Coroutines and Tasks¶
This section outlines high-level asyncio APIs to work with coroutines and Tasks.
Coroutines¶
Source code: Lib/asyncio/coroutines.py
Coroutines declared with the async/await syntax is the preferred way of writing asyncio applications. For example, the following snippet of code prints «hello», waits 1 second, and then prints «world»:
>>> import asyncio
>>> async def main():
... print('hello')
... await asyncio.sleep(1)
... print('world')
>>> asyncio.run(main())
hello
world
Note that simply calling a coroutine will not schedule it to be executed:
>>> main()
<coroutine object main at 0x1053bb7c8>
To actually run a coroutine, asyncio provides the following mechanisms:
The
asyncio.run()
function to run the top-level entry point «main()» function (see the above example.)Awaiting on a coroutine. The following snippet of code will print «hello» after waiting for 1 second, and then print «world» after waiting for another 2 seconds:
import asyncio import time async def say_after(delay, what): await asyncio.sleep(delay) print(what) async def main(): print(f"started at {time.strftime('%X')}") await say_after(1, 'hello') await say_after(2, 'world') print(f"finished at {time.strftime('%X')}") asyncio.run(main())
Expected output:
started at 17:13:52 hello world finished at 17:13:55
The
asyncio.create_task()
function to run coroutines concurrently as asyncioTasks
.Let’s modify the above example and run two
say_after
coroutines concurrently:async def main(): task1 = asyncio.create_task( say_after(1, 'hello')) task2 = asyncio.create_task( say_after(2, 'world')) print(f"started at {time.strftime('%X')}") # Wait until both tasks are completed (should take # around 2 seconds.) await task1 await task2 print(f"finished at {time.strftime('%X')}")
Note that expected output now shows that the snippet runs 1 second faster than before:
started at 17:14:32 hello world finished at 17:14:34
The
asyncio.TaskGroup
class provides a more modern alternative tocreate_task()
. Using this API, the last example becomes:async def main(): async with asyncio.TaskGroup() as tg: task1 = tg.create_task( say_after(1, 'hello')) task2 = tg.create_task( say_after(2, 'world')) print(f"started at {time.strftime('%X')}") # The await is implicit when the context manager exits. print(f"finished at {time.strftime('%X')}")
The timing and output should be the same as for the previous version.
Added in version 3.11:
asyncio.TaskGroup
.
Awaitables¶
We say that an object is an awaitable object if it can be used
in an await
expression. Many asyncio APIs are designed to
accept awaitables.
There are three main types of awaitable objects: coroutines, Tasks, and Futures.
Coroutines
Python coroutines are awaitables and therefore can be awaited from other coroutines:
import asyncio
async def nested():
return 42
async def main():
# Nothing happens if we just call "nested()".
# A coroutine object is created but not awaited,
# so it *won't run at all*.
nested() # will raise a "RuntimeWarning".
# Let's do it differently now and await it:
print(await nested()) # will print "42".
asyncio.run(main())
Importante
In this documentation the term «coroutine» can be used for two closely related concepts:
a coroutine function: an
async def
function;a coroutine object: an object returned by calling a coroutine function.
Tasks
Tasks are used to schedule coroutines concurrently.
When a coroutine is wrapped into a Task with functions like
asyncio.create_task()
the coroutine is automatically
scheduled to run soon:
import asyncio
async def nested():
return 42
async def main():
# Schedule nested() to run soon concurrently
# with "main()".
task = asyncio.create_task(nested())
# "task" can now be used to cancel "nested()", or
# can simply be awaited to wait until it is complete:
await task
asyncio.run(main())
Futures
A Future
is a special low-level awaitable object that
represents an eventual result of an asynchronous operation.
When a Future object is awaited it means that the coroutine will wait until the Future is resolved in some other place.
Future objects in asyncio are needed to allow callback-based code to be used with async/await.
Normally there is no need to create Future objects at the application level code.
Future objects, sometimes exposed by libraries and some asyncio APIs, can be awaited:
async def main():
await function_that_returns_a_future_object()
# this is also valid:
await asyncio.gather(
function_that_returns_a_future_object(),
some_python_coroutine()
)
A good example of a low-level function that returns a Future object
is loop.run_in_executor()
.
Creating Tasks¶
Source code: Lib/asyncio/tasks.py
- asyncio.create_task(coro, *, name=None, context=None)¶
Wrap the coro coroutine into a
Task
and schedule its execution. Return the Task object.If name is not
None
, it is set as the name of the task usingTask.set_name()
.An optional keyword-only context argument allows specifying a custom
contextvars.Context
for the coro to run in. The current context copy is created when no context is provided.The task is executed in the loop returned by
get_running_loop()
,RuntimeError
is raised if there is no running loop in current thread.Nota
asyncio.TaskGroup.create_task()
is a new alternative leveraging structural concurrency; it allows for waiting for a group of related tasks with strong safety guarantees.Importante
Save a reference to the result of this function, to avoid a task disappearing mid-execution. The event loop only keeps weak references to tasks. A task that isn’t referenced elsewhere may get garbage collected at any time, even before it’s done. For reliable «fire-and-forget» background tasks, gather them in a collection:
background_tasks = set() for i in range(10): task = asyncio.create_task(some_coro(param=i)) # Add task to the set. This creates a strong reference. background_tasks.add(task) # To prevent keeping references to finished tasks forever, # make each task remove its own reference from the set after # completion: task.add_done_callback(background_tasks.discard)
Added in version 3.7.
Cambiato nella versione 3.8: Added the name parameter.
Cambiato nella versione 3.11: Added the context parameter.
Task Cancellation¶
Tasks can easily and safely be cancelled.
When a task is cancelled, asyncio.CancelledError
will be raised
in the task at the next opportunity.
It is recommended that coroutines use try/finally
blocks to robustly
perform clean-up logic. In case asyncio.CancelledError
is explicitly caught, it should generally be propagated when
clean-up is complete. asyncio.CancelledError
directly subclasses
BaseException
so most code will not need to be aware of it.
The asyncio components that enable structured concurrency, like
asyncio.TaskGroup
and asyncio.timeout()
,
are implemented using cancellation internally and might misbehave if
a coroutine swallows asyncio.CancelledError
. Similarly, user code
should not generally call uncancel
.
However, in cases when suppressing asyncio.CancelledError
is
truly desired, it is necessary to also call uncancel()
to completely
remove the cancellation state.
Task Groups¶
Task groups combine a task creation API with a convenient and reliable way to wait for all tasks in the group to finish.
- class asyncio.TaskGroup¶
An asynchronous context manager holding a group of tasks. Tasks can be added to the group using
create_task()
. All tasks are awaited when the context manager exits.Added in version 3.11.
- create_task(coro, *, name=None, context=None)¶
Create a task in this task group. The signature matches that of
asyncio.create_task()
. If the task group is inactive (e.g. not yet entered, already finished, or in the process of shutting down), we will close the givencoro
.Cambiato nella versione 3.13: Close the given coroutine if the task group is not active.
Example:
async def main():
async with asyncio.TaskGroup() as tg:
task1 = tg.create_task(some_coro(...))
task2 = tg.create_task(another_coro(...))
print(f"Both tasks have completed now: {task1.result()}, {task2.result()}")
The async with
statement will wait for all tasks in the group to finish.
While waiting, new tasks may still be added to the group
(for example, by passing tg
into one of the coroutines
and calling tg.create_task()
in that coroutine).
Once the last task has finished and the async with
block is exited,
no new tasks may be added to the group.
The first time any of the tasks belonging to the group fails
with an exception other than asyncio.CancelledError
,
the remaining tasks in the group are cancelled.
No further tasks can then be added to the group.
At this point, if the body of the async with
statement is still active
(i.e., __aexit__()
hasn’t been called yet),
the task directly containing the async with
statement is also cancelled.
The resulting asyncio.CancelledError
will interrupt an await
,
but it will not bubble out of the containing async with
statement.
Once all tasks have finished, if any tasks have failed
with an exception other than asyncio.CancelledError
,
those exceptions are combined in an
ExceptionGroup
or BaseExceptionGroup
(as appropriate; see their documentation)
which is then raised.
Two base exceptions are treated specially:
If any task fails with KeyboardInterrupt
or SystemExit
,
the task group still cancels the remaining tasks and waits for them,
but then the initial KeyboardInterrupt
or SystemExit
is re-raised instead of ExceptionGroup
or BaseExceptionGroup
.
If the body of the async with
statement exits with an exception
(so __aexit__()
is called with an exception set),
this is treated the same as if one of the tasks failed:
the remaining tasks are cancelled and then waited for,
and non-cancellation exceptions are grouped into an
exception group and raised.
The exception passed into __aexit__()
,
unless it is asyncio.CancelledError
,
is also included in the exception group.
The same special case is made for
KeyboardInterrupt
and SystemExit
as in the previous paragraph.
Task groups are careful not to mix up the internal cancellation used to
«wake up» their __aexit__()
with cancellation requests
for the task in which they are running made by other parties.
In particular, when one task group is syntactically nested in another,
and both experience an exception in one of their child tasks simultaneously,
the inner task group will process its exceptions, and then the outer task group
will receive another cancellation and process its own exceptions.
In the case where a task group is cancelled externally and also must
raise an ExceptionGroup
, it will call the parent task’s
cancel()
method. This ensures that a
asyncio.CancelledError
will be raised at the next
await
, so the cancellation is not lost.
Task groups preserve the cancellation count
reported by asyncio.Task.cancelling()
.
Cambiato nella versione 3.13: Improved handling of simultaneous internal and external cancellations and correct preservation of cancellation counts.
Terminating a Task Group¶
While terminating a task group is not natively supported by the standard library, termination can be achieved by adding an exception-raising task to the task group and ignoring the raised exception:
import asyncio
from asyncio import TaskGroup
class TerminateTaskGroup(Exception):
"""Exception raised to terminate a task group."""
async def force_terminate_task_group():
"""Used to force termination of a task group."""
raise TerminateTaskGroup()
async def job(task_id, sleep_time):
print(f'Task {task_id}: start')
await asyncio.sleep(sleep_time)
print(f'Task {task_id}: done')
async def main():
try:
async with TaskGroup() as group:
# spawn some tasks
group.create_task(job(1, 0.5))
group.create_task(job(2, 1.5))
# sleep for 1 second
await asyncio.sleep(1)
# add an exception-raising task to force the group to terminate
group.create_task(force_terminate_task_group())
except* TerminateTaskGroup:
pass
asyncio.run(main())
Expected output:
Task 1: start
Task 2: start
Task 1: done
Sleeping¶
- coroutine asyncio.sleep(delay, result=None)¶
Block for delay seconds.
If result is provided, it is returned to the caller when the coroutine completes.
sleep()
always suspends the current task, allowing other tasks to run.Setting the delay to 0 provides an optimized path to allow other tasks to run. This can be used by long-running functions to avoid blocking the event loop for the full duration of the function call.
Example of coroutine displaying the current date every second for 5 seconds:
import asyncio import datetime async def display_date(): loop = asyncio.get_running_loop() end_time = loop.time() + 5.0 while True: print(datetime.datetime.now()) if (loop.time() + 1.0) >= end_time: break await asyncio.sleep(1) asyncio.run(display_date())
Cambiato nella versione 3.10: Removed the loop parameter.
Cambiato nella versione 3.13: Raises
ValueError
if delay isnan
.
Running Tasks Concurrently¶
- awaitable asyncio.gather(*aws, return_exceptions=False)¶
Run awaitable objects in the aws sequence concurrently.
If any awaitable in aws is a coroutine, it is automatically scheduled as a Task.
If all awaitables are completed successfully, the result is an aggregate list of returned values. The order of result values corresponds to the order of awaitables in aws.
If return_exceptions is
False
(default), the first raised exception is immediately propagated to the task that awaits ongather()
. Other awaitables in the aws sequence won’t be cancelled and will continue to run.If return_exceptions is
True
, exceptions are treated the same as successful results, and aggregated in the result list.If
gather()
is cancelled, all submitted awaitables (that have not completed yet) are also cancelled.If any Task or Future from the aws sequence is cancelled, it is treated as if it raised
CancelledError
– thegather()
call is not cancelled in this case. This is to prevent the cancellation of one submitted Task/Future to cause other Tasks/Futures to be cancelled.Nota
A new alternative to create and run tasks concurrently and wait for their completion is
asyncio.TaskGroup
. TaskGroup provides stronger safety guarantees than gather for scheduling a nesting of subtasks: if a task (or a subtask, a task scheduled by a task) raises an exception, TaskGroup will, while gather will not, cancel the remaining scheduled tasks).Example:
import asyncio async def factorial(name, number): f = 1 for i in range(2, number + 1): print(f"Task {name}: Compute factorial({number}), currently i={i}...") await asyncio.sleep(1) f *= i print(f"Task {name}: factorial({number}) = {f}") return f async def main(): # Schedule three calls *concurrently*: L = await asyncio.gather( factorial("A", 2), factorial("B", 3), factorial("C", 4), ) print(L) asyncio.run(main()) # Expected output: # # Task A: Compute factorial(2), currently i=2... # Task B: Compute factorial(3), currently i=2... # Task C: Compute factorial(4), currently i=2... # Task A: factorial(2) = 2 # Task B: Compute factorial(3), currently i=3... # Task C: Compute factorial(4), currently i=3... # Task B: factorial(3) = 6 # Task C: Compute factorial(4), currently i=4... # Task C: factorial(4) = 24 # [2, 6, 24]
Nota
If return_exceptions is false, cancelling gather() after it has been marked done won’t cancel any submitted awaitables. For instance, gather can be marked done after propagating an exception to the caller, therefore, calling
gather.cancel()
after catching an exception (raised by one of the awaitables) from gather won’t cancel any other awaitables.Cambiato nella versione 3.7: If the gather itself is cancelled, the cancellation is propagated regardless of return_exceptions.
Cambiato nella versione 3.10: Removed the loop parameter.
Deprecato dalla versione 3.10: Deprecation warning is emitted if no positional arguments are provided or not all positional arguments are Future-like objects and there is no running event loop.
Eager Task Factory¶
- asyncio.eager_task_factory(loop, coro, *, name=None, context=None)¶
A task factory for eager task execution.
When using this factory (via
loop.set_task_factory(asyncio.eager_task_factory)
), coroutines begin execution synchronously duringTask
construction. Tasks are only scheduled on the event loop if they block. This can be a performance improvement as the overhead of loop scheduling is avoided for coroutines that complete synchronously.A common example where this is beneficial is coroutines which employ caching or memoization to avoid actual I/O when possible.
Nota
Immediate execution of the coroutine is a semantic change. If the coroutine returns or raises, the task is never scheduled to the event loop. If the coroutine execution blocks, the task is scheduled to the event loop. This change may introduce behavior changes to existing applications. For example, the application’s task execution order is likely to change.
Added in version 3.12.
- asyncio.create_eager_task_factory(custom_task_constructor)¶
Create an eager task factory, similar to
eager_task_factory()
, using the provided custom_task_constructor when creating a new task instead of the defaultTask
.custom_task_constructor must be a callable with the signature matching the signature of
Task.__init__
. The callable must return aasyncio.Task
-compatible object.This function returns a callable intended to be used as a task factory of an event loop via
loop.set_task_factory(factory)
).Added in version 3.12.
Shielding From Cancellation¶
- awaitable asyncio.shield(aw)¶
Protect an awaitable object from being
cancelled
.If aw is a coroutine it is automatically scheduled as a Task.
The statement:
task = asyncio.create_task(something()) res = await shield(task)
is equivalent to:
res = await something()
except that if the coroutine containing it is cancelled, the Task running in
something()
is not cancelled. From the point of view ofsomething()
, the cancellation did not happen. Although its caller is still cancelled, so the «await» expression still raises aCancelledError
.If
something()
is cancelled by other means (i.e. from within itself) that would also cancelshield()
.If it is desired to completely ignore cancellation (not recommended) the
shield()
function should be combined with a try/except clause, as follows:task = asyncio.create_task(something()) try: res = await shield(task) except CancelledError: res = None
Importante
Save a reference to tasks passed to this function, to avoid a task disappearing mid-execution. The event loop only keeps weak references to tasks. A task that isn’t referenced elsewhere may get garbage collected at any time, even before it’s done.
Cambiato nella versione 3.10: Removed the loop parameter.
Deprecato dalla versione 3.10: Deprecation warning is emitted if aw is not Future-like object and there is no running event loop.
Timeouts¶
- asyncio.timeout(delay)¶
Return an asynchronous context manager that can be used to limit the amount of time spent waiting on something.
delay can either be
None
, or a float/int number of seconds to wait. If delay isNone
, no time limit will be applied; this can be useful if the delay is unknown when the context manager is created.In either case, the context manager can be rescheduled after creation using
Timeout.reschedule()
.Example:
async def main(): async with asyncio.timeout(10): await long_running_task()
If
long_running_task
takes more than 10 seconds to complete, the context manager will cancel the current task and handle the resultingasyncio.CancelledError
internally, transforming it into aTimeoutError
which can be caught and handled.Nota
The
asyncio.timeout()
context manager is what transforms theasyncio.CancelledError
into aTimeoutError
, which means theTimeoutError
can only be caught outside of the context manager.Example of catching
TimeoutError
:async def main(): try: async with asyncio.timeout(10): await long_running_task() except TimeoutError: print("The long operation timed out, but we've handled it.") print("This statement will run regardless.")
The context manager produced by
asyncio.timeout()
can be rescheduled to a different deadline and inspected.- class asyncio.Timeout(when)¶
An asynchronous context manager for cancelling overdue coroutines.
when
should be an absolute time at which the context should time out, as measured by the event loop’s clock:If
when
isNone
, the timeout will never trigger.If
when < loop.time()
, the timeout will trigger on the next iteration of the event loop.
Example:
async def main(): try: # We do not know the timeout when starting, so we pass ``None``. async with asyncio.timeout(None) as cm: # We know the timeout now, so we reschedule it. new_deadline = get_running_loop().time() + 10 cm.reschedule(new_deadline) await long_running_task() except TimeoutError: pass if cm.expired(): print("Looks like we haven't finished on time.")
Timeout context managers can be safely nested.
Added in version 3.11.
- asyncio.timeout_at(when)¶
Similar to
asyncio.timeout()
, except when is the absolute time to stop waiting, orNone
.Example:
async def main(): loop = get_running_loop() deadline = loop.time() + 20 try: async with asyncio.timeout_at(deadline): await long_running_task() except TimeoutError: print("The long operation timed out, but we've handled it.") print("This statement will run regardless.")
Added in version 3.11.
- coroutine asyncio.wait_for(aw, timeout)¶
Wait for the aw awaitable to complete with a timeout.
If aw is a coroutine it is automatically scheduled as a Task.
timeout can either be
None
or a float or int number of seconds to wait for. If timeout isNone
, block until the future completes.If a timeout occurs, it cancels the task and raises
TimeoutError
.To avoid the task
cancellation
, wrap it inshield()
.The function will wait until the future is actually cancelled, so the total wait time may exceed the timeout. If an exception happens during cancellation, it is propagated.
If the wait is cancelled, the future aw is also cancelled.
Example:
async def eternity(): # Sleep for one hour await asyncio.sleep(3600) print('yay!') async def main(): # Wait for at most 1 second try: await asyncio.wait_for(eternity(), timeout=1.0) except TimeoutError: print('timeout!') asyncio.run(main()) # Expected output: # # timeout!
Cambiato nella versione 3.7: When aw is cancelled due to a timeout,
wait_for
waits for aw to be cancelled. Previously, it raisedTimeoutError
immediately.Cambiato nella versione 3.10: Removed the loop parameter.
Cambiato nella versione 3.11: Raises
TimeoutError
instead ofasyncio.TimeoutError
.
Waiting Primitives¶
- coroutine asyncio.wait(aws, *, timeout=None, return_when=ALL_COMPLETED)¶
Run
Future
andTask
instances in the aws iterable concurrently and block until the condition specified by return_when.The aws iterable must not be empty.
Returns two sets of Tasks/Futures:
(done, pending)
.Usage:
done, pending = await asyncio.wait(aws)
timeout (a float or int), if specified, can be used to control the maximum number of seconds to wait before returning.
Note that this function does not raise
TimeoutError
. Futures or Tasks that aren’t done when the timeout occurs are simply returned in the second set.return_when indicates when this function should return. It must be one of the following constants:
Constant
Description
- asyncio.FIRST_COMPLETED¶
The function will return when any future finishes or is cancelled.
- asyncio.FIRST_EXCEPTION¶
The function will return when any future finishes by raising an exception. If no future raises an exception then it is equivalent to
ALL_COMPLETED
.- asyncio.ALL_COMPLETED¶
The function will return when all futures finish or are cancelled.
Unlike
wait_for()
,wait()
does not cancel the futures when a timeout occurs.Cambiato nella versione 3.10: Removed the loop parameter.
Cambiato nella versione 3.11: Passing coroutine objects to
wait()
directly is forbidden.Cambiato nella versione 3.12: Added support for generators yielding tasks.
- asyncio.as_completed(aws, *, timeout=None)¶
Run awaitable objects in the aws iterable concurrently. The returned object can be iterated to obtain the results of the awaitables as they finish.
The object returned by
as_completed()
can be iterated as an asynchronous iterator or a plain iterator. When asynchronous iteration is used, the originally-supplied awaitables are yielded if they are tasks or futures. This makes it easy to correlate previously-scheduled tasks with their results. Example:ipv4_connect = create_task(open_connection("127.0.0.1", 80)) ipv6_connect = create_task(open_connection("::1", 80)) tasks = [ipv4_connect, ipv6_connect] async for earliest_connect in as_completed(tasks): # earliest_connect is done. The result can be obtained by # awaiting it or calling earliest_connect.result() reader, writer = await earliest_connect if earliest_connect is ipv6_connect: print("IPv6 connection established.") else: print("IPv4 connection established.")
During asynchronous iteration, implicitly-created tasks will be yielded for supplied awaitables that aren’t tasks or futures.
When used as a plain iterator, each iteration yields a new coroutine that returns the result or raises the exception of the next completed awaitable. This pattern is compatible with Python versions older than 3.13:
ipv4_connect = create_task(open_connection("127.0.0.1", 80)) ipv6_connect = create_task(open_connection("::1", 80)) tasks = [ipv4_connect, ipv6_connect] for next_connect in as_completed(tasks): # next_connect is not one of the original task objects. It must be # awaited to obtain the result value or raise the exception of the # awaitable that finishes next. reader, writer = await next_connect
A
TimeoutError
is raised if the timeout occurs before all awaitables are done. This is raised by theasync for
loop during asynchronous iteration or by the coroutines yielded during plain iteration.Cambiato nella versione 3.10: Removed the loop parameter.
Deprecato dalla versione 3.10: Deprecation warning is emitted if not all awaitable objects in the aws iterable are Future-like objects and there is no running event loop.
Cambiato nella versione 3.12: Added support for generators yielding tasks.
Cambiato nella versione 3.13: The result can now be used as either an asynchronous iterator or as a plain iterator (previously it was only a plain iterator).
Running in Threads¶
- coroutine asyncio.to_thread(func, /, *args, **kwargs)¶
Asynchronously run function func in a separate thread.
Any *args and **kwargs supplied for this function are directly passed to func. Also, the current
contextvars.Context
is propagated, allowing context variables from the event loop thread to be accessed in the separate thread.Return a coroutine that can be awaited to get the eventual result of func.
This coroutine function is primarily intended to be used for executing IO-bound functions/methods that would otherwise block the event loop if they were run in the main thread. For example:
def blocking_io(): print(f"start blocking_io at {time.strftime('%X')}") # Note that time.sleep() can be replaced with any blocking # IO-bound operation, such as file operations. time.sleep(1) print(f"blocking_io complete at {time.strftime('%X')}") async def main(): print(f"started main at {time.strftime('%X')}") await asyncio.gather( asyncio.to_thread(blocking_io), asyncio.sleep(1)) print(f"finished main at {time.strftime('%X')}") asyncio.run(main()) # Expected output: # # started main at 19:50:53 # start blocking_io at 19:50:53 # blocking_io complete at 19:50:54 # finished main at 19:50:54
Directly calling
blocking_io()
in any coroutine would block the event loop for its duration, resulting in an additional 1 second of run time. Instead, by usingasyncio.to_thread()
, we can run it in a separate thread without blocking the event loop.Nota
Due to the GIL,
asyncio.to_thread()
can typically only be used to make IO-bound functions non-blocking. However, for extension modules that release the GIL or alternative Python implementations that don’t have one,asyncio.to_thread()
can also be used for CPU-bound functions.Added in version 3.9.
Scheduling From Other Threads¶
- asyncio.run_coroutine_threadsafe(coro, loop)¶
Submit a coroutine to the given event loop. Thread-safe.
Return a
concurrent.futures.Future
to wait for the result from another OS thread.This function is meant to be called from a different OS thread than the one where the event loop is running. Example:
# Create a coroutine coro = asyncio.sleep(1, result=3) # Submit the coroutine to a given loop future = asyncio.run_coroutine_threadsafe(coro, loop) # Wait for the result with an optional timeout argument assert future.result(timeout) == 3
If an exception is raised in the coroutine, the returned Future will be notified. It can also be used to cancel the task in the event loop:
try: result = future.result(timeout) except TimeoutError: print('The coroutine took too long, cancelling the task...') future.cancel() except Exception as exc: print(f'The coroutine raised an exception: {exc!r}') else: print(f'The coroutine returned: {result!r}')
See the concurrency and multithreading section of the documentation.
Unlike other asyncio functions this function requires the loop argument to be passed explicitly.
Added in version 3.5.1.
Introspection¶
- asyncio.current_task(loop=None)¶
Return the currently running
Task
instance, orNone
if no task is running.If loop is
None
get_running_loop()
is used to get the current loop.Added in version 3.7.
- asyncio.all_tasks(loop=None)¶
Return a set of not yet finished
Task
objects run by the loop.If loop is
None
,get_running_loop()
is used for getting current loop.Added in version 3.7.
- asyncio.iscoroutine(obj)¶
Return
True
if obj is a coroutine object.Added in version 3.4.
Task Object¶
- class asyncio.Task(coro, *, loop=None, name=None, context=None, eager_start=False)¶
A
Future-like
object that runs a Python coroutine. Not thread-safe.Tasks are used to run coroutines in event loops. If a coroutine awaits on a Future, the Task suspends the execution of the coroutine and waits for the completion of the Future. When the Future is done, the execution of the wrapped coroutine resumes.
Event loops use cooperative scheduling: an event loop runs one Task at a time. While a Task awaits for the completion of a Future, the event loop runs other Tasks, callbacks, or performs IO operations.
Use the high-level
asyncio.create_task()
function to create Tasks, or the low-levelloop.create_task()
orensure_future()
functions. Manual instantiation of Tasks is discouraged.To cancel a running Task use the
cancel()
method. Calling it will cause the Task to throw aCancelledError
exception into the wrapped coroutine. If a coroutine is awaiting on a Future object during cancellation, the Future object will be cancelled.cancelled()
can be used to check if the Task was cancelled. The method returnsTrue
if the wrapped coroutine did not suppress theCancelledError
exception and was actually cancelled.asyncio.Task
inherits fromFuture
all of its APIs exceptFuture.set_result()
andFuture.set_exception()
.An optional keyword-only context argument allows specifying a custom
contextvars.Context
for the coro to run in. If no context is provided, the Task copies the current context and later runs its coroutine in the copied context.An optional keyword-only eager_start argument allows eagerly starting the execution of the
asyncio.Task
at task creation time. If set toTrue
and the event loop is running, the task will start executing the coroutine immediately, until the first time the coroutine blocks. If the coroutine returns or raises without blocking, the task will be finished eagerly and will skip scheduling to the event loop.Cambiato nella versione 3.7: Added support for the
contextvars
module.Cambiato nella versione 3.8: Added the name parameter.
Deprecato dalla versione 3.10: Deprecation warning is emitted if loop is not specified and there is no running event loop.
Cambiato nella versione 3.11: Added the context parameter.
Cambiato nella versione 3.12: Added the eager_start parameter.
- done()¶
Return
True
if the Task is done.A Task is done when the wrapped coroutine either returned a value, raised an exception, or the Task was cancelled.
- result()¶
Return the result of the Task.
If the Task is done, the result of the wrapped coroutine is returned (or if the coroutine raised an exception, that exception is re-raised.)
If the Task has been cancelled, this method raises a
CancelledError
exception.If the Task’s result isn’t yet available, this method raises an
InvalidStateError
exception.
- exception()¶
Return the exception of the Task.
If the wrapped coroutine raised an exception that exception is returned. If the wrapped coroutine returned normally this method returns
None
.If the Task has been cancelled, this method raises a
CancelledError
exception.If the Task isn’t done yet, this method raises an
InvalidStateError
exception.
- add_done_callback(callback, *, context=None)¶
Add a callback to be run when the Task is done.
This method should only be used in low-level callback-based code.
See the documentation of
Future.add_done_callback()
for more details.
- remove_done_callback(callback)¶
Remove callback from the callbacks list.
This method should only be used in low-level callback-based code.
See the documentation of
Future.remove_done_callback()
for more details.
- get_stack(*, limit=None)¶
Return the list of stack frames for this Task.
If the wrapped coroutine is not done, this returns the stack where it is suspended. If the coroutine has completed successfully or was cancelled, this returns an empty list. If the coroutine was terminated by an exception, this returns the list of traceback frames.
The frames are always ordered from oldest to newest.
Only one stack frame is returned for a suspended coroutine.
The optional limit argument sets the maximum number of frames to return; by default all available frames are returned. The ordering of the returned list differs depending on whether a stack or a traceback is returned: the newest frames of a stack are returned, but the oldest frames of a traceback are returned. (This matches the behavior of the traceback module.)
- print_stack(*, limit=None, file=None)¶
Print the stack or traceback for this Task.
This produces output similar to that of the traceback module for the frames retrieved by
get_stack()
.The limit argument is passed to
get_stack()
directly.The file argument is an I/O stream to which the output is written; by default output is written to
sys.stdout
.
- get_coro()¶
Return the coroutine object wrapped by the
Task
.Nota
This will return
None
for Tasks which have already completed eagerly. See the Eager Task Factory.Added in version 3.8.
Cambiato nella versione 3.12: Newly added eager task execution means result may be
None
.
- get_context()¶
Return the
contextvars.Context
object associated with the task.Added in version 3.12.
- get_name()¶
Return the name of the Task.
If no name has been explicitly assigned to the Task, the default asyncio Task implementation generates a default name during instantiation.
Added in version 3.8.
- set_name(value)¶
Set the name of the Task.
The value argument can be any object, which is then converted to a string.
In the default Task implementation, the name will be visible in the
repr()
output of a task object.Added in version 3.8.
- cancel(msg=None)¶
Request the Task to be cancelled.
This arranges for a
CancelledError
exception to be thrown into the wrapped coroutine on the next cycle of the event loop.The coroutine then has a chance to clean up or even deny the request by suppressing the exception with a
try
… …except CancelledError
…finally
block. Therefore, unlikeFuture.cancel()
,Task.cancel()
does not guarantee that the Task will be cancelled, although suppressing cancellation completely is not common and is actively discouraged. Should the coroutine nevertheless decide to suppress the cancellation, it needs to callTask.uncancel()
in addition to catching the exception.Cambiato nella versione 3.9: Added the msg parameter.
Cambiato nella versione 3.11: The
msg
parameter is propagated from cancelled task to its awaiter.The following example illustrates how coroutines can intercept the cancellation request:
async def cancel_me(): print('cancel_me(): before sleep') try: # Wait for 1 hour await asyncio.sleep(3600) except asyncio.CancelledError: print('cancel_me(): cancel sleep') raise finally: print('cancel_me(): after sleep') async def main(): # Create a "cancel_me" Task task = asyncio.create_task(cancel_me()) # Wait for 1 second await asyncio.sleep(1) task.cancel() try: await task except asyncio.CancelledError: print("main(): cancel_me is cancelled now") asyncio.run(main()) # Expected output: # # cancel_me(): before sleep # cancel_me(): cancel sleep # cancel_me(): after sleep # main(): cancel_me is cancelled now
- cancelled()¶
Return
True
if the Task is cancelled.The Task is cancelled when the cancellation was requested with
cancel()
and the wrapped coroutine propagated theCancelledError
exception thrown into it.
- uncancel()¶
Decrement the count of cancellation requests to this Task.
Returns the remaining number of cancellation requests.
Note that once execution of a cancelled task completed, further calls to
uncancel()
are ineffective.Added in version 3.11.
This method is used by asyncio’s internals and isn’t expected to be used by end-user code. In particular, if a Task gets successfully uncancelled, this allows for elements of structured concurrency like Task Groups and
asyncio.timeout()
to continue running, isolating cancellation to the respective structured block. For example:async def make_request_with_timeout(): try: async with asyncio.timeout(1): # Structured block affected by the timeout: await make_request() await make_another_request() except TimeoutError: log("There was a timeout") # Outer code not affected by the timeout: await unrelated_code()
While the block with
make_request()
andmake_another_request()
might get cancelled due to the timeout,unrelated_code()
should continue running even in case of the timeout. This is implemented withuncancel()
.TaskGroup
context managers useuncancel()
in a similar fashion.If end-user code is, for some reason, suppressing cancellation by catching
CancelledError
, it needs to call this method to remove the cancellation state.When this method decrements the cancellation count to zero, the method checks if a previous
cancel()
call had arranged forCancelledError
to be thrown into the task. If it hasn’t been thrown yet, that arrangement will be rescinded (by resetting the internal_must_cancel
flag).
Cambiato nella versione 3.13: Changed to rescind pending cancellation requests upon reaching zero.
- cancelling()¶
Return the number of pending cancellation requests to this Task, i.e., the number of calls to
cancel()
less the number ofuncancel()
calls.Note that if this number is greater than zero but the Task is still executing,
cancelled()
will still returnFalse
. This is because this number can be lowered by callinguncancel()
, which can lead to the task not being cancelled after all if the cancellation requests go down to zero.This method is used by asyncio’s internals and isn’t expected to be used by end-user code. See
uncancel()
for more details.Added in version 3.11.