The Python/C API
#[r 3.9.1rc1

Guido van Rossum
and the Python development team

12 A 07, 2020

Python Software Foundation
Email: docs@python.org

Contents

1 fiigr 3
L1 AREARIE © . 3

L2 AETSCHE e 3

13 BRI .« o e e 4

L4 X%, BRABIHTE . . . o 6
LA BIUFTEL .« . 6

R 9

T = 9

1.6 HRAZUPYthOn o e 11

L7 UHATEE . . e e 12

2 R RS kR 0 13
3 The Very High Level Layer 15
4 SR 21
5 BilshEse 23
5.1 Printingand clearing L. e e e e e e e 24

52 HHH BB . e 24

5.3 ISSUINZ WAIMINGS .« « v v v v v e 26

5.4 Querying the error indicator L. e e e e e e e e e e 27

5.5 SignalHandling L e e e e e 29

5.6 Exception Classes e e 29

5.7 Exception Objects e e e 30

5.8 Unicode Exception Objects v i v v it e e e e e e e e e e e 30

59 BBIFFEH] . . 32
500 BRUESEHS . o 32
501 BRMEEHEIETH] o e 34

6 T.H 35
6.1 MEERBTE ..o 35

6.2 RHERIN . . e 38

6.3 F7EE (Process) 5Tl e 39

6.4 FEARAL o e 40

6.5 Bt marshal BEESZH: . . o e 43

6.6 IEAIREIASEINE . e 44

6.6.1 FRHIBEL o o o 44

6.6.2 BIERASE: . . 50
6.7 FFEREEELEAL . . 51
6.8 It 53
6.9 RRLDESHMIS TERINEE . . . L 53
6.9.1 Codec XK APL 54
6.9.2 T Unicode A5 BRI FIIEMZE APL . . . 54
%tk g 57
T4 R . 57
T2 WERUTISL . e e 61
720 tp_call L . . o 61
7.2.2 The Vectorcall Protocol e e e e 61
723 Object Calling APIt 63
7.2.4 Call Support APT e 66
T3 BEFWML . o 66
T4 PN . o e 69
TS5 BRGNS . 70
7.6 IEACHFEIL . 71
TT 0 B . e 72
TA1 ERIRGER . 73
7.7.2 Bufferrequesttypes oo e e e e e e e e e e e e 74
773 BIEEUH .. e 76
774 GERIRAHEEEED . . . 78
7.8 THZEML . . o 79
TR R)I2 81
8.1 HAHIE . 81
8.1 Type KT . o o o 81
8.1.2 None X . . . o 84
8.2 BUMENTZE . . L 85
82.1 EEBIMIME . . o 85
822 AAMIIME . o o 88
8.2.3 REL# (Floating Point) M4 88
8.2.4 EHUNTE . . 89
83 FFHUNIEL 90
83.1 TR 90
8.3.2 FEITERAHNTGL . . e 92
8.3.3 Unicode WIAHAARAE 93
83.4 JTAL (Tuple) MU . . . o 112
83.5 LEMIFEFIRTE . 113
83.6 List (EBAI) M . . . 114
8.4 ZRBENIGL . 115
8.4.1 FHUMIME .« o 115
842 EEATTE . 118
8.5 BRI . . . 119
8.5.1 X (Function) WHE o 119
8.5.2 EHUTYEMIME . . .o 120
8.53 HYERTE . 121
8.5.4 CellMIME . o o 121
8.5.5 ARG . . 122
8.6 HABNIZ . . e 122
8.6.1 FEZ (File) MM . . . o 122
8.6.2 BUHMIMEAL 123

11

8.6.3 EALEE (Tterator) WU . . . o o
8.6.4 WBHliarILE . . . e
8.6.5 HIHWIM . o o
8.6.6 EIlpsis X4 e
8.6.7 MemoryView X2 e e e
8.6.8 HIZMBWILE . . . e
8.6.0 Capsule X[. e
8.6.10 [EVEBMIME . . o o o
O O
8.6.12 IR IASENTER . . e
8.6.13 DateTime P o o e e e
9 Initialization, Finalization, and Threads
9.1 FEPython FIEALZHI . - o o o o e
92 AREIEATE . ..
9.3 Initializing and finalizing the interpreter o e e e e e e e e
9.4 Process-wide parameters i it e
9.5 Thread State and the Global Interpreter Lock
9.5.1 Releasing the GIL from extensioncode
9.52 FEPython BIEEMIZRTE . . .
9.5.3 Cautions about fork() e e e e e
954 EEIAPL . e
9.5.5 Low-level APL e
9.6 Sub-interpreter SUPpOrt L. e e e e e e e e e e
9.6.1 EERAIEELL
0.7 SEIHA . o e e
9.8 S HTAIIREE . .
9.9 BRI LE . .
9.10 Thread Local Storage Support L e e
9.10.1 Thread Specific Storage (TSS) API o .
9.10.2 Thread Local Storage (TLS) APT
10 Python F)4G LML
10.1 PyWideStringlList L e e e
10.2 PyStatus o e e e e e e e
10.3 PyPreConfig o e e e e e e e e
10.4 Preinitialization with PyPreConfig L o
10.5 PyConfig o e e e e e
10.6 Initialization with PyConfig
10.7 TIsolated Configuration ittt e e e e e e e e
10.8 Python Configuration 0 i e e e e e e e e e e e e e
109 BEAREUE . . o o o
10.10 Py_RunMain() o e e e e e e e e e e e e
10.11 Py_GetArgcArgv() o o o i e e e e e e e e e e e e
10.12 Multi-Phase Initialization Private Provisional APT
Rl B A B
LD HEE
112 JFIEPIAFIETD © o
T13 NTEEELD o e
114 FFRTLER « o o o e e e
TLS BRIAPITFATHCRS - - o o o o o e e e e e e e e
11.6 HEXINIETTEZE o o o e e e e e e e e e e e e
11.7 pymalloc Z3Hilas . . o o e e e e e e e e

12

13

11.7.1 B&E X pymalloc Arena 77HLgSE . . o o o o o e e
11.8 tracemalloc C APL e e e e

LLO TRBIl o e

PIE SIS
12,1 ZEREPAMTERTE © o e
122 GWTWEEEHE e

12.2.1 Base object types and MaCTOS+« v v v v b e e e e e e e e e e e e e e e
12.2.2 Implementing functions and methods oL,
12.2.3 Accessing attributes of extension types e e e
123 Type X o o e
1231 RIEESE . .
12.3.2 PyTypeObject Definition e
12.3.3 PyObject SIots o o o e e e e e e e e e e
12.3.4 PyVarObject SIots o o e e e e
12.3.5 PyTypeObject SIOts o v v i e e e e e e e e e e e e e e e e e
12.3.6 Heap TYPES . . o o v v o e
12.4 Number Object StrUCtUIeS« o i vttt e ettt e e e e e e e
12.5 Mapping Object Structures v v v i it e e e e e e e e e e e e e e e e
12.6 Sequence Object StrUCTUIES ot i vt e e e e e e e e e e
12.7 Buffer Object Structures o it i e e e e e e e e e e
12.8 Async Object Structures v i v e e e e e e e e e e e e e e e e e
12.9 Slot Type typedefs o e e e e e e e e e e
1210 Bl o
1201 R B S EEFR AR I . . o o e

API f1 ABI Jig 2 %5 Bp
AR o) e e

B i v [EI S
Bl Python SCEFIETEREM . o o o v e e e e e e e

i St BLBZ R
C.l MBI © o o o e
C2 FHEGAFHA T Python BUSERAISAE - . o o
C2.1 T PYTHON 3.9.1rcl f PSF 0P . . o o o o e
C22 T PYTHON 2.0) BEOPEN.COM #FHu[¥ o o e e e e e e
C23 HTF PYTHON 1.6.1 f CNRIVFRIFIMY . . o o o e
C24 MTPYTHONO09.0 & 12y CWIVFRITML . . o oo oo
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.1rc1 DOCUMENTA-
TION . . . e e e e
C3 WM SNM . . .
C.3.1 Mersenne TWIStEr o i e e e e e e e e e e e e e
C3.2 BIET
C33 B EEFMRL . . e
C3.4 Cookie BFHE e
C3.5 FATIBEE . e
C.3.6 UUencode 5 UUdecode PFREL . . -« « v v v v v o e e e e e e s s s s
C3.7 XML RIS . . .
C3.8 test_epoll e e
C39 Selectkqueue e e
C.3.10 SipHash24 e e e e e e
C3.11 strtod FI dtoa o e e e e e
C.3.12 OpenSSL

C3.13
C3.14
C3.15
C3.16
C3.17
C3.18

D JihEE Y

=5l

BXPAL o v o e 258
b . . o e 259
ZID e e 259
cfuhash e 260
libmpdec e 260
W3C CHNMRRELE . . 261

263

265

Vi

The Python/C API, £(F] 3.9.1rc1

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, £[F] 3.9.1rc1

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

GG RIS AR R UL) T HYE, ATl Sl BB IR G. E TR A — A
JEE AR R B AT A T i A Python A R EA 2, {Hitk A Python [FE A 44 5
PRI R T B -

VFZ APT BUEAR IR A B & Python sX PR NARREAEIE . BN, KR A Python [1Y HIFE 7
WHRERALEE YR, A 2R S BRI H i A Python 2 B e B S TRV X &2 5

1.1 K4k

WARARAR B4 5] 45 T CPython) C UMY, 1R BAUEHRTE PEP 7 HE U H5 2 W AR, XL 45T
W3) AT AT R By 254 11 Python A4S . FEAM 5 4R H C ISR =07 I AN, al DU AR X LU AT, Rl
VRUESEAE H 5 1) Python TTRkIX LU .

1.2 8&XH

{1 J1} Python/C API Fr e SR A PReR . IR E SCRT TN AT TR B & B R AU 2 v -

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

X EWEM S AT ARk S0 <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
M <stdlib.h> (WERATH).

https://www.python.org/dev/peps/pep-0007

The Python/C API, £[F] 3.9.1rc1

ffiE): i T Python AIAES 5 L —LERETESLLE R S WRARHE K SCHFROTIAL BRAR E S, PRIMCAE A 35 AR i o
M2, AR LR Python.h,

It is recommended to always define PY_SSIZE_T_ CLEAN before including Python.h. See i& &) ff#5 2 % & %%
for a description of this macro.

Python.h 5 SCARYAHB M P m] WA AR (b B & bRk SCURBInE LFRAT) #RAT AT Py 50 _Py. DA _Py
TR A AR Python SCBLN ARG HIFY , AR TRA S E M o S5 24 PRI PR B R

#i(E]: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

S &5 Python —E2 4% . FF Unix I, B/ TPATHSR: prefix/include/pythonversion/
Ml exec_prefix/include/pythonversion/, H H prefix Ml exec_prefix J& Hi [f] Python
configure I ARG AWXT N TE S FE X, T version Wk '$d.%$d' % sys.version_info[:2]. fE
Windows |, K324 T prefix/include, HW prefix @R RFIRERN LR H .

BRLE SISO, R E S (AR ERECEIRE F g it S R A . 1 R/ ACH S
RIEFERIGHA #include <pythonX.Y/Python.h>; XIHEHZ-FEHmIFAH, HHN prefix [
BIRIL R EAE R H exec_prefix TREEF-GHI 3.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 FHME

Python 3SR E SCT — 28 IR . VR RIESEITEA IR A f)y & i (B APy _RETURN_NONE) .

AR Ay A 00 SO L. X LB R AN R — S A 3R

Py_UNREACHABLE ()
Use this when you have a code path that cannot be reached by design. For example, in the default: clause in
a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert (0) or abort () call

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code.
For example, the macro is implemented with __builtin_unreachable () on GCC in release mode.

A use for Py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For
example, under low memory condition or if a system call returns a value out of the expected range. In this case,
it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError () can be
used.

3.7 BB A
Py_ABS (X)

AR] x L .
3.3 BB

Py_MIN (X, y)
R x Fy MR IMAE .

4 Chapter 1. &4y

The Python/C API, £(F] 3.9.1rc1

3.3 BCHTINA.

Py_MAX (X,y)
R = Fy MR .
3.3 BCHTNA.

Py STRINGIFY (X)
= A5l C 45 . Bl Py_STRINGIFY (123) j&[H] "123",

3.4 BT

Py_MEMBER_SIZE (type, member)
R[5 (type) member R/, PAFTTRR.

3.6 BUHTIA.

Py_CHARMASK (c)
SRR [-128, 127] BY [0, 2551 JE I NI FAFECREBER AL . X200 ¢ iRl #% 458 unsigned char
Rl

Py_GETENV (s)

Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

3.4 BUFTIMA.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

NV

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

3.8 Jix ¥ gt MSVC support was added.

PyDoc_STRVAR (name, Str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.
N

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
VY2
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VYR

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.
NE

1.3. FHNE 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, £[F] 3.9.1rc1

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}
bi

1.4 5. RIS ATHE

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyOb ject, only pointer variables of type PyObject * can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

B Python %f% (L% Python B%f) #8G —1 type F1—A> reference count, Xt 12800 & B4
X (BN, SRk e XEEG AL, A types TR) o XTSRRI AN EAL, #H —A%
KGR G REE BT %A Fln, 24 (HAY) a rfgngxtgid Python 51|} PyList_Check (a) HH.

1.4.1 SIRHH

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is "don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to increment an
object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.
The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

6 Chapter 1. &4y

The Python/C API, £(F] 3.9.1rc1

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). "Owning a reference”
means being responsible for calling Py_ DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed---or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

3);

t, 0, PyLong_FromLong(1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem

(
(
(
PyTuple_SetItem(

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyOb ject_SetItem () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away ("have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

14. &, %EBF03| Bt 7

The Python/C API, £[F] 3.9.1rc1

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PylLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()

and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
--- the plumage (the type of the object passed as an argument to the function) doesn 't enter into it/ Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference --- but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
3

return total;

8 Chapter 1. &4y

The Python/C API, £(F] 3.9.1rc1

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 %%

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.5 &

Python /7 S A 5 ZALPIURE & T3 ZAL PRI D0 RALBER S & A sl By R, SR e R
MR, MR, ERIMITRA TGRS, AR LR E AT s 45 P Rl Rl A [991 -

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_ Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

1.5. B& 9

The Python/C API, £[F] 3.9.1rc1

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should nor set another exception --- that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

(Rt

10 Chapter 1. &4y

The Python/C API, £(F] 3.9.1rc1

(R —H)

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py _DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 # A3\ Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys.path).

Py_Initialize () doesnotsetthe “script argument list” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
afterthe callto Py_ Initialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py _SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix(),and Py GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to "uninitialize” Python. For instance, the application may want to start over (make another call

1.6. #& AR Python 11

The Python/C API, £[F] 3.9.1rc1

to Py_TInitialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py FinalizeEx (). The function Py _TsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 it HE

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by ”a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

B T RTTRARA S BRI A, B0 AT DA T B Me A
o BAMS ARSI B G 03 BL s -
o AN ALRF NI E AT A F1 A i o o
* Downcasts from wide types to narrow types are checked for loss of information.
s FEZWEPIRMB FHAEGSLIHF . Jioh, REXNRFE test_c_api) ks
S ASBHSE R R A S I B RE LR
o fEHE A TCRAARI G BE RS, DA RAIR AR 105 1 T
o ISR ER ERANES M) S A A 2 R ML AT o
» Extra checks are added to the memory arena implementation.
o ISR A S 2 AR

X HUAT RERCA R B BB M AR A

Defining Py_TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

ﬁ%%giiém{51§\7 1525 Python /},?ﬁﬁ%'iijﬂ/ﬂ Misc/SpecialBuilds.txt .

12 Chapter 1. &4y

CHAPTER 2

TR EH R B2 Fr — i O

&4 I, Python) C APLIFRfiRENUAN I ZE (b . KRB HCA S IR Az, % HAs i APL, I A2 B
BA APTEUMER AP (A28 5 0 2| Je i AR IR) .

RNEME, APTIREERA Y R i HIas I (ABL). JR R 32 2@ 8540 @ EAE , 78k BB Ing 7 Brak
WM F BRI BEAR SR APL, {HAJRESHER ABL, I, 44> Python fUASH T S B B iy etk (EP
e A AT A 32 52 R B2 AR LR, Unix BB RESHEILRH). BL4h, #E Windows I, ¥ EiH 5 4E
FE) pythonXY.dIl #5482, FFEEHH A B S5 pythonXY.dll £z .

M Python3.2 2, ELFEH] T4~ APLRY T4, PAWGPREER) ABL. WISR{AT L AP (Hhalfrhy “sZFR APTY)
9 AR BTG 2L X “Py_LIMITED_API*, -2 MR REAR 411 R M3 AR P IGRG: PR, AEARAT 3.x A
(x>=2) _F A ARSI AN TG 2 B 1

ERLEERT, FEARMIT R Y B E R ABL. 7 2 H] X 25 APL /Y 9 @ 11 B 95 228
Py_LIMITED_APT ik B A {148 35 & %5 1Y &% ik Python iR A< PY_VERSION_HEX {H (fi: Python 3.3
4 0x03030000) (SWAPI o ABI jp A 32) o WRBIHCREE T 0T J54¢ Python JiUAS, {HIGYEFEIHMRAS I
m#E (F R 0555) .

M Python 3.2 JF 41, 52 APL W] B HLAEICTAE PEP 384 . 5 C APLSCHYh, R T32 APL {1y APTIEH
FRiZh “RETZH AP,

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, £[F] 3.9.1rc1

14 Chapter 2. BENMAERF-#§EO

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main () function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int Py_BytesMain (int argc, char **argv)
Similar to Py_Main () but argv is an array of bytes strings.

3.8 WUHTIA.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

15

The Python/C API, £[F] 3.9.1rc1

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_ InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filename is NULL,
this function uses "2?27?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

#([E]: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)

Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is

16 Chapter 3. The Very High Level Layer

The Python/C API, £(F] 3.9.1rc1

ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in
the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE *, FILE *, const char *)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

3.4 W B4 : The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (), instead of
being allocated by PyMem_Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to O.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

Deprecated since version 3.9, will be removed in version 3.10.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

Deprecated since version 3.9, will be removed in version 3.10.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from s in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

17

The Python/C API, £[F] 3.9.1rc1

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to O.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to — 1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, __debug___is false) or 2 (docstrings are removed too).

3.4 BB

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding (os . fsdecode ()).

3.2 BB

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalua-
tion. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of
arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple
of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any

18 Chapter 3. The Very High Level Layer

The Python/C API, £(F] 3.9.1rc1

time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

3.4 fR¥E5%: This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString ().

intPy_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to O, and any modification
dueto from __ future_ import is discarded.

int cf_flags
Compiler flags.

int cf_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
3.8 it Bk Added c¢f_feature_version field.

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as "true division” according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, £[F] 3.9.1rc1

20 Chapter 3. The Very High Level Layer

cHAPTER 4

AT ZAR RN T HE Python R YT AL
void Py_ INCREF (PyObject *0)

BTG 0 BT, G N NULL; WSRARAHE B AN NULL, R[] Py _XINCREF ().
void Py_XINCREF (PyObject *0)

HEIR G 0 WIS, XPRATPASY NULL, FERUHEOL MR B A AT R -

void Py_DECREF (PyObject *0)
WK o WIS TR R UAUR A NULL; QURARAH € B AN NULL, WPy XDECREF (),
WIRE TR NE, B AR TR X5 8 2R B A R R £ (B L ZA A NULL),

Bl BOCR BT S EUE R Python (U AGEIAN (HIHANY— DA __del () kR RILHIHE
RO L2) o BIRIEIACRD H i S R e, (ARITI IS RERS B 7R A Python
GrJR AR, XA]l 4 R A B AR W RAEPy_DECREF () WAGETA N Z HI#PN. 24 AT
SERFARAS o BT, 50 r I I 6 G 14 AR 7 24 R 3o SR 1 5 1 P48 DL 38— ANl 22 2 e
SRR, SRS AR A R] Py _DECREF ()

void Py_XDECREF (PyObject *o)
WIS o 5 HTHE. XTI PACH NULL, ZESLIE L R A= EAR MR AR A 0 HAUR
5Py DECREF () #H[F], Fox M [RIBEME L

void Py_ CLEAR (PyObject *0)
DTSR o BFI AL, XA AIPAH NULL, FEBLIE O MR BT AEATAIROR . 7R A O~ HAUR
5py DECREF () #[F], RAFEFHSEW G A NULL, £MX Py _DECREF () BYEEAE HT %
IR, R R S 4Ol — AN AR AR D e | T 2 B S50k NULL,

i 24 B DA S TR) AT RE S0 I 0 G i 5 DR RO, % R — M 325

PATF B %0E BT Python HiafTH 8158k A: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o).
BB R Jg Py _XINCREF () MlPy_XDECREF () HTa] B-5 i BR B o

PA T BROBC B AL T FE R ORE AR % 0 W B 68 _Py_Dealloc(), _Py_ForgetReference (),
_Py_NewReference () PANERASHE Py _RefTotal.

21

The Python/C API, £[F] 3.9.1rc1

29 Chapter 4. 2MHE

CHAPTER D

BI5h ez IR

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

#i[E): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

23

The Python/C API, £[F] 3.9.1rc1

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the erroris a SystemExit, in
that case no traceback is printed and the Python process will exit with the error code specified by the SystemExit
instance.

FUAAEAR R TG /R B L A7 BRI eR K, 75 X & W B R

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_ Print ()
PyErr_PrintEx (1) M54 .

void PyErr_WriteUnraisable (PyObject *obyj)
Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 &=

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the "value”
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (),buttakingava_11st argument rather than a variable
number of arguments.

3.5 BUHTA.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

24 Chapter 5. fl5hE 2

The Python/C API, £(F] 3.9.1rc1

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if file-
nameObject is not NULL, it is passed to the constructor of type as a third parameter. In the case of OSError
exception, this is used to define the £i1lename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Return value: Always NULL. Similarto PyErr_SetFromErrnoWithFilenameObject (), buttakes asec-
ond filename object, for raising errors when a function that takes two filenames fails.

3.4 BUHTIA.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnolWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

u] H 4 Windows.,

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromwindowsErr (), with an additional parameter spec-
ifying the exception type to be raised.

] M Windows.,

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

B] H 4 Windows .,

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), withan
additional parameter specifying the exception type to be raised.

u] H 4 Windows .,

52. H%&E 25

The Python/C API, £[F] 3.9.1rc1

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-
name?2)
Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),but

accepts a second filename object.
|] 4 Windows .,
3.4 BUBTIA.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised.
B] H 4 Windows.,

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

3.3 BUBTIA.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

3.4 BT

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

3.2 BTN

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py. DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

26 Chapter 5. fl5hE 2

The Python/C API, £(F] 3.9.1rc1

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 7 /f 22 58 531,

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)
Return value: Always NULL. Much like PyErr_SetImportError () but this function allows for specifying a
subclass of ImportError to raise.

3.6 BUBTINA.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 BT

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () except that message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

3.2 BUHTMA.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

3.6 BUHTIA.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

The caller must hold the GIL.

#(E): Do not compare the return value to a specific exception; use PyErr_ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true

5.4. Querying the error indicator 27

The Python/C API, £[F] 3.9.1rc1

when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

#i[F): This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before
the call and after the call you no longer own these references. (If you don’t understand this, don’t use this function.
I warned you.)

#§(E): This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

#i(E): This function does not implicitly set the __t raceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

#(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_ SetExcInfo () to restore or clear

28

Chapter 5. ISR

The Python/C API, £(F] 3.9.1rc1

the exception state.

3.3 HUHTIA.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

#i(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 UM

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a STGINT signal arriving. The nexttime PyErr_CheckSignals () is called, the Python
signal handler for SIGINT will be called.

If SIGINT isn’t handled by Python (it was setto signal .SIG_DFLor signal.SIG_IGN), this function does
nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

3.5 iR ¥4 : On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base

5.5. Signal Handling 29

The Python/C API, £[F] 3.9.1rc1

classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_ NewException (),except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 JHTMA.

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was raised)
associated with the exception as a new reference, as accessible from Python through __context__. If there is
no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure that
ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, setby raise ... from
. . .) associated with the exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create aUnicodeDecodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

char *reason)
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

3.3 ECEM: 3.11

Py_UNICODE is deprecated since Python 3.3. Please migrate to PyObject_CallFunction (PyExc_UnicodeEncodeErr
"sOnns", ...).

30 Chapter 5. ISR

The Python/C API, £(F] 3.9.1rc1

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,

start, end and reason. reason is a UTF-8 encoded string.
3.3 MR EEA: 3.11

Py_UNICODE is deprecated since Python 3.3. Please migrate to PyObject_CallFunction (PyExc_UnicodeTranslatel
"Onns", ...).

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return O on success, —1 on failure.

5.8. Unicode Exception Objects 31

The Python/C API, £[F] 3.9.1rc1

5.9 T

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically). They are also not needed for #p_call implementations because the call protocol takes care of recursion
handling.

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

3.9 fix ¥ 4% : This function is now also available in the limited API.

void Py_LeaveRecursiveCall (void)
Ends a Py EnterRecursiveCall(). Must be called once for each successful invocation of
Py_EnterRecursiveCall ().

3.9 fix ¥ 4% This function is now also available in the limited API.

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Called at the beginning of the tp_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_ repr imple-

m