
Python Setup and Usage
發� 3.8.0rc1

Guido van Rossum
and the Python development team

10月 14, 2019

Python Software Foundation
Email: docs@python.org

Contents

1 Command line and environment 3
1.1 Command line . 3
1.2 Environment variables . 9

2 Using Python on Unix platforms 15
2.1 Getting and installing the latest version of Python . 15
2.2 Building Python . 16
2.3 Python-related paths and files . 16
2.4 Miscellaneous . 16

3 在Windows上使用 Python 19
3.1 完整安装程序 . 19
3.2 Microsoft Store包 . 24
3.3 nuget.org安装包 . 24
3.4 可嵌入的包 . 25
3.5 Alternative bundles . 26
3.6 設定 Python . 26
3.7 Python Launcher for Windows . 27
3.8 Finding modules . 31
3.9 Additional modules . 33
3.10 編譯 Python在Windows . 34
3.11 其他平台 . 34

4 在麥金塔系統使用 Python 35
4.1 取得和安裝MacPython . 35
4.2 整合化開發工具 . 36
4.3 Installing Additional Python Packages . 36
4.4 圖形化使用者介面 (GUI)程式開發於Mac . 37
4.5 貢獻 Python應用程式於Mac . 37
4.6 其他資源 . 37

5 编辑器和集成开发环境 39

A Glossary 41

B 關於這些�明文件 55
B.1 Python文件的貢獻者們 . 55

i

C 歷史與授權 57
C.1 History of the software . 57
C.2 Terms and conditions for accessing or otherwise using Python . 58
C.3 Licenses and Acknowledgements for Incorporated Software . 61

D 版權宣告 75

索引 77

ii

Python Setup and Usage,發� 3.8.0rc1

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

Contents 1

Python Setup and Usage,發� 3.8.0rc1

2 Contents

CHAPTER1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.
CPython implementation detail: Other implementations’ command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:
• When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows)
is read.

• When called with a file name argument or with a file as standard input, it reads and executes a script from that file.
• When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

• When called with -c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

• When called with -m module-name, the given module is located on the Python module path and executed as a
script.

3

Python Setup and Usage,發� 3.8.0rc1

In non-interactive mode, the entire input is parsed before it is executed.
An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv – note that the first element, subscript zero (sys.argv[0]), is a string reflecting the program’s source.
-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.
If this option is given, the first element of sys.argv will be "-c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).
使用 command参数会引发 auditing event cpython.run_command。

-m <module-name>
Search sys.path for the named module and execute its contents as the __main__ module.
Since the argument is amodule name, you must not give a file extension (.py). The module name should be a valid
absolute Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).
Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main__ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script argument.

備�: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the module file
is being located, the first element will be set to "-m"). As with the -c option, the current directory will be added
to the start of sys.path.
-I 选项可用来在隔离模式下运行脚本，此模式中 sys.path 既不包含当前目录也不包含用户的
site-packages目录。所有 PYTHON*环境变量也会被忽略。

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

使用 module-name参数会引发 auditing event cpython.run_module。
也參考:

runpy.run_module() Equivalent functionality directly available to Python code

PEP 338 – Executing modules as scripts
3.1版更變: Supply the package name to run a __main__ submodule.
3.4版更變: namespace packages are also supported

-
Read commands from standard input (sys.stdin). If standard input is a terminal, -i is implied.
If this option is given, the first element of sys.argv will be "-" and the current directory will be added to the
start of sys.path.
没有参数会引发 auditing event cpython.run_stdin。

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage,發� 3.8.0rc1

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.
If this option is given, the first element of sys.argv will be the script name as given on the command line.
If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main__ module.
If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__.py file in that location is executed as the __main__ module.
-I选项可用来在隔离模式下运行脚本，此模式中 sys.path既不包含脚本所在目录也不包含用户的
site-packages目录。所有 PYTHON*环境变量也会被忽略。

使用 filename参数会引发 auditing event cpython.run_file。
也參考:

runpy.run_path() Equivalent functionality directly available to Python code

If no interface option is given, -i is implied, sys.argv[0] is an empty string ("") and the current directory will be
added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on your
platform (see rlcompleter-config).
也參考:
tut-invoking
3.4版更變: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h
--help

Print a short description of all command line options.
-V
--version

Print the Python version number and exit. Example output could be:

Python 3.8.0b2+

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

3.6版新加入: The -VV option.

1.1.3 Miscellaneous options

-b
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when the
option is given twice (-bb).
3.5版更變: Affects comparisons of bytes with int.

1.1. Command line 5

Python Setup and Usage,發� 3.8.0rc1

-B
If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

--check-hash-based-pycs default|always|never
Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default, checked
and unchecked hash-based bytecode cache files are validated according to their default semantics. When set to
always, all hash-based .pyc files, whether checked or unchecked, are validated against their corresponding
source file. When set to never, hash-based .pyc files are not validated against their corresponding source files.
The semantics of timestamp-based .pyc files are unaffected by this option.

-d
Turn on parser debugging output (for expert only, depending on compilation options). See also PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys.path contains neither the
script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.
Further restrictions may be imposed to prevent the user from injecting malicious code.
3.4版新加入.

-O
Remove assert statements and any code conditional on the value of __debug__. Augment the filename for com-
piled (bytecode) files by adding.opt-1 before the.pyc extension (seePEP 488). See alsoPYTHONOPTIMIZE.
3.5版更變: Modify .pyc filenames according to PEP 488.

-OO
Do -O and also discard docstrings. Augment the filename for compiled (bytecode) files by adding .opt-2 before
the .pyc extension (see PEP 488).
3.5版更變: Modify .pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
3.2版新加入.

-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable is set
to 0, since hash randomization is enabled by default.
在 Python的早期版本中，此选项启用哈希随机化，将 str和 bytes的对象 __hash__()的值”加盐”为
不可预测的随机值。虽然它们在单个 Python进程中保持不变，但是在重复调用的 Python进程之间它们
是不可预测的。

Hash randomization is intended to provide protection against a denial-of-service caused by carefully-chosen inputs
that exploit the worst case performance of a dict construction, O(n^2) complexity. See http://www.ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

Python Setup and Usage,發� 3.8.0rc1

3.7版更變: The option is no longer ignored.
3.2.3版新加入.

-s
Don’t add the user site-packages directory to sys.path.
也參考:
PEP 370 – Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main() if you want them to be
triggered).

-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
3.7版更變: The text layer of the stdout and stderr streams now is unbuffered.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (-vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.
Multiple -W options may be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid -W options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).
Warnings can also be controlled using the PYTHONWARNINGS environment variable and from within a Python
program using the warnings module.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):

-Wdefault # Warn once per call location
-Werror # Convert to exceptions
-Walways # Warn every time
-Wmodule # Warn once per calling module
-Wonce # Warn once per Python process
-Wignore # Never warn

The action names can be abbreviated as desired (e.g. -Wi, -Wd, -Wa, -We) and the interpreter will resolve them
to the appropriate action name.
See warning-filter and describing-warning-filters for more details.

-x
Skip the first line of the source, allowing use of non-Unix forms of #!cmd. This is intended for a DOS specific
hack only.

1.1. Command line 7

https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,發� 3.8.0rc1

-X
Reserved for various implementation-specific options. CPython currently defines the following possible values:

• -X faulthandler to enable faulthandler;
• -X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

• -X tracemalloc to start tracing Python memory allocations using the tracemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See the tracemalloc.start() for more
information.

• -X showalloccount to output the total count of allocated objects for each type when the program fin-
ishes. This only works when Python was built with COUNT_ALLOCS defined.

• -X importtime to show how long each import takes. It shows module name, cumulative time (including
nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'. See
also PYTHONPROFILEIMPORTTIME.

• -X dev: enable CPython’s ”development mode”, introducing additional runtime checks which are too ex-
pensive to be enabled by default. It should not be more verbose than the default if the code is correct: new
warnings are only emitted when an issue is detected. Effect of the developer mode:
– Add default warning filter, as -W default.
– Install debug hooks on memory allocators: see the PyMem_SetupDebugHooks() C function.
– Enable the faulthandler module to dump the Python traceback on a crash.
– Enable asyncio debug mode.
– Set the dev_mode attribute of sys.flags to True
– io.IOBase析构函数记录 close()异常。

• -X utf8 enables UTF-8 mode for operating system interfaces, overriding the default locale-aware mode.
-X utf8=0 explicitly disables UTF-8 mode (even when it would otherwise activate automatically). See
PYTHONUTF8 for more details.

• -X pycache_prefix=PATH允许将 .pyc文件写入以给定目录为根的并行树，而不是代码树。
另见 PYTHONPYCACHEPREFIX 。

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
3.2版更變: The -X option was added.
3.3版新加入: The -X faulthandler option.
3.4版新加入: The -X showrefcount and -X tracemalloc options.
3.6版新加入: The -X showalloccount option.
3.7版新加入: The -X importtime, -X dev and -X utf8 options.
3.8 版新加入: -X pycache_prefix 选项。-X dev 选项现在在 io.IOBase 析构函数中记录
close()异常。

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage,發� 3.8.0rc1

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/lib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.
When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To specify
different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os.pathsep (e.g. colons on Unix or semicolons onWindows). Non-existent directories
are silently ignored.
In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.
The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.
An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed
so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook__ in this file.
使用 filename参数会引发 auditing event cpython.run_startup。

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the -O option. If set to an integer, it is equivalent
to specifying -O multiple times.

PYTHONBREAKPOINT
If this is set, it names a callable using dotted-path notation. The module containing the callable will be imported and
then the callable will be run by the default implementation of sys.breakpointhook() which itself is called
by built-in breakpoint(). If not set, or set to the empty string, it is equivalent to the value ”pdb.set_trace”.
Setting this to the string ”0” causes the default implementation of sys.breakpointhook() to do nothing but
return immediately.
3.7版新加入.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the -d option. If set to an integer, it is equivalent
to specifying -d multiple times.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -i option.
This variable can also be modified by Python code using os.environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the -u option.

1.2. Environment variables 9

Python Setup and Usage,發� 3.8.0rc1

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the -v option. If set to an integer, it is equivalent
to specifying -v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and OS X.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write .pyc files on the import of source modules. This is
equivalent to specifying the -B option.

PYTHONPYCACHEPREFIX
如果设置了此选项，Python 将在镜像目录树中的此路径中写入 .pyc 文件，而不是源树中的
__pycache__目录中。这相当于指定-X pycache_prefix=PATH选项。

3.8版新加入.
PYTHONHASHSEED

如果此变量未设置或设为 random，将使用一个随机值作为 str和 bytes对象哈希运算的种子。
If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.
Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.
The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.
3.2.3版新加入.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the :errorhandler parts are optional
and have the same meaning as in str.encode().
For stderr, the :errorhandler part is ignored; the handler will always be 'backslashreplace'.
3.4版更變: The encodingname part is now optional.
3.6版更變: On Windows, the encoding specified by this variable is ignored for interactive console buffers unless
PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the standard streams are
not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directory to sys.path.
也參考:
PEP 370 – Per user site-packages directory

PYTHONUSERBASE
Defines the user base directory, which is used to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.
也參考:
PEP 370 – Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv[0] will be set to its value instead of the value got through the C
runtime. Only works on Mac OS X.

10 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage,發� 3.8.0rc1

PYTHONWARNINGS
This is equivalent to the -W option. If set to a comma separated string, it is equivalent to specifying -W multiple
times, with filters later in the list taking precedence over those earlier in the list.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):

PYTHONWARNINGS=default # Warn once per call location
PYTHONWARNINGS=error # Convert to exceptions
PYTHONWARNINGS=always # Warn every time
PYTHONWARNINGS=module # Warn once per calling module
PYTHONWARNINGS=once # Warn once per Python process
PYTHONWARNINGS=ignore # Never warn

See warning-filter and describing-warning-filters for more details.
PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable() is called at startup: install
a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python traceback. This
is equivalent to -X faulthandler option.
3.3版新加入.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of
a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the tracemalloc.
start() for more information.
3.4版新加入.

PYTHONPROFILEIMPORTTIME
If this environment variable is set to a non-empty string, Python will show how long each import takes. This is
exactly equivalent to setting -X importtime on the command line.
3.7版新加入.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.
3.4版新加入.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.
Set the family of memory allocators used by Python:

• default: use the default memory allocators.
• malloc: use the malloc() function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

• pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ domains
and use the malloc() function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:
• debug: install debug hooks on top of the default memory allocators.
• malloc_debug: same as malloc but also install debug hooks
• pymalloc_debug: same as pymalloc but also install debug hooks

1.2. Environment variables 11

Python Setup and Usage,發� 3.8.0rc1

See the default memory allocators and the PyMem_SetupDebugHooks() function (install debug hooks on
Python memory allocators).
3.7版更變: Added the "default" allocator.
3.6版新加入.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new pymalloc
object arena is created, and on shutdown.
This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc() allocator
of the C library, or if Python is configured without pymalloc support.
3.6版更變: This variable can now also be used on Python compiled in release mode. It now has no effect if set to
an empty string.

PYTHONLEGACYWINDOWSFSENCODING
If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6 values of
’mbcs’ and ’replace’, respectively. Otherwise, the new defaults ’utf-8’ and ’surrogatepass’ are used.
This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().
可用性: Windows。
3.6版新加入: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO
If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.
This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.
可用性: Windows。
3.6版新加入.

PYTHONCOERCECLOCALE
If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based C
and POSIX locales to a more capable UTF-8 based alternative.
If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else the
explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales for the
LC_CTYPE category in the order listed before loading the interpreter runtime:

• C.UTF-8

• C.utf8

• UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set ac-
cordingly in the current process environment before the Python runtime is initialized. This ensures that in addition
to being seen by both the interpreter itself and other locale-aware components running in the same process (such
as the GNU readline library), the updated setting is also seen in subprocesses (regardless of whether or not
those processes are running a Python interpreter), as well as in operations that query the environment rather than
the current C locale (such as Python’s own locale.getdefaultlocale()).
Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically enables
the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues to use
backslashreplace as it does in any other locale). This stream handling behavior can be overridden using
PYTHONIOENCODING as usual.

12 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0529

Python Setup and Usage,發� 3.8.0rc1

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning messages
on stderr if either the locale coercion activates, or else if a locale thatwould have triggered coercion is still active
when the Python runtime is initialized.
Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale, PYTHONUTF8
will still activate by default in legacy ASCII-based locales. Both features must be disabled in order to force the
interpreter to use ASCII instead of UTF-8 for system interfaces.
可用性: *nix。
3.7版新加入: See PEP 538 for more details.

PYTHONDEVMODE
If this environment variable is set to a non-empty string, enable the CPython ”development mode”. See the -X
dev option.
3.7版新加入.

PYTHONUTF8
If set to 1, enables the interpreter’s UTF-8 mode, where UTF-8 is used as the text encoding for system interfaces,
regardless of the current locale setting.
This means that:

• sys.getfilesystemencoding() returns 'UTF-8' (the locale encoding is ignored).
• locale.getpreferredencoding() returns 'UTF-8' (the locale encoding is ignored, and the func-
tion’s do_setlocale parameter has no effect).

• sys.stdin, sys.stdout, and sys.stderr all use UTF-8 as their text encoding, with the
surrogateescape error handler being enabled for sys.stdin and sys.stdout (sys.stderr
continues to use backslashreplace as it does in the default locale-aware mode)

As a consequence of the changes in those lower level APIs, other higher level APIs also exhibit different default
behaviours:

• Command line arguments, environment variables and filenames are decoded to text using theUTF-8 encoding.
• os.fsdecode() and os.fsencode() use the UTF-8 encoding.
• open(), io.open(), and codecs.open() use the UTF-8 encoding by default. However, they still
use the strict error handler by default so that attempting to open a binary file in text mode is likely to raise an
exception rather than producing nonsense data.

Note that the standard stream settings in UTF-8 mode can be overridden by PYTHONIOENCODING (just as they
can be in the default locale-aware mode).
If set to 0, the interpreter runs in its default locale-aware mode.
Setting any other non-empty string causes an error during interpreter initialisation.
If this environment variable is not set at all, then the interpreter defaults to using the current locale settings, unless
the current locale is identified as a legacy ASCII-based locale (as described for PYTHONCOERCECLOCALE), and
locale coercion is either disabled or fails. In such legacy locales, the interpreter will default to enabling UTF-8
mode unless explicitly instructed not to do so.
Also available as the -X utf8 option.
可用性: *nix。
3.7版新加入: See PEP 540 for more details.

1.2. Environment variables 13

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540

Python Setup and Usage,發� 3.8.0rc1

1.2.1 Debug-mode variables

设置这些变量只会在 Python的调试版本中产生影响。
PYTHONTHREADDEBUG

If set, Python will print threading debug info.
需要使用 --with-pydebug构建选项配置 Python。

PYTHONDUMPREFS
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.
需要使用 --with-trace-refs构建选项配置 Python。

14 Chapter 1. Command line and environment

CHAPTER2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.
In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:
也參考:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html

for Fedora users
http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

• FreeBSD users, to add the package use:

pkg install python3

• OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture␣
↪→here>/python-<version>.tgz (continues on next page)

15

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g. pkgutil
-i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)
构建过程由常用命令组成：

./configure
make
make install

特定 Unix平台的配置选项和注意事项通常记录在 Python源代码的根目录下的 README.rst文件中。

警告: make install can overwrite or masquerade the python3 binary. make altinstall is therefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) andexec_prefix
(${exec_prefix}) are installation-dependent and should be interpreted as for GNU software; they may be the same.
For example, on most Linux systems, the default for both is /usr.

File/directory Meaning
exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended locations of the directories containing the standard
modules.

prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the in-
terpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

16 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.8/README.rst

Python Setup and Usage,發� 3.8.0rc1

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

#!/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.
To use shell commands in your Python scripts, look at the subprocess module.

2.4. Miscellaneous 17

Python Setup and Usage,發� 3.8.0rc1

18 Chapter 2. Using Python on Unix platforms

CHAPTER3

在Windows上使用 Python

This document aims to give an overview of Windows-specific behaviour you should know about when using Python on
Microsoft Windows.
Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To make
Python available, the CPython team has compiled Windows installers (MSI packages) with every release for many years.
These installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is available
for application-local distributions.
As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform under
extended support. This means that Python 3.8 supports Windows Vista and newer. If you require Windows XP support
then please install Python 3.4.
Windows提供了许多不同的安装程序，每个安装程序都有一定的优点和缺点。
完整安装程序内含所有组件，对于使用 Python进行任何类型项目的开发人员而言，它是最佳选择。
Microsoft Store包是一个简单的 Python安装，适用于运行脚本和包，以及使用 IDLE或其他开发环境。它需要
Windows 10，但可以安全地安装而不会破坏其他程序。它还提供了许多方便的命令来启动 Python及其工具。
nuget.org安装包是用于持续集成系统的轻量级安装。它可用于构建 Python包或运行脚本，但不可更新且没
有用户界面工具。

可嵌入的包是 Python的最小安装包，适合嵌入到更大的应用程序中。

3.1 完整安装程序

3.1.1 安装步骤

Four Python 3.8 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter. The
web installer is a small initial download, and it will automatically download the required components as necessary. The
offline installer includes the components necessary for a default installation and only requires an internet connection for
optional features. See當安裝時不下載 for other ways to avoid downloading during installation.

19

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011

Python Setup and Usage,發� 3.8.0rc1

After starting the installer, one of two options may be selected:

如果你選擇「馬上安裝」：

• You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

• Python will be installed into your user directory
• The Python Launcher for Windows will be installed according to the option at the bottom of the first page
• The standard library, test suite, launcher and pip will be installed
• 如果選擇，安裝目�將被加入到你的 PATH

• 安裝捷徑將只能被目前使用者所看見
選擇「客�化安裝」將允許你選擇所需的項目進行安裝，安裝位置與其他選擇或安裝後的所需進行的動作。
你將需要使用此選項「除錯特徵」或「二進位方式」進行安裝。

To perform an all-users installation, you should select ”Customize installation”. In this case:
• You may be required to provide administrative credentials or approval
• Python will be installed into the Program Files directory
• The Python Launcher for Windows will be installed into the Windows directory
• Optional features may be selected during installation
• The standard library can be pre-compiled to bytecode
• If selected, the install directory will be added to the system PATH

• 捷徑將被所有使用者所見

20 Chapter 3. 在Windows上使用 Python

Python Setup and Usage,發� 3.8.0rc1

3.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not resolve
and errors would result.
In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your
administrator will need to activate the ”Enable Win32 long paths” group policy, or set the registry value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem@LongPathsEnabled
to 1.
This allows the open() function, the os module and most other path functionality to accept and return paths longer
than 260 characters when using strings. (Use of bytes as paths is deprecated on Windows, and this feature is not available
when using bytes.)
After changing the above option, no further configuration is required.
3.6版更變: Support for long paths was enabled in Python.

3.1.3 安裝排除使用者介面

All of the options available in the installer UI can also be specified from the command line, allowing scripted installers to
replicate an installation on many machines without user interaction. These options may also be set without suppressing
the UI in order to change some of the defaults.
To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user interaction
but still display progress and errors, pass the/passive option. The/uninstall optionmay be passed to immediately
begin removing Python - no prompt will be displayed.
All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature, or
a path. The full list of available options is shown below.

3.1. 完整安装程序 21

Python Setup and Usage,發� 3.8.0rc1

Name 描述 預設
InstallAl-
lUsers

Perform a system-wide instal-
lation.

0

TargetDir 安裝目� Selected based on InstallAllUsers
DefaultAl-
lUsersTar-
getDir

The default installation direc-
tory for all-user installs

%ProgramFiles%\Python X.Y or
%ProgramFiles(x86)%\Python X.Y

Default-
Just-
ForMeTar-
getDir

預設安裝目�給只有給我
安裝方式

%LocalAppData%\Programs\PythonXY 或
%LocalAppData%\Programs\PythonXY-32 或
%LocalAppData%\Programs\PythonXY-64

Default-
Custom-
TargetDir

The default custom install di-
rectory displayed in the UI

(empty)

Associate-
Files

當執行程序也被安裝時創
造檔案關聯

1

Com-
pileAll

編譯所有 .py 檔案� .
pyc。

0

Prepend-
Path

Add install and Scripts direc-
tories to PATH and .PY to
PATHEXT

0

Shortcuts Create shortcuts for the in-
terpreter, documentation and
IDLE if installed.

1

In-
clude_doc

安裝 Python文件 1

In-
clude_debug

Install debug binaries 0

In-
clude_dev

Install developer headers and
libraries

1

In-
clude_exe

Install python.exe and re-
lated files

1

In-
clude_launcher

Install Python Launcher for
Windows.

1

Install-
Launcher-
AllUsers

Installs Python Launcher for
Windows for all users.

1

Include_lib Install standard library and ex-
tension modules

1

In-
clude_pip

Install bundled pip and setup-
tools

1

In-
clude_symbols

Install debugging symbols
(*.pdb)

0

In-
clude_tcltk

Install Tcl/Tk support and
IDLE

1

In-
clude_test

Install standard library test
suite

1

In-
clude_tools

Install utility scripts 1

LauncherOnly Only installs the launcher.
This will override most other
options.

0

SimpleIn-
stall

Disable most install UI 0

SimpleIn-
stallDe-
scription

A custom message to display
when the simplified install UI
is used.

(empty)22 Chapter 3. 在Windows上使用 Python

Python Setup and Usage,發� 3.8.0rc1

For example, to silently install a default, system-wide Python installation, you could use the following command (from an
elevated command prompt):

python-3.8.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.8.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimpleInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there is
also a system-wide installation that included the launcher.)
The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if possible.
Values provided as element text are always left as strings. This example file sets the same options as the previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />
<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

</Options>

3.1.4 當安裝時不下載

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download may
be bigger than required, but where a large number of installations are going to be performed it is very useful to have a
locally cached copy.
从命令提示符执行以下命令以下载所有可能的必需文件。请记住将 python-3.8.0.exe替换为安装程序的
实际名称，并在自己的目录中创建布局，以避免同名的文件之间发生冲突。

python-3.8.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

3.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part of
Windows. Select the Python entry and choose ”Uninstall/Change” to open the installer in maintenance mode.
”Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install or
remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you will
need to remove and then reinstall Python completely.
”Repair” will verify all the files that should be installed using the current settings and replace any that have been removed
or modified.
”Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own entry
in Programs and Features.

3.1. 完整安装程序 23

Python Setup and Usage,發� 3.8.0rc1

3.2 Microsoft Store包

3.7.2版新加入.
Microsoft Store包是一个易于安装的 Python解释器，主要用于交互式使用，例如，学生。
要安装软件包，请确保您拥有最新的Windows 10更新，并在Microsoft Store应用程序中搜索”Python 3.8”。确
保您选择的应用程序由 Python Software Foundation发布并安装。

警告: Python将始终在Microsoft Store上免费提供。如果要求您付款，则表示您没有选择正确的包。

安装完成后，可以在开始菜单中找到它来启动 Python。或者可以在命令提示符或 PowerShell 会话中输入
python来启动。此外可以输入 pip或 idle来使用 pip和 IDLE。IDLE也在开始菜单中。
所有这三个命令也可以使用版本号后缀，例如，python3.exe和 python3.x.exe以及 python.exe（其
中 3.x是您要启动的特定版本，例如 3.8）。在设置--> 主页--> 应用和功能页面中，点选管理可选功能，
选择与每个命令关联的 python版本。建议确保 pip和 idle与选择的 python版本一致。

可以使用 python -m venv创建虚拟环境并激活并正常使用。

如果你已经安装了另一个版本的 Python并将它添加到你的 PATH变量中，那么它将作为 python.exe而不
是来自Microsoft Store的那个。要访问新安装，请使用 python3.exe或 python3.x.exe。

要删除 Python，请打开“设置”并使用“应用程序和功能”，或者在“开始”中找到 Python，然后右键单击以
选择“卸载”。卸载将删除该已安装 Python程序中的所有软件包，但不会删除任何虚拟环境

3.2.1 已知的问题

目前，py.exe启动程序在从Microsoft Store安装时不能用于启动 Python。
由于Microsoft Store应用程序的限制，Python脚本可能无法对共享位置（如 TEMP）和注册表进行完全写入
访问。相反，它将写入私人副本。如果脚本必须修改共享位置，则需要安装完整安装程序。

3.3 nuget.org安装包

3.5.2版新加入.
nuget.org是一个精简的 Python环境，用于在没有全局安装 Python的系统的持续集成和构建。虽然 Nuget是
“.NET的包管理器”，但是对于包含构建时工具的包来说，它也可以很好地工作。
访问 nuget.org获取有关使用 nuget的最新信息。下面的摘要对 Python开发人员来说已经足够了。
nuget.exe命令行工具可以直接从 https://aka.ms/nugetclidl下载，例如，使用 curl或 PowerShell。
使用该工具安装 64位或 32位最新版本的 Python:

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

要选择特定版本，请添加 -Version 3.x.y。输出目录可以从 .更改，包将安装到子目录中。默认情况
下，子目录的名称与包的名称相同，如果没有 -ExcludeVersion选项，则此名称将包含已安装的特定版
本。子目录里面是一个包含 Python安装的 tools目录:

24 Chapter 3. 在Windows上使用 Python

https://www.nuget.org/

Python Setup and Usage,發� 3.8.0rc1

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

通常，nuget包不可升级，应该平行安装较新版本并使用完整路径引用。或者，手动删除程序包目录并再次
安装。如果在构建之间不保留文件，许多 CI系统将自动执行此操作。
除了 tools目录外，还有一个 build\native目录。它包含一个MSBuild属性文件 python.props，可
以在 C++项目中使用该文件来引用 Python安装。包含这些设置将自动在生成中使用标头和导入库。
nuget.org 上的包信息页是 www.nuget.org/packages/python 对于 64 位版本和 www.nuget.org/packages/pythonx86
表示 32位版本。

3.4 可嵌入的包

3.5版新加入.
The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part of
another application, rather than being directly accessed by end-users.
When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment vari-
ables, system registry settings, and installed packages. The standard library is included as pre-compiled and optimized
.pyc files in a ZIP, and python3.dll, python37.dll, python.exe and pythonw.exe are all provided.
Tcl/tk (including all dependants, such as Idle), pip and the Python documentation are not included.

備�: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the application
installer to provide this. The runtime may have already been installed on a user’s system previously or automatically via
Windows Update, and can be detected by finding ucrtbase.dll in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip to
manage dependencies as for a regular Python installation is not supported with this distribution, though with some care
it may be possible to include and use pip for automatic updates. In general, third-party packages should be treated as
part of the application (”vendoring”) so that the developer can ensure compatibility with newer versions before providing
updates to users.
The two recommended use cases for this distribution are described below.

3.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent it
should be (or conversely, how professional it should appear), there are two options.
Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons can be
customized, company and version information can be specified, and file associations behave properly. In most cases, a
custom launcher should simply be able to call Py_Main with a hard-coded command line.

3.4. 可嵌入的包 25

https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Python Setup and Usage,發� 3.8.0rc1

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or pythonw.
exe with the required command-line arguments. In this case, the application will appear to be Python and not its actual
name, and users may have trouble distinguishing it from other running Python processes or file associations.
With the latter approach, packages should be installed as directories alongside the Python executable to ensure they are
available on the path. With the specialized launcher, packages can be located in other locations as there is an opportunity
to specify the search path before launching the application.

3.4.2 嵌入 Python

Applications written in native code often require some form of scripting language, and the embedded Python distribution
can be used for this purpose. In general, the majority of the application is in native code, and some part will either invoke
python.exe or directly use python3.dll. For either case, extracting the embedded distribution to a subdirectory
of the application installation is sufficient to provide a loadable Python interpreter.
As with the application use, packages can be installed to any location as there is an opportunity to specify search paths
before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded distribution
and a regular installation.

3.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The following
is a list of popular versions and their key features:
ActivePython Installer with multi-platform compatibility, documentation, PyWin32
Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.
Canopy A ”comprehensive Python analysis environment” with editors and other development tools.
WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.
Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

3.6 設定 Python

To run Python conveniently from a command prompt, you might consider changing some default environment variables
in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you, this is only
reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider using the Python
Launcher for Windows.

3.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.
To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.8;%PATH%
C:\>set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib
C:\>python

26 Chapter 3. 在Windows上使用 Python

https://www.activestate.com/activepython/
https://www.anaconda.com/download/
https://www.enthought.com/product/canopy/
https://winpython.github.io/

Python Setup and Usage,發� 3.8.0rc1

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.
Including the variable name within percent signs will expand to the existing value, allowing you to add your new value at
either the start or the end. Modifying PATH by adding the directory containing python.exe to the start is a common
way to ensure the correct version of Python is launched.
To permanently modify the default environment variables, click Start and search for ’edit environment variables’, or open
System properties, Advanced system settings and click the Environment Variables button. In this dialog, you can add or
modify User and System variables. To change System variables, you need non-restricted access to your machine (i.e.
Administrator rights).

備�: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.
The PYTHONPATH variable is used by all versions of Python 2 and Python 3, so you should not permanently configure
this variable unless it only includes code that is compatible with all of your installed Python versions.

也參考:
https://www.microsoft.com/en-us/wdsi/help/folder-variables 環境變數於Windows NT
https://technet.microsoft.com/en-us/library/cc754250.aspx The SET command, for temporarily modifying environ-

ment variables
https://technet.microsoft.com/en-us/library/cc755104.aspx The SETX command, for permanently modifying envi-

ronment variables
https://support.microsoft.com/en-us/help/310519/how-to-manage-environment-variables-in-windows-xp 如

何管理環境變數於Windows XP
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html 設定環境變數－ Louis J. Farrugia

3.6.2 Finding the Python executable

3.5版更變.
Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in the
command prompt. The installer has an option to set that up for you.
On the first page of the installer, an option labelled ”Add Python to PATH” may be selected to have the installer add the
install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type python to
run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with command line options,
see Command line documentation.
If you don’t enable this option at install time, you can always re-run the installer, selectModify, and enable it. Alternatively,
you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need to set your
PATH environment variable to include the directory of your Python installation, delimited by a semicolon from other
entries. An example variable could look like this (assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.8

3.7 Python Launcher for Windows

3.3版新加入.

3.7. Python Launcher for Windows 27

https://www.microsoft.com/en-us/wdsi/help/folder-variables
https://technet.microsoft.com/en-us/library/cc754250.aspx
https://technet.microsoft.com/en-us/library/cc755104.aspx
https://support.microsoft.com/en-us/help/310519/how-to-manage-environment-variables-in-windows-xp
https://www.chem.gla.ac.uk/~louis/software/faq/q1.html

Python Setup and Usage,發� 3.8.0rc1

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It allows
scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute that
version.
Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-user
installations over system-wide ones, and orders by language version rather than using the most recently installed version.
启动器最初是在 PEP 397中指定的。

3.7.1 開始

From the command-line

3.6版更變.
System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible with
all available versions of Python, so it does not matter which version is installed. To check that the launcher is available,
execute the following command in Command Prompt:

py

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any additional
command-line arguments specified will be sent directly to Python.
If you have multiple versions of Python installed (e.g., 2.7 and 3.8) you will have noticed that Python 3.8 was started - to
launch Python 2.7, try the command:

py -2.7

If you want the latest version of Python 2.x you have installed, try the command:

py -2

You should find the latest version of Python 2.x starts.
If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

Per-user installations of Python do not add the launcher to PATH unless the option was selected on installation.

�擬環境（Virtual environment）

3.5版新加入.
If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
libraryvenvmodule or the externalvirtualenv tool) active, the launcher will run the virtual environment’s interpreter
rather than the global one. To run the global interpreter, either deactivate the virtual environment, or explicitly specify
the global Python version.

From a script

Let’s create a test Python script - create a file called hello.py with the following contents

28 Chapter 3. 在Windows上使用 Python

https://www.python.org/dev/peps/pep-0397

Python Setup and Usage,發� 3.8.0rc1

#! python
import sys
sys.stdout.write("hello from Python %s\n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line to
be:

#! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line exam-
ples, you can specify a more explicit version qualifier. Assuming you have Python 2.6 installed, try changing the first line
to #! python2.6 and you should find the 2.6 version information printed.
Note that unlike interactive use, a bare ”python” will use the latest version of Python 2.x that you have installed. This is
for backward compatibility and for compatibility with Unix, where the command python typically refers to Python 2.

從檔案關聯

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed. This
means that when you double-click on one of these files from Windows explorer the launcher will be used, and therefore
you can use the same facilities described above to have the script specify the version which should be used.
The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on the
contents of the first line.

3.7.2 Shebang Lines

If the first line of a script file starts with #!, it is known as a ”shebang” line. Linux and other Unix like operating systems
have native support for such lines and they are commonly used on such systems to indicate how a script should be executed.
This launcher allows the same facilities to be used with Python scripts on Windows and the examples above demonstrate
their use.
To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number of
’virtual’ commands to specify which interpreter to use. The supported virtual commands are:

• /usr/bin/env python

• /usr/bin/python

• /usr/local/bin/python‘

• python

For example, if the first line of your script starts with

#! /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script on
Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

3.7. Python Launcher for Windows 29

Python Setup and Usage,發� 3.8.0rc1

任何上述虚拟命令都可以显式指定版本（可以仅为主要版本，也可以为主要版本加次要版本）作为后缀。此
外，可以通过在次要版本之后添加“-32”来请求 32位版本。例如 /usr/bin/python2.7-32将请求使用
32位 python 2.7。
3.7版新加入: 从 python启动程序 3.7开始，可以通过“-64”后缀调用 64位版本。此外，可以指定没有次要
的主要和架构（即 /usr/bin/python3-64）。

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python inter-
preters, this form will search the executable PATH for a Python executable. This corresponds to the behaviour of the
Unix env program, which performs a PATH search.

3.7.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have a
shebang line:

#! /usr/bin/python -v

Then Python will be started with the -v option

3.7.4 Customization

Customization via INI files

启动程序将搜索两个.ini 文件 - 在当前用户的”application data” 目录中搜索 py.ini （即通过使用
CSIDL_LOCAL_APPDATA 调用 Windows 函数 SHGetFolderPath 返回的目录）以及与启动器位于同一
目录中的 py.ini。相同的.ini文件既用于启动器的“控制台”版本（即 py.exe），也用于“windows”版本
（即 pyw.exe）
“应用程序目录”中指定的自定义优先于可执行文件旁边.ini文件的自定义，因此对启动程序旁边的.ini文件
不具有写访问权限的用户可以覆盖该全局.ini文件中的命令。

Customizing default Python versions

在某些情况下，可以在命令中包含版本限定符，以指定命令将使用哪个 Python版本。版本限定符以主版本号
开头，可以选择后跟 (’.’) 和次版本说明符。此外，可以通过添加”-32”或“-64”来指定是请求 32位还是 64
位实现。

For example, a shebang line of #!python has no version qualifier, while #!python3 has a version qualifier which
specifies only a major version.
如果在命令中找不到版本限定符，则可以设置环境变量 PY_PYTHON以指定默认版本限定符。如果未设置，
则默认为”3”。该变量可以指定能通过命令行传递的任何值，比如”3”, ”3.7”, ”3.7-32”或”3.7-64”。（请注意”-64”
选项仅适用于 Python 3.7或更高版本中包含的启动器。）
If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found, the
launcher will enumerate the installed Python versions and use the latest minor release found for the major version, which
is likely, although not guaranteed, to be the most recently installed version in that family.
在安装了相同（major.minor）Python版本的 32位和 64位的 64位Windows上，64位版本将始终是首选。对
于启动程序的 32位和 64位实现都是如此 –这对于启动程序 32位和 64位都是正确的 –如果可用，32位启动
程序将倾向于执行指定版本的 64位 Python安装。这样就可以预测启动器的行为，只知道 PC上安装了哪些
版本，而不考虑它们的安装顺序（即，不知道 32位或 64位版本的 Python和相应的启动器是否是最后安装）。
如上所述，可以在版本说明符上使用可选的“-32”或“-64”后缀来更改此行为。

30 Chapter 3. 在Windows上使用 Python

Python Setup and Usage,發� 3.8.0rc1

Examples:
• If no relevant options are set, the commands python and python2will use the latest Python 2.x version installed
and the command python3 will use the latest Python 3.x installed.

• The commands python3.1 and python2.7will not consult any options at all as the versions are fully specified.
• If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.
• IfPY_PYTHON=3.1-32, the commandpythonwill use the 32-bit implementation of 3.1 whereas the command
python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major version was
specified.)

• If PY_PYTHON=3 and PY_PYTHON3=3.1, the commands python and python3 will both use specifically
3.1

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The section
in the INI file is called [defaults] and the key name will be the same as the environment variables without the leading
PY_ prefix (and note that the key names in the INI file are case insensitive.) The contents of an environment variable will
override things specified in the INI file.
For example:

• Setting PY_PYTHON=3.1 is equivalent to the INI file containing:

[defaults]
python=3.1

• Setting PY_PYTHON=3 and PY_PYTHON3=3.1 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.1

3.7.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic information to
stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow you
to see what versions of Python were located, why a particular version was chosen and the exact command-line used to
execute the target Python.

3.8 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C:\Python\, the default library would reside in C:\Python\Lib\ and third-party modules
should be stored in C:\Python\Lib\site-packages\.
To completely override sys.path, create a ._pth file with the same name as the DLL (python37._pth) or the
executable (python._pth) and specify one line for each path to add to sys.path. The file based on the DLL name
overrides the one based on the executable, which allows paths to be restricted for any program loading the runtime if
desired.
When the file exists, all registry and environment variables are ignored, isolatedmode is enabled, andsite is not imported
unless one line in the file specifies import site. Blank paths and lines starting with # are ignored. Each path may
be absolute or relative to the location of the file. Import statements other than to site are not permitted, and arbitrary
code cannot be specified.

3.8. Finding modules 31

Python Setup and Usage,發� 3.8.0rc1

Note that .pth files (without leading underscore) will be processed normally by the sitemodule when import site
has been specified.
When no ._pth file is found, this is how sys.path is populated on Windows:

• An empty entry is added at the start, which corresponds to the current directory.
• If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added next.
Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from the colon
used in drive identifiers (C:\ etc.).

• Additional ”application paths” can be added in the registry as subkeys of
\SOFTWARE\Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER
and HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU is
typically empty.)

• If the environment variable PYTHONHOME is set, it is assumed as ”Python Home”. Otherwise, the path of the main
Python executable is used to locate a ”landmark file” (either Lib\os.py or pythonXY.zip) to deduce the
”Python Home”. If a Python home is found, the relevant sub-directories added to sys.path (Lib, plat-win,
etc) are based on that folder. Otherwise, the core Python path is constructed from the PythonPath stored in the
registry.

• If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry entries
can be found, a default path with relative entries is used (e.g. .\Lib;.\plat-win, etc).

If a pyvenv.cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

• If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main executable
when deducing the home location.

最終這所有的結果�：

• When running python.exe, or any other .exe in the main Python directory (either an installed version, or di-
rectly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored. Other
”application paths” in the registry are always read.

• When Python is hosted in another .exe (different directory, embedded via COM, etc), the ”Python Home” will not
be deduced, so the core path from the registry is used. Other ”application paths” in the registry are always read.

• If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup) you
get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts with
other installations:

• Include a ._pth file alongside your executable containing the directories to include. This will ignore paths listed
in the registry and environment variables, and also ignore site unless import site is listed.

• If you are loading python3.dll or python37.dll in your own executable, explicitly call Py_SetPath()
or (at least) Py_SetProgramName() before Py_Initialize().

• Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your appli-
cation.

• If you cannot use the previous suggestions (for example, you are a distribution that allows people to run python.
exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note that it will not
be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard library
bundled with your application. Otherwise, your users may experience problems using your application. Note that the first
suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user site-packages.

32 Chapter 3. 在Windows上使用 Python

Python Setup and Usage,發� 3.8.0rc1

3.6版更變:
• Adds ._pth file support and removes applocal option from pyvenv.cfg.
• Adds pythonXX.zip as a potential landmark when directly adjacent to the executable.

3.6版後已�用: Modules specified in the registry under Modules (not PythonPath) may be imported
by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Windows in
3.6.0 and earlier, but may need to be explicitly added to sys.meta_path in the future.

3.9 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple of
modules, both in the standard library and external, and snippets exist to use these features.
The Windows-specific standard modules are documented in mswin-specific-services.

3.9.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

• 组件对象模型 (COM)
• Win32 API calls
• 登�檔（Registry）
• 事件日�（Event log）
• Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
也參考:
Win32 How Do I...? by Tim Golden
Python and COM by David and Paul Boddie

3.9.2 cx_Freeze

cx_Freeze is a distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*.exe files). When you have done this, you can distribute your application without requiring your users to
install Python.

3.9.3 WConio

Since Python’s advanced terminal handling layer, curses, is restricted to Unix-like systems, there is a library exclusive
to Windows as well: Windows Console I/O for Python.
WConio is a wrapper for Turbo-C’s CONIO.H, used to create text user interfaces.

3.9. Additional modules 33

https://pypi.org/project/pywin32
https://docs.microsoft.com/en-us/windows/desktop/com/component-object-model--com--portal
https://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html
https://anthony-tuininga.github.io/cx_Freeze/
http://newcenturycomputers.net/projects/wconio.html

Python Setup and Usage,發� 3.8.0rc1

3.10 編譯 Python在Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh checkout.
The source tree contains a build solution and project files for Microsoft Visual Studio 2015, which is the compiler used
to build the official Python releases. These files are in the PCbuild directory.
Check PCbuild/readme.txt for general information on the build process.
For extension modules, consult building-on-windows.
也參考:
Python + Windows + distutils + SWIG + gcc MinGW or ”Creating Python extensions in C/C++ with SWIG and

compiling them with MinGW gcc under Windows” or ”Installing Python extension with distutils and without Mi-
crosoft Visual C++” by Sébastien Sauvage, 2003

MingW – Python扩展

3.11 其他平台

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due to
the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

• Windows CE is still supported.
• The Cygwin installer offers to install the Python interpreter as well (cf. Cygwin package source, Maintainer releases)

See Python for Windows for detailed information about platforms with pre-compiled installers.

34 Chapter 3. 在Windows上使用 Python

https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
http://sebsauvage.net/python/mingw.html
http://www.mingw.org/wiki/FAQ#toc14
https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://cygwin.com/
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
https://www.python.org/downloads/windows/

CHAPTER4

在麥金塔系統使用 Python

Author Bob Savage <bobsavage@mac.com>
Python執行在麥金塔系統的 Mac OS X和執行在其他 Unix平台上原理非常相似，但有一些值得提出的是在
Mac OS X上增加其他額外的功能例如 IDE與套件管理。

4.1 取得和安裝 MacPython

Apple在Mac OS X 10.8預設安裝 Python 2.7。但你也可以到 Python website（https://www.python.org）更新至
最新的 Python 3。Python建立在”通用二進位”上，使 Python能以本地程序的形式運行在使用英特爾微處理
器與 PowerPC麥金塔電腦上。
在安裝後你必須要做幾件事：

• 应用程序文件夹中的 Python 3.8文件夹。在这里可以找到 IDLE，即官方 Python发行版的标准的开
发环境；PythonLauncher，用来处理来自 finder的双击 python脚本；以及“build applet”工具，将 python
脚本打包为系统上的独立应用程序。

• A framework /Library/Frameworks/Python.framework, which includes the Python executable and
libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python.framework and
/usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and are used
by Apple- or third-party software. Remember that if you choose to install a newer Python version from python.org, you
will have two different but functional Python installations on your computer, so it will be important that your paths and
usages are consistent with what you want to do.
IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python you
should start reading the tutorial introduction in that document.
If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from the
Unix shell.

35

mailto:bobsavage@mac.com
https://www.python.org

Python Setup and Usage,發� 3.8.0rc1

4.1.1 如何執行 Python�本

Your best way to get started with Python on Mac OS X is through the IDLE integrated development environment, see
section整合化開發工具 and use the Help menu when the IDE is running.
If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. Mac OS X comes with a number of standard Unix command line editors, vim and emacs among
them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones Software (see http://www.
barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com/). Other
editors include Gvim (http://macvim-dev.github.io/macvim/) and Aquamacs (http://aquamacs.org/).
To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search path.
從 Finder執行你的�本時，你有兩個選項:

• Drag it to PythonLauncher
• Select PythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it. PythonLauncher has various preferences to control how your script is launched.
Option-dragging allows you to change these for one invocation, or use its Preferences menu to change things glob-
ally.

4.1.2 透過使用者圖形介面執行�本

With older versions of Python, there is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead of
python to start such scripts.
对于 Python 3.8，可以使用 python或 pythonw

4.1.3 設定

Python on OS X honors all standard Unix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at startup.
You need to create a file ~/.MacOSX/environment.plist. See Apple’s Technical Document QA1067 for details.
For more information on installation Python packages in MacPython, see section Installing Additional Python Packages.

4.2 整合化開發工具

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
http://www.hashcollision.org/hkn/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
• Packages can be installed via the standard Python distutils mode (python setup.py install).
• Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

36 Chapter 4. 在麥金塔系統使用 Python

http://www.barebones.com/products/bbedit/index.html
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim-dev.github.io/macvim/
http://aquamacs.org/
http://www.hashcollision.org/hkn/python/idle_intro/index.html
https://pip.pypa.io/

Python Setup and Usage,發� 3.8.0rc1

4.4 圖形化使用者介面 (GUI)程式開發於 Mac

有許多建立圖形化使用者介面 (GUI)應用程式選項使用 Python於Mac上
PyObjC 是一个 Python到 Apple的 Objective-C/Cocoa框架的绑定，这是大多数现代 Mac开发的基础。有关
PyObjC的信息，请访问 https://pypi.org/project/pyobjc/。
The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An Aqua-
native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed from https:
//www.activestate.com; it can also be built from source.
wxPython is another popular cross-platform GUI toolkit that runs natively on Mac OS X. Packages and documentation
are available from https://www.wxpython.org.
PyQt is another popular cross-platform GUI toolkit that runs natively on Mac OS X. More information can be found at
https://riverbankcomputing.com/software/pyqt/intro.

4.5 貢獻 Python應用程式於 Mac

The ”Build Applet” tool that is placed in the MacPython 3.6 folder is fine for packaging small Python scripts on your own
machine to run as a standard Mac application. This tool, however, is not robust enough to distribute Python applications
to other users.
The standard tool for deploying standalone Python applications on the Mac is py2app. More information on installing
and using py2app can be found at http://undefined.org/python/#py2app.

4.6 其他資源

MacPython郵件清單對於 Python使用者和開發者於Mac上是一個極佳的支援資源
https://www.python.org/community/sigs/current/pythonmac-sig/
其他好用的資源是MacPython wiki:
https://wiki.python.org/moin/MacPython

4.4. 圖形化使用者介面 (GUI)程式開發於 Mac 37

https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.activestate.com
https://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro
http://undefined.org/python/#py2app
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage,發� 3.8.0rc1

38 Chapter 4. 在麥金塔系統使用 Python

CHAPTER5

编辑器和集成开发环境

有很多支持 Python编程语言的集成开发环境。大多数编辑器和集成开发环境支持语法高亮，调试工具和 PEP
8检查。
请访问 Python Editors和 Integrated Development Environments以获取完整列表。

39

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage,發� 3.8.0rc1

40 Chapter 5. 编辑器和集成开发环境

APPENDIXA

Glossary

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... 可以是指：

• 交互式终端中输入特殊代码行时默认的 Python提示符，包括：缩进的代码块，成对的分隔符之内
（圆括号、方括号、花括号或三重引号），或是指定一个装饰器之后。

• Ellipsis内置常量。

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

41

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage,發� 3.8.0rc1

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.
此术语通常是指异步生成器函数，但在某些情况下则可能是指异步生成器迭代器。如果需要清楚表达
具体含义，请使用全称以避免歧义。

An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.
此对象属于asynchronous iterator，当使用 __anext__()方法调用时会返回一个可等待对象来执行异步
生成器函数的代码直到下一个 yield表达式。

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode

('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like

42 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Setup and Usage,發� 3.8.0rc1

objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as ”read-write bytes-
like objects”. Examplemutable buffer objects includebytearray and amemoryview of abytearray. Other
operations require the binary data to be stored in immutable objects (”read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This ”intermediate language” is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable –上下文变量 一种根据其所属的上下文可以具有不同的值的变量。这类似于在线程局部存
储中每个执行线程可以具有不同的变量值。不过，对于上下文变量来说，一个执行线程中可能会有多
个上下文，而上下文变量的主要用途是对并发异步任务中变量进行追踪。参见 contextvars。

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine 协程是子例程的更一般形式。子例程可以在某一点进入并在另一点退出。协程则可以在许多不同
的点上进入、退出和恢复。它们可通过 async def语句来实现。参见 PEP 492。

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

43

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Setup and Usage,發� 3.8.0rc1

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called dic-
tionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression 可以求出某个值的语法单元。换句话说，一个表达式就是表达元素例如字面值、名称、属性访问、
运算符或函数调用的汇总，它们最终都会返回一个值。与许多其他语言不同，并非所有语言构件都是
表达式。还存在不能被用作表达式的statement，例如 while。赋值也是属于语句而非表达式。

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called ”f-strings” which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-

source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

44 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498

Python Setup and Usage,發� 3.8.0rc1

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.
函数标注通常用于类型提示：例如以下函数预期接受两个 int参数并预期返回一个 int值:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.
By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression 返回一个迭代器的表达式。它看起来很像普通表达式后面带有定义了一个循环变量、范
围的 for子句，以及一个可选的 if子句。以下复合表达式会为外层函数生成一系列值:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

45

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Setup and Usage,發� 3.8.0rc1

generic function A function composed ofmultiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical
built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded bymulti-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a ”free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
大多数 Python中的不可变内置对象都是可哈希的；可变容器（例如列表或字典）都不可哈希；不可变
容器（例如元组和 frozenset）仅当它们的元素均为可哈希时才是可哈希的。用户定义类的实例对象默
认是可哈希的。它们在比较时一定不相同（除非是与自己比较），它们的哈希值的生成是基于它们的
id()。

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the

46 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0443

Python Setup and Usage,發� 3.8.0rc1

garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), ...).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ”the looking”
and ”the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list

47

Python Setup and Usage,發� 3.8.0rc1

of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method –魔术方法 special method的非正式同义词。

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple 术语“具名元组”可用于任何继承自元组，并且其中的可索引元素还能使用名称属性来访问的

类型或类。这样的类型或类还可能拥有其他特性。

有些内置类型属于具名元组，包括 time.localtime() 和 os.stat() 的返回值。另一个例子是
sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

有些具名元组是内置类型（例如上面的例子）。此外，具名元组还可通过常规类定义从tuple继承并定义
名称字段的方式来创建。这样的类可以手工编写，或者使用工厂函数 collections.namedtuple()
创建。后一种方式还会添加一些手工编写或内置具名元组所没有的额外方法。

48 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage,發� 3.8.0rc1

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

49

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

Python Setup and Usage,發� 3.8.0rc1

path entry A single location on the import path which the path based finder consults to find modules for importing.
path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to

locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object represent-

ing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards

compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a ”solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated ”Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

50 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411

Python Setup and Usage,發� 3.8.0rc1

qualified name A dotted name showing the ”path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a ”block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A codec which encodes Unicode strings to bytes.

51

https://www.python.org/dev/peps/pep-3155

Python Setup and Usage,發� 3.8.0rc1

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe (’).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention
'\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

52 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Setup and Usage,發� 3.8.0rc1

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing ”import this” at the interactive prompt.

53

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Setup and Usage,發� 3.8.0rc1

54 Appendix A. Glossary

APPENDIXB

關於這些�明文件

這些�明文件是透過 Sphinx（一個專� Python�明文件所撰寫的文件處理器）將使用 reStructuredText撰寫
的原始檔轉�而成。

如同 Python自身，透過自願者的努力下�出文件與封裝後自動化執行工具。若想要回報臭蟲，請見 reporting-
bugs頁面，�含相關資訊。我們永遠歡迎新的自願者加入！
致謝：

• Fred L. Drake, Jr.，原始 Python文件工具集的創造者以及一大部份�容的作者。
• 創造 reStructuredText和 Docutils工具組的 Docutils專案；
• Fredrik Lundh先生，Sphinx從他的 Alternative Python Reference計劃中獲得許多的好主意。

B.1 Python文件的貢獻者們

許多人都曾� Python這門語言、Python標準函式庫和 Python�明文件貢獻過。Python所發�的原始碼中含
有部份貢獻者的清單，請見Misc/ACKS。
正因� Python社群的撰寫與貢獻才有這份這�棒的�明文件 –感謝所有貢獻過的人們！

55

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.8/Misc/ACKS

Python Setup and Usage,發� 3.8.0rc1

56 Appendix B. 關於這些�明文件

APPENDIXC

歷史與授權

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see http:
//www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

57

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
http://www.zope.com/
http://www.zope.com/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage,發� 3.8.0rc1

備�: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.8.0rc1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.8.0rc1 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.8.0rc1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.8.0rc1 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.8.0rc1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.8.0rc1.

4. PSF is making Python 3.8.0rc1 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.8.0rc1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.8.0rc1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF

58 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.8.0rc1, OR ANY␣
↪→DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.8.0rc1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 59

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the

(continues on next page)

60 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 61

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors

(continues on next page)

62 Appendix C. 歷史與授權

http://www.wide.ad.jp/

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 63

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,

(continues on next page)

64 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 65

Python Setup and Usage,發� 3.8.0rc1

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c文件包含Marek Majkowski’对 Dan Bernstein的 SipHash24算法的实现。它包含以下声明:

66 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

C.3. Licenses and Acknowledgements for Incorporated Software 67

http://www.netlib.org/fp/

Python Setup and Usage,發� 3.8.0rc1

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

(continues on next page)

68 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 69

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

(continues on next page)

70 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 71

Python Setup and Usage,發� 3.8.0rc1

(繼續上一頁)

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

72 Appendix C. 歷史與授權

Python Setup and Usage,發� 3.8.0rc1

C.3.18 W3C C14N测试套件

test 包（lib/test/xmltestdata/c14n-20/）中的 C14N2.0 测试套件来源于 W3C 网站 https://www.w3.org/TR/
xml-c14n2-testcases/，并根据 BSD许可证（三条款版）发行：

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of works must retain the original copyright notice, this list of conditions and the fol-
lowing disclaimer.

• Redistributions in binary form must reproduce the original copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the W3C nor the names of its contributors may be used to endorse or promote
products derived from this work without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAYOUTOFTHEUSEOF THIS SOFTWARE, EVEN IFADVISEDOFTHE POSSIBILITYOF SUCH
DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 73

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Python Setup and Usage,發� 3.8.0rc1

74 Appendix C. 歷史與授權

APPENDIXD

版權宣告

Python和這些文件是：
版权所有 © 2001-2019 Python Software Foundation。保留所有权利。
Copyright © 2000 BeOpen.com保留一切權利。
Copyright © 1995-2000 Corporation for National Research Initiatives保留一切權利。
Copyright © 1991-1995 Stichting Mathematisch Centrum保留一切權利。

完整的授權條款資訊請參見歷史與授權。

75

Python Setup and Usage,發� 3.8.0rc1

76 Appendix D. 版權宣告

索引

Non-alphabetical
..., 41
-?

命令列選項, 5
2to3, 41
>>>, 41
__future__, 45
__slots__, 51
環境變數

exec_prefix, 16
PATH, 9, 17, 20, 22, 27, 28, 30
PATHEXT, 22
prefix, 16
PY_PYTHON, 30
PYTHON*, 46
PYTHONASYNCIODEBUG, 11
PYTHONBREAKPOINT, 9
PYTHONCASEOK, 10
PYTHONCOERCECLOCALE, 12, 13
PYTHONDEBUG, 6, 9
PYTHONDEVMODE, 13
PYTHONDONTWRITEBYTECODE, 6, 10
PYTHONDUMPREFS, 14
PYTHONEXECUTABLE, 10
PYTHONFAULTHANDLER, 11
PYTHONHASHSEED, 6, 10
PYTHONHOME, 6, 9, 32
PYTHONINSPECT, 6, 9
PYTHONIOENCODING, 10, 12, 13
PYTHONLEGACYWINDOWSFSENCODING, 12
PYTHONLEGACYWINDOWSSTDIO, 10, 12
PYTHONMALLOC, 11, 12
PYTHONMALLOCSTATS, 12
PYTHONNOUSERSITE, 10
PYTHONOPTIMIZE, 6, 9
PYTHONPATH, 6, 9, 27, 32, 36
PYTHONPROFILEIMPORTTIME, 8, 11
PYTHONPYCACHEPREFIX, 8, 10
PYTHONSTARTUP, 6, 9

PYTHONTHREADDEBUG, 14
PYTHONTRACEMALLOC, 11
PYTHONUNBUFFERED, 7, 9
PYTHONUSERBASE, 10
PYTHONUTF8, 8, 13
PYTHONVERBOSE, 7, 9
PYTHONWARNINGS, 7, 10

A
abstract base class, 41
annotation, 41
argument, 41
asynchronous context manager, 42
asynchronous generator, 42
asynchronous generator iterator, 42
asynchronous iterable, 42
asynchronous iterator, 42
attribute, 42
awaitable, 42

B
-B

命令列選項, 5
-b

命令列選項, 5
BDFL, 42
binary file, 42
bytecode, 43
bytes-like object, 42

C
-c <command>

命令列選項, 4
C-contiguous, 43
--check-hash-based-pycs

default|always|never
命令列選項, 6

class, 43
class variable, 43
coercion, 43

77

Python Setup and Usage,發� 3.8.0rc1

complex number, 43
context manager, 43
context variable -- 上下文变量, 43
contiguous, 43
coroutine, 43
coroutine function, 43
CPython, 43

D
-d

命令列選項, 6
decorator, 43
descriptor, 44
dictionary, 44
dictionary view, 44
docstring, 44
duck-typing, 44

E
-E

命令列選項, 6
EAFP, 44
exec_prefix, 16
expression, 44
extension module, 44

F
file object, 44
file-like object, 45
finder, 45
floor division, 45
Fortran contiguous, 43
f-string, 44
function, 45
function annotation, 45

G
garbage collection, 45
generator, 45
generator expression, 45
generator iterator, 45
generic function, 46
GIL, 46
global interpreter lock, 46

H
-h

命令列選項, 5
hashable, 46
hash-based pyc, 46
--help

命令列選項, 5

I
-I

命令列選項, 6
-i

命令列選項, 6
IDLE, 46
immutable, 46
import path, 46
importer, 46
importing, 46
interactive, 46
interpreted, 46
interpreter shutdown, 46
iterable, 47
iterator, 47

J
-J

命令列選項, 8

K
key function, 47
keyword argument, 47

L
lambda, 47
LBYL, 47
list, 47
list comprehension, 47
loader, 48

M
-m <module-name>

命令列選項, 4
magic

method, 48
magic method -- 魔术方法, 48
mapping, 48
meta path finder, 48
metaclass, 48
method, 48

magic, 48
special, 51

method resolution order, 48
module, 48
module spec, 48
MRO, 48
mutable, 48

N
named tuple, 48
namespace, 49
namespace package, 49

78 索引

Python Setup and Usage,發� 3.8.0rc1

nested scope, 49
new-style class, 49

O
-O

命令列選項, 6
object, 49
-OO

命令列選項, 6

P
package, 49
parameter, 49
PATH, 9, 17, 20, 22, 27, 28, 30
path based finder, 50
path entry, 50
path entry finder, 50
path entry hook, 50
PATHEXT, 22
path-like object, 50
PEP, 50
portion, 50
positional argument, 50
prefix, 16
provisional API, 50
provisional package, 50
PY_PYTHON, 30
Python 3000, 50
Python Enhancement Proposals

PEP 1, 50
PEP 8, 39
PEP 11, 19, 34
PEP 238, 45
PEP 278, 52
PEP 302, 45, 48
PEP 338, 4
PEP 343, 43
PEP 362, 42, 49
PEP 370, 7, 10
PEP 397, 28
PEP 411, 50
PEP 420, 45, 49, 50
PEP 443, 46
PEP 451, 45
PEP 484, 41, 45, 52, 53
PEP 488, 6
PEP 492, 42, 43
PEP 498, 44
PEP 519, 50
PEP 525, 42
PEP 526, 41, 53
PEP 529, 12
PEP 538, 13
PEP 540, 13

PEP 3116, 52
PEP 3155, 51

PYTHON*, 46
PYTHONCOERCECLOCALE, 13
PYTHONDEBUG, 6
PYTHONDONTWRITEBYTECODE, 6
PYTHONHASHSEED, 6, 10
PYTHONHOME, 6, 9, 32
Pythonic, 50
PYTHONINSPECT, 6
PYTHONIOENCODING, 12, 13
PYTHONLEGACYWINDOWSSTDIO, 10
PYTHONMALLOC, 12
PYTHONOPTIMIZE, 6
PYTHONPATH, 6, 9, 27, 32, 36
PYTHONPROFILEIMPORTTIME, 8
PYTHONPYCACHEPREFIX, 8
PYTHONSTARTUP, 6
PYTHONUNBUFFERED, 7
PYTHONUTF8, 8, 13
PYTHONVERBOSE, 7
PYTHONWARNINGS, 7

Q
-q

命令列選項, 6
qualified name, 51

R
-R

命令列選項, 6
reference count, 51
regular package, 51

S
-S

命令列選項, 7
-s

命令列選項, 7
sequence, 51
single dispatch, 51
slice, 51
special

method, 51
special method, 51
statement, 51

T
text encoding, 51
text file, 52
triple-quoted string, 52
type, 52
type alias, 52
type hint, 52

索引 79

Python Setup and Usage,發� 3.8.0rc1

U
-u

命令列選項, 7
universal newlines, 52

V
-V

命令列選項, 5
-v

命令列選項, 7
variable annotation, 52
命令列選項

-?, 5
-B, 5
-b, 5
-c <command>, 4
--check-hash-based-pycs

default|always|never, 6
-d, 6
-E, 6
-h, 5
--help, 5
-I, 6
-i, 6
-J, 8
-m <module-name>, 4
-O, 6
-OO, 6
-q, 6
-R, 6
-S, 7
-s, 7
-u, 7
-V, 5
-v, 7
--version, 5
-W arg, 7
-X, 7
-x, 7

--version
命令列選項, 5

virtual environment, 53
virtual machine, 53

W
-W arg

命令列選項, 7

X
-X

命令列選項, 7
-x

命令列選項, 7

Z
Zen of Python, 53

80 索引

	Command line and environment
	Command line
	Environment variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	Building Python
	Python-related paths and files
	Miscellaneous

	在 Windows 上使用 Python
	完整安装程序
	Microsoft Store包
	nuget.org 安装包
	可嵌入的包
	Alternative bundles
	設定 Python
	Python Launcher for Windows
	Finding modules
	Additional modules
	編譯 Python 在 Windows
	其他平台

	在麥金塔系統使用Python
	取得和安裝MacPython
	整合化開發工具
	Installing Additional Python Packages
	圖形化使用者介面(GUI) 程式開發於Mac
	貢獻Python應用程式於 Mac
	其他資源

	编辑器和集成开发环境
	Glossary
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	版權宣告
	索引

