threading
--- 基於執行緒的平行性¶
原始碼:Lib/threading.py
This module constructs higher-level threading interfaces on top of the lower
level _thread
module.
在 3.7 版的變更: This module used to be optional, it is now always available.
也參考
concurrent.futures.ThreadPoolExecutor
offers a higher level interface
to push tasks to a background thread without blocking execution of the
calling thread, while still being able to retrieve their results when needed.
queue
provides a thread-safe interface for exchanging data between
running threads.
asyncio
offers an alternative approach to achieving task level
concurrency without requiring the use of multiple operating system threads.
備註
In the Python 2.x series, this module contained camelCase
names
for some methods and functions. These are deprecated as of Python 3.10,
but they are still supported for compatibility with Python 2.5 and lower.
CPython 實作細節: In CPython, due to the Global Interpreter Lock, only one thread
can execute Python code at once (even though certain performance-oriented
libraries might overcome this limitation).
If you want your application to make better use of the computational
resources of multi-core machines, you are advised to use
multiprocessing
or concurrent.futures.ProcessPoolExecutor
.
However, threading is still an appropriate model if you want to run
multiple I/O-bound tasks simultaneously.
Availability: not WASI.
此模組在 WebAssembly 平台上不起作用或無法使用。更多資訊請參閱 WebAssembly 平台。
This module defines the following functions:
- threading.active_count()¶
Return the number of
Thread
objects currently alive. The returned count is equal to the length of the list returned byenumerate()
.The function
activeCount
is a deprecated alias for this function.
- threading.current_thread()¶
Return the current
Thread
object, corresponding to the caller's thread of control. If the caller's thread of control was not created through thethreading
module, a dummy thread object with limited functionality is returned.The function
currentThread
is a deprecated alias for this function.
- threading.excepthook(args, /)¶
Handle uncaught exception raised by
Thread.run()
.The args argument has the following attributes:
exc_type: Exception type.
exc_value: Exception value, can be
None
.exc_traceback: Exception traceback, can be
None
.thread: Thread which raised the exception, can be
None
.
If exc_type is
SystemExit
, the exception is silently ignored. Otherwise, the exception is printed out onsys.stderr
.If this function raises an exception,
sys.excepthook()
is called to handle it.threading.excepthook()
can be overridden to control how uncaught exceptions raised byThread.run()
are handled.Storing exc_value using a custom hook can create a reference cycle. It should be cleared explicitly to break the reference cycle when the exception is no longer needed.
Storing thread using a custom hook can resurrect it if it is set to an object which is being finalized. Avoid storing thread after the custom hook completes to avoid resurrecting objects.
也參考
sys.excepthook()
handles uncaught exceptions.在 3.8 版被加入.
- threading.__excepthook__¶
Holds the original value of
threading.excepthook()
. It is saved so that the original value can be restored in case they happen to get replaced with broken or alternative objects.在 3.10 版被加入.
- threading.get_ident()¶
Return the 'thread identifier' of the current thread. This is a nonzero integer. Its value has no direct meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers may be recycled when a thread exits and another thread is created.
在 3.3 版被加入.
- threading.get_native_id()¶
Return the native integral Thread ID of the current thread assigned by the kernel. This is a non-negative integer. Its value may be used to uniquely identify this particular thread system-wide (until the thread terminates, after which the value may be recycled by the OS).
Availability: Windows, FreeBSD, Linux, macOS, OpenBSD, NetBSD, AIX, DragonFlyBSD, GNU/kFreeBSD.
在 3.8 版被加入.
在 3.13 版的變更: Added support for GNU/kFreeBSD.
- threading.enumerate()¶
Return a list of all
Thread
objects currently active. The list includes daemonic threads and dummy thread objects created bycurrent_thread()
. It excludes terminated threads and threads that have not yet been started. However, the main thread is always part of the result, even when terminated.
- threading.main_thread()¶
Return the main
Thread
object. In normal conditions, the main thread is the thread from which the Python interpreter was started.在 3.4 版被加入.
- threading.settrace(func)¶
Set a trace function for all threads started from the
threading
module. The func will be passed tosys.settrace()
for each thread, before itsrun()
method is called.
- threading.settrace_all_threads(func)¶
Set a trace function for all threads started from the
threading
module and all Python threads that are currently executing.The func will be passed to
sys.settrace()
for each thread, before itsrun()
method is called.在 3.12 版被加入.
- threading.gettrace()¶
Get the trace function as set by
settrace()
.在 3.10 版被加入.
- threading.setprofile(func)¶
Set a profile function for all threads started from the
threading
module. The func will be passed tosys.setprofile()
for each thread, before itsrun()
method is called.
- threading.setprofile_all_threads(func)¶
Set a profile function for all threads started from the
threading
module and all Python threads that are currently executing.The func will be passed to
sys.setprofile()
for each thread, before itsrun()
method is called.在 3.12 版被加入.
- threading.getprofile()¶
Get the profiler function as set by
setprofile()
.在 3.10 版被加入.
- threading.stack_size([size])¶
Return the thread stack size used when creating new threads. The optional size argument specifies the stack size to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If changing the thread stack size is unsupported, a
RuntimeError
is raised. If the specified stack size is invalid, aValueError
is raised and the stack size is unmodified. 32 KiB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring a minimum stack size > 32 KiB or requiring allocation in multiples of the system memory page size - platform documentation should be referred to for more information (4 KiB pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more specific information).Availability: Windows, pthreads.
Unix platforms with POSIX threads support.
This module also defines the following constant:
- threading.TIMEOUT_MAX¶
The maximum value allowed for the timeout parameter of blocking functions (
Lock.acquire()
,RLock.acquire()
,Condition.wait()
, etc.). Specifying a timeout greater than this value will raise anOverflowError
.在 3.2 版被加入.
This module defines a number of classes, which are detailed in the sections below.
The design of this module is loosely based on Java's threading model. However,
where Java makes locks and condition variables basic behavior of every object,
they are separate objects in Python. Python's Thread
class supports a
subset of the behavior of Java's Thread class; currently, there are no
priorities, no thread groups, and threads cannot be destroyed, stopped,
suspended, resumed, or interrupted. The static methods of Java's Thread class,
when implemented, are mapped to module-level functions.
All of the methods described below are executed atomically.
Thread-Local Data¶
Thread-local data is data whose values are thread specific. To manage
thread-local data, just create an instance of local
(or a
subclass) and store attributes on it:
mydata = threading.local()
mydata.x = 1
The instance's values will be different for separate threads.
- class threading.local¶
A class that represents thread-local data.
For more details and extensive examples, see the documentation string of the
_threading_local
module: Lib/_threading_local.py.
Thread Objects¶
The Thread
class represents an activity that is run in a separate
thread of control. There are two ways to specify the activity: by passing a
callable object to the constructor, or by overriding the run()
method in a subclass. No other methods (except for the constructor) should be
overridden in a subclass. In other words, only override the
__init__()
and run()
methods of this class.
Once a thread object is created, its activity must be started by calling the
thread's start()
method. This invokes the run()
method in a separate thread of control.
Once the thread's activity is started, the thread is considered 'alive'. It
stops being alive when its run()
method terminates -- either
normally, or by raising an unhandled exception. The is_alive()
method tests whether the thread is alive.
Other threads can call a thread's join()
method. This blocks
the calling thread until the thread whose join()
method is
called is terminated.
A thread has a name. The name can be passed to the constructor, and read or
changed through the name
attribute.
If the run()
method raises an exception,
threading.excepthook()
is called to handle it. By default,
threading.excepthook()
ignores silently SystemExit
.
A thread can be flagged as a "daemon thread". The significance of this flag is
that the entire Python program exits when only daemon threads are left. The
initial value is inherited from the creating thread. The flag can be set
through the daemon
property or the daemon constructor
argument.
備註
Daemon threads are abruptly stopped at shutdown. Their resources (such
as open files, database transactions, etc.) may not be released properly.
If you want your threads to stop gracefully, make them non-daemonic and
use a suitable signalling mechanism such as an Event
.
There is a "main thread" object; this corresponds to the initial thread of control in the Python program. It is not a daemon thread.
There is the possibility that "dummy thread objects" are created. These are thread objects corresponding to "alien threads", which are threads of control started outside the threading module, such as directly from C code. Dummy thread objects have limited functionality; they are always considered alive and daemonic, and cannot be joined. They are never deleted, since it is impossible to detect the termination of alien threads.
- class threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)¶
This constructor should always be called with keyword arguments. Arguments are:
group should be
None
; reserved for future extension when aThreadGroup
class is implemented.target is the callable object to be invoked by the
run()
method. Defaults toNone
, meaning nothing is called.name is the thread name. By default, a unique name is constructed of the form "Thread-N" where N is a small decimal number, or "Thread-N (target)" where "target" is
target.__name__
if the target argument is specified.args is a list or tuple of arguments for the target invocation. Defaults to
()
.kwargs is a dictionary of keyword arguments for the target invocation. Defaults to
{}
.If not
None
, daemon explicitly sets whether the thread is daemonic. IfNone
(the default), the daemonic property is inherited from the current thread.If the subclass overrides the constructor, it must make sure to invoke the base class constructor (
Thread.__init__()
) before doing anything else to the thread.在 3.3 版的變更: 新增 daemon 參數。
在 3.10 版的變更: Use the target name if name argument is omitted.
- start()¶
Start the thread's activity.
It must be called at most once per thread object. It arranges for the object's
run()
method to be invoked in a separate thread of control.This method will raise a
RuntimeError
if called more than once on the same thread object.
- run()¶
Method representing the thread's activity.
You may override this method in a subclass. The standard
run()
method invokes the callable object passed to the object's constructor as the target argument, if any, with positional and keyword arguments taken from the args and kwargs arguments, respectively.Using list or tuple as the args argument which passed to the
Thread
could achieve the same effect.舉例來說:
>>> from threading import Thread >>> t = Thread(target=print, args=[1]) >>> t.run() 1 >>> t = Thread(target=print, args=(1,)) >>> t.run() 1
- join(timeout=None)¶
Wait until the thread terminates. This blocks the calling thread until the thread whose
join()
method is called terminates -- either normally or through an unhandled exception -- or until the optional timeout occurs.When the timeout argument is present and not
None
, it should be a floating-point number specifying a timeout for the operation in seconds (or fractions thereof). Asjoin()
always returnsNone
, you must callis_alive()
afterjoin()
to decide whether a timeout happened -- if the thread is still alive, thejoin()
call timed out.When the timeout argument is not present or
None
, the operation will block until the thread terminates.A thread can be joined many times.
join()
raises aRuntimeError
if an attempt is made to join the current thread as that would cause a deadlock. It is also an error tojoin()
a thread before it has been started and attempts to do so raise the same exception.
- name¶
A string used for identification purposes only. It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
- getName()¶
- setName()¶
Deprecated getter/setter API for
name
; use it directly as a property instead.在 3.10 版之後被棄用.
- ident¶
The 'thread identifier' of this thread or
None
if the thread has not been started. This is a nonzero integer. See theget_ident()
function. Thread identifiers may be recycled when a thread exits and another thread is created. The identifier is available even after the thread has exited.
- native_id¶
The Thread ID (
TID
) of this thread, as assigned by the OS (kernel). This is a non-negative integer, orNone
if the thread has not been started. See theget_native_id()
function. This value may be used to uniquely identify this particular thread system-wide (until the thread terminates, after which the value may be recycled by the OS).備註
Similar to Process IDs, Thread IDs are only valid (guaranteed unique system-wide) from the time the thread is created until the thread has been terminated.
Availability: Windows, FreeBSD, Linux, macOS, OpenBSD, NetBSD, AIX, DragonFlyBSD.
在 3.8 版被加入.
- is_alive()¶
Return whether the thread is alive.
This method returns
True
just before therun()
method starts until just after therun()
method terminates. The module functionenumerate()
returns a list of all alive threads.
- daemon¶
A boolean value indicating whether this thread is a daemon thread (
True
) or not (False
). This must be set beforestart()
is called, otherwiseRuntimeError
is raised. Its initial value is inherited from the creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread default todaemon
=False
.The entire Python program exits when no alive non-daemon threads are left.
Lock 物件¶
原始鎖 (primitive lock) 是一種同步原語 (synchronization primitive),在鎖定時不屬於特定執行緒。在 Python 中,它是目前可用的最低階同步原語,直接由 _thread
擴充模組實作。
原始鎖會處於兩種狀態之一:「鎖定 (locked)」或「未鎖定 (unclocked)」,建立時會處於未鎖定狀態。它有兩個基本方法 acquire()
和 release()
。當狀態為未鎖定時,acquire()
會將狀態變更為鎖定並立即回傳。當狀態被鎖定時,acquire()
會阻塞 (block),直到另一個執行緒中對 release()
的呼叫將其更改為未鎖定狀態,然後 acquire()
呼叫會將其重置為鎖定並回傳。release()
方法只能在鎖定狀態下呼叫;它將狀態更改為未鎖定並立即回傳。如果嘗試釋放未鎖定的鎖,則會引發 RuntimeError
。
鎖也支援情境管理協定。
當多個執行緒阻塞在 acquire()
中等待狀態轉變為未鎖定,此時若呼叫 release()
將狀態重置為未鎖定,則只會有一個執行緒繼續進行;哪一個等待執行緒會繼續進行是未定義的,並且可能因實作而異。
所有方法均以最小不可分割的操作方式 (atomically) 執行。
- class threading.Lock¶
實作原始鎖物件的類別。一旦執行緒獲得了鎖,後續再嘗試獲得它就會被阻塞,直到鎖被釋放;任何執行緒都可以去釋放它。
在 3.13 版的變更:
Lock
現在是一個類別。在早期的 Python 中,Lock
是一個會回傳底層私有鎖型別實例的工廠函式。- acquire(blocking=True, timeout=-1)¶
阻塞或非阻塞地取得鎖。
當以 blocking 引數設為
True
(預設值)來調用,將會阻塞直到鎖被解鎖,然後將其設為鎖定並回傳True
。當以 blocking 引數設為
False
調用則不會阻塞。如果 blocking 設定為True
的呼叫會阻塞,則立即回傳False
;否則將鎖設為鎖定並回傳True
。當使用設定為正值的浮點 timeout 引數進行調用,只要持續無法取得鎖,最多會阻塞 timeout 指定的秒數。
-1
的 timeout 引數代表指定為不會停止的等待。當 blocking 為False
時禁止指定 timeout。如果成功取得鎖,則回傳值為
True
,否則回傳值為False
(例如像是 timeout 已逾期)。在 3.2 版的變更: 新的 timeout 參數。
在 3.2 版的變更: 如果底層執行緒實作支援的話,鎖的獲取現在可以被 POSIX 上的訊號中斷。
在 3.14 版的變更: Lock acquisition can now be interrupted by signals on Windows.
- release()¶
釋放鎖。這可以從任何執行緒呼叫,而不是只有獲得鎖的執行緒。
當鎖被鎖定時,將其重置為未鎖定然後回傳。如果任何其他執行緒在等待鎖被解鎖時被阻塞,只允許其中一個執行緒繼續進行。
當在未鎖定的鎖上調用時,會引發
RuntimeError
沒有回傳值。
- locked()¶
如果有取得了鎖,則回傳
True
。
RLock 物件¶
可重入鎖 (reentrant lock) 是一種同步原語,同一執行緒可以多次取得它。在內部,除了原始鎖使用的鎖定/未鎖定狀態之外,它還使用「所屬執行緒 (owning thread)」和「遞迴等級 (recursion level)」的概念。在鎖定狀態下,某個執行緒會擁有鎖;在未鎖定狀態下則沒有執行緒擁有它。
執行緒呼叫鎖的 acquire()
方法來鎖定它,並呼叫它的 release()
方法來解鎖它。
RLock 的 acquire()
/release()
呼叫成對組合可以嵌套使用,這與 Lock 的 acquire()
/release()
不同。只有最後一個 release()
(最外面一對的 release()
)會將鎖重置為未鎖定狀態,並允許在 acquire()
中阻塞的另一個執行緒繼續進行。
acquire()
/release()
必須成對使用:每次獲得都必須在已獲得鎖的執行緒中有一個釋放。如果鎖釋放的次數不能和獲取的次數一樣的話,可能會導致死鎖 (deadlock)。
- class threading.RLock¶
此類別實作了可重入鎖物件。可重入鎖必須由獲得它的執行緒釋放。一旦一個執行緒獲得了可重入鎖,同一個執行緒可以再次獲得它而不會阻塞;執行緒每次獲得它也都必須釋放它一次。
請注意,
RLock
實際上是一個工廠函式,它會回傳平台有支援的特定 RLock 類別的最高效率版本的實例。- acquire(blocking=True, timeout=-1)¶
阻塞或非阻塞地取得鎖。
也參考
- 將 RLock 用作為情境管理器
若是使用場景合理,和手動呼叫
acquire()
和release()
相比,會是更為推薦的使用方式。
當以 blocking 引數設為
True
(預設值)來調用:當以 blocking 引數設為
False
來調用:如果沒有執行緒擁有鎖,則獲得鎖並立即回傳。
如果另一個執行緒擁有該鎖,則立即回傳。
如果同一個執行緒擁有鎖,則再次取得鎖並立即回傳。
在所有情況下,如果執行緒能夠取得鎖則回傳
True
。如果執行緒無法取得鎖(即沒有阻塞或已達超時限制)則回傳False
。如果多次呼叫,又未能呼叫相同次數的
release()
,則可能會導致死鎖。考慮將RLock
作為情境管理器使用,而不是直接呼叫 acquire/release。在 3.2 版的變更: 新的 timeout 參數。
- release()¶
釋放鎖並減少遞迴等級。如果被減至零,則將鎖重置為未鎖定(不屬於任何執行緒),並且如果任何其他執行緒被阻塞以等待鎖變成未鎖定狀態,則僅允許其中一個執行緒繼續進行。如果遞減後遞迴等級仍然非零,則鎖會保持鎖定並由呼叫它的執行緒所擁有。
僅當呼叫的執行緒擁有鎖時才能呼叫此方法。如果在未取得鎖時呼叫此方法則會引發
RuntimeError
。沒有回傳值。
Condition Objects¶
A condition variable is always associated with some kind of lock; this can be passed in or one will be created by default. Passing one in is useful when several condition variables must share the same lock. The lock is part of the condition object: you don't have to track it separately.
A condition variable obeys the context management protocol:
using the with
statement acquires the associated lock for the duration of
the enclosed block. The acquire()
and
release()
methods also call the corresponding methods of
the associated lock.
Other methods must be called with the associated lock held. The
wait()
method releases the lock, and then blocks until
another thread awakens it by calling notify()
or
notify_all()
. Once awakened, wait()
re-acquires the lock and returns. It is also possible to specify a timeout.
The notify()
method wakes up one of the threads waiting for
the condition variable, if any are waiting. The notify_all()
method wakes up all threads waiting for the condition variable.
Note: the notify()
and notify_all()
methods
don't release the lock; this means that the thread or threads awakened will
not return from their wait()
call immediately, but only when
the thread that called notify()
or notify_all()
finally relinquishes ownership of the lock.
The typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call wait()
repeatedly until they
see the desired state, while threads that modify the state call
notify()
or notify_all()
when they change
the state in such a way that it could possibly be a desired state for one
of the waiters. For example, the following code is a generic
producer-consumer situation with unlimited buffer capacity:
# Consume one item
with cv:
while not an_item_is_available():
cv.wait()
get_an_available_item()
# Produce one item
with cv:
make_an_item_available()
cv.notify()
The while
loop checking for the application's condition is necessary
because wait()
can return after an arbitrary long time,
and the condition which prompted the notify()
call may
no longer hold true. This is inherent to multi-threaded programming. The
wait_for()
method can be used to automate the condition
checking, and eases the computation of timeouts:
# Consume an item
with cv:
cv.wait_for(an_item_is_available)
get_an_available_item()
To choose between notify()
and notify_all()
,
consider whether one state change can be interesting for only one or several
waiting threads. E.g. in a typical producer-consumer situation, adding one
item to the buffer only needs to wake up one consumer thread.
- class threading.Condition(lock=None)¶
This class implements condition variable objects. A condition variable allows one or more threads to wait until they are notified by another thread.
If the lock argument is given and not
None
, it must be aLock
orRLock
object, and it is used as the underlying lock. Otherwise, a newRLock
object is created and used as the underlying lock.在 3.3 版的變更: changed from a factory function to a class.
- acquire(*args)¶
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return value is whatever that method returns.
- release()¶
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no return value.
- wait(timeout=None)¶
Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.This method releases the underlying lock, and then blocks until it is awakened by a
notify()
ornotify_all()
call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns.When the timeout argument is present and not
None
, it should be a floating-point number specifying a timeout for the operation in seconds (or fractions thereof).When the underlying lock is an
RLock
, it is not released using itsrelease()
method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of theRLock
class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired.The return value is
True
unless a given timeout expired, in which case it isFalse
.在 3.2 版的變更: Previously, the method always returned
None
.
- wait_for(predicate, timeout=None)¶
Wait until a condition evaluates to true. predicate should be a callable which result will be interpreted as a boolean value. A timeout may be provided giving the maximum time to wait.
This utility method may call
wait()
repeatedly until the predicate is satisfied, or until a timeout occurs. The return value is the last return value of the predicate and will evaluate toFalse
if the method timed out.Ignoring the timeout feature, calling this method is roughly equivalent to writing:
while not predicate(): cv.wait()
Therefore, the same rules apply as with
wait()
: The lock must be held when called and is re-acquired on return. The predicate is evaluated with the lock held.在 3.2 版被加入.
- notify(n=1)¶
By default, wake up one thread waiting on this condition, if any. If the calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.This method wakes up at most n of the threads waiting for the condition variable; it is a no-op if no threads are waiting.
The current implementation wakes up exactly n threads, if at least n threads are waiting. However, it's not safe to rely on this behavior. A future, optimized implementation may occasionally wake up more than n threads.
Note: an awakened thread does not actually return from its
wait()
call until it can reacquire the lock. Sincenotify()
does not release the lock, its caller should.
- notify_all()¶
Wake up all threads waiting on this condition. This method acts like
notify()
, but wakes up all waiting threads instead of one. If the calling thread has not acquired the lock when this method is called, aRuntimeError
is raised.The method
notifyAll
is a deprecated alias for this method.
Semaphore Objects¶
This is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra (he
used the names P()
and V()
instead of acquire()
and
release()
).
A semaphore manages an internal counter which is decremented by each
acquire()
call and incremented by each release()
call. The counter can never go below zero; when acquire()
finds that it is zero, it blocks, waiting until some other thread calls
release()
.
Semaphores also support the context management protocol.
- class threading.Semaphore(value=1)¶
This class implements semaphore objects. A semaphore manages an atomic counter representing the number of
release()
calls minus the number ofacquire()
calls, plus an initial value. Theacquire()
method blocks if necessary until it can return without making the counter negative. If not given, value defaults to 1.The optional argument gives the initial value for the internal counter; it defaults to
1
. If the value given is less than 0,ValueError
is raised.在 3.3 版的變更: changed from a factory function to a class.
- acquire(blocking=True, timeout=None)¶
Acquire a semaphore.
When invoked without arguments:
If the internal counter is larger than zero on entry, decrement it by one and return
True
immediately.If the internal counter is zero on entry, block until awoken by a call to
release()
. Once awoken (and the counter is greater than 0), decrement the counter by 1 and returnTrue
. Exactly one thread will be awoken by each call torelease()
. The order in which threads are awoken should not be relied on.
When invoked with blocking set to
False
, do not block. If a call without an argument would block, returnFalse
immediately; otherwise, do the same thing as when called without arguments, and returnTrue
.When invoked with a timeout other than
None
, it will block for at most timeout seconds. If acquire does not complete successfully in that interval, returnFalse
. ReturnTrue
otherwise.在 3.2 版的變更: 新的 timeout 參數。
- release(n=1)¶
Release a semaphore, incrementing the internal counter by n. When it was zero on entry and other threads are waiting for it to become larger than zero again, wake up n of those threads.
在 3.9 版的變更: Added the n parameter to release multiple waiting threads at once.
- class threading.BoundedSemaphore(value=1)¶
Class implementing bounded semaphore objects. A bounded semaphore checks to make sure its current value doesn't exceed its initial value. If it does,
ValueError
is raised. In most situations semaphores are used to guard resources with limited capacity. If the semaphore is released too many times it's a sign of a bug. If not given, value defaults to 1.在 3.3 版的變更: changed from a factory function to a class.
Semaphore
範例¶
Semaphores are often used to guard resources with limited capacity, for example, a database server. In any situation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any worker threads, your main thread would initialize the semaphore:
maxconnections = 5
# ...
pool_sema = BoundedSemaphore(value=maxconnections)
Once spawned, worker threads call the semaphore's acquire and release methods when they need to connect to the server:
with pool_sema:
conn = connectdb()
try:
# ... 使用該連線 ...
finally:
conn.close()
The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be released more than it's acquired will go undetected.
Event Objects¶
This is one of the simplest mechanisms for communication between threads: one thread signals an event and other threads wait for it.
An event object manages an internal flag that can be set to true with the
set()
method and reset to false with the clear()
method. The wait()
method blocks until the flag is true.
- class threading.Event¶
Class implementing event objects. An event manages a flag that can be set to true with the
set()
method and reset to false with theclear()
method. Thewait()
method blocks until the flag is true. The flag is initially false.在 3.3 版的變更: changed from a factory function to a class.
- is_set()¶
Return
True
if and only if the internal flag is true.The method
isSet
is a deprecated alias for this method.
- set()¶
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait()
once the flag is true will not block at all.
- clear()¶
Reset the internal flag to false. Subsequently, threads calling
wait()
will block untilset()
is called to set the internal flag to true again.
- wait(timeout=None)¶
Block as long as the internal flag is false and the timeout, if given, has not expired. The return value represents the reason that this blocking method returned;
True
if returning because the internal flag is set to true, orFalse
if a timeout is given and the internal flag did not become true within the given wait time.When the timeout argument is present and not
None
, it should be a floating-point number specifying a timeout for the operation in seconds, or fractions thereof.在 3.1 版的變更: Previously, the method always returned
None
.
Timer Objects¶
This class represents an action that should be run only after a certain amount
of time has passed --- a timer. Timer
is a subclass of Thread
and as such also functions as an example of creating custom threads.
Timers are started, as with threads, by calling their Timer.start
method. The timer can be stopped (before its action has begun) by calling the
cancel()
method. The interval the timer will wait before
executing its action may not be exactly the same as the interval specified by
the user.
舉例來說:
def hello():
print("hello, world")
t = Timer(30.0, hello)
t.start() # 30 秒後會印出 "hello, world"
- class threading.Timer(interval, function, args=None, kwargs=None)¶
Create a timer that will run function with arguments args and keyword arguments kwargs, after interval seconds have passed. If args is
None
(the default) then an empty list will be used. If kwargs isNone
(the default) then an empty dict will be used.在 3.3 版的變更: changed from a factory function to a class.
- cancel()¶
Stop the timer, and cancel the execution of the timer's action. This will only work if the timer is still in its waiting stage.
Barrier Objects¶
在 3.2 版被加入.
This class provides a simple synchronization primitive for use by a fixed number
of threads that need to wait for each other. Each of the threads tries to pass
the barrier by calling the wait()
method and will block until
all of the threads have made their wait()
calls. At this point,
the threads are released simultaneously.
The barrier can be reused any number of times for the same number of threads.
As an example, here is a simple way to synchronize a client and server thread:
b = Barrier(2, timeout=5)
def server():
start_server()
b.wait()
while True:
connection = accept_connection()
process_server_connection(connection)
def client():
b.wait()
while True:
connection = make_connection()
process_client_connection(connection)
- class threading.Barrier(parties, action=None, timeout=None)¶
Create a barrier object for parties number of threads. An action, when provided, is a callable to be called by one of the threads when they are released. timeout is the default timeout value if none is specified for the
wait()
method.- wait(timeout=None)¶
Pass the barrier. When all the threads party to the barrier have called this function, they are all released simultaneously. If a timeout is provided, it is used in preference to any that was supplied to the class constructor.
The return value is an integer in the range 0 to parties -- 1, different for each thread. This can be used to select a thread to do some special housekeeping, e.g.:
i = barrier.wait() if i == 0: # 只會有一個執行緒會印出這個 print("passed the barrier")
If an action was provided to the constructor, one of the threads will have called it prior to being released. Should this call raise an error, the barrier is put into the broken state.
If the call times out, the barrier is put into the broken state.
This method may raise a
BrokenBarrierError
exception if the barrier is broken or reset while a thread is waiting.
- reset()¶
Return the barrier to the default, empty state. Any threads waiting on it will receive the
BrokenBarrierError
exception.Note that using this function may require some external synchronization if there are other threads whose state is unknown. If a barrier is broken it may be better to just leave it and create a new one.
- abort()¶
Put the barrier into a broken state. This causes any active or future calls to
wait()
to fail with theBrokenBarrierError
. Use this for example if one of the threads needs to abort, to avoid deadlocking the application.It may be preferable to simply create the barrier with a sensible timeout value to automatically guard against one of the threads going awry.
- parties¶
The number of threads required to pass the barrier.
- n_waiting¶
The number of threads currently waiting in the barrier.
- broken¶
A boolean that is
True
if the barrier is in the broken state.
- exception threading.BrokenBarrierError¶
This exception, a subclass of
RuntimeError
, is raised when theBarrier
object is reset or broken.
Using locks, conditions, and semaphores in the with
statement¶
All of the objects provided by this module that have acquire
and
release
methods can be used as context managers for a with
statement. The acquire
method will be called when the block is
entered, and release
will be called when the block is exited. Hence,
the following snippet:
with some_lock:
# 做某些事情...
is equivalent to:
some_lock.acquire()
try:
# 做某些事情...
finally:
some_lock.release()
Currently, Lock
, RLock
, Condition
,
Semaphore
, and BoundedSemaphore
objects may be used as
with
statement context managers.