descriptor object.

  • To determine whether a field contains a default value, @dataclass will call the descriptor’s __get__() method using its class access form: descriptor.__get__(obj=None, type=cls). If the descriptor returns a value in this case, it will be used as the field’s default. On the other hand, if the descriptor raises AttributeError in this situation, no default value will be provided for the field.

class IntConversionDescriptor:
    def __init__(self, *, default):
        self._default = default

    def __set_name__(self, owner, name):
        self._name = "_" + name

    def __get__(self, obj, type):
        if obj is None:
            return self._default

        return getattr(obj, self._name, self._default)

    def __set__(self, obj, value):
        setattr(obj, self._name, int(value))

@dataclass
class InventoryItem:
    quantity_on_hand: IntConversionDescriptor = IntConversionDescriptor(default=100)

i = InventoryItem()
print(i.quantity_on_hand)   # 100
i.quantity_on_hand = 2.5    # calls __set__ with 2.5
print(i.quantity_on_hand)   # 2

Note that if a field is annotated with a descriptor type, but is not assigned a descriptor object as its default value, the field will act like a normal field.