15. Aritmética de Punto Flotante: Problemas y Limitaciones

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the decimal fraction 0.625 has value 6/10 + 2/100 + 5/1000, and in the same way the binary fraction 0.101 has value 1/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is written in base 10 fractional notation, and the second in base 2.

Desafortunadamente, la mayoría de las fracciones decimales no pueden representarse exactamente como fracciones binarias. Como consecuencia, en general los números de punto flotante decimal que ingresás en la computadora son sólo aproximados por los números de punto flotante binario que realmente se guardan en la máquina.

El problema es más fácil de entender primero en base 10. Considerá la fracción 1/3. Podés aproximarla como una fracción de base 10

0.3

…o, mejor,

0.33

…o, mejor,

0.333

…y así. No importa cuantos dígitos desees escribir, el resultado nunca será exactamente 1/3, pero será una aproximación cada vez mejor de 1/3.

De la misma manera, no importa cuantos dígitos en base 2 quieras usar, el valor decimal 0.1 no puede representarse exactamente como una fracción en base 2. En base 2, 1/10 es la siguiente fracción que se repite infinitamente:

0.0001100110011001100110011001100110011001100110011...

Frená en cualquier número finito de bits, y tendrás una aproximación. En la mayoría de las máquinas hoy en día, los float se aproximan usando una fracción binaria con el numerador usando los primeros 53 bits con el bit más significativos y el denominador como una potencia de dos. En el caso de 1/10, la fracción binaria es 3602879701896397 / 2 ** 55 que está cerca pero no es exactamente el valor verdadero de 1/10.

Many users are not aware of the approximation because of the way values are displayed. Python only prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On most machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would have to display:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number of digits manageable by displaying a rounded value instead:

>>> 1 / 10
0.1

Sólo recordá que, a pesar de que el valor mostrado resulta ser exactamente 1/10, el valor almacenado realmente es la fracción binaria más cercana posible.

Interesantemente, hay varios números decimales que comparten la misma fracción binaria más aproximada. Por ejemplo, los números 0.1, 0.10000000000000001 y 0.1000000000000000055511151231257827021181583404541015625 son todos aproximados por 3602879701896397 / 2 ** 55. Ya que todos estos valores decimales comparten la misma aproximación, se podría mostrar cualquiera de ellos para preservar el invariante eval(repr(x)) == x.

Históricamente, el prompt de Python y la función integrada repr() eligieron el valor con los 17 dígitos, 0.10000000000000001. Desde Python 3.1, en la mayoría de los sistemas Python ahora es capaz de elegir la forma más corta de ellos y mostrar 0.1.

Notá que esta es la verdadera naturaleza del punto flotante binario: no es un error de Python, y tampoco es un error en tu código. Verás lo mismo en todos los lenguajes que soportan la aritmética de punto flotante de tu hardware (a pesar de que en algunos lenguajes por omisión no muestren la diferencia, o no lo hagan en todos los modos de salida).

For more pleasant output, you may wish to use string formatting to produce a limited number of significant digits:

>>> format(math.pi, '.12g')  # give 12 significant digits
'3.14159265359'

>>> format(math.pi, '.2f')   # give 2 digits after the point
'3.14'

>>> repr(math.pi)
'3.141592653589793'

Es importante darse cuenta que esto es, realmente, una ilusión: estás simplemente redondeando al mostrar el valor verdadero de la máquina.

One illusion may beget another. For example, since 0.1 is not exactly 1/10, summing three values of 0.1 may not yield exactly 0.3, either:

>>> 0.1 + 0.1 + 0.1 == 0.3
False

Also, since the 0.1 cannot get any closer to the exact value of 1/10 and 0.3 cannot get any closer to the exact value of 3/10, then pre-rounding with round() function cannot help:

>>> round(0.1, 1) + round(0.1, 1) + round(0.1, 1) == round(0.3, 1)
False

Though the numbers cannot be made closer to their intended exact values, the math.isclose() function can be useful for comparing inexact values:

>>> math.isclose(0.1 + 0.1 + 0.1, 0.3)
True

Alternatively, the round() function can be used to compare rough approximations:

.. doctest::
>>> round(math.pi, ndigits=2) == round(22 / 7, ndigits=2)
True

Binary floating-point arithmetic holds many surprises like this. The problem with «0.1» is explained in precise detail below, in the «Representation Error» section. See Examples of Floating Point Problems for a pleasant summary of how binary floating point works and the kinds of problems commonly encountered in practice. Also see The Perils of Floating Point for a more complete account of other common surprises.

Como dice cerca del final, «no hay respuestas fáciles». A pesar de eso, ¡no le tengas mucho miedo al punto flotante! Los errores en las operaciones flotantes de Python se heredan del hardware de punto flotante, y en la mayoría de las máquinas están en el orden de no más de una 1 parte en 2**53 por operación. Eso es más que adecuado para la mayoría de las tareas, pero necesitás tener en cuenta que no es aritmética decimal, y que cada operación de punto flotante sufre un nuevo error de redondeo.

A pesar de que existen casos patológicos, para la mayoría de usos casuales de la aritmética de punto flotante al final verás el resultado que esperás si simplemente redondeás lo que mostrás de tus resultados finales al número de dígitos decimales que esperás. str() es normalmente suficiente, y para un control más fino mirá los parámetros del método de formateo str.format() en Formato de cadena de caracteres personalizado.

Para los casos de uso que necesitan una representación decimal exacta, probá el módulo decimal, que implementa aritmética decimal útil para aplicaciones de contabilidad y de alta precisión.

El módulo fractions soporta otra forma de aritmética exacta, ya que implementa aritmética basada en números racionales (por lo que números como 1/3 pueden ser representados exactamente).

Si es un gran usuario de operaciones de coma flotante, debería echar un vistazo al paquete NumPy y muchos otros paquetes para operaciones matemáticas y estadísticas suministrados por el proyecto SciPy. Consulte <https://scipy.org>.

Python provides tools that may help on those rare occasions when you really do want to know the exact value of a float. The float.as_integer_ratio() method expresses the value of a float as a fraction:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

Since the ratio is exact, it can be used to losslessly recreate the original value:

>>> x == 3537115888337719 / 1125899906842624
True

The float.hex() method expresses a float in hexadecimal (base 16), again giving the exact value stored by your computer:

>>> x.hex()
'0x1.921f9f01b866ep+1'

This precise hexadecimal representation can be used to reconstruct the float value exactly:

>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True

Ya que la representación es exacta, es útil para portar valores a través de diferentes versiones de Python de manera confiable (independencia de plataformas) e intercambiar datos con otros lenguajes que soportan el mismo formato (como Java y C99).

Another helpful tool is the sum() function which helps mitigate loss-of-precision during summation. It uses extended precision for intermediate rounding steps as values are added onto a running total. That can make a difference in overall accuracy so that the errors do not accumulate to the point where they affect the final total:

>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0
False
>>> sum([0.1] * 10) == 1.0
True

The math.fsum() goes further and tracks all of the «lost digits» as values are added onto a running total so that the result has only a single rounding. This is slower than sum() but will be more accurate in uncommon cases where large magnitude inputs mostly cancel each other out leaving a final sum near zero:

>>> arr = [-0.10430216751806065, -266310978.67179024, 143401161448607.16,
...        -143401161400469.7, 266262841.31058735, -0.003244936839808227]
>>> float(sum(map(Fraction, arr)))   # Exact summation with single rounding
8.042173697819788e-13
>>> math.fsum(arr)                   # Single rounding
8.042173697819788e-13
>>> sum(arr)                         # Multiple roundings in extended precision
8.042178034628478e-13
>>> total = 0.0
>>> for x in arr:
...     total += x                   # Multiple roundings in standard precision
...
>>> total                            # Straight addition has no correct digits!
-0.0051575902860057365

15.1. Error de Representación

Esta sección explica el ejemplo «0.1» en detalle, y muestra como en la mayoría de los casos vos mismo podés realizar un análisis exacto como este. Se asume un conocimiento básico de la representación de punto flotante binario.

Error de representación se refiere al hecho de que algunas (la mayoría) de las fracciones decimales no pueden representarse exactamente como fracciones binarias (en base 2). Esta es la razón principal de por qué Python (o Perl, C, C++, Java, Fortran, y tantos otros) frecuentemente no mostrarán el número decimal exacto que esperás.

¿Por qué es eso? 1/10 no es representable exactamente como una fracción binaria. Casi todas las máquinas de hoy en día (Noviembre del 2000) usan aritmética de punto flotante IEEE-754, y casi todas las plataformas mapean los flotantes de Python al «doble precisión» de IEEE-754. Estos «dobles» tienen 53 bits de precisión, por lo tanto en la entrada la computadora intenta convertir 0.1 a la fracción más cercana que puede de la forma J/2***N* donde J es un entero que contiene exactamente 53 bits. Reescribiendo

1 / 10 ~= J / (2**N)

…como

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52 <=  2**56 // 10  < 2**53
True

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794

Por lo tanto la mejor aproximación a 1/10 en doble precisión 754 es:

7205759403792794 / 2 ** 56

El dividir tanto el numerador como el denominador reduce la fracción a:

3602879701896397 / 2 ** 55

Notá que como lo redondeamos, esto es un poquito más grande que 1/10; si no lo hubiéramos redondeado, el cociente hubiese sido un poquito menor que 1/10. ¡Pero no hay caso en que sea exactamente 1/10!

So the computer never «sees» 1/10: what it sees is the exact fraction given above, the best 754 double approximation it can get:

>>> 0.1 * 2 ** 55
3602879701896397.0

If we multiply that fraction by 10**55, we can see the value out to 55 decimal digits:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

meaning that the exact number stored in the computer is equal to the decimal value 0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full decimal value, many languages (including older versions of Python), round the result to 17 significant digits:

>>> format(0.1, '.17f')
'0.10000000000000001'

The fractions and decimal modules make these calculations easy:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'