dataclasses
— Classes de données¶
Code source : Lib/dataclasses.py
This module provides a decorator and functions for automatically
adding generated special methods such as __init__()
and
__repr__()
to user-defined classes. It was originally described
in PEP 557.
Les variables membres à utiliser dans ces méthodes générées sont définies en utilisant les annotations de type PEP 526. Par exemple :
from dataclasses import dataclass
@dataclass
class InventoryItem:
"""Class for keeping track of an item in inventory."""
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
will add, among other things, a __init__()
that looks like:
def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
Il est important de noter que cette méthode est ajoutée automatiquement dans la classe. Elle n’est jamais écrite dans la définition de InventoryItem
.
Nouveau dans la version 3.7.
Classe de données¶
- @dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)¶
Cette fonction est un décorateur qui ajoute aux classes des méthodes spéciales générées automatiquement. Voici une description plus détaillée.
Le décorateur
dataclass()
examine la classe pour trouver des champs. Un champ est défini comme une variable de classe qui possède une annotation de type. À deux exceptions près décrites plus bas,dataclass()
ne prend pas en considération le type donné dans l'annotation.L’ordre des paramètres des méthodes générées est celui d’apparition des champs dans la définition de la classe.
Le décorateur
dataclass()
ajoute diverses méthodes spéciales à la classe, décrites ci-après. Si l’une des méthodes ajoutées existe déjà dans la classe, le comportement dépend des paramètres. Le décorateur renvoie la classe sur laquelle il est appelé ; aucune nouvelle classe n'est créée.Si
dataclass()
est utilisé directement, il se comporte comme si on l’avait appelé sans argument (c.-à-d. en laissant les valeurs par défaut de sa signature). Ainsi, les trois usages suivants dedataclass()
sont équivalents :@dataclass class C: ... @dataclass() class C: ... @dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False) class C: ...
Les paramètres de
dataclass()
sont les suivants :init
: If true (the default), a__init__()
method will be generated.If the class already defines
__init__()
, this parameter is ignored.repr
: If true (the default), a__repr__()
method will be generated. The generated repr string will have the class name and the name and repr of each field, in the order they are defined in the class. Fields that are marked as being excluded from the repr are not included. For example:InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10)
.If the class already defines
__repr__()
, this parameter is ignored.eq
: If true (the default), an__eq__()
method will be generated. This method compares the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type.If the class already defines
__eq__()
, this parameter is ignored.order
: If true (the default isFalse
),__lt__()
,__le__()
,__gt__()
, and__ge__()
methods will be generated. These compare the class as if it were a tuple of its fields, in order. Both instances in the comparison must be of the identical type. Iforder
is true andeq
is false, aValueError
is raised.If the class already defines any of
__lt__()
,__le__()
,__gt__()
, or__ge__()
, thenTypeError
is raised.unsafe_hash
: IfFalse
(the default), a__hash__()
method is generated according to howeq
andfrozen
are set.__hash__()
is used by built-inhash()
, and when objects are added to hashed collections such as dictionaries and sets. Having a__hash__()
implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer's intent, the existence and behavior of__eq__()
, and the values of theeq
andfrozen
flags in thedataclass()
decorator.By default,
dataclass()
will not implicitly add a__hash__()
method unless it is safe to do so. Neither will it add or change an existing explicitly defined__hash__()
method. Setting the class attribute__hash__ = None
has a specific meaning to Python, as described in the__hash__()
documentation.If
__hash__()
is not explicitly defined, or if it is set toNone
, thendataclass()
may add an implicit__hash__()
method. Although not recommended, you can forcedataclass()
to create a__hash__()
method withunsafe_hash=True
. This might be the case if your class is logically immutable but can nonetheless be mutated. This is a specialized use case and should be considered carefully.Here are the rules governing implicit creation of a
__hash__()
method. Note that you cannot both have an explicit__hash__()
method in your dataclass and setunsafe_hash=True
; this will result in aTypeError
.If
eq
andfrozen
are both true, by defaultdataclass()
will generate a__hash__()
method for you. Ifeq
is true andfrozen
is false,__hash__()
will be set toNone
, marking it unhashable (which it is, since it is mutable). Ifeq
is false,__hash__()
will be left untouched meaning the__hash__()
method of the superclass will be used (if the superclass isobject
, this means it will fall back to id-based hashing).frozen
: If true (the default isFalse
), assigning to fields will generate an exception. This emulates read-only frozen instances. If__setattr__()
or__delattr__()
is defined in the class, thenTypeError
is raised. See the discussion below.match_args
: If true (the default isTrue
), the__match_args__
tuple will be created from the list of parameters to the generated__init__()
method (even if__init__()
is not generated, see above). If false, or if__match_args__
is already defined in the class, then__match_args__
will not be generated.
Nouveau dans la version 3.10.
kw_only
: If true (the default value isFalse
), then all fields will be marked as keyword-only. If a field is marked as keyword-only, then the only effect is that the__init__()
parameter generated from a keyword-only field must be specified with a keyword when__init__()
is called. There is no effect on any other aspect of dataclasses. See the parameter glossary entry for details. Also see theKW_ONLY
section.
Nouveau dans la version 3.10.
slots
: If true (the default isFalse
),__slots__
attribute will be generated and new class will be returned instead of the original one. If__slots__
is already defined in the class, thenTypeError
is raised.
Nouveau dans la version 3.10.
Modifié dans la version 3.11: If a field name is already included in the
__slots__
of a base class, it will not be included in the generated__slots__
to prevent overriding them. Therefore, do not use__slots__
to retrieve the field names of a dataclass. Usefields()
instead. To be able to determine inherited slots, base class__slots__
may be any iterable, but not an iterator.weakref_slot
: s'il est vrai (la valeur par défaut estFalse
), ajoute un slot nommé"__weakref__"
, ce qui est nécessaire pour pouvoir référencer faiblement une instance. C'est une erreur de spécifierweakref_slot=True
sans spécifier égalementslots=True
.
Nouveau dans la version 3.11.
Les champs peuvent éventuellement préciser une valeur par défaut, en utilisant la syntaxe Python normale :
@dataclass class C: a: int # 'a' has no default value b: int = 0 # assign a default value for 'b'
In this example, both
a
andb
will be included in the added__init__()
method, which will be defined as:def __init__(self, a: int, b: int = 0):
Une
TypeError
est levée si un champ sans valeur par défaut est défini après un champ avec une valeur par défaut. C’est le cas que ce soit dans une seule classe ou si c’est le résultat d’un héritage de classes.
- dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, kw_only=MISSING)¶
Dans les cas les plus simples et courants, ce qui a été décrit jusqu'ici suffit. Cependant, les classes de données possèdent des fonctionnalités supplémentaires fondées sur des métadonnées propres à chaque champ. Pour remplir ces métadonnées, il suffit de mettre un appel à la fonction
field()
à la place de la valeur par défaut, comme dans cet exemple :@dataclass class C: mylist: list[int] = field(default_factory=list) c = C() c.mylist += [1, 2, 3]
Comme le montre la signature, la constante
MISSING
est une valeur sentinelle pour déterminer si des paramètres ont été fournis par l'utilisateur.None
ne conviendrait pas puisque c'est une valeur avec un sens qui peut être différent pour certains paramètres. La sentinelleMISSING
est interne au module et ne doit pas être utilisée dans vos programmes.Les paramètres de
field()
sont :default : s'il est fourni, il devient la valeur par défaut du champ. L'appel à
field()
est mis à la place normale de la valeur par défaut, d'où la nécessité de ce paramètre.default_factory : s'il est fourni, ce doit être un objet appelable sans argument. Il est alors appelé à chaque fois qu'il faut une valeur par défaut pour le champ. Ceci permet, entre autres choses, de définir des champs dont les valeurs par défaut sont muables. Une erreur se produit si default et default_factory sont donnés tous les deux.
init
: If true (the default), this field is included as a parameter to the generated__init__()
method.repr
: If true (the default), this field is included in the string returned by the generated__repr__()
method.hash
: This can be a bool orNone
. If true, this field is included in the generated__hash__()
method. IfNone
(the default), use the value ofcompare
: this would normally be the expected behavior. A field should be considered in the hash if it's used for comparisons. Setting this value to anything other thanNone
is discouraged.Cependant, une raison légitime de mettre hash à
False
alors que compare est àTrue
est la concourance de trois facteurs : le champ est coûteux à hacher ; il est nécessaire pour les comparaisons d'égalité ; et il y a déjà d'autres champs qui participent au hachage des instances. À ce moment, on peut alors se passer du champ dans le hachage tout en le faisant participer aux comparaisons.compare
: If true (the default), this field is included in the generated equality and comparison methods (__eq__()
,__gt__()
, et al.).metadata : ce paramètre est un tableau associatif (mapping en anglais). La valeur par défaut de
None
est prise comme un dictionnaire vide. Le tableau associatif devient accessible sur l'objetField
, sous la forme d'unMappingProxyType()
afin qu'il soit en lecture seule.kw_only
: If true, this field will be marked as keyword-only. This is used when the generated__init__()
method's parameters are computed.
Nouveau dans la version 3.10.
Si la valeur par défaut d'un champ est donnée dans un appel à
field()
(et pas directement), l'attribut correspondant de la classe est remplacé par cette valeur. Si le paramètre default n'est pas passé, l'attribut est simplement supprimé. De cette manière, après le passage du décorateurdataclass()
, les attributs de la classe contiennent les valeurs par défaut des champs exactement comme si elles avaient été définies directement. Par exemple :@dataclass class C: x: int y: int = field(repr=False) z: int = field(repr=False, default=10) t: int = 20
Après l'exécution de ce code, l'attribut de classe
C.z
vaut10
et l'attributC.t
vaut20
, alors que les attributsC.x
etC.y
n'existent pas.
- class dataclasses.Field¶
Les objets
Field
contiennent des informations sur les champs. Ils sont créés en interne, et on y accède à l'aide de la méthode au niveau du modulefields()
(voir plus bas). Les utilisateurs ne doivent jamais instancier un objetField
eux-mêmes. Les attributs documentés sont les suivants :name : le nom du champ ;
type : le type associé au champ par l'annotation ;
default
,default_factory
,init
,repr
,hash
,compare
,metadata
etkw_only
qui correspondent aux paramètres defield()
et en prennent les valeurs.
D'autres attributs peuvent exister, mais ils sont privés et ne sont pas censés être inspectés. Le code ne doit jamais reposer sur eux.
- dataclasses.fields(class_or_instance)¶
Renvoie un n-uplet d'objets
Field
correspondant aux champs de l'argument, à l'exclusion des pseudo-champsClassVar
ouInitVar
. L'argument peut être soit une classe de données, soit une instance d'une telle classe ; si ce n'est pas le cas, une exceptionTypeError
est levée.
- dataclasses.asdict(obj, *, dict_factory=dict)¶
Convertit la classe de données
obj
en un dictionnaire (en utilisant la fonctiondict_factory
). Les clés et valeurs proviennent directement des champs. Les dictionnaires, listes, n-uplets et instances de classes de données sont parcourus récursivement. Les autres objets sont copiés aveccopy.deepcopy()
.Exemple d'utilisation de
asdict()
sur des classes de données imbriquées :@dataclass class Point: x: int y: int @dataclass class C: mylist: list[Point] p = Point(10, 20) assert asdict(p) == {'x': 10, 'y': 20} c = C([Point(0, 0), Point(10, 4)]) assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
Pour créer une copie superficielle, la solution de contournement suivante peut être utilisée :
dict((field.name, getattr(obj, field.name)) for field in fields(obj))
asdict()
lèveTypeError
siobj
n'est pas une instance d'une classe de données.
- dataclasses.astuple(obj, *, tuple_factory=tuple)¶
Convertit l'instance d'une classe de données
obj
en un n-uplet (en utilisant la fonctiontuple_factory
). Chaque classe de données est convertie vers un n-uplet des valeurs de ses champs. Cette fonction agit récursivement sur les dictionnaires, listes et n-uplets. Les autres objets sont copiés aveccopy.deepcopy()
.Pour continuer l'exemple précédent :
assert astuple(p) == (10, 20) assert astuple(c) == ([(0, 0), (10, 4)],)
Pour créer une copie superficielle, la solution de contournement suivante peut être utilisée :
tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))
astuple()
lèveTypeError
siobj
n'est pas une instance d'une classe de données.
- dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False, module=None)¶
Crée une nouvelle classe de données avec le nom
cls_name
. Les champs proviennent defields
. Les classes mères sont lues dansbases
. L'espace de nommage de la classe est initialisé parnamespace
.fields
est un itérable dont les éléments sont individuellement de la formename
,(name:type)
ou(name, type, Field)
. Si seulname
est fourni,typing.Any
est utilisé pourtype
. Les valeurs deinit
,repr
,eq
,order
,unsafe_hash
,frozen
,match_args
,kw_only
,slots
etweakref_slot
ont la même signification que dansdataclass()
.If
module
is defined, the__module__
attribute of the dataclass is set to that value. By default, it is set to the module name of the caller.Cette fonction est pratique mais pas absolument nécessaire, puisqu'il suffit de créer par un moyen quelconque une classe avec l'attribut
__annotation__
et de lui appliquer la fonctiondataclass()
, qui la convertit en une classe de données. Par exemple, ceci :C = make_dataclass('C', [('x', int), 'y', ('z', int, field(default=5))], namespace={'add_one': lambda self: self.x + 1})
est équivalent à :
@dataclass class C: x: int y: 'typing.Any' z: int = 5 def add_one(self): return self.x + 1
- dataclasses.replace(obj, /, **changes)¶
Crée un nouvel objet du même type que
obj
en affectant aux champs les valeurs données parchanges
. Siobj
n'est pas une classe de données,TypeError
est levée. Si une clé danschanges
ne correspond à aucun champ de l'instance,TypeError
est levée.The newly returned object is created by calling the
__init__()
method of the dataclass. This ensures that__post_init__()
, if present, is also called.Init-only variables without default values, if any exist, must be specified on the call to
replace()
so that they can be passed to__init__()
and__post_init__()
.Si une clé de changes correspond à un champ défini avec
init=False
,ValueError
est levée.Be forewarned about how
init=False
fields work during a call toreplace()
. They are not copied from the source object, but rather are initialized in__post_init__()
, if they're initialized at all. It is expected thatinit=False
fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a customreplace()
(or similarly named) method which handles instance copying.
- dataclasses.is_dataclass(obj)¶
Renvoie
True
si l'argument est soit une classe de données, soit une instance d'une telle classe. Sinon, renvoieFalse
.Pour vérifier qu'un objet obj est une instance d'une classe de données, et non pas lui-même une classe de données, ajoutez le test
not isinstance(obj, type)
:def is_dataclass_instance(obj): return is_dataclass(obj) and not isinstance(obj, type)
- dataclasses.MISSING¶
Une valeur sentinelle pour dénoter l'absence de default ou default_factory.
- dataclasses.KW_ONLY¶
A sentinel value used as a type annotation. Any fields after a pseudo-field with the type of
KW_ONLY
are marked as keyword-only fields. Note that a pseudo-field of typeKW_ONLY
is otherwise completely ignored. This includes the name of such a field. By convention, a name of_
is used for aKW_ONLY
field. Keyword-only fields signify__init__()
parameters that must be specified as keywords when the class is instantiated.Dans cet exemple
y
etz
sont marqués comme exclusivement nommés :@dataclass class Point: x: float _: KW_ONLY y: float z: float p = Point(0, y=1.5, z=2.0)
Une erreur est levée s'il y a plus d'un champ de type
KW_ONLY
dans une unique classe de données.Nouveau dans la version 3.10.
- exception dataclasses.FrozenInstanceError¶
Raised when an implicitly defined
__setattr__()
or__delattr__()
is called on a dataclass which was defined withfrozen=True
. It is a subclass ofAttributeError
.
Post-initialisation¶
- dataclasses.__post_init__()¶
When defined on the class, it will be called by the generated
__init__()
, normally asself.__post_init__()
. However, if anyInitVar
fields are defined, they will also be passed to__post_init__()
in the order they were defined in the class. If no__init__()
method is generated, then__post_init__()
will not automatically be called.Cette méthode permet, entre autres, d'initialiser des champs qui dépendent d'autres champs. Par exemple :
@dataclass class C: a: float b: float c: float = field(init=False) def __post_init__(self): self.c = self.a + self.b
The __init__()
method generated by dataclass()
does not call base
class __init__()
methods. If the base class has an __init__()
method
that has to be called, it is common to call this method in a
__post_init__()
method:
@dataclass
class Rectangle:
height: float
width: float
@dataclass
class Square(Rectangle):
side: float
def __post_init__(self):
super().__init__(self.side, self.side)
Note, however, that in general the dataclass-generated __init__()
methods
don't need to be called, since the derived dataclass will take care of
initializing all fields of any base class that is a dataclass itself.
See the section below on init-only variables for ways to pass
parameters to __post_init__()
. Also see the warning about how
replace()
handles init=False
fields.
Variables de classe¶
One of the few places where dataclass()
actually inspects the type
of a field is to determine if a field is a class variable as defined
in PEP 526. It does this by checking if the type of the field is
typing.ClassVar
. If a field is a ClassVar
, it is excluded
from consideration as a field and is ignored by the dataclass
mechanisms. Such ClassVar
pseudo-fields are not returned by the
module-level fields()
function.
Variables d'initialisation¶
Another place where dataclass()
inspects a type annotation is to
determine if a field is an init-only variable. It does this by seeing
if the type of a field is of type dataclasses.InitVar
. If a field
is an InitVar
, it is considered a pseudo-field called an init-only
field. As it is not a true field, it is not returned by the
module-level fields()
function. Init-only fields are added as
parameters to the generated __init__()
method, and are passed to
the optional __post_init__()
method. They are not otherwise used
by dataclasses.
On peut par exemple imaginer un champ initialisé à partir d'une base de données s'il n'a pas reçu de valeur explicite :
@dataclass
class C:
i: int
j: int | None = None
database: InitVar[DatabaseType | None] = None
def __post_init__(self, database):
if self.j is None and database is not None:
self.j = database.lookup('j')
c = C(10, database=my_database)
Ici, fields()
renvoie des objets Field
correspondant à i
et à j
, mais pas à database
.
Instances figées¶
It is not possible to create truly immutable Python objects. However,
by passing frozen=True
to the dataclass()
decorator you can
emulate immutability. In that case, dataclasses will add
__setattr__()
and __delattr__()
methods to the class. These
methods will raise a FrozenInstanceError
when invoked.
There is a tiny performance penalty when using frozen=True
:
__init__()
cannot use simple assignment to initialize fields, and
must use object.__setattr__()
.
Héritage¶
Au moment de la création d'une classe de données, le décorateur dataclass()
parcourt toutes les classes mères dans l'ordre inverse de résolution des méthodes (donc en commençant par object
). À chaque fois qu'une classe de données est rencontrée, ses champs sont insérés dans un tableau associatif ordonné. Pour finir, les champs de la classe elle-même sont rajoutés. Toutes les méthodes générées utilisent en interne ce même tableau associatif. Puisqu'il est ordonné, les champs des classes filles écrasent ceux des classes mères. Voici un exemple :
@dataclass
class Base:
x: Any = 15.0
y: int = 0
@dataclass
class C(Base):
z: int = 10
x: int = 15
La liste finale des champs contient, dans l'ordre, x
, y
, z
. Le type de x
est int
, comme déclaré dans C
.
The generated __init__()
method for C
will look like:
def __init__(self, x: int = 15, y: int = 0, z: int = 10):
Re-ordering of keyword-only parameters in __init__()
¶
After the parameters needed for __init__()
are computed, any
keyword-only parameters are moved to come after all regular
(non-keyword-only) parameters. This is a requirement of how
keyword-only parameters are implemented in Python: they must come
after non-keyword-only parameters.
Dans cet exemple, Base.y
, Base.w
, et D.t
sont des champs exclusivement nommés alors que Base.x
et D.z
sont des champs normaux :
@dataclass
class Base:
x: Any = 15.0
_: KW_ONLY
y: int = 0
w: int = 1
@dataclass
class D(Base):
z: int = 10
t: int = field(kw_only=True, default=0)
The generated __init__()
method for D
will look like:
def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):
Les paramètres ont été réarrangés par rapport à leur ordre d'apparition dans la liste des champs : les paramètres provenant des attributs normaux sont suivis par les paramètres qui proviennent des attributs exclusivement nommés.
The relative ordering of keyword-only parameters is maintained in the
re-ordered __init__()
parameter list.
Fabriques de valeurs par défaut¶
Le paramètre facultatif default_factory de field()
est une fonction qui est appelée sans argument pour fournir des valeurs par défaut. Par exemple, voici comment donner la valeur par défaut d'une liste vide :
mylist: list = field(default_factory=list)
If a field is excluded from __init__()
(using init=False
)
and the field also specifies default_factory
, then the default
factory function will always be called from the generated
__init__()
function. This happens because there is no other
way to give the field an initial value.
Valeurs par défaut muables¶
En Python, les valeurs par défaut des attributs sont stockées dans des attributs de la classe. Observez cet exemple, sans classe de données :
class C:
x = []
def add(self, element):
self.x.append(element)
o1 = C()
o2 = C()
o1.add(1)
o2.add(2)
assert o1.x == [1, 2]
assert o1.x is o2.x
Comme attendu, les deux instances de C
partagent le même objet pour l'attribut x
.
Avec les classes de données, si ce code était valide :
@dataclass
class D:
x: list = [] # This code raises ValueError
def add(self, element):
self.x += element
il générerait un code équivalent à :
class D:
x = []
def __init__(self, x=x):
self.x = x
def add(self, element):
self.x += element
assert D().x is D().x
This has the same issue as the original example using class C
.
That is, two instances of class D
that do not specify a value
for x
when creating a class instance will share the same copy
of x
. Because dataclasses just use normal Python class
creation they also share this behavior. There is no general way
for Data Classes to detect this condition. Instead, the
dataclass()
decorator will raise a ValueError
if it
detects an unhashable default parameter. The assumption is that if
a value is unhashable, it is mutable. This is a partial solution,
but it does protect against many common errors.
Pour qu'un champ d'un type muable soit par défaut initialisé à un nouvel objet pour chaque instance, utilisez une fonction de fabrique :
@dataclass
class D:
x: list = field(default_factory=list)
assert D().x is not D().x
Modifié dans la version 3.11: au lieu de rechercher et d'interdire les objets de type list
, dict
ou set
, les objets non hachables ne sont plus autorisés comme valeurs par défaut. Le caractère non-hachable est utilisé pour approximer la muabilité.
Descriptor-typed fields¶
Fields that are assigned descriptor objects as their default value have the following special behaviors:
The value for the field passed to the dataclass's
__init__
method is passed to the descriptor's__set__
method rather than overwriting the descriptor object.Similarly, when getting or setting the field, the descriptor's
__get__
or__set__
method is called rather than returning or overwriting the descriptor object.To determine whether a field contains a default value,
dataclasses
will call the descriptor's__get__
method using its class access form (i.e.descriptor.__get__(obj=None, type=cls)
. If the descriptor returns a value in this case, it will be used as the field's default. On the other hand, if the descriptor raisesAttributeError
in this situation, no default value will be provided for the field.
class IntConversionDescriptor:
def __init__(self, *, default):
self._default = default
def __set_name__(self, owner, name):
self._name = "_" + name
def __get__(self, obj, type):
if obj is None:
return self._default
return getattr(obj, self._name, self._default)
def __set__(self, obj, value):
setattr(obj, self._name, int(value))
@dataclass
class InventoryItem:
quantity_on_hand: IntConversionDescriptor = IntConversionDescriptor(default=100)
i = InventoryItem()
print(i.quantity_on_hand) # 100
i.quantity_on_hand = 2.5 # calls __set__ with 2.5
print(i.quantity_on_hand) # 2
Note that if a field is annotated with a descriptor type, but is not assigned a descriptor object as its default value, the field will act like a normal field.