The Python/C API
(T 3.8.0b1

Guido van Rossum
and the Python development team

7 A 04, 2019

Python Software Foundation
Email: docs@python.org

Contents

fiigr 3
I.1 Codingstandards L e e e e e e 3
1.2 Include Files e e 3
1.3 Useful macros 0 o e e e e e e e 4
1.4 Objects, Types and Reference Counts vttt 5
I1.5 EXCEPUONS . . . o v i ot e e e e e e e e e e e e e e e e e 9
1.6 #XAZUPython e 10
1.7 Debugging Builds e 11
Stable Application Binary Interface 13
The Very High Level Layer 15
SR 21
fBilshg 23
5.1 Printingand clearing e e e e e e e e e 23
5.2 Raising exceptions e e e e 24
5.3 Issuingwarningsol e e e 26
54 Querying the error indicator Lo e e e 27
5.5 SignalHandling L e e e e e e e 29
5.6 Exception Classes o v v i i e e e e e e e e e e e e e e 29
5.7 Exception Objects e e e e e 30
5.8 Unicode Exception Objects e 30
5.9 Recursion Control L e 31
5.10 Standard EXCEptions e e e e e e e e e e e e e e e e 32
5.11 Standard Warning Categories v v v v v i e e e e e e e e e e e e e e e e e e 34
TH 35
6.1 MEERBTE .. 35
6.2 FREEEIU . . . 37
6.3 FTEE (Process) FEMHl . . o o e 39
6.4 FEABAL 39
6.5 Datamarshalling support L. e 43
6.6 Parsing arguments and building values Lo 44
6.7 FFEREEERERIL . . 51
6.8 Reflection L e 53

10

11

6.9 Codec registry and support functions i e e e e e e e e e e e

R ke

7.1 Object Protocol e e
7.2 Number Protocol e e e e e
7.3 Sequence Protocol e e e e e e e e e
7.4 Mapping Protocol e e e e e e e e
7.5 Iterator Protocol L e e e e e
7.6 Buffer Protocol e e e e
7.7 Old Buffer Protocol e e e e e e e

Concrete Objects Layer

8.1 Fundamental Objects L e e e e
8.2 Numeric ODJECtS o v o o e e e e e e e e e e e e e e e
8.3 Sequence ODJECTS v v v v i e e e e e e e e e e e e e e e
84 Container ObJECtS v v v v i e e e e e e e e e e e e e e e e e

8.5 BRIUMIME . .
8.6 Other Objects o o o e e e e e e

Initialization, Finalization, and Threads

9.1 Before Python Initialization e
9.2 Global configuration variables e
9.3 Initializing and finalizing the interpreter o e e e e e e e e
9.4 Process-wide parameters i e
9.5 Thread State and the Global Interpreter Lock
9.6 Sub-interpreter SUpport L. e e e e e e e e e e
9.7 Asynchronous Notifications« . i e e e e
9.8 Profilingand Tracing L e e e e e e
9.9 Advanced Debugger Support L e e e e e
9.10 Thread Local Storage SUppOrt v v v v i i e e e e e e e e e e e e e e e

Python Initialization Configuration

10.1 PyWideStringLiist e e e e e e e e e
10.2 PyStatus o o o e e e e e e e e e e e e e e
103 PyPreConfig e
10.4 Preinitialization with PyPreConfig L
10.5 PyConfig o o o e e e
10.6 Initialization with PyConfig e e e
10.7 TIsolated Configuration o v v i i e e e e e e e e e e e e
10.8 Python Configuration L e
10.9 Path Configuration e
10.10 Py_RunMain() o oo e e e e
10.11 Multi-Phase Initialization Private Provisional APT

e TR A Bl

0 P
11.2 Raw Memory Interface 0 e e e e e e
11.3 Memory Interface e e e e e e
11.4 Objectallocators o i e e e e e e
11.5 Default Memory Allocators o o i i e e e e e e e e e e e
11.6 Customize Memory Allocators it e e e
11.7 The pymalloc allocator o v i i e e e e e e e e e e e e e e
11.8 tracemalloc C APT e
11.9 Examples o o e e e e e e e e e e

57
57
63
66
67
68
69
75

77
77
80
86
111
115
119

137
137
138
140
141
144
149
150
151
152
152

155
156
156
158
159
160
164
165
166
167
168
168

12 Object Implementation Support
12.1 Allocating Objectsonthe Heap
122 @EHAWEER ...
123 TypeObjects o
12.4 Number Object Structures
12.5 Mapping Object Structures
12.6 Sequence Object Structures
12.7 Buffer Object Structures
12.8 Async Object Structures
12.9 Slot Type typedefs
1210 Examples oL
12.11 Supporting Cyclic Garbage Collection

13 API and ABI Versioning
A Glossary

B [t ig se[EIW] Sk
B.1 Python SCHFRYERREM o o oo

C Ry BLEZHE

C.1 Historyof thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D AR Y

#51

181
181
182
186
210
212
213
213
214
215
217
219

221

223

237
237

239
239
240
243

257

259

The Python/C API, £[F] 3.8.0b1

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

Contents 1

The Python/C API, £[F] 3.8.0b1

2 Contents

CHAPTER 1

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.

Writing an extension module is a relatively well-understood process, where a "cookbook™ approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

https://www.python.org/dev/peps/pep-0007

The Python/C API, £[F] 3.8.0b1

#iE): Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments and
building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under pre f£ix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C",so there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that you do not expect to be reached. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert (0) or abort () call

3.7 BUHTMA.

Py_ABS (x)
Return the absolute value of x.

3.3 BUHTMA.

Py_MIN (X, y)
Return the minimum value between x and y.

3.3 OB A
Py_MAX (Xx,y)
Return the maximum value between x and y.

3.3 HUHTIA.

Py_STRINGIFY (x)
Convert x to a C string. E.g. Py_ STRINGIFY (123) returns "123".

4 Chapter 1. &4y

The Python/C API, £[F] 3.8.0b1

3.4 BUHTMA.

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

3.6 BUBTINA.

Py_CHARMASK (c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

3.4 BUHTMA.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

’ Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (wvoid);

3.8 it H 4 MSVC support was added.

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyOb ject, only pointer variables of type PyOb ject * can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

All Python objects (even Python integers) have a fype and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a) is true
if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is "don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the

1.4. Objects, Types and Reference Counts 5

The Python/C API, £[F] 3.8.0b1

object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.
The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by calling Py_ DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)i

t, 0, PyLong_FromLong(lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by Py Tuple SetItem (). When

6 Chapter 1. &4y

The Python/C API, £[F] 3.8.0b1

you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *1list;

tuple = Py_Buildvalue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away ("have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
I

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesnt enter into it! Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),andonce using PySequence_GetItem().

1.4. Objects, Types and Reference Counts 7

The Python/C API, £[F] 3.8.0b1

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0,
PyObject *item;

value;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
3
return total;
}
long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, nj;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; 1 < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */

return -1;
total += value;

}
else {

Py_DECREF (item); /* Discard reference ownership */
}

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.

These will be discussed together with the functions that use them.

Chapter 1. &4y

The Python/C API, £[F] 3.8.0b1

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item (PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;

(continues on next page)

1.5. Exceptions 9

The Python/C API, £[F] 3.8.0b1

(R —H)

int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L) ;
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py _DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 #&x A3\ Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys.path).

Py _Initialize () doesnotsetthe “script argumentlist” (sys.argv). If this variable is needed by Python code that

10 Chapter 1. &4y

The Python/C API, £[F] 3.8.0b1

will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the callto Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
toPy_Initialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py_TsTnitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBRUG is enabled in the Unix build,
compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
 Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
* Downcasts from wide types to narrow types are checked for loss of information.

¢ A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires a
test_c_api () method.

¢ Sanity checks of the input arguments are added to frame creation.
* The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
¢ Low-level tracing and extra exception checking are added to the runtime virtual machine.

» Extra checks are added to the memory arena implementation.

1.7. Debugging Builds 11

The Python/C API, £[F] 3.8.0b1

 Extra debugging is added to the thread module.
There may be additional checks not mentioned here.

Defining Py_ TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. &4y

CHAPTER 2

Stable Application Binary Interface

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed after
being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the API, but
can break the ABI. As a consequence, extension modules need to be recompiled for every Python release (although an
exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows, extension modules
link with a specific pythonXY.dll and need to be recompiled to link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing to use
this API (called "limited API”) need to define Py_LIMITED_API. A number of interpreter details then become hidden
from the extension module; in return, a module is built that works on any 3.x version (x>=2) without recompilation.

In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these new
APIs need to set Py_ LIMITED_APT to the PY_VERSION_HEX value (see APl and ABI Versioning) of the minimum
Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all subsequent
Python releases, but fail to load (because of missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API documentation,
API elements that are not part of the limited API are marked as ”"Not part of the limited APL.”

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, £[F] 3.8.0b1

14 Chapter 2. Stable Application Binary Interface

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main () function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int Py_BytesMain (int argc, char **argv)
Similar to Py_Main () but argv is an array of bytes strings.

3.8 WUHTIA.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

15

The Python/C API, £[F] 3.8.0b1

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_ InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .get filesystemencoding ()). If filenameis NULL,
this function uses "2?27?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

f#E): On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb"). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)

Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is

16 Chapter 3. The Very High Level Layer

The Python/C API, £[F] 3.8.0b1

ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in
the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE *, FILE *, const char *)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem_RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

3.4 W B4 : The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (), instead of
being allocated by PyMem_Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *swr, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_ SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
Jp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from str in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit

17

The Python/C API, £[F] 3.8.0b1

set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 BUHTIA.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding (os . fsdecode ()).

3.2 UHTIMA.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ EvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalua-
tion. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of
arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple
of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_FEvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally 2000

18 Chapter 3. The Very High Level Layer

The Python/C API, £[F] 3.8.0b1

lines long. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

3.4 {R ¥ 4#: This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_ CompileString ().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __ future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

int cf_flags
Compiler flags.

int cf_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
3.8 fiu S5k Added cf_feature_version field.

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as "true division” according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, £[F] 3.8.0b1

20 Chapter 3. The Very High Level Layer

cHAPTER 4

\

SR

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL, use
Py _XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it isn’t NULL,

use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

% te: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with
a__del__ () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global variable
should be in a consistent state before Py DECREF () is invoked. For example, code to delete an object from
a list should copy a reference to the deleted object in a temporary variable, update the list data structure, and
then call Py_DECREF () for the temporary variable.

void Py_XDECREF (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the reference count of an object that might be traversed
during garbage collection.

21

The Python/C API, £[F] 3.8.0b1

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject *o),

Py_DecRef (PyObject *o0). They are simply exported function versions of Py XTINCREF () and
Py_XDECREF (), respectively.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference (), _Py_NewReference (), as well as the global variable _Py_RefTotal.

22 Chapter 4. &5t

CHAPTER D

BI5h ez IR

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

#i[E): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the error is a SystemExit, in

23

The Python/C API, £[F] 3.8.0b1

that case no traceback is printed and the Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_ SetString () butlets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr Format (),buttakinga va_11st argument rather than a variable
number of arguments.

3.5 BUHTMA.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

24 Chapter 5. fl5hE 2

The Python/C API, £[F] 3.8.0b1

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr SetFromErrno (), with the additional behavior that if file-
nameObject is not NULL, it is passed to the constructor of fype as a third parameter. In the case of OSError
exception, this is used to define the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,

PyObject *filenameObject2)
Return value: Always NULL. Similarto PyErr_SetFromErrnoWithFilenameObject (), buttakesasec-

ond filename object, for raising errors when a function that takes two filenames fails.

3.4 BUHTMA.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

u] H M Windows .,

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised.

B] H 4 Windows .,

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

u] 4 Windows .,

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), withan

additional parameter specifying the exception type to be raised.
0] 14 Windows.,
PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-

name2)
Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),but

accepts a second filename object.

B] H 4 Windows,

5.2. Raising exceptions 25

The Python/C API, £[F] 3.8.0b1

3.4 BUHTMA.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised.
B] F 4 Windows,

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

3.3 JHTA.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

3.4 BUHTIA.

void PyErr_ SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

3.2 BUHTMA.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

26 Chapter 5. fl5hE 2

The Python/C API, £[F] 3.8.0b1

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)
Return value: Always NULL. Much like PyErr SetImportError () but this function allows for specifying a
subclass of ImportError to raise.

3.6 BUFTIA.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 BT

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () except that message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_ WarnEx (), but use PyUnicode FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

3.2 UHTMA.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr WarnFormat (