ast
--- 抽象構文木¶
ソースコード: Lib/ast.py
ast
モジュールは、Python アプリケーションで Python の抽象構文木を処理しやすくするものです。抽象構文そのものは、Python のリリースごとに変化する可能性があります。このモジュールを使用すると、現在の文法をプログラム上で知る助けになるでしょう。
抽象構文木を作成するには、 ast.PyCF_ONLY_AST
を組み込み関数 compile()
のフラグとして渡すか、あるいはこのモジュールで提供されているヘルパー関数 parse()
を使います。その結果は、 ast.AST
を継承したクラスのオブジェクトのツリーとなります。抽象構文木は組み込み関数 compile()
を使って Python コード・オブジェクトにコンパイルすることができます。
抽象文法 (Abstract Grammar)¶
抽象文法は、現在次のように定義されています:
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list)
| Return(expr? value)
| Delete(expr* targets)
| Assign(expr* targets, expr value, string? type_comment)
| AugAssign(expr target, operator op, expr value)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, int simple)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(withitem* items, stmt* body, string? type_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment)
| Raise(expr? exc, expr? cause)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| Assert(expr test, expr? msg)
| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)
| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, int? conversion, expr? format_spec)
| JoinedStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, int is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
withitem = (expr context_expr, expr? optional_vars)
type_ignore = TypeIgnore(int lineno, string tag)
}
Node クラス¶
-
class
ast.
AST
¶ このクラスは全ての AST ノード・クラスの基底です。実際のノード・クラスは 後ほど 示す
Parser/Python.asdl
ファイルから派生したものです。これらのクラスは_ast
C モジュールで定義され、ast
にもエクスポートし直されています。抽象文法の左辺のシンボル一つずつにそれぞれ一つのクラスがあります (たとえば
ast.stmt
やast.expr
)。それに加えて、右辺のコンストラクタ一つずつにそれぞれ一つのクラスがあり、これらのクラスは左辺のツリーのクラスを継承しています。たとえば、ast.BinOp
はast.expr
から継承しています。代替を伴った生成規則 (production rules with alternatives) (別名 "sums") の場合、左辺は抽象クラスとなり、特定のコンストラクタ・ノードのインスタンスのみが作成されます。-
_fields
¶ 各具象クラスは属性
_fields
を持っており、すべての子ノードの名前をそこに保持しています。具象クラスのインスタンスは、各子ノードに対してそれぞれひとつの属性を持っています。この属性は、文法で定義された型となります。たとえば
ast.BinOp
のインスタンスはleft
という属性を持っており、その型はast.expr
です。これらの属性が、文法上 (クエスチョンマークを用いて) オプションであるとマークされている場合は、その値が
None
となることもあります。属性が0個以上の複数の値をとりうる場合 (アスタリスクでマークされている場合) は、値は Python のリストで表されます。全ての属性は AST をcompile()
でコンパイルする際には存在しなければならず、そして妥当な値でなければなりません。
-
lineno
¶ -
col_offset
¶ -
end_lineno
¶ -
end_col_offset
¶ Instances of
ast.expr
andast.stmt
subclasses havelineno
,col_offset
,end_lineno
, andend_col_offset
attributes. Thelineno
andend_lineno
are the first and last line numbers of the source text span (1-indexed so the first line is line 1), and thecol_offset
andend_col_offset
are the corresponding UTF-8 byte offsets of the first and last tokens that generated the node. The UTF-8 offset is recorded because the parser uses UTF-8 internally.コンパイラは終了位置を必要としないことに注意してください。このため終了位置は省略可能です。終了位置を示すオフセットは最後のシンボルの 後の位置 になります。例えば一行で書かれた式のソースコードのセグメントは
source_line[node.col_offset : node.end_col_offset]
により取得できます。
クラス
ast.T
のコンストラクタは引数を次のように解析します:位置引数があるとすれば、
T._fields
にあるのと同じだけの個数が無ければなりません。これらの引数はそこにある名前を持った属性として割り当てられます。キーワード引数があるとすれば、それらはその名前の属性にその値を割り当てられます。
たとえば、
ast.UnaryOp
ノードを生成して属性を埋めるには、次のようにすることができますnode = ast.UnaryOp() node.op = ast.USub() node.operand = ast.Constant() node.operand.value = 5 node.operand.lineno = 0 node.operand.col_offset = 0 node.lineno = 0 node.col_offset = 0
もしくはよりコンパクトにも書けます
node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0), lineno=0, col_offset=0)
-
バージョン 3.8 で変更: ast.Constant
が全ての定数に使われるようになりました。
バージョン 3.9 で変更: 単純なインデックスはその値で表現され、幅を持つスライスはタプルで表現されます。
バージョン 3.8 で非推奨: 古いクラスである ast.Num
, ast.Str
, ast.Bytes
, ast.NameConstant
および ast.Ellipsis
は現バージョンでは利用可能ですが、将来の Python リリースで削除される予定です。それまでは、これらのクラスをインスタンス化すると異なるクラスのインスタンスが返されます。
バージョン 3.9 で非推奨: 古いクラスである ast.Index
と ast.ExtSlice
は現バージョンでは利用可能ですが、将来の Python リリースで削除される予定です。それまでは、これらのクラスをインスタンス化すると異なるクラスのインスタンスが返されます。
注釈
ここに示されている特定のノードクラスについての記述は、素晴らしい Green Tree Snakes プロジェクトとそのすべての貢献者の成果物をもとにしています。
リテラル¶
-
class
ast.
Constant
(value)¶ 定数です。
Constant
リテラルのvalue
属性は定数値を表す Python オブジェクトを保持します。定数として表現される値は数値、文字列、またはNone
のような単純な型のほかに、全ての要素が定数であるイミュータブルなコンテナ型 (tuples および frozensets) も設定可能です。>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) Expression( body=Constant(value=123))
-
class
ast.
FormattedValue
(value, conversion, format_spec)¶ このノードは f-string における単一の書式指定置換フィールドを表現します。文字列が単一の置換フィールドしか持たず、他に何も含まない場合は、ノードは単独で存在できます。そうでない場合は
JoinedStr
の一部としてあらわれます。value
は式ツリーのノードのいずれか (リテラル、変数、関数呼び出しなど) です。conversion
は整数です:-1: 書式指定なし
115:
!s
文字列書式指定114:
!r
repr 書式指定97:
!a
ascii 書式指定
format_spec
は値の書式指定を表現するJoinedStr
ノード、もしくは書式指定がない場合はNone
です。conversion
とformat_spec
を同時に設定することができます。
-
class
ast.
JoinedStr
(values)¶ FormattedValue
ノードとConstant
ノードの集まりからなる f-string です。>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4)) Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())], keywords=[]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
-
class
ast.
List
(elts, ctx)¶ -
class
ast.
Tuple
(elts, ctx)¶ リストまたはタプルをあらわします。
elts
は内包する要素を表現するノードのリストを保持します。ctx
はコンテナが代入のターゲットである場合 (たとえば(x,y)=something
のような場合) はStore
であり、そうでない場合はLoad
です。>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4)) Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load())) >>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4)) Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
-
class
ast.
Set
(elts)¶ 集合 (set) をあらわします。
elts
は集合の各要素を表現するノードのリストを保持します。>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4)) Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
-
class
ast.
Dict
(keys, values)¶ 辞書をあらわします。
keys
とvalues
はそれぞれキーと値のノードのリスト を順序が一致した形で (それぞれdictionary.keys()
とdictionary.values()
を呼び出したときに返される順序で) 保持します。辞書リテラルを使って辞書を展開した場合、展開された式ツリーにおいて辞書は
values
リストに入り、keys
の対応する位置にはNone
が入ります。>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4)) Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
変数¶
-
class
ast.
Name
(id, ctx)¶ 変数名をあらわします。
id
は変数名を文字列で保持し、ctx
は以下に示す型のいずれかです。
-
class
ast.
Load
¶ -
class
ast.
Store
¶ -
class
ast.
Del
¶ 変数の参照は変数の値をロードするか、新しい値を割り当てるか、または値を削除するために使うことができます。変数の参照はこれら3つの場合を区別するためのコンテキストによって与えられます。
>>> print(ast.dump(ast.parse('a'), indent=4)) Module( body=[ Expr( value=Name(id='a', ctx=Load()))], type_ignores=[]) >>> print(ast.dump(ast.parse('a = 1'), indent=4)) Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('del a'), indent=4)) Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])], type_ignores=[])
-
class
ast.
Starred
(value, ctx)¶ *var
形式の変数の参照をあらわします。value
は変数、典型的にはName
ノード、を保持します。この型は*args
を伴う関数呼び出しノードCall
を構築する際に使用します。>>> print(ast.dump(ast.parse('a, *b = it'), indent=4)) Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))], type_ignores=[])
式 (expression)¶
-
class
ast.
Expr
(value)¶ 関数呼び出しのような式がそれ自身で文となり、戻り値が使われないかまたは保存されないとき、その式はこのコンテナでラップされます。
value
はこの節で説明する他のノード、Constant
ノード、Name
ノード、Lambda
ノードYield
ノードまたはYieldFrom
ノードのいずれかを保持します。>>> print(ast.dump(ast.parse('-a'), indent=4)) Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))], type_ignores=[])
-
class
ast.
UnaryOp
(op, operand)¶ 単項演算をあらわします。
op
は演算子で、operand
は任意の式ツリーのノードです。
-
class
ast.
UAdd
¶ -
class
ast.
USub
¶ -
class
ast.
Not
¶ -
class
ast.
Invert
¶ 単項演算の演算子をあらわします。
Not
は論理否定キーワードnot
であり、Invert
はビット反転演算子~
です。>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4)) Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
-
class
ast.
BinOp
(left, op, right)¶ (加算や減算のような) 二項演算をあらわします。
op
は演算子、left
とright
は任意の式ツリーのノードです。>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4)) Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
-
class
ast.
Add
¶ -
class
ast.
Sub
¶ -
class
ast.
Mult
¶ -
class
ast.
Div
¶ -
class
ast.
FloorDiv
¶ -
class
ast.
Mod
¶ -
class
ast.
Pow
¶ -
class
ast.
LShift
¶ -
class
ast.
RShift
¶ -
class
ast.
BitOr
¶ -
class
ast.
BitXor
¶ -
class
ast.
BitAnd
¶ -
class
ast.
MatMult
¶ 二項演算の演算子をあらわします。
-
class
ast.
BoolOp
(op, values)¶ 'or' や 'and' のような論理演算をあらわします。
op
はOr
またはAnd
です。values
は必要な値のリストです。a or b or c
のように同じ演算子を使う連続した演算は、複数の値を持った単一のノードとして表現されます。not
は単項演算UnaryOp
のため、ここには含まれません。>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4)) Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
-
class
ast.
Compare
(left, ops, comparators)¶ 2つ以上の値の比較をあらわします。
left
比較の中の最初の値、ops
は演算子のリスト、comparators
は2つ目以降の値のリストです。>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4)) Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
-
class
ast.
Eq
¶ -
class
ast.
NotEq
¶ -
class
ast.
Lt
¶ -
class
ast.
LtE
¶ -
class
ast.
Gt
¶ -
class
ast.
GtE
¶ -
class
ast.
Is
¶ -
class
ast.
IsNot
¶ -
class
ast.
In
¶ -
class
ast.
NotIn
¶ 比較演算の演算子をあらわします。
-
class
ast.
Call
(func, args, keywords, starargs, kwargs)¶ 関数呼び出しをあらわします。
func
は関数で、多くの場合Name
またはAttribute
のオブジェクトです。 関数呼び出しの引数:args
は位置引数のリストを保持します。keywords
はkeyword
クラスのオブジェクトのリスト保持し、キーワード引数をあらわします。
Call
ノードを生成するときにargs
とkeywords
は必須ですが、空のリストであってもかまいません。starargs
とkwargs
はオプション引数です。>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4)) Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
-
class
ast.
keyword
(arg, value)¶ 関数呼び出しまたはクラス定義のキーワード引数をあらわします。
arg
はパラメータ名をあらわす文字列、value
は引数に渡す値をあらわすノードです。
-
class
ast.
IfExp
(test, body, orelse)¶ a if b else c
のような式をあらわします。各フィールドは単一のノードを保持します。以下の例では、3つの式ノードはすべてName
ノードです。>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4)) Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
-
class
ast.
Attribute
(value, attr, ctx)¶ たとえば
d.keys
のような属性へのアクセスです。value
はノードで、典型的にはName
です。attr
は属性名を与える生の文字列で、ctx
はその属性がどのように振る舞うかに応じてLoad
、Store
またはDel
のいずれかです。>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4)) Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
-
class
ast.
NamedExpr
(target, value)¶ 代入式です。この AST ノードは代入式演算子(ウォルラス演算子、または「セイウチ演算子」としても知られています)によって生成されます。第一引数が複数のノードであってもよい
Assign
ノードと異なり、このノードの場合はtarget
とvalue
の両方が単一のノードでなければなりません。>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4)) Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
配列要素の参照 (Subscripting)¶
-
class
ast.
Subscript
(value, slice, ctx)¶ l[1]
のような配列要素の参照をあらわします。value
は参照元のオブジェクトです (通常シーケンス型またはマッピング型)。slice
はインデックス、スライス、またはキーです。Slice
を含むTuple
でもかまいません。ctx
は要素の参照により実行されるアクションに応じてLoad
、Store
またはDel
のいずれかです。>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
-
class
ast.
Slice
(lower, upper, step)¶ 基本的なスライス操作 (
lower:upper
やlower:upper:step
の形式) をあらわします。Subscript
の slice フィールドでの直接指定か、またはTuple
の要素として指定する場合のみ利用可能です。>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
内包表記 (Comprehension)¶
-
class
ast.
ListComp
(elt, generators)¶ -
class
ast.
SetComp
(elt, generators)¶ -
class
ast.
GeneratorExp
(elt, generators)¶ -
class
ast.
DictComp
(key, value, generators)¶ リストや集合の内包表記、ジェネレータ、および辞書の内包表記です。
elt
(またはkey
とvalue
) は各要素として評価される部品をあらわす単一のノードです。generators
はcomprehension
ノードのリストです。>>> print(ast.dump(ast.parse('[x for x in numbers]', mode='eval'), indent=4)) Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x: x**2 for x in numbers}', mode='eval'), indent=4)) Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x for x in numbers}', mode='eval'), indent=4)) Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))
-
class
ast.
comprehension
(target, iter, ifs, is_async)¶ 内包表記におけるひとつの
for
節をあらわします。target
は各要素への参照です - 典型的にはName
またはTuple
ノードです。iter
はイテレートする対象のオブジェクトです。ifs
は条件節のリストです: 各for
節は複数のifs
を持つことができます。is_async
は内包表記が非同期であることを示します (async for
をfor
の代わりに使います)。値は整数です (0 または 1)。>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'), ... indent=4)) # Multiple comprehensions in one. Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())], keywords=[]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), ifs=[], is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'), ... indent=4)) # generator comprehension Expression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)])) >>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'), ... indent=4)) # Async comprehension Expression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), ifs=[], is_async=1)]))
文 (Statements)¶
-
class
ast.
Assign
(targets, value, type_comment)¶ 代入です。
targets
はノードのリスト、value
は単一のノードです。targets
の複数のノードは、それぞれに対して同じ値を代入することをあらわします。分割代入はtargets
内にTuple
またはList
を置くことで表現されます。-
type_comment
¶ type_comment
はコメントとして型アノテーションをあらわすオプション文字列です。
>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment Module( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))], type_ignores=[])
-
-
class
ast.
AnnAssign
(target, annotation, value, simple)¶ 型アノテーションを伴う代入です。
target
は単一のノードで、Name
,Attribute
またはSubscript
のいずれかです。annotation
はConstant
やName
node のようなアノテーションです。value
はオプションで、代入する値を単一のノードであらわしたものです。simple
真偽値と解釈される整数で、target
のName
ノードが丸かっこに囲まれておらず、したがって式ではなく純粋な名前である場合に True を設定します。>>> print(ast.dump(ast.parse('c: int'), indent=4)) Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)], type_ignores=[]) >>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis Module( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation Module( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation Module( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[])
-
class
ast.
AugAssign
(target, op, value)¶ a += 1
のような累積代入をあらわします。下記の例では、target
は (Store
コンテキストを伴う)x
のためのName
ノード、op
はAdd
演算子、そしてvalue
は定数1をあらわすConstant
ノードです。The
target
attribute connot be of classTuple
orList
, unlike the targets ofAssign
.>>> print(ast.dump(ast.parse('x += 2'), indent=4)) Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))], type_ignores=[])
-
class
ast.
Raise
(exc, cause)¶ raise
文をあらわします。exc
は送出される例外オブジェクトで、通常はCall
またはName
、 もしくは単独のraise
ではNone
を指定します。cause
はオプションで、raise x from y
のy
にあたります。>>> print(ast.dump(ast.parse('raise x from y'), indent=4)) Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))], type_ignores=[])
-
class
ast.
Assert
(test, msg)¶ アサーションです。
test
はCompare
ノードなどのような条件を保持します。msg
は失敗した時のメッセージを保持します。>>> print(ast.dump(ast.parse('assert x,y'), indent=4)) Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))], type_ignores=[])
-
class
ast.
Delete
(targets)¶ del
文をあらわします。targets
はName
,Attribute
,Subscript
などのノードのリストです。>>> print(ast.dump(ast.parse('del x,y,z'), indent=4)) Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])], type_ignores=[])
-
class
ast.
Pass
¶ pass
文をあらわします。>>> print(ast.dump(ast.parse('pass'), indent=4)) Module( body=[ Pass()], type_ignores=[])
関数またはループの内部でのみ適用可能な他の文は、別のセクションで説明します。
インポート¶
-
class
ast.
Import
(names)¶ インポート文です。
names
はalias
ノードのリストです。>>> print(ast.dump(ast.parse('import x,y,z'), indent=4)) Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])], type_ignores=[])
-
class
ast.
ImportFrom
(module, names, level)¶ from x import y
をあらわします。module
は 'from' でインポートする先頭がドットでないモジュール名をあらわす文字列か、またはfrom . import foo
のような構文の場合はNone
を指定します。level
は相対インポートのレベルを表す整数を保持します (0 は絶対インポートを意味します)。>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4)) Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)], type_ignores=[])
-
class
ast.
alias
(name, asname)¶ いずれのパラメータも名前をあらわす生の文字列です。
asname
は標準の名前を使う場合はNone
を指定できます。>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4)) Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)], type_ignores=[])
制御フロー¶
注釈
else
節のようなオプションの節が存在しない場合は、空のリストとして保存されます。
-
class
ast.
If
(test, body, orelse)¶ if
文です。test
はCompare
ノードなどの単一のノードを保持します。body
とorelse
はそれぞれノードのリストを保持します。elif
節は AST において固有の表現を持たず、先行する節をあらわすノードのorelse
セクションに追加のIf
ノードとして現れます。>>> print(ast.dump(ast.parse(""" ... if x: ... ... ... elif y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.
For
(target, iter, body, orelse, type_comment)¶ for
ループです。target
はループが割り当てる単一または複数の変数をName
,Tuple
またはList
のいずれかを単一のノードで保持します。iter
はループ対象の変数を、同じく単一のノードで保持します。body
とorelse
は実行するノードのリストを含んでいます。orelse
に含まれるノードは、ループがbreak
文によって中断せず、正常終了した場合に実行されます。-
type_comment
¶ type_comment
はコメントとして型アノテーションをあらわすオプション文字列です。
>>> print(ast.dump(ast.parse(""" ... for x in y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
-
class
ast.
While
(test, body, orelse)¶ while
ループです。test
はCompare
のような条件をあらわすノードを保持します。>> print(ast.dump(ast.parse(""" ... while x: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
class
ast.
Break
¶ -
class
ast.
Continue
¶ break
文およびcontinue
文です。>>> print(ast.dump(ast.parse("""\ ... for a in b: ... if a > 5: ... break ... else: ... continue ... ... """), indent=4)) Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])], orelse=[])], type_ignores=[])
-
class
ast.
Try
(body, handlers, orelse, finalbody)¶ try
ブロックです。ExceptHandler
ノードのリストであるhandlers
を除き、全ての属性はそれぞれの節で実行するノードのリストです。>>> print(ast.dump(ast.parse(""" ... try: ... ... ... except Exception: ... ... ... except OtherException as e: ... ... ... else: ... ... ... finally: ... ... ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
class
ast.
ExceptHandler
(type, name, body)¶ 単一の
except
節をあらわします。type
はこの節にマッチする例外のタイプで、典型的にはName
ノードです (None
を指定すると全ての例外をキャッチするexcept:
節をあらわします)。name
は例外オブジェクトを保持する変数の名前をあらわす生の文字列で、as foo
を持たない節の場合はNone
を指定します。body
はノードのリストです。>>> print(ast.dump(ast.parse("""\ ... try: ... a + 1 ... except TypeError: ... pass ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])], orelse=[], finalbody=[])], type_ignores=[])
-
class
ast.
With
(items, body, type_comment)¶ with
ブロックです。items
はwithitem
ノードのリストで、コンテキストマネージャのリストをあらわします。またbody
はコンテキスト内にインデントされたブロックです。-
type_comment
¶ type_comment
はコメントとして型アノテーションをあらわすオプション文字列です。
-
-
class
ast.
withitem
(context_expr, optional_vars)¶ with
ブロックにおける単一のコンテキストマネージャをあらわします。context_expr
はコンテキストマネージャで、しばしばCall
ノードが設定されます。optional_vars
はas foo
に相当するName
,Tuple
またはList
のいずれかのノードか、または、この部分が不要な場合はNone
を設定します。>>> print(ast.dump(ast.parse("""\ ... with a as b, c as d: ... something(b, d) ... """), indent=4)) Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())], keywords=[]))])], type_ignores=[])
関数およびクラス定義¶
-
class
ast.
FunctionDef
(name, args, body, decorator_list, returns, type_comment)¶ 関数定義です。
name
は関数名をあらわす生の文字列です。args
は引数をあらわすarguments
ノードです。body
は関数の本体をあらわすノードのリストです。decorator_list
は関数に適用されるデコレータのリストで、外側のデコレータがリストの先頭に保存されます (すなわち、リストの先頭にあるデコレータが最後に適用されます)。returns
は戻り値に対する注釈です。
-
type_comment
¶ type_comment
はコメントとして型アノテーションをあらわすオプション文字列です。
-
class
ast.
Lambda
(args, body)¶ lambda
は式の中で使うことができる最小限の関数定義です。FunctionDef
ノードと異なり、body
は単一のノードとなります。>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4)) Module( body=[ Expr( value=Lambda( args=arguments( posonlyargs=[], args=[ arg(arg='x'), arg(arg='y')], kwonlyargs=[], kw_defaults=[], defaults=[]), body=Constant(value=Ellipsis)))], type_ignores=[])
-
class
ast.
arguments
(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)¶ 関数の引数
-
class
ast.
arg
(arg, annotation, type_comment)¶ 単一の引数をあらわします。
arg
は引数名をあらわす生の文字列、annotation
は、Str
やName
ノードのような引数に対する注釈です。-
type_comment
¶ type_comment
はコメントとして型アノテーションをあらわすオプション文字列です。
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation': ... pass ... """), indent=4)) Module( body=[ FunctionDef( name='f', args=arguments( posonlyargs=[], args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))], type_ignores=[])
-
-
class
ast.
Return
(value)¶ return
文です。>>> print(ast.dump(ast.parse('return 4'), indent=4)) Module( body=[ Return( value=Constant(value=4))], type_ignores=[])
-
class
ast.
Yield
(value)¶ -
class
ast.
YieldFrom
(value)¶ yield
またはyield from
式をあらわします。これらは式なので、送り返される値が使われない場合はExpr
ノードでラップされなければなりません。>>> print(ast.dump(ast.parse('yield x'), indent=4)) Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))], type_ignores=[]) >>> print(ast.dump(ast.parse('yield from x'), indent=4)) Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))], type_ignores=[])
-
class
ast.
Global
(names)¶ -
class
ast.
Nonlocal
(names)¶ global
およびnonlocal
文です。names
は生の文字列のリストです。>>> print(ast.dump(ast.parse('global x,y,z'), indent=4)) Module( body=[ Global( names=[ 'x', 'y', 'z'])], type_ignores=[]) >>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4)) Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])], type_ignores=[])
-
class
ast.
ClassDef
(name, bases, keywords, starargs, kwargs, body, decorator_list)¶ クラス定義です。
name
はクラス名をあらわす生の文字列です。bases
は明示的に指定された基底クラスをあらわすノードのリストです。keywords
is a list ofkeyword
nodes, principally for 'metaclass'. Other keywords will be passed to the metaclass, as per PEP-3115.starargs
とkwargs
は、関数呼び出しの場合と同様にそれぞれ単一のノードです。 starargs はベースクラスのリストと結合するために展開され、 kwargs はメタクラスに渡されます。body
はクラス定義に含まれるコードをあらわすノードのリストです。decorator_list
はノードのリストで、関数定義FunctionDef
の場合と同様に解釈されます。
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... class Foo(base1, base2, metaclass=meta): ... pass ... """), indent=4)) Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])], type_ignores=[])
async と await¶
-
class
ast.
AsyncFunctionDef
(name, args, body, decorator_list, returns, type_comment)¶ async def
形式の関数定義です。通常の関数定義FunctionDef
と同じフィールドを持ちます。
-
class
ast.
Await
(value)¶ await
式をあらわします。value
は待ち受ける値です。AsyncFunctionDef
の本体 (body) の中でのみ有効です。
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()),
args=[],
keywords=[])))],
decorator_list=[])],
type_ignores=[])
-
class
ast.
AsyncFor
(target, iter, body, orelse, type_comment)¶ -
class
ast.
AsyncWith
(items, body, type_comment)¶ async for
ループとasync with
コンテキストマネージャです。それぞれFor
およびWith
と同じフィールドを持ちます。AsyncFunctionDef
の本体 (body) の中でのみ有効です。
注釈
文字列が ast.parse()
によってパースされたとき、戻り値のツリーに含まれる演算子ノード (ast.operator
, ast.unaryop
, ast.cmpop
, ast.boolop
および ast.expr_context
のサブクラス) はシングルトンです。したがっていずれかの演算子ノードを変更すると、その変更は他の全ての同じ値 (たとえば ast.Add
ノードを変更した場合はその他全ての ast.Add
ノード) に反映されます。
ast
ヘルパー¶
ノード・クラスの他に、 ast
モジュールは以下のような抽象構文木をトラバースするためのユーティリティ関数やクラスも定義しています:
-
ast.
parse
(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None)¶ source を解析して AST ノードにします。
compile(source, filename, mode, ast.PyCF_ONLY_AST)
と等価です。type_comments=True
が与えられると、パーサは PEP 484 および PEP 526 で規定された型コメントをチェックし、返すように修正されます。これはast.PyCF_TYPE_COMMENTS
を追加したフラグをcompile()
に渡すことと等価です。パーサは不適切な場所に配置された型コメントに対してシンタックスエラーをレポートします。 このフラグがない場合、型コメントは無視されて AST ノードのtype_comment
フィールドは常にNone
になります。さらに、# type: ignore
コメントの位置はModule
のtype_ignores
属性として返されます (それ以外の場合は常に空のリストになります)。さらに
mode
が'func_type'
の場合、入力構文は、たとえば(str, int) -> List[str]
のような PEP 484 の "シグネチャ型コメント (signature type comments)" に対応するように修正されます。また、
feature_version
を(major, minor)
のタプルに設定すると、パーサは指定された Python バージョンの文法で構文解析を試みます。今のところmajor
は3
でなければなりません。たとえば、feature_version=(3, 4)
と設定するとasync
とawait
を変数名として使うことが可能になります。 サポートされている最低のバージョンは(3, 4)
; 最高のバージョンはsys.version_info[0:2]
です。If source contains a null character ('0'),
ValueError
is raised.警告
Note that successfully parsing source code into an AST object doesn't guarantee that the source code provided is valid Python code that can be executed as the compilation step can raise further
SyntaxError
exceptions. For instance, the sourcereturn 42
generates a valid AST node for a return statement, but it cannot be compiled alone (it needs to be inside a function node).In particular,
ast.parse()
won't do any scoping checks, which the compilation step does.警告
十分に大きい文字列や複雑な文字列によって Python の抽象構文木コンパイラのスタックの深さの限界を越えることで、 Python インタプリタをクラッシュさせることができます。
バージョン 3.8 で変更:
type_comments
、mode='func_type'
、``feature_version``が追加されました。
-
ast.
unparse
(ast_obj)¶ ast.AST
オブジェクトを逆に構文解析して、ast.parse()
が元のast.AST
と等価なオブジェクトを生成できるような文字列を生成します。警告
生成されたコード文字列は、生成元のコードである
ast.AST
オブジェクトと必ずしも等価であるとは限りません (定数タプルや frozenset などに対するコンパイラ最適化なしのコードです)。警告
非常に複雑な式を逆構文解析すると
RecursionError
となることがあります。バージョン 3.9 で追加.
-
ast.
literal_eval
(node_or_string)¶ 式ノードまたは Python のリテラルまたはコンテナのディスプレイ表現を表す文字列を安全に評価します。与えられる文字列またはノードは次のリテラルのみからなるものに限られます: 文字列、バイト列、数、タプル、リスト、辞書、集合、ブール値、
None
。この関数は Python の式を含んだ信頼出来ない出どころからの文字列を、値自身を解析することなしに安全に評価するのに使えます。この関数は、例えば演算や添え字を含んだ任意の複雑な表現を評価するのには使えません。
警告
十分に大きい文字列や複雑な文字列によって Python の抽象構文木コンパイラのスタックの深さの限界を越えることで、 Python インタプリタをクラッシュさせることができます。
バージョン 3.2 で変更: バイト列リテラルと集合リテラルが受け取れるようになりました。
バージョン 3.9 で変更:
'set()'
による空の集合の生成をサポートするようになりました。
-
ast.
get_docstring
(node, clean=True)¶ 与えられた node (これは
FunctionDef
,AsyncFunctionDef
,ClassDef
,Module
のいずれかのノードでなければなりません) のドキュメント文字列を返します。もしドキュメント文字列が無ければNone
を返します。 clean が真ならば、ドキュメント文字列のインデントをinspect.cleandoc()
を用いて一掃します。バージョン 3.5 で変更:
AsyncFunctionDef
がサポートされました。
-
ast.
get_source_segment
(source, node, *, padded=False)¶ source のうちで node を生成したソースコードのセグメントを取得します。位置情報 (
lineno
,end_lineno
,col_offset
, またはend_col_offset
) が欠けている場合None
を返します。padded が
True
の場合、複数行にわたる文の最初の行が元の位置に一致するように空白文字でパディングされます。バージョン 3.8 で追加.
-
ast.
fix_missing_locations
(node)¶ compile()
はノード・ツリーをコンパイルする際、lineno
とcol_offset
両属性をサポートする全てのノードに対しそれが存在するものと想定します。生成されたノードに対しこれらを埋めて回るのはどちらかというと退屈な作業なので、このヘルパーが再帰的に二つの属性がセットされていないものに親ノードと同じ値をセットしていきます。再帰の出発点が node です。
-
ast.
increment_lineno
(node, n=1)¶ node で始まるツリー内の各ノードの行番号と終了行番号を n ずつ増やします。これはファイルの中で別の場所に "コードを移動する" ときに便利です。
-
ast.
copy_location
(new_node, old_node)¶ ソースの場所 (
lineno
,col_offset
,end_lineno
, およびend_col_offset
) を old_node から new_node に可能ならばコピーし、 new_node を返します。
-
ast.
iter_fields
(node)¶ node にある
node._fields
のそれぞれのフィールドを(フィールド名, 値)
のタプルとして yield します。
-
ast.
iter_child_nodes
(node)¶ node の直接の子ノード全てを yield します。すなわち、yield されるのは、ノードであるような全てのフィールドおよびノードのリストであるようなフィールドの全てのアイテムです。
-
ast.
walk
(node)¶ node の全ての子孫ノード(node 自体を含む)を再帰的に yield します。順番は決められていません。この関数はノードをその場で変更するだけで文脈を気にしないような場合に便利です。
-
class
ast.
NodeVisitor
¶ 抽象構文木を渡り歩いてビジター関数を見つけたノードごとに呼び出すノード・ビジターの基底クラスです。この関数は
visit()
メソッドに送られる値を返してもかまいません。このクラスはビジター・メソッドを付け加えたサブクラスを派生させることを意図しています。
-
visit
(node)¶ ノードを訪れます。デフォルトの実装では
self.visit_classname
というメソッド (ここで classname はノードのクラス名です) を呼び出すか、そのメソッドがなければgeneric_visit()
を呼び出します。
-
generic_visit
(node)¶ このビジターはノードの全ての子について
visit()
を呼び出します。注意して欲しいのは、専用のビジター・メソッドを具えたノードの子ノードは、このビジターが
generic_visit()
を呼び出すかそれ自身で子ノードを訪れない限り訪れられないということです。
トラバースの途中でノードを変化させたいならば
NodeVisitor
を使ってはいけません。そうした目的のために変更を許す特別なビジター (NodeTransformer
) があります。バージョン 3.8 で非推奨:
visit_Num()
,visit_Str()
,visit_Bytes()
,visit_NameConstant()
およびvisit_Ellipsis()
の各メソッドは非推奨です。また将来の Python バージョンでは呼び出されなくなります。全ての定数ノードを扱うにはvisit_Constant()
を追加してください。-
-
class
ast.
NodeTransformer
¶ NodeVisitor
のサブクラスで抽象構文木を渡り歩きながらノードを変更することを許すものです。NodeTransformer
は抽象構文木(AST)を渡り歩き、ビジター・メソッドの戻り値を使って古いノードを置き換えたり削除したりします。ビジター・メソッドの戻り値がNone
ならば、ノードはその場から取り去られ、そうでなければ戻り値で置き換えられます。置き換えない場合は戻り値が元のノードそのものであってもかまいません。それでは例を示しましょう。Name (たとえば
foo
) を見つけるたび全てdata['foo']
に書き換える変換器 (transformer) です:class RewriteName(NodeTransformer): def visit_Name(self, node): return Subscript( value=Name(id='data', ctx=Load()), slice=Constant(value=node.id), ctx=node.ctx )
操作しようとしているノードが子ノードを持つならば、その子ノードの変形も自分で行うか、またはそのノードに対し最初に
generic_visit()
メソッドを呼び出すか、それを行うのはあなたの責任だということを肝に銘じましょう。文のコレクションであるようなノード (全ての文のノードが当てはまります) に対して、このビジターは単独のノードではなくノードのリストを返すかもしれません。
NodeTransformer
が(たとえば、lineno
のような)位置情報を与えずに(元の木の一部ではなく)新しいノードを導入する場合、fix_missing_locations()
を新しいサブツリーで呼び出して、位置情報を再計算する必要があります。tree = ast.parse('foo', mode='eval') new_tree = fix_missing_locations(RewriteName().visit(tree))
たいてい、変換器の使い方は次のようになります:
node = YourTransformer().visit(node)
-
ast.
dump
(node, annotate_fields=True, include_attributes=False, *, indent=None)¶ node 内のツリーのフォーマットされたダンプを返します。主な使い道はデバッグです。 annotate_fields が(デフォルトで)trueの場合、返される文字列はフィールドの名前と値を示します。 annotate_fields がfalseの場合、あいまいさのないフィールド名を省略することにより、結果文字列はよりコンパクトになります。行番号や列オフセットのような属性はデフォルトではダンプされません。これがほ欲しければ、 include_attributes をtrueにセットすることができます。
indent が非負の整数または文字列の場合、ツリーは指定されたインデントレベルで整形されて出力されます (pretty-printed)。インデントレベルがゼロ、負の数、または
""
の場合は改行だけを挿入します。None
(デフォルト値) は単一行での表記になります。正の整数を指定すると各インデントレベルでその数だけの空白でインデントされます。 indent が文字列 ("\t"
など) の場合、その文字列が各レベルのインデントに使われます。バージョン 3.9 で変更: indent オプションを追加しました。
コンパイラフラグ¶
以下のフラグはプログラムのコンパイルにおける効果を変更するために compile()
に渡すことができます:
-
ast.
PyCF_ALLOW_TOP_LEVEL_AWAIT
¶ トップレベルの
await
,async for
,async with
および async 内包表記のサポートを有効化します。バージョン 3.8 で追加.
-
ast.
PyCF_ONLY_AST
¶ コンパイルされたコードオブジェクトの代わりに抽象構文木を生成して返します。
コマンドラインからの使用¶
バージョン 3.9 で追加.
ast
モジュールはコマンドラインからスクリプトとして実行することができます。実行方法は単純です:
python -m ast [-m <mode>] [-a] [infile]
以下のオプションが使用できます:
-
-h
,
--help
¶
ヘルプメッセージを表示して終了します。
-
--no-type-comments
¶
型コメントをパースしません。
-
-a
,
--include-attributes
¶
行番号や列オフセットなどの属性を含めます。
infile
を指定するとその内容が AST にパースされて標準出力に出力されます。そうでない場合は標準入力から入力を読み込みます。
参考
外部ドキュメント Green Tree Snakes には Python AST についての詳細が書かれています。
ASTTokens は Python AST を、生成元のソースコードのトークン位置やテキストで注解します。これはソースコード変換を行うツールで有用です。
leoAst.py unifies the token-based and parse-tree-based views of python programs by inserting two-way links between tokens and ast nodes.
LibCST はコードを ast ツリーに似た構文木 (Concrete Syntax Tree) にパースし、かつ全ての書式設定の詳細を保持します。これは自動リファクタリングアプリケーション (codemod) やリンタを作成する際に有用です。
Parso はエラーリカバリや異なる Python バージョン (複数の Python バージョン) での復元可能なパース (round-trip parsing) をサポートします。また、 Parso は Python ファイル内の複数の文法エラーをリストすることもできます。