random --- Génère des nombres pseudo-aléatoires

Code source : Lib/random.py


Ce module implémente des générateurs de nombres pseudo-aléatoires pour différentes distributions.

Pour les entiers, il existe une sélection uniforme à partir d'une plage. Pour les séquences, il existe une sélection uniforme d'un élément aléatoire, une fonction pour générer une permutation aléatoire d'une liste sur place et une fonction pour un échantillonnage aléatoire sans remplacement.

Pour l'ensemble des réels, il y a des fonctions pour calculer des distributions uniformes, normales (gaussiennes), log-normales, exponentielles négatives, gamma et bêta. Pour générer des distributions d'angles, la distribution de von Mises est disponible.

Presque toutes les fonctions du module dépendent de la fonction de base random(), qui génère un nombre à virgule flottante aléatoire de façon uniforme dans la plage semi-ouverte [0.0, 1.0). Python utilise l'algorithme Mersenne Twister comme générateur de base. Il produit des flottants de précision de 53 bits et a une période de 2**19937-1. L'implémentation sous-jacente en C est à la fois rapide et compatible avec les programmes ayant de multiples fils d'exécution. Le Mersenne Twister est l'un des générateurs de nombres aléatoires les plus largement testés qui existent. Cependant, étant complètement déterministe, il n'est pas adapté à tous les usages et est totalement inadapté à des fins cryptographiques.

Les fonctions fournies par ce module dépendent en réalité de méthodes d’une instance cachée de la classe random.Random. Vous pouvez créer vos propres instances de Random pour obtenir des générateurs sans états partagés.

La classe Random peut également être sous-classée si vous voulez utiliser un générateur de base différent, de votre propre conception. Dans ce cas, remplacez les méthodes random(), seed(), gettsate() et setstate(). En option, un nouveau générateur peut fournir une méthode getrandbits() --- ce qui permet à randrange() de produire des sélections sur une plage de taille arbitraire.

Le module random fournit également la classe SystemRandom qui utilise la fonction système os.urandom() pour générer des nombres aléatoires à partir de sources fournies par le système d'exploitation.

Avertissement

Les générateurs pseudo-aléatoires de ce module ne doivent pas être utilisés à des fins de sécurité. Pour des utilisations de sécurité ou cryptographiques, voir le module secrets.

Voir aussi

M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, Janvier pp.3--30 1998.

Complementary-Multiply-with-Carry recipe pour un autre générateur de nombres aléatoires avec une longue période et des opérations de mise à jour relativement simples.

Fonctions de gestion d'état

random.seed(a=None, version=2)

Initialise le générateur de nombres aléatoires.

Si a est omis ou None, l'heure système actuelle est utilisée. Si des sources aléatoires sont fournies par le système d'exploitation, elles sont utilisées à la place de l'heure système (voir la fonction os.urandom() pour les détails sur la disponibilité).

Si a est un entier, il est utilisé directement.

Avec la version 2 (par défaut), un objet str, bytes ou bytearray est converti en int et tous ses bits sont utilisés.

Avec la version 1 (fournie pour reproduire des séquences aléatoires produites par d'anciennes versions de Python), l'algorithme pour str et bytes génère une gamme plus étroite de graines.

Modifié dans la version 3.2: Passée à la version 2 du schéma qui utilise tous les bits d'une graine de chaîne de caractères.

Modifié dans la version 3.11: The seed must be one of the following types: NoneType, int, float, str, bytes, or bytearray.

random.getstate()

Renvoie un objet capturant l'état interne actuel du générateur. Cet objet peut être passé à setstate() pour restaurer cet état.

random.setstate(state)

Il convient que state ait été obtenu à partir d'un appel précédent à getstate(), et setstate() restaure l'état interne du générateur à ce qu'il était au moment où getstate() a été appelé.

Fonctions pour les octets

random.randbytes(n)

Génère n octets aléatoires.

Cette méthode ne doit pas être utilisée pour générer des jetons de sécurité. Utiliser secrets.token_bytes() à la place.

Nouveau dans la version 3.9.

Fonctions pour les entiers

random.randrange(stop)
random.randrange(start, stop[, step])

Return a randomly selected element from range(start, stop, step).

This is roughly equivalent to choice(range(start, stop, step)) but supports arbitrarily large ranges and is optimized for common cases.

The positional argument pattern matches the range() function.

Keyword arguments should not be used because they can be interpreted in unexpected ways. For example randrange(start=100) is interpreted as randrange(0, 100, 1).

Modifié dans la version 3.2: randrange() est plus sophistiquée dans la production de valeurs uniformément distribuées. Auparavant, elle utilisait un style comme int(random()*n) qui pouvait produire des distributions légèrement inégales.

Modifié dans la version 3.12: Automatic conversion of non-integer types is no longer supported. Calls such as randrange(10.0) and randrange(Fraction(10, 1)) now raise a TypeError.

random.randint(a, b)

Renvoie un entier aléatoire N tel que a <= N <= b. Alias pour randrange(a, b+1).

random.getrandbits(k)

Returns a non-negative Python integer with k random bits. This method is supplied with the Mersenne Twister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.

Modifié dans la version 3.9: Cette méthode accepte désormais zéro pour k.

Fonctions pour les séquences

random.choice(seq)

Renvoie un élément aléatoire de la séquence non vide seq. Si seq est vide, lève IndexError.

random.choices(population, weights=None, *, cum_weights=None, k=1)

Renvoie une liste de taille k d'éléments choisis dans la population avec remise. Si la population est vide, lève IndexError.

Si une séquence de poids est spécifiée, les tirages sont effectués en fonction des poids relatifs. Alternativement, si une séquence cum_weights est donnée, les tirages sont faits en fonction des poids cumulés (peut-être calculés en utilisant itertools.accumulate()). Par exemple, les poids relatifs [10, 5, 30, 5] sont équivalents aux poids cumulatifs [10, 15, 45, 50]. En interne, les poids relatifs sont convertis en poids cumulatifs avant d'effectuer les tirages, ce qui vous permet d'économiser du travail en fournissant des pondérations cumulatives.

Si ni weights ni cum_weights ne sont spécifiés, les tirages sont effectués avec une probabilité uniforme. Si une séquence de poids est fournie, elle doit être de la même longueur que la séquence population. Spécifier à la fois weights et cum_weights lève une TypeError.

Les weights ou cum_weights peuvent utiliser n'importe quel type numérique interopérable avec les valeurs float renvoyées par random() (qui inclut les entiers, les flottants et les fractions mais exclut les décimaux). Les poids sont présumés être non négatifs et finis. Une exception ValueError est levée si tous les poids sont à zéro.

Pour une graine donnée, la fonction choices() avec pondération uniforme produit généralement une séquence différente des appels répétés à choice(). L'algorithme utilisé par choices() utilise l'arithmétique à virgule flottante pour la cohérence interne et la vitesse. L'algorithme utilisé par choice() utilise par défaut l'arithmétique entière avec des tirages répétés pour éviter les petits biais dus aux erreurs d'arrondi.

Nouveau dans la version 3.6.

Modifié dans la version 3.9: Lève une ValueError si tous les poids sont à zéro.

random.shuffle(x)

Mélange la séquence x sans créer de nouvelle instance (« sur place »).

Pour mélanger une séquence immuable et renvoyer une nouvelle liste mélangée, utilisez sample(x, k=len(x)) à la place.

Notez que même pour les petits len(x), le nombre total de permutations de x peut rapidement devenir plus grand que la période de la plupart des générateurs de nombres aléatoires. Cela implique que la plupart des permutations d'une longue séquence ne peuvent jamais être générées. Par exemple, une séquence de longueur 2080 est la plus grande qui puisse tenir dans la période du générateur de nombres aléatoires Mersenne Twister.

Obsolète depuis la version 3.9, supprimé dans la version 3.11: Le paramètre optionnel random.

random.sample(population, k, *, counts=None)

Return a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement.

Renvoie une nouvelle liste contenant des éléments de la population tout en laissant la population originale inchangée. La liste résultante est classée par ordre de sélection de sorte que toutes les sous-tranches soient également des échantillons aléatoires valides. Cela permet aux gagnants du tirage (l'échantillon) d'être divisés en gagnants du grand prix et en gagnants de la deuxième place (les sous-tranches).

Les membres de la population n'ont pas besoin d'être hachables ou uniques. Si la population contient des répétitions, alors chaque occurrence est un tirage possible dans l'échantillon.

Les éléments répétés peuvent être spécifiés un à la fois ou avec le paramètre optionnel uniquement nommé counts. Par exemple, sample([‘red’, ‘blue’], counts=[4, 2], k=5) est équivalent à sample([‘red’, ‘red’, ‘red’, ‘red’, ‘blue’, ‘blue’], k=5).

Pour choisir un échantillon parmi un intervalle d'entiers, utilisez un objet range() comme argument. Ceci est particulièrement rapide et économe en mémoire pour un tirage dans une grande population : échantillon(range(10000000), k=60).

Si la taille de l'échantillon est supérieure à la taille de la population, une ValueError est levée.

Modifié dans la version 3.9: Ajoute le paramètre counts.

Modifié dans la version 3.11: The population must be a sequence. Automatic conversion of sets to lists is no longer supported.

Discrete distributions

The following function generates a discrete distribution.

random.binomialvariate(n=1, p=0.5)

Binomial distribution. Return the number of successes for n independent trials with the probability of success in each trial being p:

Mathematically equivalent to:

sum(random() < p for i in range(n))

The number of trials n should be a non-negative integer. The probability of success p should be between 0.0 <= p <= 1.0. The result is an integer in the range 0 <= X <= n.

Nouveau dans la version 3.12.

Distributions pour les nombres réels

Les fonctions suivantes génèrent des distributions spécifiques en nombre réels. Les paramètres de fonction sont nommés d'après les variables correspondantes de l'équation de la distribution, telles qu'elles sont utilisées dans la pratique mathématique courante ; la plupart de ces équations peuvent être trouvées dans tout document traitant de statistiques.

random.random()

Renvoie le nombre aléatoire à virgule flottante suivant dans la plage [0.0, 1.0).

random.uniform(a, b)

Renvoie un nombre aléatoire à virgule flottante N tel que a <= N <= b pour a <= b et b <= N <= a pour b < a.

La valeur finale b peut ou non être incluse dans la plage selon l'arrondi à virgule flottante dans l'équation a + (b-a) * random().

random.triangular(low, high, mode)

Renvoie un nombre aléatoire en virgule flottante N tel que low <= N <= high et avec le mode spécifié entre ces bornes. Les limites low et high par défaut sont zéro et un. L'argument mode est par défaut le point médian entre les bornes, ce qui donne une distribution symétrique.

random.betavariate(alpha, beta)

Distribution bêta. Les conditions sur les paramètres sont alpha > 0 et beta > 0. Les valeurs renvoyées varient entre 0 et 1.

random.expovariate(lambd)

Distribution exponentielle. lambd est 1,0 divisé par la moyenne désirée. Ce ne doit pas être zéro. (Le paramètre aurait dû s'appeler "lambda", mais c'est un mot réservé en Python.) Les valeurs renvoyées vont de 0 à plus l'infini positif si lambd est positif, et de moins l'infini à 0 si lambd est négatif.

random.gammavariate(alpha, beta)

Distribution gamma. (Ce n'est pas la fonction gamma !) Les conditions sur les paramètres sont alpha > 0 et beta > 0.

La fonction de distribution de probabilité est :

          x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) =  --------------------------------------
            math.gamma(alpha) * beta ** alpha
random.gauss(mu=0.0, sigma=1.0)

Distributions normales, aussi appelées distribution gaussiennes. mu est la moyenne et sigma est l’écart type. C'est légèrement plus rapide que la fonction normalvariate() définie ci-dessous.

Note sur les fils d’exécution multiples (Multithreading) : quand deux fils d’exécution appellent cette fonction simultanément, il est possible qu’ils reçoivent la même valeur de retour. On peut l’éviter de 3 façons. 1) Avoir chaque fil utilisant une instance différente du générateur de nombres aléatoires. 2) Mettre des verrous autour de tous les appels. 3) Utiliser la fonction plus lente, mais compatible avec les programmes à fils d’exécution multiples, normalvariate() à la place.

Modifié dans la version 3.11: mu and sigma now have default arguments.

random.lognormvariate(mu, sigma)

Logarithme de la distribution normale. Si vous prenez le logarithme naturel de cette distribution, vous obtiendrez une distribution normale avec mu moyen et écart-type sigma. mu peut avoir n'importe quelle valeur et sigma doit être supérieur à zéro.

random.normalvariate(mu=0.0, sigma=1.0)

Distribution normale. mu est la moyenne et sigma est l'écart type.

Modifié dans la version 3.11: mu and sigma now have default arguments.

random.vonmisesvariate(mu, kappa)

mu est l'angle moyen, exprimé en radians entre 0 et 2*pi, et kappa est le paramètre de concentration, qui doit être supérieur ou égal à zéro. Si kappa est égal à zéro, cette distribution se réduit à un angle aléatoire uniforme sur la plage de 0 à 2*pi.

random.paretovariate(alpha)

Distribution de Pareto. alpha est le paramètre de forme.

random.weibullvariate(alpha, beta)

Distribution de Weibull. alpha est le paramètre de l'échelle et beta est le paramètre de forme.

Générateur alternatif

class random.Random([seed])

Classe qui implémente le générateur de nombres pseudo-aléatoires par défaut utilisé par le module random.

Obsolète depuis la version 3.9: À l’avenir, la graine devra être de l’un des types suivants : NoneType, int, float, str, bytes ou bytearray.

class random.SystemRandom([seed])

Classe qui utilise la fonction os.urandom() pour générer des nombres aléatoires à partir de sources fournies par le système d'exploitation. Non disponible sur tous les systèmes. Ne repose pas sur un état purement logiciel et les séquences ne sont pas reproductibles. Par conséquent, la méthode seed() n'a aucun effet et est ignorée. Les méthodes getstate() et setstate() lèvent NotImplementedError si vous les appelez.

Remarques sur la reproductibilité

Il est parfois utile de pouvoir reproduire les séquences données par un générateur de nombres pseudo-aléatoires. En réutilisant la même graine, la même séquence devrait être reproductible d'une exécution à l'autre tant que plusieurs fils d’exécution ne sont pas en cours.

La plupart des algorithmes et des fonctions de génération de graine du module aléatoire sont susceptibles d'être modifiés d'une version à l'autre de Python, mais deux aspects sont garantis de ne pas changer :

  • Si une nouvelle méthode de génération de graine est ajoutée, une fonction rétro-compatible sera offerte.

  • La méthode random() du générateur continuera à produire la même séquence lorsque la fonction de génération de graine compatible recevra la même semence.

Exemples

Exemples de base :

>>> random()                             # Random float:  0.0 <= x < 1.0
0.37444887175646646

>>> uniform(2.5, 10.0)                   # Random float:  2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate(1 / 5)                   # Interval between arrivals averaging 5 seconds
5.148957571865031

>>> randrange(10)                        # Integer from 0 to 9 inclusive
7

>>> randrange(0, 101, 2)                 # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw'])      # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()
>>> shuffle(deck)                        # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4)    # Four samples without replacement
[40, 10, 50, 30]

Simulations :

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value:  ten, jack, queen, or king.
>>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> deal.count('tens') / 20
0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
...     return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958

Exemple de *bootstrapping* statistique utilisant le ré-échantillonnage avec remise pour estimer un intervalle de confiance pour la moyenne d'un échantillon :

# https://www.thoughtco.com/example-of-bootstrapping-3126155
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
      f'interval from {means[5]:.1f} to {means[94]:.1f}')

Exemple d'un *resampling permutation test* pour déterminer la signification statistique ou valeur p d'une différence observée entre les effets d'un médicament et ceux d'un placebo :

# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)

n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
    shuffle(combined)
    new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')

Simulation des heures d'arrivée et des livraisons de services pour une file d'attente de serveurs :

from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles

average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3

waits = []
arrival_time = 0.0
servers = [0.0] * num_servers  # time when each server becomes available
heapify(servers)
for i in range(1_000_000):
    arrival_time += expovariate(1.0 / average_arrival_interval)
    next_server_available = servers[0]
    wait = max(0.0, next_server_available - arrival_time)
    waits.append(wait)
    service_duration = max(0.0, gauss(average_service_time, stdev_service_time))
    service_completed = arrival_time + wait + service_duration
    heapreplace(servers, service_completed)

print(f'Mean wait: {mean(waits):.1f}   Max wait: {max(waits):.1f}')
print('Quartiles:', [round(q, 1) for q in quantiles(waits)])

Voir aussi

Statistics for Hackers un tutoriel vidéo par Jake Vanderplas sur l'analyse statistique en utilisant seulement quelques concepts fondamentaux dont la simulation, l'échantillonnage, le brassage et la validation croisée.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of the tools and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of probability theory, how to write simulations, and how to perform data analysis using Python.

Cas pratiques

These recipes show how to efficiently make random selections from the combinatoric iterators in the itertools module:

def random_product(*args, repeat=1):
    "Random selection from itertools.product(*args, **kwds)"
    pools = [tuple(pool) for pool in args] * repeat
    return tuple(map(random.choice, pools))

def random_permutation(iterable, r=None):
    "Random selection from itertools.permutations(iterable, r)"
    pool = tuple(iterable)
    r = len(pool) if r is None else r
    return tuple(random.sample(pool, r))

def random_combination(iterable, r):
    "Random selection from itertools.combinations(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.sample(range(n), r))
    return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
    "Random selection from itertools.combinations_with_replacement(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.choices(range(n), k=r))
    return tuple(pool[i] for i in indices)

Par défaut random() renvoie des multiples de 2⁻⁵³ dans la plage 0.0 ≤ x < 1.0. Tous ces nombres sont uniformément répartis et sont représentés exactement en tant que nombre à virgule flottante Python. Cependant, de nombreux autres nombres à virgule flottante dans cette plage, et représentables en Python, ne sont pas sélectionnables. Par exemple 0.05954861408025609 n’est pas un multiple de 2⁻⁵³.

La recette suivante utilise une approche différente. Tous les nombres à virgule flottante de l’intervalle sont sélectionnables. La mantisse provient d’une distribution uniforme d’entiers dans la plage 2⁵² ≤ mantisse < 2⁵³. L’exposant provient d’une distribution géométrique où les exposants plus petits que -53 apparaissent moitié moins souvent que l’exposant suivant juste plus grand.

from random import Random
from math import ldexp

class FullRandom(Random):

    def random(self):
        mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
        exponent = -53
        x = 0
        while not x:
            x = self.getrandbits(32)
            exponent += x.bit_length() - 32
        return ldexp(mantissa, exponent)

Toutes les real valued distributions dans la classe seront utilisées dans la nouvelle méthode :

>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544

La recette est conceptuellement équivalente à un algorithme qui choisit parmi tous les multiples de 2⁻¹⁰⁷⁴ dans la plage 0.0 ≤ x < 1.0. Tous ces nombres sont uniformément répartis, mais la plupart doivent être arrondis au nombre à virgule Python inférieur. (La valeur 2⁻¹⁰⁷⁴ est le plus petit nombre à virgule flottante positif et est égal à math.ulp(0.0).)

Voir aussi

Generating Pseudo-random Floating-Point Values une publication par Allen B. Downey décrivant des manières de générer des nombres à virgule flottante plus fins que normalement générés par random().