16.3. thread — Multiple threads of control

Note

The thread module has been renamed to _thread in Python 3. The 2to3 tool will automatically adapt imports when converting your sources to Python 3; however, you should consider using the high-level threading module instead.

Ce module fournit les primitives de bas niveau pour travailler avec de multiples fils d’exécution (aussi appelés light-weight processes ou tasks) — plusieurs fils d’exécution de contrôle partagent leur espace de données global. Pour la synchronisation, de simples verrous (aussi appelés des mutexes ou des binary semaphores) sont fournis. Le module threading fournit une API de fils d’exécution de haut niveau, plus facile à utiliser et construite à partir de ce module.

The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris 2.x, as well as on systems that have a POSIX thread (a.k.a. « pthread ») implementation. For systems lacking the thread module, the dummy_thread module is available. It duplicates this module’s interface and can be used as a drop-in replacement.

It defines the following constant and functions:

exception thread.error

Levée lors d’erreur spécifique aux fils d’exécution.

thread.LockType

C’est le type des verrous.

thread.start_new_thread(function, args[, kwargs])

Start a new thread and return its identifier. The thread executes the function function with the argument list args (which must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When the function returns, the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and then the thread exits (but other threads continue to run).

thread.interrupt_main()

Raise a KeyboardInterrupt exception in the main thread. A subthread can use this function to interrupt the main thread.

Nouveau dans la version 2.3.

thread.exit()

Lève une exception SystemExit. Quand elle n’est pas interceptée, le fil d’exécution se terminera silencieusement.

thread.allocate_lock()

Renvoie un nouvel objet lock. Les méthodes de l’objet lock sont décrites ci-après. Le lock est initialement déverrouillé.

thread.get_ident()

Renvoie l“« identificateur de fil » du fil d’exécution courant. C’est un entier non nul. Sa valeur n’a pas de signification directe ; il est destiné à être utilisé comme valeur magique opaque, par exemple comme clef de dictionnaire de données pour chaque fil. Les identificateurs de fils peuvent être recyclés lorsqu’un fil se termine et qu’un autre fil est créé.

thread.stack_size([size])

Return the thread stack size used when creating new threads. The optional size argument specifies the stack size to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive integer value of at least 32,768 (32kB). If size is not specified, 0 is used. If changing the thread stack size is unsupported, the error exception is raised. If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. 32kB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring a minimum stack size > 32kB or requiring allocation in multiples of the system memory page size - platform documentation should be referred to for more information (4kB pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more specific information). Availability: Windows, systems with POSIX threads.

Nouveau dans la version 2.5.

Les verrous (lock objects) ont les méthodes suivantes :

lock.acquire([waitflag])

Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence). If the integer waitflag argument is present, the action depends on its value: if it is zero, the lock is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired unconditionally as before. The return value is True if the lock is acquired successfully, False if not.

lock.release()

Relâche le verrou. Le verrou doit avoir été acquis plus tôt, mais pas nécessairement par le même fil d’exécution.

lock.locked()

Renvoie le statut du verrou : True s’il a été acquis par certains fils d’exécution, sinon False.

En plus de ces méthodes, les objets verrous peuvent aussi être utilisés via l’instruction with, e.g. :

import thread

a_lock = thread.allocate_lock()

with a_lock:
    print "a_lock is locked while this executes"

Avertissements :

  • Les fils d’exécution interagissent étrangement avec les interruptions : l’exception KeyboardInterrupt sera reçue par un fil d’exécution arbitraire. (Quand le module signal est disponible, les interruptions vont toujours au fil d’exécution principal).

  • Calling sys.exit() or raising the SystemExit exception is equivalent to calling thread.exit().

  • Il n’est pas possible d’interrompre la méthode acquire() sur un verrou — l’exception KeyboardInterrupt surviendra après que le verrou a été acquis.

  • When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the native thread implementation, they survive. On most other systems, they are killed without executing tryfinally clauses or executing object destructors.

  • Quand le fil d’exécution principal s’arrête, il ne fait pas son nettoyage habituel (excepté que les clauses tryfinally sont honorées) et les fichiers d’entrée/sortie standards ne sont pas nettoyés.