3. 拡張の型の定義: 雑多なトピック

この節ではさまざまな実装可能なタイプメソッドと、それらが何をするものであるかについて、ざっと説明します。

以下は PyTypeObject の定義です。 デバッグビルド でしか使われないいくつかのメンバは省いてあります:

typedef struct _typeobject {
    PyObject_VAR_HEAD
    const char *tp_name; /* For printing, in format "<module>.<name>" */
    Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

    /* Methods to implement standard operations */

    destructor tp_dealloc;
    Py_ssize_t tp_vectorcall_offset;
    getattrfunc tp_getattr;
    setattrfunc tp_setattr;
    PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
                                    or tp_reserved (Python 3) */
    reprfunc tp_repr;

    /* Method suites for standard classes */

    PyNumberMethods *tp_as_number;
    PySequenceMethods *tp_as_sequence;
    PyMappingMethods *tp_as_mapping;

    /* More standard operations (here for binary compatibility) */

    hashfunc tp_hash;
    ternaryfunc tp_call;
    reprfunc tp_str;
    getattrofunc tp_getattro;
    setattrofunc tp_setattro;

    /* Functions to access object as input/output buffer */
    PyBufferProcs *tp_as_buffer;

    /* Flags to define presence of optional/expanded features */
    unsigned long tp_flags;

    const char *tp_doc; /* Documentation string */

    /* Assigned meaning in release 2.0 */
    /* call function for all accessible objects */
    traverseproc tp_traverse;

    /* delete references to contained objects */
    inquiry tp_clear;

    /* Assigned meaning in release 2.1 */
    /* rich comparisons */
    richcmpfunc tp_richcompare;

    /* weak reference enabler */
    Py_ssize_t tp_weaklistoffset;

    /* Iterators */
    getiterfunc tp_iter;
    iternextfunc tp_iternext;

    /* Attribute descriptor and subclassing stuff */
    struct PyMethodDef *tp_methods;
    struct PyMemberDef *tp_members;
    struct PyGetSetDef *tp_getset;
    // Strong reference on a heap type, borrowed reference on a static type
    struct _typeobject *tp_base;
    PyObject *tp_dict;
    descrgetfunc tp_descr_get;
    descrsetfunc tp_descr_set;
    Py_ssize_t tp_dictoffset;
    initproc tp_init;
    allocfunc tp_alloc;
    newfunc tp_new;
    freefunc tp_free; /* Low-level free-memory routine */
    inquiry tp_is_gc; /* For PyObject_IS_GC */
    PyObject *tp_bases;
    PyObject *tp_mro; /* method resolution order */
    PyObject *tp_cache;
    PyObject *tp_subclasses;
    PyObject *tp_weaklist;
    destructor tp_del;

    /* Type attribute cache version tag. Added in version 2.6 */
    unsigned int tp_version_tag;

    destructor tp_finalize;
    vectorcallfunc tp_vectorcall;
} PyTypeObject;

たくさんの メソッドがありますね。でもそんなに心配する必要はありません。定義したい型があるなら、実装するのはこのうちのごくわずかですむことがほとんどです。

すでに予想されているでしょうが、この構造体について入念に見ていき、様々なハンドラについてより詳しい情報を提供します。 しかしこれらのメンバが構造体中で定義されている順番は無視します。というのは、これらのメンバの現れる順序は歴史的な遺産によるものだからです。 多くの場合いちばん簡単なのは、必要とするメンバがすべて含まれている例をとってきて、新しく作る型に合わせて値を変更することです。

const char *tp_name; /* For printing */

これは型の名前です。前の章で説明したように、これは色々な場面で現れ、ほとんどは診断目的で使われるものです。 それなので、そのような場面で役に立つであろう名前を選んでください!

Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

これらのフィールドは、この型のオブジェクトが新しく作成されるときにどれだけのメモリを割り当てればよいのかをランタイムに指示します。Python には可変長の構造体 (文字列やタプルなどを想像してください) に対する組み込みのサポートがある程度あり、ここで tp_itemsize メンバが使われます。これらについてはあとでふれます。

const char *tp_doc;

ここには Python スクリプトリファレンス obj.__doc__ が doc string を返すときの文字列 (あるいはそのアドレス) を入れます。

では次に、型の基本的なメソッドに進みます。ほとんどの拡張の型がこのメソッドを実装します。

3.1. ファイナライズとメモリ解放

destructor tp_dealloc;

型のインスタンスの参照カウントがゼロになり、Python インタプリタがそれを潰して再利用したくなると、この関数が呼ばれます。解放すべきメモリをその型が保持していたり、それ以外にも実行すべき後処理がある場合は、それらをここに入れられます。オブジェクトそれ自体もここで解放される必要があります。この関数の例は、以下のようなものです:

static void
newdatatype_dealloc(newdatatypeobject *obj)
{
    free(obj->obj_UnderlyingDatatypePtr);
    Py_TYPE(obj)->tp_free((PyObject *)obj);
}

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack() before clearing any member fields:

static void
newdatatype_dealloc(newdatatypeobject *obj)
{
    PyObject_GC_UnTrack(obj);
    Py_CLEAR(obj->other_obj);
    ...
    Py_TYPE(obj)->tp_free((PyObject *)obj);
}

メモリ解放関数でひとつ重要なのは、処理待ちの例外にいっさい手をつけないことです。なぜなら、解放用の関数は Python インタプリタがスタックを元の状態に戻すときに呼ばれることが多いからです。そして (通常の関数からの復帰でなく) 例外のためにスタックが巻き戻されるときは、すでに発生している例外からメモリ解放関数を守るものはありません。解放用の関数がおこなう動作が追加の Python のコードを実行してしまうと、それらは例外が発生していることを検知するかもしれません。これはインタプリタが誤解させるエラーを発生させることにつながります。これを防ぐ正しい方法は、安全でない操作を実行する前に処理待ちの例外を保存しておき、終わったらそれを元に戻すことです。これは PyErr_Fetch() および PyErr_Restore() 関数を使うことによって可能になります:

static void
my_dealloc(PyObject *obj)
{
    MyObject *self = (MyObject *) obj;
    PyObject *cbresult;

    if (self->my_callback != NULL) {
        PyObject *err_type, *err_value, *err_traceback;

        /* This saves the current exception state */
        PyErr_Fetch(&err_type, &err_value, &err_traceback);

        cbresult = PyObject_CallNoArgs(self->my_callback);
        if (cbresult == NULL)
            PyErr_WriteUnraisable(self->my_callback);
        else
            Py_DECREF(cbresult);

        /* This restores the saved exception state */
        PyErr_Restore(err_type, err_value, err_traceback);

        Py_DECREF(self->my_callback);
    }
    Py_TYPE(obj)->tp_free((PyObject*)self);
}

注釈

メモリ解放関数の中で安全に行えることにはいくつか制限があります。 1つ目は、その型が (tp_traverse および tp_clear を使って) ガベージコレクションをサポートしている場合、 tp_dealloc が呼び出されるまでに、消去されファイナライズされてしまうオブジェクトのメンバーが有り得ることです。 2つ目は、 tp_dealloc の中ではオブジェクトは不安定な状態にあることです: つまり参照カウントが0であるということです。 (上の例にあるような) 複雑なオブジェクトや API の呼び出しでは、 tp_dealloc を再度呼び出し、二重解放からクラッシュすることになるかもしれません。

Python 3.4 からは、複雑なファイナライズのコードは tp_dealloc に置かず、代わりに新しく導入された tp_finalize という型メソッドを使うことが推奨されています。

参考

PEP 442 で新しいファイナライズの仕組みが説明されています。

3.2. オブジェクト表現

Python では、オブジェクトの文字列表現を生成するのに 2つのやり方があります: repr() 関数を使う方法と、 str() 関数を使う方法です。 (print() 関数は単に str() を呼び出します。) これらのハンドラはどちらも省略できます。

reprfunc tp_repr;
reprfunc tp_str;

tp_repr ハンドラは呼び出されたインスタンスの文字列表現を格納した文字列オブジェクトを返す必要があります。簡単な例は以下のようなものです:

static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{
    return PyUnicode_FromFormat("Repr-ified_newdatatype{{size:%d}}",
                                obj->obj_UnderlyingDatatypePtr->size);
}

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type's tp_name and a uniquely identifying value for the object.

tp_str ハンドラと str() の関係は、上の tp_repr ハンドラと repr() の関係に相当します。つまり、これは Python のコードがオブジェクトのインスタンスに対して str() を呼び出したときに呼ばれます。この関数の実装は tp_repr ハンドラのそれと非常に似ていますが、得られる文字列表現は人間が読むことを意図されています。 tp_str が指定されていない場合、かわりに tp_repr ハンドラが使われます。

以下は簡単な例です:

static PyObject *
newdatatype_str(newdatatypeobject * obj)
{
    return PyUnicode_FromFormat("Stringified_newdatatype{{size:%d}}",
                                obj->obj_UnderlyingDatatypePtr->size);
}

3.3. 属性を管理する

For every object which can support attributes, the corresponding type must provide the functions that control how the attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a PyObject*. Each type can use whichever pair makes more sense for the implementation's convenience.

getattrfunc  tp_getattr;        /* char * version */
setattrfunc  tp_setattr;
/* ... */
getattrofunc tp_getattro;       /* PyObject * version */
setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic implementations which can be used to provide the PyObject* version of the attribute management functions. The actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many examples which have not been updated to use some of the new generic mechanism that is available.

3.3.1. 総称的な属性を管理する

ほとんどの型は 単純な 属性を使うだけです。では、どのような属性が単純だといえるのでしょうか? それが満たすべき条件はごくわずかです:

  1. PyType_Ready() が呼ばれたとき、すでに属性の名前がわかっていること。

  2. 属性を参照したり設定したりするときに、特別な記録のための処理が必要でなく、また参照したり設定した値に対してどんな操作も実行する必要がないこと。

これらの条件は、属性の値や、値が計算されるタイミング、または格納されたデータがどの程度妥当なものであるかといったことになんら制約を課すものではないことに注意してください。

When PyType_Ready() is called, it uses three tables referenced by the type object to create descriptors which are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to handle attributes.

テーブルはタイプオブジェクト中の 3つのメンバとして宣言されています:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an instance of this structure:

typedef struct PyMethodDef {
    const char  *ml_name;       /* method name */
    PyCFunction  ml_meth;       /* implementation function */
    int          ml_flags;      /* flags */
    const char  *ml_doc;        /* docstring */
} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The ml_name field of the sentinel must be NULL.

2番目のテーブルは、インスタンス中に格納されるデータと直接対応づけられた属性を定義するのに使います。いくつもの C の原始的な型がサポートされており、アクセスを読み出し専用にも読み書き可能にもできます。このテーブルで使われる構造体は次のように定義されています:

typedef struct PyMemberDef {
    const char *name;
    int         type;
    int         offset;
    int         flags;
    const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value from the instance structure. The type field should contain one of the type codes defined in the structmember.h header; the value will be used to determine how to convert Python values to and from C values. The flags field is used to store flags which control how the attribute can be accessed.

The following flag constants are defined in structmember.h; they may be combined using bitwise-OR.

Constant

Meaning

READONLY

Never writable.

PY_AUDIT_READ

Emit an object.__getattr__ audit events before reading.

バージョン 3.10 で変更: RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED are deprecated. However, READ_RESTRICTED is an alias for PY_AUDIT_READ, so fields that specify either RESTRICTED or READ_RESTRICTED will also raise an audit event.

An interesting advantage of using the tp_members table to build descriptors that are used at runtime is that any attribute defined this way can have an associated doc string simply by providing the text in the table. An application can use the introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc__ attribute.

As with the tp_methods table, a sentinel entry with a ml_name value of NULL is required.

3.3.2. 特定の型に特化した属性の管理

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference between the char* and PyObject* flavors of the interface. This example effectively does the same thing as the generic example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called, so that if you do need to extend their functionality, you'll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations where the __getattr__() method of a class would be called.

以下に例を示します。:

static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{
    if (strcmp(name, "data") == 0)
    {
        return PyLong_FromLong(obj->data);
    }

    PyErr_Format(PyExc_AttributeError,
                 "'%.50s' object has no attribute '%.400s'",
                 tp->tp_name, name);
    return NULL;
}

The tp_setattr handler is called when the __setattr__() or __delattr__() method of a class instance would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply raises an exception; if this were really all you wanted, the tp_setattr handler should be set to NULL.

static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{
    PyErr_Format(PyExc_RuntimeError, "Read-only attribute: %s", name);
    return -1;
}

3.4. オブジェクトの比較

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods, like __lt__(), and also called by PyObject_RichCompare() and PyObject_RichCompareBool().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ, Py_NE, Py_LE, Py_GE, Py_LT or Py_GT. It should compare the two objects with respect to the specified operator and return Py_True or Py_False if the comparison is successful, Py_NotImplemented to indicate that comparison is not implemented and the other object's comparison method should be tried, or NULL if an exception was set.

これは内部ポインタのサイズが等しければ等しいと見なすデータ型のサンプル実装です:

static PyObject *
newdatatype_richcmp(PyObject *obj1, PyObject *obj2, int op)
{
    PyObject *result;
    int c, size1, size2;

    /* code to make sure that both arguments are of type
       newdatatype omitted */

    size1 = obj1->obj_UnderlyingDatatypePtr->size;
    size2 = obj2->obj_UnderlyingDatatypePtr->size;

    switch (op) {
    case Py_LT: c = size1 <  size2; break;
    case Py_LE: c = size1 <= size2; break;
    case Py_EQ: c = size1 == size2; break;
    case Py_NE: c = size1 != size2; break;
    case Py_GT: c = size1 >  size2; break;
    case Py_GE: c = size1 >= size2; break;
    }
    result = c ? Py_True : Py_False;
    Py_INCREF(result);
    return result;
 }

3.5. 抽象的なプロトコルのサポート

Python はいくつもの 抽象的な “プロトコル”をサポートしています。これらを使用する特定のインターフェイスについては 抽象オブジェクトレイヤ (Abstract Objects Layer) で解説されています。

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have been added over time. For protocols which depend on several handler routines from the type implementation, the older protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods   *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods  *tp_as_mapping;

お使いのオブジェクトを数値やシーケンス、あるいは辞書のようにふるまうようにしたいならば、それぞれに C の PyNumberMethods 構造体、 PySequenceMethods 構造体、または PyMappingMethods 構造体のアドレスを入れます。これらに適切な値を入れても入れなくてもかまいません。これらを使った例は Python の配布ソースにある Objects でみつけることができるでしょう。

hashfunc tp_hash;

この関数は、もし使うことにしたならば、データ型のインスタンスのハッシュ番号を返すようにします。次のは単純な例です:

static Py_hash_t
newdatatype_hash(newdatatypeobject *obj)
{
    Py_hash_t result;
    result = obj->some_size + 32767 * obj->some_number;
    if (result == -1)
       result = -2;
    return result;
}

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an error, which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

この関数は、その型のインスタンスが「関数として呼び出される」ときに呼ばれます。たとえばもし obj1 にそのインスタンスが入っていて、Python スクリプトで obj1('hello') を実行したとすると、 tp_call ハンドラが呼ばれます。

この関数は 3つの引数をとります:

  1. self は呼び出しの対象となるデータ型のインスタンスです。 たとえば呼び出しが obj1('hello') の場合、selfobj1 になります。

  2. args は呼び出しの引数を格納しているタプルです。ここから引数を取り出すには PyArg_ParseTuple() を使います。

  3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword arguments, use PyArg_ParseTupleAndKeywords() to extract the arguments. If you do not want to support keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are not supported.

以下は tp_call の簡易な実装です:

static PyObject *
newdatatype_call(newdatatypeobject *self, PyObject *args, PyObject *kwds)
{
    PyObject *result;
    const char *arg1;
    const char *arg2;
    const char *arg3;

    if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
        return NULL;
    }
    result = PyUnicode_FromFormat(
        "Returning -- value: [%d] arg1: [%s] arg2: [%s] arg3: [%s]\n",
        obj->obj_UnderlyingDatatypePtr->size,
        arg1, arg2, arg3);
    return result;
}
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for which they are being called, and return a new reference. In the case of an error, they should set an exception and return NULL. tp_iter corresponds to the Python __iter__() method, while tp_iternext corresponds to the Python __next__() method.

Any iterable object must implement the tp_iter handler, which must return an iterator object. Here the same guidelines apply as for Python classes:

  • For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be created and returned by each call to tp_iter.

  • Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can implement tp_iter by returning a new reference to themselves -- and should also therefore implement the tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator's tp_iter handler should return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

3.6. 弱参照(Weak Reference)のサポート

One of the goals of Python's weak reference implementation is to allow any type to participate in the weak reference mechanism without incurring the overhead on performance-critical objects (such as numbers).

参考

Documentation for the weakref module.

For an object to be weakly referencable, the extension type must do two things:

  1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object's constructor should leave it NULL (which is automatic when using the default tp_alloc).

  2. Set the tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure, so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {
    PyObject_HEAD
    PyObject *weakreflist;  /* List of weak references */
} TrivialObject;

And the corresponding member in the statically declared type object:

static PyTypeObject TrivialType = {
    PyVarObject_HEAD_INIT(NULL, 0)
    /* ... other members omitted for brevity ... */
    .tp_weaklistoffset = offsetof(TrivialObject, weakreflist),
};

The only further addition is that tp_dealloc needs to clear any weak references (by calling PyObject_ClearWeakRefs()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)
{
    /* Clear weakrefs first before calling any destructors */
    if (self->weakreflist != NULL)
        PyObject_ClearWeakRefs((PyObject *) self);
    /* ... remainder of destruction code omitted for brevity ... */
    Py_TYPE(self)->tp_free((PyObject *) self);
}

3.7. その他いろいろ

In order to learn how to implement any specific method for your new data type, get the CPython source code. Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example, tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the PyObject_TypeCheck() function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck(some_object, &MyType)) {
    PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
    return NULL;
}

参考

Download CPython source releases.

https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed.

https://github.com/python/cpython