random
--- 擬似乱数を生成する¶
ソースコード: Lib/random.py
このモジュールでは様々な分布をもつ擬似乱数生成器を実装しています。
整数用に、ある範囲からの一様な選択があります。シーケンス用には、シーケンスからのランダムな要素の一様な選択、リストのランダムな置換をインプレースに生成する関数、順列を置換せずにランダムサンプリングする関数があります。
実数用としては、一様分布、正規分布 (ガウス分布)、対数正規分布、負の指数分布、ガンマおよびベータ分布を計算する関数があります。角度の分布を生成するにはフォン・ミーゼス分布が利用できます。
ほとんど全てのモジュール関数は、基礎となる関数 random()
に依存します。この関数はランダムな浮動小数点数を半開区間 [0.0, 1.0) 内に一様に生成します。Python は中心となる乱数生成器としてメルセンヌツイスタを使います。これは 53 ビット精度の浮動小数点を生成し、周期は 2**19937-1 です。本体は C で実装されていて、高速でスレッドセーフです。メルセンヌツイスタは、現存する中で最も広範囲にテストされた乱数生成器のひとつです。しかしながら、メルセンヌツイスタは完全に決定論的であるため、全ての目的に合致しているわけではなく、暗号化の目的には全く向いていません。
このモジュールで提供されている関数は、実際には random.Random
クラスの隠蔽されたインスタンスのメソッドに束縛されています。内部状態を共有しない生成器を取得するため、自分で Random
のインスタンスを生成することができます。
自分で考案した基本乱数生成器を使いたい場合、クラス Random
をサブクラス化することもできます。この場合、メソッド random()
、seed()
、getstate()
、setstate()
をオーバライドしてください。オプションとして、新しいジェネレータは getrandbits()
メソッドを提供することができます。これにより randrange()
メソッドが任意に大きな範囲から選択を行えるようになります。
random
モジュールは SystemRandom
クラスも提供していて、このクラスは OS が提供している乱数発生源を利用して乱数を生成するシステム関数 os.urandom()
を使うものです。
警告
このモジュールの擬似乱数生成器をセキュリティ目的に使用してはいけません。セキュリティや暗号学的な用途については secrets
モジュールを参照してください。
参考
M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.
Complementary-Multiply-with-Carry recipe 長い周期と比較的シンプルな更新操作を備えた互換性のある別の乱数生成器。
保守 (bookkeeping) 関数¶
-
random.
seed
(a=None, version=2)¶ 乱数生成器を初期化します。
a が省略されるか
None
の場合、現在のシステム時刻が使用されます。乱数のソースがオペレーティングシステムによって提供される場合、システム時刻の代わりにそれが使用されます (利用可能性についての詳細はos.urandom()
関数を参照)。a が int の場合、それが直接使われます。
バージョン2 (デフォルト) では、
str
,bytes
,bytearray
オブジェクトはint
に変換され、そのビットがすべて使用されます。バージョン1 (Python の古いバージョンでの乱数列を再現するために提供される) では、
str
とbytes
に対して適用されるアルゴリズムは、より狭い範囲のシードを生成します。バージョン 3.2 で変更: 文字列シードのすべてのビットを使うバージョン2スキームに移行。
-
random.
getstate
()¶ 乱数生成器の現在の内部状態を記憶したオブジェクトを返します。このオブジェクトを
setstate()
に渡して内部状態を復元することができます。
-
random.
setstate
(state)¶ state は予め
getstate()
を呼び出して得ておかなくてはなりません。setstate()
はgetstate()
が呼び出された時の乱数生成器の内部状態を復元します。
バイト列用の関数¶
-
random.
randbytes
(n)¶ n バイトのランダムなバイト列を生成します。
セキュリティトークンを生成する目的で、このメソッドを使用しないでください。代わりに
secrets.token_bytes()
を使用してください。バージョン 3.9 で追加.
整数用の関数¶
-
random.
randrange
(stop)¶ -
random.
randrange
(start, stop[, step]) range(start, stop, step)
の要素からランダムに選ばれた要素を返します。この関数はchoice(range(start, stop, step))
と等価ですが、実際には range オブジェクトを生成しません。位置引数のパターンは
range()
のそれと一致します。キーワード引数は、この関数に望まれない方法で使われるかもしれないので、使うべきではありません。バージョン 3.2 で変更: 一様に分布した値の生成に関して
randrange()
がより洗練されました。以前はint(random()*n)
のようなやや一様でない分布を生成するスタイルを使用していました。
-
random.
randint
(a, b)¶ a <= N <= b
であるようなランダムな整数 N を返します。randrange(a, b+1)
のエイリアスです。
-
random.
getrandbits
(k)¶ k 桁の乱数ビットを持つ Python の整数を生成し、返します。このメソッドはメルセンヌツイスタ生成器で提供されており、その他の乱数生成器でもオプションの API として提供されている場合があります。
getrandbits()
が使用可能な場合、randrange()
は任意の範囲の乱数を生成できるようになります。バージョン 3.9 で変更: k の値として 0 が許されるようになりました。
シーケンス用の関数¶
-
random.
choice
(seq)¶ 空でないシーケンス seq からランダムに要素を返します。 seq が空のときは、
IndexError
が送出されます。
-
random.
choices
(population, weights=None, *, cum_weights=None, k=1)¶ population から重複ありで選んだ要素からなる大きさ k のリストを返します。population が空の場合
IndexError
を送出します。weights シーケンスが与えられた場合、相対的な重みに基づいて要素が選ばれます。あるいは、cum_weights シーケンスが与えられた場合、累積的な重み (
itertools.accumulate()
を用いて計算されるかもしれません) で要素が選ばれます。例えば、相対的な重み[10, 5, 30, 5]
は累積的な重み[10, 15, 45, 50]
と等価です。内部的には、相対的な重みは要素選択の前に累積的な重みに変換されるため、累積的な重みを渡すと手間を省けます。weights および cum_weights が与えられなかった場合、要素は同じ確率で選択されます。重みのシーケンスが与えられた場合、その長さは population シーケンスと同じでなければなりません。weights と cum_weights を同時に与えると
TypeError
が送出されます。weights や cum_weights には
random()
が返すfloat
値と相互に変換できるような、任意の数値型を使用できます (int、float、fraction を含みますが、decimal は除きます)。重みに非負の値を含む場合の振る舞いは規定されていません。全ての重みが 0 の場合、例外ValueError
が送出されます。与えられた種に対して、同じ重みを持つ
choices()
関数は、一般にchoice()
を繰り返し呼び出す場合とは異なるシーケンスを生成します。choices()
で使用されるアルゴリズムは、内部の一貫性とスピードのために浮動小数点演算を使用します。choice()
で使われるアルゴリズムは、丸め誤差による小さな偏りを避けるために、デフォルトでは選択を繰り返す整数演算になっています。バージョン 3.6 で追加.
バージョン 3.9 で変更: 全ての重みが 0 の場合、例外
ValueError
を送出します。
-
random.
shuffle
(x[, random])¶ シーケンス x をインプレースにシャッフルします。
オプション引数 random は [0.0, 1.0) の範囲のランダムな浮動小数を返す引数なしの関数です。デフォルトでは
random()
関数です。イミュータブルなシーケンスをシャッフルしてシャッフルされたリストを新たに返すには、代わりに
sample(x, k=len(x))
を使用してください。たとえ
len(x)
が小さくても、x の並べ替えの総数 (訳注: 要素数の階乗) は大半の乱数生成器の周期よりもすぐに大きくなることに注意してください。つまり、長いシーケンスの大半の並べ替えは決して生成されないだろう、ということです。例えば、長さ 2080 のシーケンスがメルセンヌツイスタ生成器の周期に収まる中で最大のものになります。Deprecated since version 3.9, will be removed in version 3.11: オプション引数 random。
-
random.
sample
(population, k, *, counts=None)¶ 母集団のシーケンスまたは集合から選ばれた長さ k の一意な要素からなるリストを返します。重複無しのランダムサンプリングに用いられます。
母集団自体を変更せずに、母集団内の要素を含む新たなリストを返します。返されたリストは選択された順に並んでいるので、このリストの部分スライスもランダムなサンプルになります。これにより、くじの当選者 (サンプル) を1等賞と2等賞(の部分スライス)に分けることも可能です。
母集団の要素は ハッシュ可能 でなくても、ユニークでなくてもかまいません。母集団が繰り返しを含む場合、出現するそれぞれがサンプルに選択されえます。
母集団に重複がある場合はその分だけ1つずつ指定するか、キーワード専用オプション引数 counts で指定することができます。例えば、
sample(['red', 'blue'], counts=[4, 2], k=5)
はsample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
と等価になります。ある範囲の整数からサンプルを取る場合、引数に
range()
オブジェクトを使用してください。大きな母集団の場合、これは特に速く、メモリ効率が良いです:sample(range(10000000), k=60)
。サンプルの大きさが母集団の大きさより大きい場合
ValueError
が送出されます。バージョン 3.9 で変更: counts 引数が追加されました。
実数分布¶
以下の関数は特定の実数値分布を生成します。関数の引数の名前は、一般的な数学の慣例で使われている分布の公式の対応する変数から取られています; これらの公式のほとんどはどんな統計学のテキストにも載っています。
-
random.
random
()¶ ランダムな浮動小数点数(範囲は [0.0, 1.0) )を返します。
-
random.
uniform
(a, b)¶ a <= b
であればa <= N <= b
、b < a
であればb <= N <= a
であるようなランダムな浮動小数点数 N を返します。端点の値
b
が範囲に含まれるかどうかは、等式a + (b-a) * random()
における浮動小数点の丸めに依存します。
-
random.
triangular
(low, high, mode)¶ low <= N <= high
でありこれら境界値の間に指定された最頻値 mode を持つようなランダムな浮動小数点数 N を返します。境界 low と high のデフォルトは 0 と 1 です。最頻値 mode 引数のデフォルトは両境界値の中点になり、対称な分布を与えます。
-
random.
betavariate
(alpha, beta)¶ ベータ分布です。引数の満たすべき条件は
alpha > 0
およびbeta > 0
です。 0 から 1 の範囲の値を返します。
-
random.
expovariate
(lambd)¶ 指数分布です。lambd は平均にしたい値の逆数です。(この引数は "lambda" と呼ぶべきなのですが、Python の予約語なので使えません。) 返す値の範囲は lambd が正なら 0 から正の無限大、lambd が負なら負の無限大から 0 です。
-
random.
gammavariate
(alpha, beta)¶ ガンマ分布です (ガンマ関数 ではありません !)。引数の満たすべき条件は
alpha > 0
およびbeta > 0
です。確率分布関数は:
x ** (alpha - 1) * math.exp(-x / beta) pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha
-
random.
gauss
(mu, sigma)¶ ガウス分布です。 mu は平均であり、 sigma は標準偏差です。この関数は後で定義する関数
normalvariate()
より少しだけ高速です。Multithreading note: When two threads call this function simultaneously, it is possible that they will receive the same return value. This can be avoided in three ways. 1) Have each thread use a different instance of the random number generator. 2) Put locks around all calls. 3) Use the slower, but thread-safe
normalvariate()
function instead.
-
random.
lognormvariate
(mu, sigma)¶ 対数正規分布です。この分布を自然対数を用いた分布にした場合、平均 mu で標準偏差 sigma の正規分布になります。 mu は任意の値を取ることができ、sigma はゼロより大きくなければなりません。
-
random.
normalvariate
(mu, sigma)¶ 正規分布です。 mu は平均で、 sigma は標準偏差です。
-
random.
vonmisesvariate
(mu, kappa)¶ mu は平均の角度で、0 から 2*pi までのラジアンで表されます。 kappa は濃度パラメータで、ゼロ以上でなければなりません。kappa がゼロに等しい場合、この分布は範囲 0 から 2*pi の一様でランダムな角度の分布に退化します。
-
random.
paretovariate
(alpha)¶ パレート分布です。 alpha は形状パラメータです。
-
random.
weibullvariate
(alpha, beta)¶ ワイブル分布です。 alpha は尺度パラメタで、 beta は形状パラメータです。
他の生成器¶
-
class
random.
SystemRandom
([seed])¶ オペレーティングシステムの提供する発生源によって乱数を生成する
os.urandom()
関数を使うクラスです。すべてのシステムで使えるメソッドではありません。ソフトウェアの状態に依存してはいけませんし、一連の操作は再現不能です。従って、seed()
メソッドは何の影響も及ぼさず、無視されます。getstate()
とsetstate()
メソッドが呼び出されると、例外NotImplementedError
が送出されます。
再現性について¶
疑似乱数生成器から与えられたシーケンスを再現できると便利なことがあります。シード値を再利用することで、複数のスレッドが実行されていない限り、実行ごとに同じシーケンスが再現できます。
random モジュールのアルゴリズムやシード処理関数のほとんどは、Python バージョン間で変更される対象となりますが、次の二点は変更されないことが保証されています:
新しいシード処理メソッドが追加されたら、後方互換なシード処理器が提供されます。
生成器の
random()
メソッドは、互換なシード処理器に同じシードが与えられた場合、引き続き同じシーケンスを生成します。
使用例¶
基礎的な例:
>>> random() # Random float: 0.0 <= x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0
3.1800146073117523
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031
>>> randrange(10) # Integer from 0 to 9 inclusive
7
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
26
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'
>>> deck = 'ace two three four'.split()
>>> shuffle(deck) # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]
シミュレーション:
>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value: ten, jack, queen, or king.
>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> dealt.count('tens') / 20
0.15
>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958
サンプルの平均の信頼区間を推定するのに、重複ありでリサンプリングして `統計的ブートストラップ `_ を行う例:
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import fmean as mean
from random import choices
data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
f'interval from {means[5]:.1f} to {means[94]:.1f}')
薬と偽薬の間に観察された効果の違いについて、統計的有意性、すなわち p 値 を決定するために、リサンプリング順列試験 を行う例:
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)
n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
shuffle(combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
count += (new_diff >= observed_diff)
print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
マルチサーバーキューにおける到達時間とサービス提供のシミュレーション:
from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, median, stdev
average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3
waits = []
arrival_time = 0.0
servers = [0.0] * num_servers # time when each server becomes available
heapify(servers)
for i in range(1_000_000):
arrival_time += expovariate(1.0 / average_arrival_interval)
next_server_available = servers[0]
wait = max(0.0, next_server_available - arrival_time)
waits.append(wait)
service_duration = max(0.0, gauss(average_service_time, stdev_service_time))
service_completed = arrival_time + wait + service_duration
heapreplace(servers, service_completed)
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')
参考
Statistics for Hackers Jake Vanderplas による統計解析のビデオ。シミュレーション、サンプリング、シャッフル、交差検定といった基本的な概念のみを用いています。
Economics Simulation Peter Norvig による市場価格のシミュレーション。このモジュールが提供する多くのツールや分布 (gauss, uniform, sample, betavariate, choice, triangular, randrange) の活用法を示しています。
A Concrete Introduction to Probability (using Python) Peter Norvig によるチュートリアル。確率論の基礎、シミュレーションの書き方、Python を使用したデータ解析法をカバーしています。
レシピ¶
The default random()
returns multiples of 2⁻⁵³ in the range
0.0 ≤ x < 1.0. All such numbers are evenly spaced and are exactly
representable as Python floats. However, many other representable
floats in that interval are not possible selections. For example,
0.05954861408025609
isn't an integer multiple of 2⁻⁵³.
The following recipe takes a different approach. All floats in the interval are possible selections. The mantissa comes from a uniform distribution of integers in the range 2⁵² ≤ mantissa < 2⁵³. The exponent comes from a geometric distribution where exponents smaller than -53 occur half as often as the next larger exponent.
from random import Random
from math import ldexp
class FullRandom(Random):
def random(self):
mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
exponent = -53
x = 0
while not x:
x = self.getrandbits(32)
exponent += x.bit_length() - 32
return ldexp(mantissa, exponent)
All real valued distributions in the class will use the new method:
>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544
The recipe is conceptually equivalent to an algorithm that chooses from
all the multiples of 2⁻¹⁰⁷⁴ in the range 0.0 ≤ x < 1.0. All such
numbers are evenly spaced, but most have to be rounded down to the
nearest representable Python float. (The value 2⁻¹⁰⁷⁴ is the smallest
positive unnormalized float and is equal to math.ulp(0.0)
.)
参考
Generating Pseudo-random Floating-Point Values a
paper by Allen B. Downey describing ways to generate more
fine-grained floats than normally generated by random()
.