Python Tutorial
%) 3.7.14

Guido van Rossum
and the Python development team

9 J] 09, 2022

Python Software Foundation
Email: docs@python.org

Contents

7

B ik 3
fdi Ji] Python B 5
20 [EEIEZEIL . s 5
22 HBESRELEAUEREE 6
—fEHE X Python fifj 4y 9
3.0 4 Python BAESFEREM . . o o o o 9
32 WERERGEEETIIRIIE e 16
WA TR 19
4.1 AFStatements e e e e e e e e e e e e e e e e 19
42 forStatements i e e e e e e e e e e e e e e 20
43 range () I e 20
44 Dbreak and continue Statements, and else Clauseson Loops 21
45 passStatements e e e e e e e e e e e e e e 22
4.6 EFREKIL (Function) 22
477 More on Defining Functions L e e e e e 24
4.8 Intermezzo: Coding Style e e e e e e 29
JegEintis 31
51 HETEList (HB4)) . o e 31
5.2 Thedelstatement i i i i i e e e e e e e e e e e e e e e e e 36
5.3 Tuples FIFH (SEqUENCES) . . . v o v v v e o e e e 36
54 FEA(SES) . . o 37
5.5 FL (Dictionary) e e 38
5.6 [FIBIHIG . . 39
57 MBI TEE L e 40
58 JFIIFHAMEEGEREZ VIR 41
BigH 43
6.1 MoreonModules e e e e 44
6.2 Standard Modules L e e e e e e 47
6.3 Thedir () Function o e 47
6.4 Packages 48
LN 53

7.0 EEEREREEAS L.

7.2 Reading and Writing Files
Sy R

8.1 WEMEEEER
82 AN L.
83 EBEBUAN
8.4 Raising Exceptions
8.5 User-defined Exceptions
8.6 Defining Clean-up Actions
8.7 Predefined Clean-up Actions
Classes

9.1 A Word About Names and Objects
9.2 Python Scopes and Namespaces
9.3 AFirstLook atClasses
94 RandomRemarks.
9.5 Inheritance
9.6 Private Variables
9.7 OddsandEnds
9.8 Tterators
9.9 Generators
9.10 Generator Expressions

10 Python £ HE ey X HiHE T

10.1 VESESGATo
102 BERZEHFIC . o o o
103 GA%B18 ...
104 s Eopr s A ek . . L L
105 FEERRYE ..o
10.6 BCERAHEH L.
107 HABEAEEL
10.8 HIEERERE
109 GRS
1010 RGReRE . . 0 o o o
1001 SVEER .o

1012 FEERALEE

11 Brief Tour of the Standard Library --- Part II

11.1 Output Formatting
11.2 Templating
11.3 Working with Binary Data Record Layouts
11.4 Multi-threading
115 Logging
11.6 Weak References
11.7 Tools for Working with Lists
11.8 Decimal Floating Point Arithmetic

12 [Elffesd B b &0k

12,1 f#{ ..
122 #~TEsEEss
123 Fpip&EHEM L.

13 BUETLIACE B AHE ?

61
61
61
62
64
65
66
67

69
69
70
72
75
77
78
79
79
80
81

83
83
84
84
84
85
85
86
86
87
87
87
88

89
89
90
91
92
92
93
94
95

97
97
97
98

101

14

15

16

D

Interactive Input Editing and History Substitution

14.1 Tab Completion and History Editing
14.2 Alternatives to the Interactive Interpreter

TS (1) 7 B PR

15.1 Representation Error o

FiHE)

16.1 HEpFE . . oL

Glossary

I3 i i 210 SC

B.1 Python SCHFRIERRET . . - o o o o o o

JEE 12 B2 A

C.1 Historyof thesoftware
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

Jis R 7

=5l

103
103
103

105
108

111
111

113

127
127

129
129
130
133

147

149

Python Tutorial, %$(E] 3.7.14

Python @ —ffi 7y 5. DREEIRIARRARE S . EA WG m iR G, B M B U Ik R E B
. Python EUHERYRIAMIE R AUE), SO H AR, e RDE2EuM AL Hr2E -, $#s
(ETAFi1-bResst e o e P R X AR 5

{41125 T DA Tt L6 B Python FP48_E (hteps://swww python.ore/) i34 1 19 Python P32
MERSURE, T RIS i RIE R AT, R, T DAL). 535h, Python FABULEL T 3
% {11 FL G #1955 =)7 Python B0, BT H . DASCARANEISCPE, A7 SUR GO # , FTE R4 L IR FIHI
AR BT AR B A8

] C 8 C++ (S HALTTHE C P fEsNEE S), ATRARA S 7 Python B2 [E1H 3 T Ak ok =X A & RHAL(E)
[FIBRE, S AT 2 B [T aE R0 M AR K(E], Python i A VEE)H 7t F L1555 (extension language) .
BB E /r Python 355 B RS EAME S LBl . BT ERZ Ah. EERH Python T 3%e% 5 A HUHE I,
A BB . (R4 AR, R AATRERE R, NI disl R (B2 e M ar H5e sk

FAE T AR Python B HEY 4 FIASAL YA, 552 (F) library-index, FE reference-index 1, #5H] DLELZF] Python 35
HEIERMESE. B C 5 C++ FIEME(} (extensions) (77, #HEJ7# extending-index I c-api-index . Ut
Ah, THTHE R EEFR RN H IR AL Python E253,

BEhHEY, REAGNHHEGE R, £2, AR M. Bunfz, "MW
FCAEN T # Python Wi A5 —HEAOARLET e, BB T f# Python 55 5 WA (A BLRAS . HIEHERE, BAARE
FIEE AR Python AR EARA, tABLT i B4 library-index H145 4524 Python p& = EEASLAR 1 1HE A5 .
Glossary B 1t ES A5 .

Contents 1

https://www.python.org/

Python Tutorial, %(E] 3.7.14

2 Contents

CHAPTER 1

BEHLR

IRARACHAERE NS B TAF, ARt B S AR R e g B (k. BRI, (RerfirER L el RE
FHIEI I IO, B2 A (e A B i i 42 R B — TR B . O T REAR AR ST 1 B S/ N R R, —
=M GUI AR, sl—fE/NESk.

UR AR — RCE R B B, (R T BRI C/C+/Tava B, [ERRAG- TR RS, M. .
PEARRIRAEANS ;A A REARIEE) T — A Ry — Bt , By MR 2 ok Ayl B AR IEAE
PR —(ERE G s e, AEARED T iU DR — R s = .

1E_ R BIFH, Python IFE 2R ABMIFES

WA PAE] T 24T 15 17 25 48 Unix shell [E14<5 % Windows LU AR HE, {H shell (A8 %8 & i R B 2
ol B SO, AN T E A R e EE . AR DAEIIE S C/C++/0ava R, (HAFAH R 5 AU SRR B
TERIR A BRI . AR T, Python B 5 iM# A, [EJfEFE Windows. Mac OSX. Unix /E3 R & AT,
L bR B B AR 5 A A
Python B[5 F tH 20 & B B RS REE S . BIRLLL shell A, #tyms o8 SRR i Bl o 22 19 4% .
—J71Hi, Python $2fittk C B W& 1 sEM A . AR C , Python {EE—M [dEEmIEWAERS], BE
AT B R A [R s) o Bl (ELE S B R R, Python 3 FHAEEIL Awk (HZE 2
Perl) REREFEM T ZME L. 2/ FLHE T, i Python pE P AR HALRE 5 2 FHA S 1
Python ##F/RIEAE Y 7 2 AR AL (module) [Ej#fth " 55 78 8 /] %5 HoAth Python #2301, Python H 45 T —1{H
RREEIEMELL, B EMERRE A R - s e M % 1E— B i E2 58 Python FEUny i, A LERigl
AL TR E VO, REEN . socket BTHRE, HEHLML T Tk 25 /i T2 B (GUI toolkit) Y411 -
Python (M B ZEX5ES, WEAFL giRmallst | e eI s dfE A Nl R .. B E SR L)
Hofdi R REAR O M B B R EE S T BE . Bt se WD IEIR R, B Bt — AR A B 4 B 1 e
Ko BHR MR FER.
Python 20 A AR5 fSE) 5 . JH Python B{EMAR REHMAEILAH C. C++. Java BEMA. BSAAT%
85 -

« Python = [() BB U [EREYE — BRA) (statement) FPFE AR EN3E A B AT ;

o P G BETE DA A HIEED 1A% 7 AR5 5% 5

o AT EEARSAHONT | H

Python Tutorial, %(E] 3.7.14

Python & T 4% 744 WIRARE 5 C A2, MBEIE i) [V e >N AL 2 B e 2 IRA 1. Sk 2)
T B PO AT SE A LU B A, Bl i Python i 5] — L DA 3 CIE K (binary form) FEH 1Y
Fesld (Bilanke e Ry R0 A8 AU) . AR T 2@ bR AE &, /LTt m] DASE Python B i 45 3
N C e MR, EE MR h] Python 5y i FE sl (EE) R IR S HIREH

g —$, B EFE S 2 0A BBC K58 (Monty Python’s Flying Circus) fin4%, Hil€#dseaEAME. EEW]
SOOI MR B RN EEIR L, 55 52 0 v B!

URARBUE OSBRI AGE, , IR @ AR 1% Python S ANEN, Wi EREGE S W sUZ B E . HMAGE
THHERAE R, —BER, —B KT ELNAE Python H g B

TE T EFEE e e E Ay e B g . B IR M E A A, (EARA R B TR B
Bl

B R KA HEEE), % 6rif il i 2 #6147 Python RE B H R AW sE 24 (0., —BIMh 2B H £ R A
(expression), [iR/ (statement) FTERIA(E] (data type); 1232 K= (function) BLAEA (module); fri% €rizi—
AP 3 B) A5 AMIR(E] (exception) B4 F 2 H 52 S HHE] (class).

4 Chapter 1. & ik

CHAPTER 2

i1 | Python H 4%

2.1 (B3N B

The Python interpreter is usually installed as /usr/local/bin/python3. 7 on those machines where it is available;
putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command:

’python3.7

RE[E)E) Python' . [HEIE s a7 icny H (B2 (M 488, by H [EH A nTRERY ;s 374 SRAEHLIY Python 3
ANBERGEME., (HlN: /usr/local/python MR HE BB AR,)

On Windows machines where you have installed Python from the Microsoft Store, the python3.7 command will be
available. If you have the py.exe launcher installed, you can use the py command. See setting-envvars for other ways to
launch Python.

T ER R A —1F end-of-file ‘7T (£ Unix [[E] Control-D; #E Windows [[E] Control-z) €r{fif5H
PR AR HUIRTE] (zero exit status) BfEFT . WHR_FRIMEGEEA R, WA ASES quit () BEPI AR

The interpreter’s line-editing features include interactive editing, history substitution and code completion on systems that
support the GNU Readline library. Perhaps the quickest check to see whether command line editing is supported is typing
Control-P to the first Python prompt you get. If it beeps, you have command line editing; see Appendix Interactive
Input Editing and History Substitution for an introduction to the keys. If nothing appears to happen, or if ~P is echoed,
command line editing isn’t available; you’ll only be able to use backspace to remove characters from the current line.

A1 LS O T A2 AR 2 Unix shell: QISR P MG 45 28— ety %68, € & BB -UBEIRERATHE 2
TSR L e A 4 (5 | Il) sedin AR REIZY & i (R St BV A AR T

e e N E python —c command [arg] ..., E&HRITLE command EN\H54 (1), 17
[E 4[] shell () —c 883, Python [$54- 104525 1145 shell F 2RIk o0, 8 # 3wk F B5 1 9548 command
A,

44 Python B Fl_ L ANEIA S —H6 5. %5 python —m module [arg] ... W[PASIAT module Fi4
() JECATE s] R A TR AL) 2 3 A — B A7 ()

" £ Unix 1, Python 3.x ELFERF R A G A python fEERV TR, DABEGELBIAT 1Y Python 2.x A AR 44 REAE2E .

https://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, %(E] 3.7.14

WEPAT - HEAERE, AR A B E ARG R A LB R T BRI S ImA 1.
A 48 % 7T I 2 3 RERCAE using-on-general .

2.1.1 fLES I

B AR [EA A 2 AN | 8%, b eI R o HR BT ALY list (BR51) [EHEURAS sys B4R
argv #¥. RATABAT import sys BUSEMERS . &M 5RE 2 DE—; ﬁﬁ%ﬁﬁfﬂﬁ@ﬁ*ﬂ
518Ff, sys.argv([0] é%:%o %ﬁﬁ% - (M) WF, sys.argv([0] [E ', HEEH c
command i, sys.argv[0] "—c', ¥HF —mmodule K, sys.argv| l;%%zﬂﬁﬁm%%%{“‘ H
#3E —c command B, —m module B’JI%IET@ﬁ Python T 325 WIS+, ﬁ'ﬁamﬁ'f sys.argv S AR N
command B module 1% [.

2.1.2 H B

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for the
next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts with the
secondary prompt, by default three dots (. . .). The interpreter prints a welcome message stating its version number and
a copyright notice before printing the first prompt:

$ python3.7
Python 3.7 (default, Sep 16 2015, 09:25:04)
[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

BTN BT E LT A g s I . BEIRE], %2 if [Fig

>>> the _world_is_flat = True

>>> if the_world_is_flat:
print ("Be careful not to fall off!")

Be careful not to fall off!

WA EBRRME, 729X,

2.2 HipdSEl e Bl

2.2.1 GRS oCHis (encoding)

ik Python JSUARTEHE S 7 U A A5 06 1) UTF-8. FEiG (sl , 15 b2 WG = i 37 T DA R] g 9 0 A

FHIEZ . #EH (dentifier) K(EIfF - BEAAEAEERR 0 b HE T ASCI e fEER(E)S , &t (AT i

Portable PSR RSP IR B . PR SEIEFEMBBUR A 5208, A At an 7 2 R8sl 2 [UTF-8, [FIH.
AEBURRE S TP T 7oy 5 2.

To declare an encoding other than the default one, a special comment line should be added as the first line of the file. The
syntax is as follows:

—*— coding: encoding —*-—

where encoding is one of the valid codecs supported by Python.

For example, to declare that Windows-1252 encoding is to be used, the first line of your source code file should be:

6 Chapter 2. fii}i] Python F &%

Python Tutorial, %$(E] 3.7.14

—*— coding: cpl252 —*-

One exception to the first line rule is when the source code starts with a UNIX “shebang” line. In this case, the encoding
declaration should be added as the second line of the file. For example:

#!/usr/bin/env python3
—*— coding: cpl252 —*-

[Elfie

2.2, Pl BlERESL

Python Tutorial, %(E] 3.7.14

8 Chapter 2. {{ijij Python Fii$2%

CHAPTER 3

—{EAE1EE) Python 7

TE NG, S A A R ETE R A SR FE (prompt, »> Fil..): QIRSTEAMEHG], (REIESRA
HBLRREE, AT R I A A IR AT BRAR I SC747 2 BRI RO
A BT U WER TR, R BRI T W HAEZ A T3 4 A AR

FEAFEPRFFZ @O, BEMME LS XmA, 7R EEM. Python H1iY[Ef# (comments) [hash
FIC # BRIG— HEIRZATAOR . B LAMERZATZ . A%, SRS BHLG, EAgHBET R .
hash 7 ICHE T Z HIRHIAR[E]— hash 0. FAEIE)E 2 AR ET AR RN @ Python R, 7EARE 41
R§ AN — T A o

— BRI -

this is the first comment
spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 i€ Python F il S b1]
AERAGHA LT Python #4-. [EI EASESHA—MERRG >>> B3, (EERISAA)

3.1.1 4y (Number)

HAESIFE— G A F B R DA A 18 expression (GERE), E& 5 H#%An{E. Expression {55
VARG ST+~ < A/ AT R R 2 B RS (0 Pascal 5 C); 555 () TRAMI RS
il :

>>> 2 + 2

4

>>> 50 - 5*6
20

(T IUakss)

Python Tutorial, %(E] 3.7.14

EHE—5)
>>> (50 — 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6

Ry (B0 2. 4. 20) [Eint ZU88, BePA/NEEROY (R1 5.0, 1.6) (Bl float k. ML
BRI BER R B 2 WP B R LR

B33 (/) i [m] f— 1] float. ﬁﬂ%%ﬁfﬁiﬂnordivision SR BBIEIR (RIRBRITA /NG) . ARATPA
(R 7/ T FHERBOTAGEA

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

5

>>> 17 % 3 # the % operator returns the remainder of the division
2

>>> 5 * 3 + 2 # result * divisor + remainder

17

7E Python ', FHEIEIK (powers) W AR FH ** AT

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7
128

SERAFR (=) PTA A EV S O . IR e 2 1%, 76 TSR AF VR e SRR 4528 -

>>> width = 20

>>> height = 5 * 9
>>> width * height
900

LS 7 (defined) | (EDASBURAEIRGD) , 35000 BV A B it

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

R ISE ST A e S R, JEFE T (operator) 3 FIR AT IT (operand) IR LR S S o K I E) 72 26
L8

>>> 4 * 3,75 - 1
14.0

FEH B AR, B fg— 0 B SR A SR PR IR 2 8 _ . SEFRRERAE Python FfF s ERPH
W, TR RS L

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax

(Fgksh)

VIHE = SR8 - WEERT, —3++2 gD - (3++2) [EE45) -9, R B RSB JCIEF A3 9, 4R7T AR
(=3) **2,

10 Chapter 3. —{if{{E1F X1 Python fi4y

Python Tutorial, %$(E] 3.7.14

HEH L5
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

S (S Ml P D LRI R M E) 2 U AEL - 44T A 0 570045 A I A s
S T A ORI 4 AT D

%7 int il float, Python g X418 T HALMEFHAE, 07 Decimal fil Fraction. Python ZR[EIZ: 7 IE(F
(complex numbers), [EVf#H § fil T &85 E#pFBe (BF 3+579).

3.1.2 =it (String)

T2 4, Python] DA H I A A B . M A ESAEREI9E (.. L) S5
SRz, W SRR RA R SO\ BRETE B 5 %

>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"

>>> "doesn't" # ...or use double quotes instead
"doesn't"

>>> '"Yes," they said.'

'"Yes," they said.'

>>> "\"vYes, \" they said."
'"Yes," they said.’

>>> '""Isn\'t," they said.’
'""Isn\'t," they said.'

FEHB AR BT, W TR @ s | R e ELARRAT O & SR E) (\) B, SR A R el e A i
AEREA B TR AR (GRS SR g) , AR HIME . —BoRE, vHagi
SlaRm EA &5 985, NS sRaET . K print O GEEESFMEL, EgEREaERT]
5%, [ELH AR A R Bk E oo ARk e

>>> '""Isn\'t," they said.’

""Isn\'t," they said.'

>>> print (""Isn\'t," they said.')

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'

>>> print (s) # with print (), \n produces a new line
First line.

Second line.

WERARAA R IuHT B\ s iRk T oCkE, ATDAMCRE I raw string, AE25— RIS [BERTIN L « -

>>> print ('C:\some\name') # here \n means newline!
C:\some

ame

>>> print (r'C:\some\name') # note the r before the quote
C:\some\name

P RGIARET , RSB \n ZERL (L) R (L) SRS AR AR . IR S22, e R RS, R
ZBK(E (escape) " (HFZBE\ '), SLZIRIH.

3.1. 8 Python i1 Skt "

Python Tutorial, %(E] 3.7.14

FHER AT Ko — R M =M EE G 98 mrr. g R T e E B
ANFHES, (AR AZEESTRTIA \ ABUE S A E . 7ERA R B fE7H
print ("""\
Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

nn ")

gEAEAT L GERSE—EEFEEE RSB ET):

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

FHA[DA + 7 (concatenate), [FIF] * A FHAEIZ:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium’

A VA _EARARE 7 ER (B (string literal, RIS 1SR ELEAYT-ER) @il F B He iR :

>>> 'Py' 'thon'
'Python'’

WARARE) Be AR R TR IRy, WIAAR 5 (B B B R R A

>>> text = ('Put several strings within parentheses
.. 'to have them joined together.')
>>> text

'Put several strings within parentheses to have them joined together.'

(EIE R RS AR AR EG) 7 AR (LR, i A A A el e o

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
File "<stdin>", line 1
prefix 'thon'

A

SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'
File "<stdin>", line 1
('un' * 3) 'ium'

A

SyntaxError: invalid syntax

UnR B A (R A e, A+

>>> prefix + 'thon'
'Python'

FHA[A [R5] indexed | (T2, B subscripted), 25—{HFony &5 IMEE 0. EEH 7 FnFoonRE; —
- Ie R — i K/ NE] 1 e

>>> word = 'Python'
>>> word([0] # character in position 0

(Qi¥iE3)

12 Chapter 3. —{if{{E1F X1 Python fi4y

Python Tutorial, %$(E] 3.7.14

(R —H)

IPI
>>> word[5] # character in position 5
lnl

ROMET AR AR, BLRFSOSAE A B an R

>>> word[—1] # last character

lnl

>>> word[-2] # second-last character
lol

>>> word[-6]

IPI

HERHIAEE -0 % FR 0, ARRTMEH -1 Bilf.
B TR, FERIRSR [U)h slicing . 25| IACE R BUBYFI0, M1 HI AT PARRAREE] 1753 (substring):

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
le'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

HEIEMAGEWAE, MERACGENHEE S . EMRT s(:1] + s[i:] KEFR s

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Yl 5] (slice indices) A R # H A TERAE, A WS IR RS MERFFEE] 0, 1744 M55 M 225 | (AR5 T s 1
L S 7E slice 1

>>> word[:2] # character from the beginning to position 2 (excluded)
IPy'

>>> word[4:] # characters from position 4 (included) to the end

lon'

>>> word[—-2:] # characters from the second-last (included) to the end
lon'

i (EA 1 fif BL AT slice 2 ANATIEARERY . AR slice BYRGIEIRZE TICMZ M, Hh s — R Foom =8
B O FHE S n AR ICHY TR R — MR T CH A LB A RS ME n, Bl

fo—— b ——————————+
' P ly |l t |l h|oln|]|
e At S
0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

FATHT A E T HRRTIMAR 0.6 MO 5 ATHIEUR TERTIMER M E. o1 i 2 j 1Y slice W& THUR i
1 Jj B W I 7 G

E B R T MEMT =, —{H slice IRBEFMITRE MEZ 22, WIREGHEFAETH B F L. fi, word [1:3]
WREER 2.

BBl — R KA 25 ME s R

3.1. {1t Python i3St 1] 13

Python Tutorial, %(E] 3.7.14

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

RN, 7 SR P R 5 | {ELAE slice WA @l 2235 (0 g 2L -

>>> word[4:42]
lon'

>>> word[42:]
T

Python “FH MEVER U --- ‘A& immutable, R, Eil#ETH *%@%’%Hﬁﬁ,ﬁﬁﬁ@i%gﬁ

>>> word[0] = 'J'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

RS B A R T HR AR ZH RS — T Y -

>>> 'J' + word[1l:]
'Jython'

>>> word[:2] + 'py'
'"Pypy’

[EVE R Len O [EE-— (PR :

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

hz%:

textseq 2 sequence DI —, 1% FBRmER B,

string-methods 5 114 & M AL A MR 6 7%

f-strings {05 FR A TR ES

formatstrings B iti%Eif str. format () FEAEL (string formatting) FJ&FH .

old-string-formatting 7t-7tR(E] & (ASEFICKE, MEEEE IR UL EAE, SEZ I EASEAS TR

3.1.3 List (:}%1)

Python i BRI A 2GR AU, I ARAL O AR BB, P pREE AL 24D Zise, T DAY I — Z 91 DA
RS (2 otR, Witem), ME7ErfEK2 . List VA AAFRZER TR, HEHFELE TR
A1 Y 24 (E)

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 16, 25]

14 Chapter 3. —ffEIER Python fifif

Python Tutorial, %$(E] 3.7.14

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares|[—1]

25

>>> squares[—3:] # slicing returns a new 1ist
[9, 16, 25]

JITA slice BAEAR € M — M H Y list [ZORIICHE . R EFH AT EM slice FE T)54 list (BEEIE, AP
shallow copy) :

>>> squares/|:]
[1, 4, 9, 16, 25]

List 3 S & {134 (concatenation) ZE ¥/ :

>>> squares + [36, 49, 64, 81, 100]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

AREAFER R immutable, list Emutable BIF], R list EIZ 2l BERY
>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes
[1, 8, 27, 64, 125]

PRAB AT PAFE List B A BT GE,, Bl append () 7 i% (method) (FIIRITE € F 2 E L)L ERA) :

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

[1, 8, 27, 64, 125, 216, 343]

AT LY slice BE, B REMCE list (A, HFE RIS list:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters

['a', 'b', 'c', 'd', 'e', 'f£', 'g'l

>>> # replace some values

>>> letters(2:5] = ['C', 'D', 'E']

>>> letters

[‘a', 'b', 'Cc', 'D', 'E', 'f', 'g'l]

>>> # now remove them

>>> letters[2:5] = []

>>> letters

[*a', 'B', 'f', 'g']

>>> # clear the list by replacing all the elements with an empty list
>>> letters([:] = []

>>> letters

[]

EE Rk Len () ARATDAVEFHAE list I

3.1. 8 Python i1 Skt 15

Python Tutorial, %(E] 3.7.14

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

WATPARE L g list (7 list 4327 oAt list) , f5il4n

>>> a = ['a', 'b' c']
>>>n = [1, 2, 3]

>>> x = [a, n]

>>> x

[['a', 'b', 'c'l, [1, 2, 31]
>>> x[0]

[vav, 'b', 'C']
>>> x[0][1]
b

3.2 PR

WK, FATAT AN Python 2B FLL 2 i 2 SEIEIeR AR ilfnn, FA™nl RAED 22 [T i ey s 1) -

>>> # Fibonacci series:
. # the sum of two elements defines the next
.. a, b=20,1

>>> while a < 10:

print (a)

a, b =D>b, atb

QO Ul W NP PO e

BB TFIA T # 2R

o S ATIHE T ZEIE: AU a B b FIRFARE] TORIOE 0 B 1. FER AR AT R IR{E A T —
ﬁ,%gT%%%EEEﬁ@mmmmﬁﬁﬁﬁﬁ®mmm,ﬁﬁﬁﬁioﬁﬁ%ﬁﬁﬁﬁiﬁﬁm
TG

* while FIEHZEMGMAEE (WEH: a < 10), @ —HEHEHIT. 7€ Python il C3EF, {E
AR T EEEE (rue); Z(EE (false). BEAFAIDAZTFER, List, HLEZEM)FHIRE; EMIERER
JER PR, 220 S RPN . ARG~ P Ao e 1 A f LAY L . AR LU 1 (comparison
operators) (I UNA C 75 —HRAFFHE: < UMY, > (CRIY) . == (B%). <= UNRSERY) . >= (Kt
) PAK 1= (REERR).

o [EVVEY F- B8 @ 4 e AiHEAE Python i SR B — R BOAR . TEH BN, b /HAEEIRE E 4F
—AT—BRIABEA tab 2 (IR) =S FRAERRAHE. OB L, AR SO SO A T A o LU 1
WA ZHERESEA B AHE TR . BB S BIAX A E B A, DTSR N —
PPz ARG (IR AT s 2 B IR A D & ORI R —47) . T — AR %
(BT Al B AR — B

* print () EREHEEEESIH (1) ME. ARRCHMERM S T EZ0ER (R

HH)), B AT ARSRETRE S | B RO E A T A BN TR 9], [EEAR R H e
Az E, Il DGR S i, Bl

16 Chapter 3. —{if{{E1F X1 Python fi4y

https://zh.wikipedia.org/zh-tw/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0%E5%88%97

Python Tutorial, %$(E] 3.7.14

>>> 1 = 256*256
>>> print ('The value of i is', i)
The value of 1 is 65536

[75 | 94 end WT AR ARG S BRSO EATAF A Bk o, B3 AR TR 0 65 ki o

>>> a, b =20, 1

>>> while a < 1000:
print (a, end=',")
a, b ="Db, atb

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

[Efit

3.2. WITERE A i b 17

Python Tutorial, %(E] 3.7.14

18 Chapter 3. —{if{{E1F X1 Python fi4y

cHAPTER 4

TR T FRRARE 125 1

Besides the while statement just introduced, Python uses the usual flow control statements known from other languages,
with some twists.

4.1 if Statements

SR BRI 11 7. SIRE:

>>> x = int (input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
x = 0
print ('Negative changed to zero')
elif x ==
print ('Zero')
elif x ==
print ('Single')
else:
print ('More')

More

There can be zero or more e11 f parts, and the el se part is optional. The keyword ’e1i £’ is short for ’else if’, and is
useful to avoid excessive indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch or case
statements found in other languages.

19

Python Tutorial, %(E] 3.7.14

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over
an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and
halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in the order
that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
. words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print (w, len(w))
cat 3
window 6
defenestrate 12

W RARTEEE R A B ERIEE R Y78 (BInEE-—- L8y eR) , INE g @ik ety
FiEs 2. R I ERE R BB H . IR slice RRVEREFEIE (15 14325 5 52 i

>>> for w in words([:]: # Loop over a slice copy of the entire 1list.
if len(w) > 6:
words.insert (0, w)
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

TE for w in words: WIEE, BF TEREEHANEHIE A defenestrate, [E4—{HEFRENY list,

4.3 range () Hz\

WERARTR ZEM 8B5S, BAEZ range () BRRBR . B0 AR5 2250080

>>> for i in range(5):
print (i)

S w N e O

K S RAE KGR S & BUEAE BT 5 s range (10) ARAURY 10 HS(HE, RIS MEAEI— (AR EEED 10 11
ﬁﬂéfﬁlfn?%fﬁﬂé%lfﬁo AT AT range fE HARBE R, siE s ARIAREE (HZ2E&; ArRHe
Fistep):

range (5, 10)

range (0, 10, 3)

range (-10, -100, -30)
-10, -40, -70

MER TR ME, FTLAEECE range O Fl len () AIF:

20 Chapter 4. R A 1 it F

Python Tutorial, %$(E] 3.7.14

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i1 in range(len(a)):
print (i, afli])
0 Mary
1 had
2 a

3 little
4 lamb

SR, TEL T, i enumerate () BRHEEIH, 3 REIEILT,
QAR B2 B — 1 range HIj &) B AR A

>>> print (range (10))
range (0, 10)

HERZHEET, | range O BIERPAFRATELE M list, AR EEERNE. E'— P HTERE R
& [AR A WEE%, [EAr B IE a7 4010 Tist, AR 25 F'ﬁ

ARG BT iterable (FIECHY), ZEDREVEER. Bk i e — B BGE 40 2 B 3 H F TR
KMEKLHER for BUAX MBI Ll iterator (EIXER) . 1ist () BX[ES —MHGIF, flrTPAH iterable
(PTEMCHIE) 757 list:

>>> list (range (5))
[0, 1, 2, 3, 4]

FRErFAM AT DA 25 2 065X 0] 4 iterable FI4%5Z iterable)5 #.

4.4 break and continue Statements, and else Clauses on Loops

break Bk, WH CHFEF, KIMESHREERK for 5 while [EE.

Loop statements may have an e1se clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range (2, 10):
for x in range (2, n):

[}

if n % x ==

print (n, 'equals', x, '*', n//x)
break
else:
loop fell through without finding a factor
print(n, 'is a prime number')

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

O 00 J o U b W N .

(B, EBRIEMAER. WA else BRI for MR, THEif Fuk.)

4.4. break and continue Statements, and else Clauses on Loops 21

Python Tutorial, %(E] 3.7.14

When used with a loop, the e 1 se clause has more in common with the e 1 se clause of a t ry statement than it does that
of if statements: a t ry statement’s e 1l se clause runs when no exception occurs, and a loop’s e 1 se clause runs when
no break occurs. For more on the t ry statement and exceptions, see & FZ 7] 4|,

continue BRI, AVRER CHEHE, ATE DR ALAT FEER:

>>> for num in range (2, 10):

if num % 2 == 0:
print ("Found an even number", num)
continue

print ("Found a number", num)

Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5 pass Statements

pass FIAANATIEME M. EHAERRE LR WA EA T 2T B (R . fian:

>>> while True:
pass # Busy-wait for keyboard interrupt (Ctrl+C)

e A S e — A e L PO 2D -

>>> class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
pass # Remember to implement this!

4.6 w3\ (function)

FAM T DA — (0 o XA AR 2 U B A — 1 A

>>> def fib(n): # write Fibonacci series up to n
"""pPrint a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print (a, end="' ")
a, b =Db, atb
print ()

(FoUakse)

29 Chapter 4. R A 1 it F

Python Tutorial, %$(E] 3.7.14

(R —H)

>>> # Now call the function we just defined:
. £ib(2000)
0112358 13 21 34 55 89 144 233 377 610 987 1597

BT def WA RN E &, BZBENHEEEZE AR E RG22 2. AT 17, i
A HEHER SR R E R ek 2 T

— 1l R 2 5 — B PT AR — A A R RS ETR% 7 ER R R ek s BT SC R, BRI docstring . (1H
J#% docstring Bﬁ*ﬂi’é’ﬁ H2 LI S 8 B o) A8 TR AT DAGE docstring 2f€ 5 B EIAE E]_E sl] 1) 1 S,
R R B o B SR RS RV S . ZEJRIRAS A docstring S EAFIE G, JERZ AR LIS R EME

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all
variable assignments in a function store the value in the local symbol table; whereas variable references first look in the
local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in
the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly assigned a value
within a function (unless, for global variables, named in a global statement, or, for variables of enclosing functions,
named in a nonlocal statement), although they may be referenced.

TE—(F R P A e, ERSEARZ B (5180 S8unA 2% Ry B E. Hit, %'I%I@/\E’Jﬁ
EMEAEF " (call by value) (GEEVEIER [ME] KiER—HPIER %88 (reference), TiAZZYIFHIHE) .
— 1] o XY E)) R IR, FE A L g R X i s ST — {18 3T 1 IR A 5 3

— e E IR AL M A EEHATEE . A ENRA AL, Ee B
F HERA (user-defined function) . #%{H Al AR T4 EIA0 S 8044, MisZst et vl DAR s VR ek s . B B
e R E a4

>>> fib

<function fib at 10042ed0>
>>> £ = fib

>>> £(100)

0112358 13 21 34 55 89

WERAR AR B EREE S, IRATREAFRE £ib 2K, M2 M (procedure), WIEEEIES M E. #
B L, B e B return BUA, BN W E K B EE. EMEEE None (B2 HEE#A
). TEERES T BB None IR, WA GHHUR. RATLAH print () CFFIE:

>>> fib (0)
>>> print (fib(0))
None

SR By o 2 R S List AR A, BHRAS:

>>> def fib2 (n): # return Fibonacci series up to n
"""Return a list containing the Fibonacci series up to n."""
result = []

a, b=20, 1

while a < n:
result.append(a) # see below
a, b ="Db, atb

return result

>>> £100 = £ib2 (100) # call it
>>> £100 # write the result
o, 12, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

! Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes
to it (items inserted into a list).

6. E#H A=, (function) 23

Python Tutorial, %(E] 3.7.14

TEE] F—HOR T — 28R Python Hj::

e The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

* result.append (a) BEIRIFIY T —{H list #7411 result method (7 i%). method [F) [] — (@14
R, A FAIE obj.methodname, HA obj [EIRAMYE: (IRATE—3KiEL), M methodname
1% method 194,78, (EVl ey At DGR 3. A<t SIEL 9 A5 i) method, A+) ZE)Y method i
AR — 110 2 BRITT R 68 Python V. (1A AR class 5 56 1 2 1 PFAEVAN method, K Classes)
i5(F) append () method 7 FE7E list P0FH ;B @AM BB ICEAERZ list I AR S 32 {0 51 45 [m]
result = result + [a], (HEAZCER.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def ask_ok (prompt, retries=4, reminder='Please try again!'):
while True:
ok = input (prompt)
if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False
retries retries - 1

if retries < 0:
raise ValueError ('invalid user response')
print (reminder)

This function can be called in several ways:
* giving only the mandatory argument: ask_ok ('Do you really want to quit?')
* giving one of the optional arguments: ask_ok ('OK to overwrite the file?', 2)

e or even giving all arguments: ask_ok ('OK to overwrite the file?', 2, 'Come on, only
yes or no!')

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i=25

def f(arg=i):
print (arqg)

will print 5.

24 Chapter 4. A 1 iRl

Python Tutorial, %$(E] 3.7.14

Important warning: The default value is evaluated only once. This makes a difference when the default is a muta-
ble object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print (£(1))
print (£(2))
print (£(3))

This will print

[1]
(1, 2]
1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f (a, L=None):
if L is None:
L =11
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following function:

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print ("-— This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.")
print ("-- Lovely plumage, the", type)

print ("-— It's", state, "!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This function
can be called in any of the following ways:

parrot (1000)

parrot (voltage=1000)

parrot (voltage=1000000, action='VOOOOOM")

parrot (action="'VOOOOOM', wvoltage=1000000)

parrot ('a million', 'bereft of life', 'jump')

parrot ('a thousand', state='pushing up the daisies')

positional argument
keyword argument
keyword arguments
keyword arguments
positional arguments

HH HH R H W H
W NN R R

positional, 1 keyword

but all the following calls would be invalid:

parrot () # required argument missing

parrot (voltage=5.0, 'dead")
parrot (110, voltage=220)
parrot (actor="John Cleese')

non-keyword argument after a keyword argument
duplicate value for the same argument
unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match
one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function), and their
order is not important. This also includes non-optional arguments (e.g. parrot (voltage=1000) is valid too). No
argument may receive a value more than once. Here’s an example that fails due to this restriction:

4.7. More on Defining Functions 25

Python Tutorial, %(E] 3.7.14

>>> def function(a):
pass

>>> function (0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form * *name is present, it receives a dictionary (see typesmapping) containing all
keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter
of the form *name (described in the next subsection) which receives a fuple containing the positional arguments beyond
the formal parameter list. (* name must occur before * *name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):

print ("-- Do you have any", kind, "?")
print ("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print (arg)
print ("-" * 40)
for kw in keywords:
print (kw, ":", keywords[kw])

It could be called like this:

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

—-— Do you have any Limburger ?

-— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
shopkeeper : Michael Palin

client : John Cleese

sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were
provided in the function call.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments.
These arguments will be wrapped up in a tuple (see Tuples F= /77| (Sequences)). Before the variable number of arguments,
zero or more normal arguments may Occur.

def write_multiple_items(file, separator, *args):
file.write (separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining
input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are
’keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

26 Chapter 4. R A 1 it F

Python Tutorial, %$(E] 3.7.14

>>> def concat (*args, sep="/"):
return sep.join (args)

>>> concat ("earth", "mars", "venus")
'earth/mars/venus'

>>> concat ("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start and stop
arguments. If they are not available separately, write the function call with the * operator to unpack the arguments out
of a list or tuple:

>>> list (range (3, 6)) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> list (range (*args)) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the * * operator:

>>> def parrot (voltage, state='a stiff', action='voom') :

print ("-- This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.", end=' ")
print ("E's", state, "I!")
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot (**d)
—— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin'.
—demised !

4.7.5 Lambda Expressions

Small anonymous functions can be created with the 1 ambda keyword. This function returns the sum of its two arguments:
lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They are syntactically
restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested
function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £(0)

42

>>> f (1)

43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1l])

Qi3]

4.7. More on Defining Functions 27

Python Tutorial, %(E] 3.7.14

(R —H)

>>> pairs
[(4, '"four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6 [EWSckh

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state
the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a
function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation
have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line
of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since
it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace
“equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should
not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested
after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

mmn

pass

>>> print (my_function._ doc_)
Do nothing, but document it.

No, really, it doesn't do anything.

4.7.7 Function Annotations

Function annotations are completely optional metadata information about the types used by user-defined functions (see
PEP 3107 and PEP 484 for more information).

Annotations are storedinthe __annotations__ attribute of the function as a dictionary and have no effect on any other
part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an expression
evaluating to the value of the annotation. Return annotations are defined by a literal —>, followed by an expression,
between the parameter list and the colon denoting the end of the de f statement. The following example has a positional
argument, a keyword argument, and the return value annotated:

>>> def f (ham: str, eggs: str = 'eggs') —-> str:
print ("Annotations:", f.__annotations__)
print ("Arguments:", ham, eggs)
return ham + ' and ' + eggs

(Qi¥iE3)

28 Chapter 4. R A 1 it F

https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

Python Tutorial, %$(E] 3.7.14

(R —H)

>>> f('spam')

Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs

'spam and eggs'

4.8

Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most
languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it
easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-
pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted
for you:

[Elfiee

Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.
Use blank lines to separate functions and classes, and larger blocks of code inside functions.

When possible, put comments on a line of their own.

Use docstrings.

Use spaces around operators and after commas, but not directly inside bracketing constructs: a = £ (1, 2) +
g(3, 4).

Name your classes and functions consistently; the convention is to use UpperCamelCase for classes and
lowercase_with_underscores for functions and methods. Always use self as the name for the first
method argument (see A First Look at Classes for more on classes and methods).

Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8,
or even plain ASCII work best in any case.

Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a
different language will read or maintain the code.

4.8. Intermezzo: Coding Style 29

https://www.python.org/dev/peps/pep-0008

Python Tutorial, %(E] 3.7.14

30

Chapter 4. R A 1 iR

CHAPTER D

BRI

A B SR AR N SR E AR R SR P AN L, (L EUI A — SRR [e i ik -«

5.1 it r g List (:h51)

List (H241)) sEffgpeiiing, RAE 8BNS FEss) 76 B list ik :
list.append (x)
AF— MR BT E N E] list i R, SFFR allen(a)] = [x],

list.extend (iterable)

iterable (WJHEEYI(H) $23 list BRI . Z[ER allen(a):] = iterable,
list.insert (i, x)

R E H A E list P SN E . 05 3 EE A RTCRN RS ME, Pl a.insert (0, x)
erifi A[E] list 7, 1 a.insert (len(a), x) HIMHHER a.append (x) .

list.remove (Xx)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no such item.

list .pop([i])
TR list e LB EE , BRde. QUREGHREMAE, a.pop () MEHE list fipzngH H EH]
. (i HEpTERAREES RN, EAREIREZEZ TR A TR, RS
& Python pR 2 % H5 g h & LB 0R51%)

list.clear ()

[EIf List FATAIEH o B4R del al:] .

list.index (x[, start[, end]])
Il 2 List v 57— (A 454 x I H 2 R 5 MH (REBBRLRIR T). £ list et I H , HIEH valueError
R o
5|8 start I end) 5E FEIRAE slice FnyAHAfIA], 2008 ME0E MRS | BORETE list HAEE R 1751
FEEREA S, [IERERG ERME list () PIEEBIAE, AR starr BIGGE.

31

Python Tutorial, %(E] 3.7.14

list.count (x)

o] e S 7 Tist o T H B R B

list.sort (key=None, reverse=False)

i list FEYIHHE T . (A28 AR REST E EMLRHET , #5275 sorted () #AHIMHRE)

list.reverse ()

76 list G IE H AR MY S A

list.copy ()
5] {8 — 1 EEEIE) (shallow copy) [list o ZE[FA al:].

PATR S — R 6 2 7 2 list P17 ik i) 1

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count ('apple')

2

>>> fruits.count ('tangerine')

0

>>> fruits.index ('banana')

3

>>> fruits.index ('banana', 4) # Find next banana starting a position 4

6

>>> fruits.reverse ()

>>> fruits

['"banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']

>>> fruits.append('grape')

>>> fruits

["banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort ()

>>> fruits

["apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()

'pear’

PRATRE G 5 —28)54k, 182 insert | remove M(# 2 sort , [ELRGEIMBIEMHE, FE L, M
TH A None' o SE2— {4 Python H iy nl 8 EORHAE HE (Y LRI o

5.1.1 j% List {f:[F) Stack (HE[E]) fdif]

List i 77 S M € ARl BT DU AR AR stack (HEE]) . Stack [El—{RESF S f2 A TC R IR SEHIR I (1%
HESEHY, last-in, first-out”) BURIMRORHE . ARATDAMII 7% append Ol — 8 5E H G EER TEE . 1m0
M pop () HARKERTMEZBUSHEER B . S0 -

>>> stack = [3, 4, 5]
>>> stack.append (6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop()

5

>>> stack

[3, 4, 5, 6]

>>> stack.pop ()

6

>>> stack.pop()

(FItgss)

VMR AT AE T DA (AT 8 g AL T vE R, B d->insert ("a") —>remove ("b") —>sort () ; .

32 Chapter 5. & RI45HE

Python Tutorial, %$(E] 3.7.14

(R —H)

5
>>> stack
[3, 4]

5.1.2 % List f:[F Queue ([E151]) {¥iH]

AL IT DA List B AE queve ([E151) i, BIESEMATCRBSEHIE (Seisth, first-in, first-out”) ¥
AR SR, list AEE RGN 07 sUT AR . (1] append Ml pop ACMAFIECE R o Rk, i
M insert Fll pop AAH M B CRENE (HEHALCRMF LB —%).

AR ZLEAE queve, FEH] collections.deque , HAFHCHHAEPLHETAE TE 2 W im A FIHGE o Fian:

>>> from collections import deque
>>> queue = deque (["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham") # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric'

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival

deque (['Michael', 'Terry', 'Graham'])

5.1.3 List Comprehensions (Hi%i%: 4 Er)

List Comprehension (5347454 E) SRR DA 5 A 5 YL A 2 List. 5 VoL RG] 2 B it — 1 list B iterable
(R B BRI), A {1 2 A6 a0 B A A R e AR B () — M A list o BRI 1 List 191751
A8 o2 B i — 0 R R4

ROIRE), RS [P listd:

>>> squares = []
>>> for x in range (10):
squares.append (x**2)

>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

HRE A (Es) —maslny x HAEEIB &S RE DA . AT DAE BRIEIA: - BB 81 M AS 1 AT]
side effects (EIVEH):

’squares = list (map(lambda x: x**2, range (10)))

ol SR AR Y -

’squares = [x**2 for x in range(10)]

TE R AR AN 2 i

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for or
if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f clauses
which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

5.1. if—% TR List (H1%1) 33

Python Tutorial, %}[F] 3.7.14

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

T E AR A A

>>> combs = []
>>> for x in [1,2,3]:
for y in [3,1,4]:
if x !=y:
combs.append ((x, y))

>>> combs
[, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

H for M1 i f 7E5E M BARA BN BT 2 AHIF Y .
2R expression s —1i tuple (BN BT THEY (x, v)), B E/NEIR:

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
(4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' Dbanana', ' loganberry ', 'passion fruit "]
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(o, 0y, (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error 1is raised
>>> [x, x**2 for x in range (6)]
File "<stdin>", line 1, in <module>
[x, x**2 for x in range (6)]
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,61, [7,8,9]1]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions 7] DA/ [FJ3# (1) expression F5L1R 1 sk 2 IE0L -

>>> from math import pi
>>> [str(round(pi, i)) for i in range(l, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

34

Chapter 5. & kl4:

Python Tutorial, %$(E] 3.7.14

5.1.4 ik List Comprehensions

I WIHCHE list comprehesion H11#) expression 7] PAZ (o[JE[1) expression, £34f 55— list comprehension .,
FIEVAN Fon 3x4 FEMERHG], A list (277 3 (MR FEE] 4) list

>>> matrix = [
(1, 2, 3, 41,
[5, 6, 7, 81,
[9, 10, 11, 121,
]

PATF 1) list comprehesion 7 5 [147 B 471 L e -

>>> [[row[i] for row in matrix] for i in range(4)]
(L, s, 91, 2, 6, 101, (3, 7, 111, [4, 8, 12]]

TEFRAE BB R, R list comprehension [E]—1{[list comprehension #£ for Z BijcytstE,
FFAE—1K list comprehension, FrPA, & RF1FHIFE AR :

>>> transposed = []
>>> for i in range(4):
transposed.append([row[i] for row in matrix])

>>> transposed
tts, s, 91, [z, 6, 101, (3, 7, 111, [4, 8, 12]]

P, ORI AR A -

>>> transposed = []
>>> for i in range(4):
the following 3 lines implement the nested listcomp
transposed_row = []
for row in matrix:
transposed_row.append (row[i])
transposed.append (transposed_row)

>>> transposed
tts, s, 91, [z, 6, 101, (3, 7, 111, [4, 8, 12]]

TEEREE A b, F M ME A E) @ R = (built-in functions) T A2 [FV 3 R AR 2 R R = . ZE B HHF
i zip () R FIAEFARCR:

>>> list (zip(*matrix))
[, 5, 9, (2, 6, 10), (3, 7, 11), (4, 8, 12)]

PR ESER T ZAE, 5522 Unpacking Argument Lists o

5.1. if—% TR List (H1%1) 35

Python Tutorial, %(E] 3.7.14

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the de 1 statement. This differs from the
pop () method which returns a value. The de 1 statement can also be used to remove slices from a list or clear the entire
list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> g

[1, 66.25, 333, 333, 1234.5]
>>> del af[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del al:]

>>> a

L]

del HLH] DA ACEIR: 52 0 :

>>> del a

Ep2 %, % a s e lshm (2078 —MEXPIEIREE 2 0) « A% 1 F 2 E 2 B 7
del fhHA

5.3 Tuples Flj3:41 (Sequences)

FRAM 5] lists A1 strings 4777 R RAEYE, 18R B (indexing) DAY H-HRAE (slicing) . A2 /550 %
BRG] T (3527 typesseq). i Python SR B REPINFE S, AT RESR &4 HoAML 551
COREE R . B N R — D 9 RS HE: nuple

— 1 tuple 5 by (R b I BE 1 R AL A, i -

>>> t = 12345, 54321, 'hello!'
>>> t[0]

12345

>>> t

(12345, 54321, 'hello!")

>>> # Tuples may be nested:

.u=1¢t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:

. t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:

v o= ([1, 2, 31, [3, 2, 11)
>>> v
(ry, 2, 31, (3, 2, 1])

nEFRAMAE R, P Y tuple 222 AFEIEELE, QLSRG tuple A R E HERY B (interpret); Atf" mI DA
e AR 5 6 3 BN L i U VR, BESRFE SR 0 5 o e b) (Bt tuple & — (K
FIBRA A —5) o FEIRVEA tuple H BN ERATTHY, (HJ2 0] DATE tuple A S A v S IE DI, &
1 List .

36 Chapter 5. & RI45HE

Python Tutorial, %$(E] 3.7.14

BfE9X tuple il list F R AARAELL, (ELZALMIE R FAEAR R EEAR H Y. tuple Zimmuiable (RTTEE])
WA AR PR, En M (unpacking) (#§2 B AHIfZE) #3575 (indexing) HAFI (HHTE
i} namedtuples KRG B (attribute) HAFHL) o list SEmutable (ATSER)), HITE M 2 [F B HAT
e 2 AR AR £ 21 2RA L

— AR EI R, B AN 5 0 fHe | EIEH Y wple: vk @B ar B L. 250 uple
FE i —EP R BEAANE S — (I H Y tuple K8 — (A fEDIN_E—(FLEZ BRI ORT 20 35 SR — i B —
M EAE) . W, (AR, pihn:

>>> empty = ()

>>> singleton = 'hello', # <-— note trailing comma
>>> len (empty)

0

>>> len(singleton)

1

>>> singleton

('"hello',)

Bodztt = 12345, 54321, 'hello!' wife—1{M mple packing {31 ¥+ 12345, 54321 fl 'hello!"' —
B tuple (F. Sz EHL AT DA :

>>> x, y, z =t

iE A IE S M T EF 51 97/ (sequence unpacking) , WIE ITEALATALAE S 9 BT 01 . SRR ER 9820
B R A B SE SE AR P S R TR R A] . TR, ZEIRIREA /& wple packing FIFF SRR
RiAmE.

5.4 #:{5 (Sets)

Python W40 7 — Ml FIAESE G (sets) ERIEGHE. — 1 set @414/ 7 HIE A EE cER . AR =E
TR E AR R, Set M RINAE, 4R, ZRMEFF MR,

RAFWE set () eRHEFT A AR set o JER: ZANHE AR set , FATUHEMA set () MARZ {1}
A R H=5 dictionary , —REFRAIFAE T — w14 2O G 1

i (E i — 1 i L) 3 -

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}

>>> print (basket) # show that duplicates have been removed
{'orange', 'banana', 'pear',6 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>>

a = set ('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd':}
>>> a - b # letters in a but not in b
'r', 'd', 'b'}
>>> a | b letters in a or b or both

#
{vav, 'C', vrv, ldv, lbv, lml’ 'Z'I 'l'}
#

>>> a & b letters in both a and b

(Rt

5.4. #4{ (Sets) 37

Python Tutorial, %(E] 3.7.14

(R —H)

_{la', lc'}
>>> a ~ b # letters in a or b but not both
Vr" Vd" VbV, YmV, lZV, llY}

Fllist comprehensions 28, W4 set comprehensions (&4 EGER):

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{Vr', Vd'}

5.5 ‘it (Dictionary)

T —1{H# H 1) python (B2 & k45 #E(E dictionary (3527% typesmapping). Dictionary 4 gk FEE]” B B ar fs

(associative memories) B [40 [(associative arrays) . MG B —10 & BB S 5 /&5, dictionary

JEf key (8E) RERT], key Al DASBATAT A Al S AT RE s - HR A0 n] DA% 1 key . Tuple 407 DAES1E key

AR H S R BB tuple; A1 tuple B R ML S A R AT, ERURREEAE key o 3

}Eﬂ;&ﬁﬂﬂ list B key , PHI[E] list A RASE 1 2275 [#4E . YI R 4RAER) % /2 append () il extend () 2
P

8% dict St 5 RO EAR R — AL 3 (key: value palr) El’J%:u Hrp key 7E[R]—1{M dictionary (=~4iL)
(El0hZE 2 — M). i A — SRS T A 25 iy 7 i o R S %40 PR A (R B E A R A
AR L . 3E R R AR T L) R A A X

Diict =2 1 35 A E 385 ol 48 2A it A — (LB L P 88 phy e SHRU R B T DA e) ZRIEIRRSE(E 2. R
YRR ARG, %S B O (E B B 2 O S A) SR AU (o i PR %

EFUE 1ist () GFE—EETZTHIAE (key) 19 list, HASNEFPENR AR . (AAE2EHE
7, R sorted (d) UERIWT). ARAEHERE—MH#R G CAATER T b, WHMET in .

e {0 — 1~ L 14] B

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']

4098

>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel

{'"jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list (tel)

["jack', 'guido', 'irv']

>>> sorted(tel)

['guido', 'irv', 'jack']

>>> 'guido' in tel

True

>>> 'jack' not in tel

False

PR dict () nf EAZIE A — P SR 3 F 51 AR A dict:

>>> dict ([('sape', 4139), ('guido', 4127), ('jack', 4098)1])
{'sape': 4139, 'guido': 4127, 'jack': 4098}

38 Chapter 5. & RI45HE

Python Tutorial, %$(E] 3.7.14

IAh, dict comprehensions 8] DA it St EELAE fr B i =X 2RI dict

>>> {x: x**2 for x in (2, 4, 0)}
{2: 4, 4: 16, 6: 36}

W O B TR R, B B BT | 3 (keyword arguments) A7 R @ e (Vi -

>>> dict (sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'Jack': 4098}

5.6 [FJEHiry

w3 dict (RN, A S EROE T ARE R G items () Dy VAR RFHUS -

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items{():
print (k, v)

gallahad the pure
robin the brave

W SIERIE R, BRG] KB DAFER] enumerate () BRI RERUS

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print (i, wv)

0 tic

1 tac

2 toe

IR A DA_L R PR, AT AR H ARG 0 A zip () iR

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):
print ('What is your ? It is .'.format (g, a))

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

SR HIE R EIRE . e IR RS, B reversed () Kak:

>>> for i in reversed(range(l, 10, 2)):
print (i)

= w o J w0 -

ZOAEIRE S EHET , B sorted () B33 — BT ASHE Ty list , (ER Gk A 7571 -

5.6. [EREELy 39

Python Tutorial, %(E] 3.7.14

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set (basket)):
print (f)
apple
banana
orange
pear

A IR AN A DAL 2Rk S g — {1 Tise, (LR, S AR B list € S L HL 224

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
if not math.isnan (value) :
filtered_data.append(value)

>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.7 WX T8

EMTE while F1 if [EIRYBROAAF DAL EAEATER T, AR HA HESESR T (comparisons) .

WEGEE T in fll not in M —MEUERGAAE (ONMEAE) AR 3. EE 7 is flnot is B
@\%E%EEH‘J%WEW%{#; BB CEBIGD st ARER S . FIrA il b i B8 18 S0 BEBT A [) ELEB AR
ABEERE T

OBGHE SRR W DA . B, a < b == c BURFEN a 2/ b Ml b 2HER ¢ .

FE G B] A A AE S T and fil or , H—EHCBGEF LR (SUETHAAAMEER) nTPAN L not
KA. B E TR EEAR L LB E R iR AK, Hd, not WELE RS, or MELERML, Hita
and not B or CZ[Hj’ (A and (not B)) or C. —WAEN, FEYERT LR ARE RATMA TS,

AMGE T and il or ARG (short-circuit) ST+ Gl B B A BAMWATER, HW45R B
HiAER, Fln, FHFaficEEMEBER, WA and B and ¢ FERENERUITE C o FEE R
P LT AR AR, AT 1 [I e AR OB S 5 [4

ot FIGE S s H AR A AR S G R AR IR AR — (SR O T ARG . Bl

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'Trondheim’

JERE, Python AMg CHiE, ERIFEXEEATIRIREATIN. CaliF Rl RE @ ifSE b, HiEkk
ke e C 3 5 L1 R — BRI AT == EEREAT A = .

40 Chapter 5. & RI45HE

Python Tutorial, %$(E] 3.7.14

5.8 JFAIRIEA T FL 4% R 2 LR

Fe B W Al DA S 2 HC AR 7] 2 S8) P (A e . o o E et) s ML (lexicographiical ordering) = # 4g
PR IR AT AR, AR, ErEGEE R, Fm, HIHRr |, DA, B8 H T —fp s
SEAEMSE. WIRPEEE 2 LU WY A B SURAR] 4 751 208,) i R 4 Lo s (E R B 2R o 4
FEFI A Y BEERAR S, I 7 A R A Y o AR — P S — R 5, AR R
J?}@JW/J\EI‘JJ?@JO e 1 S CIE 61 Unicode FR{3 (code point) & AHEFMHE/F 70, PATR/2—2EAf
[e 51 L RE Y LA -

(1, 2, 3) < (1, 2, 4)

[1, 2, 31 < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, (raa', 'ab'")) < (1, 2, ('abc', 'a'"), 4)

R, A < 80> SRR BRI PR Gk, FORPIPHA B 1 LB k. B, IRGZUME
BRI T MBI E AR, Fred 0 4808 0.0, 4545, SHHIE G @R ET — 1 TypeError S
AR LT .

(Elfit

5.8. Jy BRI LORHE: R 2 H s 4

Python Tutorial, %(E] 3.7.14

42

Chapter 5. & FI45HE

CHAPTER O

BAH.

WAL Python LR PR AZ LRGN, 0l (W) MR E ST e k. I, AHBE L
FRAREARE, PRI O) A s 2 HfE A 20 A B O %, DN RR SoRIE T . Eate—ME A
(script) . BEZARIIREGBAEIUR , (RVTAE G AU BHE B0 PR S, RE LA . (Rl AE L @ iEH —
TRPRZ B E A E H A AR i o, (R A S v X0 s s 2 2 B A ok e R

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the main
module (the collection of variables that you have access to in a script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix . py
appended. Within a module, the module’s name (as a string) is available as the value of the global variable __name__.
For instance, use your favorite text editor to create a file called fibo.py in the current directory with the following
contents:

Fibonacci numbers module

def fib(n): # write Fibonaccil series up to n
a, b =20, 1
while a < n:

print(a, end=' ")
a, b =D>b, atb
print ()
def fib2(n): # return Fibonacci series up to n
result = [

1
a, b=20, 1
while a < n:
result.append(a)
a, b =Db, atb
return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

43

Python Tutorial, %(E] 3.7.14

This does not enter the names of the functions defined in £ibo directly in the current symbol table; it only enters the
module name f ibo there. Using the module name you can access the functions:

>>> fibo.fib (1000)

0112 358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._ name_

'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib (500)
011 2 358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement.' (They are
also run if the file is executed as a script.)

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in the
module. Thus, the author of a module can use global variables in the module without worrying about accidental clashes
with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s global variables
with the same notation used to refer to its functions, modname . itemname.

Modules can import other modules. It is customary but not required to place all import statements at the beginning of
a module (or script, for that matter). The imported module names are placed in the importing module’s global symbol
table.

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib (500)
0112 358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib (500)
01 12 358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not use
this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you have already
defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly to the imported module.

1 In fact function definitions are also ’statements’ that are ’executed’; the execution of a module-level function definition enters the function name in
the module’s global symbol table.

44 Chapter 6. KizH

Python Tutorial, %$(E] 3.7.14

>>> import fibo as fib
>>> fib.fib (500)
0112358 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only difference of it being
available as fib.

It can also be used when utilising £ rom with similar effects:

>>> from fibo import fib as fibonacci
>>> fibonacci (500)
0112358 13 21 34 55 89 144 233 377

#i(E): For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter -- or, if it’s just one module you want to test interactively, use importlib.
reload(),e.g. import importlib; importlib.reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name___setto "__main__". That
means that by adding this code at the end of your module:

n n

if name_ == "_ main :
import sys

fib(int (sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command line
only runs if the module is executed as the “main” file:

$ python fibo.py 50
0112 35813 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the module
as a script executes a test suite).

6.1. More on Modules 45

Python Tutorial, %(E] 3.7.14

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If not
found, it then searches for a file named spam. py in a list of directories given by the variable sys.path. sys.path
is initialized from these locations:

 The directory containing the input script (or the current directory when no file is specified).
* PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

¢ The installation-dependent default.

#i(E]: On file systems which support symlinks, the directory containing the input script is calculated after the symlink
is followed. In other words the directory containing the symlink is not added to the module search path.

After initialization, Python programs can modify sys.path. The directory containing the script being run is placed
at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory will be
loaded instead of modules of the same name in the library directory. This is an error unless the replacement is intended.
See section Standard Modules for more information.

6.1.3 "Compiled” Python files

To speed up loading modules, Python caches the compiled version of each module inthe __pycache___ directory under
the name module. version.pyc, where the version encodes the format of the compiled file; it generally contains
the Python version number. For example, in CPython release 3.3 the compiled version of spam.py would be cached
as __pycache__/spam.cpython-33.pyc. This naming convention allows compiled modules from different re-
leases and different versions of Python to coexist.

Python checks the modification date of the source against the compiled version to see if it’s out of date and needs to be
recompiled. This is a completely automatic process. Also, the compiled modules are platform-independent, so the same
library can be shared among systems with different architectures.

Python does not check the cache in two circumstances. First, it always recompiles and does not store the result for the
module that’s loaded directly from the command line. Second, it does not check the cache if there is no source module.
To support a non-source (compiled only) distribution, the compiled module must be in the source directory, and there
must not be a source module.

Some tips for experts:

* You can use the —O or —0O switches on the Python command to reduce the size of a compiled module. The
-0 switch removes assert statements, the —OO switch removes both assert statements and __doc__ strings. Since
some programs may rely on having these available, you should only use this option if you know what you’re do-
ing. ”Optimized” modules have an opt - tag and are usually smaller. Future releases may change the effects of
optimization.

* A program doesn’t run any faster when it is read from a . pyc file than when it is read from a . py file; the only
thing that’s faster about . pyc files is the speed with which they are loaded.

¢ The module compileall can create .pyc files for all modules in a directory.

 There is more detail on this process, including a flow chart of the decisions, in PEP 3147.

46 Chapter 6. KizH

https://www.python.org/dev/peps/pep-3147

Python Tutorial, %$(E] 3.7.14

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
("Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform. For example, the winreg module is only provided on Windows systems. One particular module
deserves some attention: sys, which is built into every Python interpreter. The variables sys.psl and sys.ps?2
define the strings used as primary and secondary prompts:

>>> import sys
>>> sys.psl
>>> !

>>> sys.ps2

>>> sys.psl = 'C> '
C> print ('Yuck!")
Yuck!

c>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys .path is a list of strings that determines the interpreter’s search path for modules. It is initialized to a
default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not set.
You can modify it using standard list operations:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python'")

6.3 The dir () Function

The built-in function dir () is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir (fibo)

['"_name__"', '"fib', 'fib2']
>>> dir (sys)

['"__displayhook__"', '__doc ', '__excepthook__', '__loader__', '_ _name__ ',
'__package__', '__stderr__ ', '__stdin__"', '__stdout__"',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
'_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',

'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
'call_tracing', 'callstats', 'copyright', 'displayhook',
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'psl',
'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
'thread_info', 'wversion', 'version_info', 'warnoptions']

6.2. Standard Modules 47

Python Tutorial, %(E] 3.7.14

Without arguments, dir () lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir ()

['"_builtins__ ', '_name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir () does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module builtins:

>>> import builtins

>>> dir (builtins)

["ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'"ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build _class__"',

' __debug__"', '__doc__', '__import__', '__name__', '__package__', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec',6 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the module
name A . B designates a submodule named B in a package named A. Just like the use of modules saves the authors of
different modules from having to worry about each other’s global variable names, the use of dotted module names saves
the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff,
.au), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing, adding

48 Chapter 6. 54l

Python Tutorial, %$(E] 3.7.14

echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations. Here’s a possible structure for your package (expressed in terms of a
hierarchical filesystem):

sound/ Top-level package
__init__ .py Initialize the sound package
formats/ Subpackage for file format conversions
__init__ .py

wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects
__init__ .py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
__init__ .py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys . path looking for the package subdirec-
tory.

The __init__ .py files are required to make Python treat directories containing the file as packages. This prevents
directories with a common name, such as st ring, unintentionally hiding valid modules that occur later on the module
search path. In the simplestcase, __init__ .py can just be an empty file, but it can also execute initialization code for
the package or setthe __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

’import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter (input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

’from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

’echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

’from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter () directly available:

6.4. Packages 49

Python Tutorial, %(E] 3.7.14

echofilter (input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first tests
whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to find it, an
ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be
a package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous
item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when the
sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s __init__ .py code defines a list named __all__, it is taken to be the list
of module names that should be imported when from package import * isencountered. It is up to the package
author to keep this list up-to-date when a new version of the package is released. Package authors may also decide not
to support it, if they don’t see a use for importing * from their package. For example, the file sound/effects/
__init__ .py could contain the following code:

all = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * wouldimport the three named submodules of the sound
package.

If __all__ isnotdefined, the statement from sound.effects import * doesnotimport all submodules from
the package sound. ef fects into the current namespace; it only ensures that the package sound.effects has been
imported (possibly running any initialization code in __init__ .py) and then imports whatever names are defined in
the package. This includes any names defined (and submodules explicitly loaded) by __init__ .py. It also includes
any submodules of the package that were explicitly loaded by previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in
the sound.effects package when the from. . . import statement is executed. (This also works when __all_
is defined.)

Although certain modules are designed to export only names that follow certain patterns when you use import *,itis
still considered bad practice in production code.

Remember, there is nothing wrong with using from package import specific_submodule! In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

50 Chapter 6. gl

Python Tutorial, %$(E] 3.7.14

6.4.2 Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs
to use the echo module in the sound.effects package, it can use from sound.effects import echo.

You can also write relative imports, with the from module import name form of import statement. These imports
use leading dots to indicate the current and parent packages involved in the relative import. From the surround module
for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is always
" __main__", modules intended for use as the main module of a Python application must always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the
directory holding the package’s __init__ .py before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

[Elfi:

6.4. Packages 51

Python Tutorial, %(E] 3.7.14

52

Chapter 6. gl

CHAPTER /

i AN

A gy n] AR AR s BRI T ALAAR G i U, B0 S AR DABER AT (]« 15 2t
ol AR AN R O 2

(AN E S HIEL IS

HfE LT O ACE M AR R (LAY /o R XIRAE (expression statements) 8l print () . (5 =F)rik
M EYIR) wreite () Tk BRERII AR sys . stdout AGEMAY . FEAIA G2 % Ik
(¥ e s ERER .)

A g AR A U S 2 AR S B AZS AR R PR (EL. DA 2 el e ey 75X

» To use formatted string literals, begin a string with £ or F before the opening quotation mark or triple quotation
mark. Inside this string, you can write a Python expression between { and } characters that can refer to variables
or literal values.

>>> year = 2016
>>> event = 'Referendum'
>>> f'Results of the {year event }'

'Results of the 2016 Referendum'

e The str.format () method of strings requires more manual effort. You’'ll still use { and } to mark where
a variable will be substituted and can provide detailed formatting directives, but you’ll also need to provide the
information to be formatted.

>>> yes_votes = 42_572_654
>>> no_votes = 43 132 495

>>> percentage = yes_votes / (yes_votes + no_votes)

>>> ! YES votes '.format (yes_votes, percentage)
' 42572654 YES votes 49.67%'

¢ Finally, you can do all the string handling yourself by using string slicing and concatenation operations to create
any layout you can imagine. The string type has some methods that perform useful operations for padding strings
to a given column width.

53

Python Tutorial, %(E] 3.7.14

When you don’t need fancy output but just want a quick display of some variables for debugging purposes, you can convert
any value to a string with the repr () or str () functions.

The str () function is meant to return representations of values which are fairly human-readable, while repr () is meant
to generate representations which can be read by the interpreter (or will force a SyntaxError if there is no equivalent
syntax). For objects which don’t have a particular representation for human consumption, str () will return the same
value as repr (). Many values, such as numbers or structures like lists and dictionaries, have the same representation
using either function. Strings, in particular, have two distinct representations.

—LuE -

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1/7)
'0.14285714285714285"
>>> x = 10 * 3.25
>>> y 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is
>>> print (s)
The value of x is 32.5, and y is 40000...
>>> # The repr () of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr (hello)
>>> print (hellos)
'hello, world\n'
>>> # The argument to repr () may be any Python object:
repr ((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

+ repr(y) + '...'

The string module contains a Template class that offers yet another way to substitute values into strings, using
placeholders like $x and replacing them with values from a dictionary, but offers much less control of the formatting.

7.1.1 Bk e A (Formatted String Literals)

Formatted string literals (also called f-strings for short) let you include the value of Python expressions inside a string by
prefixing the string with £ or F and writing expressions as {expression}.

An optional format specifier can follow the expression. This allows greater control over how the value is formatted. The
following example rounds pi to three places after the decimal:

>>> import math
>>> print (f'The value of pi is approximately {math.pi:.3f}.")
The value of pi is approximately 3.142.

Passing an integer after the ' : ' will cause that field to be a minimum number of characters wide. This is useful for
making columns line up.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():

print (f'{name:10} ==> {phone:10d}")
Sjoerd ==> 4127
Jack ==> 4098
Dcab ==> 7678

54 Chapter 7. iifi A Rliii il

Python Tutorial, %$(E] 3.7.14

Other modifiers can be used to convert the value before it is formatted. ' !a' applies ascii (), '!s' applies str (),
and ' ! r' applies repr ():

>>> animals = 'eels'

>>> print (f'My hovercraft is full of {animals}.'")
My hovercraft is full of eels.

>>> print (f'My hovercraft is full of {animals)
My hovercraft is full of 'eels'.

For a reference on these format specifications, see the reference guide for the formatspec.

7.1.2 The String format() Method

Basic usage of the str. format () method looks like this:

>>> print ('We are the who say " tmr format ('knights', 'Ni'))
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the str.
format () method. A number in the brackets can be used to refer to the position of the object passed into the str.
format () method.

>>> print (' and '.format ('spam', 'eggs'))
spam and eggs
>>> print (' and '.format ('spam', 'eggs'))

eggs and spam

If keyword arguments are used in the str. format () method, their values are referred to by using the name of the
argument.

>>> print ('This is .. format (
.. food="'spam', adjective='absolutely horrible'))
This spam 1is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print ('The story of , , and '.format ('Bill', 'Manfred',
other="Georg'))
The story of Bill, Manfred, and Georg.

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the variables
to be formatted by name instead of by position. This can be done by simply passing the dict and using square brackets
" [1" to access the keys.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: ; Sjoerd: ;!

Ce. 'Dcab: '.format (table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the ***’ notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: ; Sjoerd: ; Dcab: '.format (**table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars (), which returns a dictionary containing all
local variables.

7.0, R RS X 55

Python Tutorial, %(E] 3.7.14

As an example, the following lines produce a tidily-aligned set of columns giving integers and their squares and cubes:

>>> for x in range (1, 11):

print (' ' format (x, xX*x, X*X*x))
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

For a complete overview of string formatting with st r. format (), see formatstrings.

7.1.3 Manual String Formatting

Here’s the same table of squares and cubes, formatted manually:

>>> for x in range (1, 11):
print (repr (x) .rjust (2), repr(x*x).rjust(3), end=" ")
Note use of 'end' on previous line
print (repr (x*x*x) .rjust (4))

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that the one space between each column was added by the way print () works: it always adds spaces between its
arguments.)

The str.rjust () method of string objects right-justifies a string in a field of a given width by padding it with spaces
on the left. There are similar methods str.ljust () and str.center (). These methods do not write anything,
they just return a new string. If the input string is too long, they don’t truncate it, but return it unchanged; this will mess
up your column lay-out but that’s usually better than the alternative, which would be lying about a value. (If you really
want truncation you can always add a slice operation, as in x. 1 just (n) [:n].)

There is another method, str.zfil1l (), which pads a numeric string on the left with zeros. It understands about plus
and minus signs:

>>> '"12'.z£fil1(5)

'00012"

>>> '-3.14"'.z£i11(7)
'-003.14"

>>> '3.14159265359'.z£f111(5)
'3.14159265359"

56 Chapter 7. iifi A Rliii il

Python Tutorial, %$(E] 3.7.14

7.1.4 Old string formatting

The % operator (modulo) can also be used for string formatting. Given 'string' % wvalues, instances of % in
string are replaced with zero or more elements of values. This operation is commonly known as string interpolation.
For example:

>>> import math

>>> print ('The value of pi is approximately .'" % math.pi)
The value of pi is approximately 3.142.

More information can be found in the old-string-formatting section.

7.2 Reading and Writing Files

open () returns a file object, and is most commonly used with two arguments: open (filename, mode).

’>>> f = open('workfile', 'w')

The first argument is a string containing the filename. The second argument is another string containing a few characters
describing the way in which the file will be used. mode can be ' r' when the file will only be read, 'w' for only writing
(an existing file with the same name will be erased), and 'a ' opens the file for appending; any data written to the file is
automatically added to the end. ' r+' opens the file for both reading and writing. The mode argument is optional; 'r'
will be assumed if it’s omitted.

Normally, files are opened in fext mode, that means, you read and write strings from and to the file, which are encoded in
a specific encoding. If encoding is not specified, the default is platform dependent (see open ()). 'b' appended to the
mode opens the file in binary mode: now the data is read and written in the form of bytes objects. This mode should be
used for all files that don’t contain text.

In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \r\n on Windows) to
just \n. When writing in text mode, the default is to convert occurrences of \n back to platform-specific line endings.
This behind-the-scenes modification to file data is fine for text files, but will corrupt binary data like that in JPEG or EXE
files. Be very careful to use binary mode when reading and writing such files.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is properly
closed after its suite finishes, even if an exception is raised at some point. Using with is also much shorter than writing
equivalent t ry-finally blocks:

>>> with open('workfile') as f:
.. read_data = f.read()
>>> f.closed

True

If you're not using the with keyword, then you should call £.close () to close the file and immediately free up any
system resources used by it. If you don’t explicitly close a file, Python’s garbage collector will eventually destroy the object
and close the open file for you, but the file may stay open for a while. Another risk is that different Python implementations
will do this clean-up at different times.

After a file object is closed, either by a with statement or by calling £.close (), attempts to use the file object will
automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file.

7.2. Reading and Writing Files 57

Python Tutorial, %(E] 3.7.14

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call £.read (size), which reads some quantity of data and returns it as a string (in text
mode) or bytes object (in binary mode). size is an optional numeric argument. When size is omitted or negative, the entire
contents of the file will be read and returned; it’s your problem if the file is twice as large as your machine’s memory.
Otherwise, at most size characters (in text mode) or size bytes (in binary mode) are read and returned. If the end of the
file has been reached, f£.read () will return an empty string (' ').

>>> f.read()
'This is the entire file.\n'

>>> f.read()

f.readline () reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if f.
readline () returns an empty string, the end of the file has been reached, while a blank line is represented by '\n"',
a string containing only a single newline.

>>> f.readline ()

'This is the first line of the file.\n'
>>> f.readline ()

'Second line of the file\n'

>>> f.readline ()

[}

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple code:

>>> for line in f:
print (line, end='")

This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can also use 1ist (f) or f.readlines ().

f.write (string) writes the contents of string to the file, returning the number of characters written.

>>> f.write('This is a test\n')
15

Other types of objects need to be converted -- either to a string (in text mode) or a bytes object (in binary mode) -- before
writing them:

>>> value = ('the answer', 42)

>>> s = str(value) # convert the tuple to string
>>> f.write(s)

18

f.tell () returns an integer giving the file object’s current position in the file represented as number of bytes from the
beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f . seek (offset, whence). The position is computed from adding offset
to a reference point; the reference point is selected by the whence argument. A whence value of 0 measures from the
beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point. whence can be
omitted and defaults to 0, using the beginning of the file as the reference point.

58 Chapter 7. i A Filiigi i1}

Python Tutorial, %$(E] 3.7.14

>>> f = open('workfile', 'rb+')

>>> f.write(b'012345678%abcdef")

16

>>> f.seek (D) # Go to the 6th byte in the file
5

>>> f.read (1)

b'S!

>>> f.seek (-3, 2) # Go to the 3rd byte before the end
13

>>> f.read (1)

b'd!’

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are allowed (the
exception being seeking to the very file end with seek (0, 2)) and the only valid offset values are those returned from
the £.tell (), or zero. Any other offset value produces undefined behaviour.

File objects have some additional methods, suchas i satty () and t runcate () which are less frequently used; consult
the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read () method only
returns strings, which will have to be passed to a function like int (), which takes a string like '123" and returns
its numeric value 123. When you want to save more complex data types like nested lists and dictionaries, parsing and
serializing by hand becomes complicated.

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows
you to use the popular data interchange format called JSON (JavaScript Object Notation). The standard module called
json can take Python data hierarchies, and convert them to string representations; this process is called serializing.
Reconstructing the data from the string representation is called deserializing. Between serializing and deserializing, the
string representing the object may have been stored in a file or data, or sent over a network connection to some distant
machine.

f#(E): The JSON format is commonly used by modern applications to allow for data exchange. Many programmers are
already familiar with it, which makes it a good choice for interoperability.

If you have an object %, you can view its JSON string representation with a simple line of code:

>>> import json
>>> json.dumps ([1, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps () function, called dump () , simply serializes the object to a fext file. So if £ is a fext file
object opened for writing, we can do this:

’json.dump(x, f)

To decode the object again, if £ is a fext file object which has been opened for reading:

’x = Jjson.load(f)

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON
requires a bit of extra effort. The reference for the json module contains an explanation of this.

hz%:

7.2. Reading and Writing Files 59

http://json.org

Python Tutorial, %(E] 3.7.14

pickle - the pickle module

Contrary to JSON, pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As such, it is
specific to Python and cannot be used to communicate with applications written in other languages. It is also insecure by
default: deserializing pickle data coming from an untrusted source can execute arbitrary code, if the data was crafted by
a skilled attacker.

60 Chapter 7. i A Rl i1

CHAPTER 8

gk

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: synfax errors and exceptions.

8.1 whikdhie

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are still
learning Python:

>>> while True print ('Hello world")
File "<stdin>", line 1
while True print ('Hello world')

A

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little "arrow’ pointing at the earliest point in the line where the error
was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is
detected at the function print (), since a colon (' : ') is missing before it. File name and line number are printed so
you know where to look in case the input came from a script.

8.2 fi4h

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to handle
them in Python programs. Most exceptions are not handled by programs, however, and result in error messages as shown
here:

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

(Rt

61

Python Tutorial, %(E] 3.7.14

(R —H)

ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed as
part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The string
printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in exceptions,
but need not be true for user-defined exceptions (although it is a useful convention). Standard exception names are built-in
identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a stack traceback.
In general it contains a stack traceback listing source lines; however, it will not display lines read from standard input.

bltin-exceptions lists the built-in exceptions and their meanings.

8.3 JE P pBIHh

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user for
input until a valid integer has been entered, but allows the user to interrupt the program (using Cont ro1-C or whatever
the operating system supports); note that a user-generated interruption is signalled by raising the KeyboardInterrupt
exception.

>>> while True:
try:
x = int (input ("Please enter a number: "))
break
except ValueError:
print ("Oops! That was no valid number. Try again...")

The t ry statement works as follows.
* First, the try clause (the statement(s) between the t ry and except keywords) is executed.
« If no exception occurs, the except clause is skipped and execution of the t ry statement is finished.

* If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type matches
the exception named after the except keyword, the except clause is executed, and then execution continues after
the t ry statement.

« If an exception occurs which does not match the exception named in the except clause, it is passed on to outer t ry
statements; if no handler is found, it is an unhandled exception and execution stops with a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler
will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the
same t ry statement. An except clause may name multiple exceptions as a parenthesized tuple, for example:

62 Chapter 8. #iHifsp

Python Tutorial, %$(E] 3.7.14

except (RuntimeError, TypeError, NameError):
pass

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around --- an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

class B (Exception):
pass

class C(B):
pass

class D(C):
pass

for cls in [B, C, D]:

try:

raise cls{()
except D:

print ("D")
except C:

print ("C")
except B:

print ("B")

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B --- the first matching
except clause is triggered.

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it is
easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise the
exception (allowing a caller to handle the exception as well):

import sys

try:
f = open('myfile.txt")
s = f.readline()
i = int(s.strip())
except OSError as err:
print ("OS error: ".format (err))
except ValueError:
print ("Could not convert data to an integer.")
except:
print ("Unexpected error:", sys.exc_info() [0])
raise

The try ... except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv([l:]:
try:
f = open(arg, 'r')
except OSError:
print ('cannot open', arg)
else:
print (arg, 'has', len(f.readlines()), 'lines"')

CFItaRED)

8.3. JEBIpIS 63

Python Tutorial, %(E] 3.7.14

(R —H)

f.close()

The use of the e 1 se clause is better than adding additional code to the t ry clause because it avoids accidentally catching
an exception that wasn’t raised by the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence and
type of the argument depend on the exception type.

The except clause may specify a variable after the exception name. The variable is bound to an exception instance with the
arguments stored in instance . args. For convenience, the exception instance defines __str__ () so the arguments
can be printed directly without having to reference . args. One may also instantiate an exception first before raising it
and add any attributes to it as desired.

>>> try:
raise Exception('spam', 'eggs')
except Exception as inst:

print (type (inst)) # the exception instance
print (inst.args) # arguments stored in .args
print (inst) # __str___ allows args to be printed directly,
but may be overridden in exception subclasses
X, y = inst.args # unpack args
print ('x =", x)
print ('y =", y)

<class 'Exception'>
('spam', 'eggs')
('spam', 'eggs')

X = spam

y = €ggs

If an exception has arguments, they are printed as the last part ('detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur inside
functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
x = 1/0

>>> try:
this_fails()

except ZeroDivisionError as err:
print ('Handling run-time error:', err)

Handling run-time error: division by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError ('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: HiThere

64 Chapter 8. #iHifsp

Python Tutorial, %$(E] 3.7.14

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from Exception). If an exception class is passed, it will be implicitly instantiated
by calling its constructor with no arguments:

raise ValueError # shorthand for 'raise ValueError()'

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

>>> try:
raise NameError ('HiThere')
except NameError:
print ('An exception flew by!')
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python classes).
Exceptions should typically be derived from the Except ion class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only offering
anumber of attributes that allow information about the error to be extracted by handlers for the exception. When creating
a module that can raise several distinct errors, a common practice is to create a base class for exceptions defined by that
module, and subclass that to create specific exception classes for different error conditions:

class Error (Exception) :
"""Base class for exceptions in this module."""
pass

class InputError (Error):
"""Exception raised for errors in the input.

Attributes:
expression —— input expression in which the error occurred
message —- explanation of the error

men

def init (self, expression, message) :
self.expression = expression
self.message = message

class TransitionError (Error) :
"""Raised when an operation attempts a state transition that's not

allowed.
Attributes:
previous —-- state at beginning of transition
next —-—- attempted new state
message —- explanation of why the specific transition is not allowed

meen

(Qi¥i#3)

8.5. User-defined Exceptions 65

Python Tutorial, %(E] 3.7.14

(R —H)

def _ _init__ (self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in ”Error”, similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter Classes.

8.6 Defining Clean-up Actions

The t ry statement has another optional clause which is intended to define clean-up actions that must be executed under
all circumstances. For example:

>>> try:
raise KeyboardInterrupt
finally:
print ('Goodbye, world!")

Goodbye, world!

KeyboardInterrupt

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

If a finally clause is present, the finally clause will execute as the last task before the t ry statement completes.
The finally clause runs whether or not the t ry statement produces an exception. The following points discuss more
complex cases when an exception occurs:

* If an exception occurs during execution of the t ry clause, the exception may be handled by an except clause. If
the exception is not handled by an except clause, the exception is re-raised after the finally clause has been
executed.

* An exception could occur during execution of an except or else clause. Again, the exception is re-raised after
the finally clause has been executed.

* If the t ry statement reaches a break, cont inue or return statement, the finally clause will execute just
prior to the break, continue or return statement’s execution.

e Ifa finally clause includes a ret urn statement, the returned value will be the one from the finally clause’s
return statement, not the value from the t ry clause’s ret urn statement.

For example:

>>> def bool_return():
try:
return True
finally:
return False

>>> bool_return ()
False

A more complicated example:

66 Chapter 8. #iHifsp

Python Tutorial, %$(E] 3.7.14

>>> def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print ("division by zero!")
else:
print ("result is", result)
finally:
print ("executing finally clause")

>>> divide (2, 1)

result is 2.0

executing finally clause

>>> divide (2, 0)

division by zero!

executing finally clause

>>> divide("2", "1™")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network con-
nections), regardless of whether the use of the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of whether
or not the operation using the object succeeded or failed. Look at the following example, which tries to open a file and
print its contents to the screen.

for line in open("myfile.txt"):
print (line, end="")

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the code
has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with
statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:
print (line, end="")

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines.
Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

8.7. Predefined Clean-up Actions 67

Python Tutorial, %(E] 3.7.14

68

Chapter 8. #iHifsp

CHAPTER 9

Classes

Classes provide a means of bundling data and functionality together. Creating a new class creates a new fype of object,
allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining its
state. Class instances can also have methods (defined by its class) for modifying its state.

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax and
semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the standard
features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a derived class
can override any methods of its base class or classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake of the dynamic
nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private Variables),
and all member functions are virfual. As in Modula-3, there are no shorthands for referencing the object’s members from
its methods: the method function is declared with an explicit first argument representing the object, which is provided
implicitly by the call. Asin Smalltalk, classes themselves are objects. This provides semantics for importing and renaming.
Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most
built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms.
I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that
few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known as
aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored when
dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect on the
semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is usually used
to the benefit of the program, since aliases behave like pointers in some respects. For example, passing an object is cheap
since only a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller
will see the change --- this eliminates the need for two different argument passing mechanisms as in Pascal.

69

Python Tutorial, %(E] 3.7.14

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some neat
tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going on.
Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (containing functions such as abs () , and built-in exception names); the global
names in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form
a namespace. The important thing to know about namespaces is that there is absolutely no relation between names in
different namespaces; for instance, two different modules may both define a function maximize without confusion ---
users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot --- for example, in the expression z . real, real is
an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression
modname . funcname, modname is a module object and funcname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s attributes and the global names defined in the module: they share
the same namespace!'

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can write modname .the_answer = 42. Writable attributes may also be deleted with the de1 state-
ment. For example, del modname.the_answer will remove the attribute the_answer from the object named
by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in names
is created when the Python interpreter starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last until the interpreter quits. The statements
executed by the top-level invocation of the interpreter, either read from a script file or interactively, are considered part of
amodule called __main__, so they have their own global namespace. (The built-in names actually also live in a module;
this is called builtins.)

The local namespace for a function is created when the function is called, and deleted when the function returns or raises
an exception that is not handled within the function. (Actually, forgetting would be a better way to describe what actually
happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible:

* the innermost scope, which is searched first, contains the local names

« the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains non-
local, but also non-global names

* the next-to-last scope contains the current module’s global names
* the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the module’s
global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be used; if not
declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply create a new local
variable in the innermost scope, leaving the identically named outer variable unchanged).

! Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement the
module’s namespace; the name __dict___is an attribute but not a global name. Obviously, using this violates the abstraction of namespace imple-
mentation, and should be restricted to things like post-mortem debuggers.

70 Chapter 9. Classes

Python Tutorial, %$(E] 3.7.14

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local scope
references the same namespace as the global scope: the module’s namespace. Class definitions place yet another names-
pace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module is that
module’s namespace, no matter from where or by what alias the function is called. On the other hand, the actual search
for names is done dynamically, at run time --- however, the language definition is evolving towards static name resolution,
at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already determined statically.)

A special quirk of Python is that -- if no global or nonlocal statement is in effect -- assighments to names always
go into the innermost scope. Assignments do not copy data --- they just bind names to objects. The same is true for
deletions: the statement del x removes the binding of x from the namespace referenced by the local scope. In fact, all
operations that introduce new names use the local scope: in particular, import statements and function definitions bind
the module or function name in the local scope.

The global statement can be used to indicate that particular variables live in the global scope and should be rebound
there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be rebound there.

9.2.1 Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and how global and
nonlocal affect variable binding:

def scope_test():
def do_local():
spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam"

do_local ()

print ("After local assignment:", spam)
do_nonlocal ()

print ("After nonlocal assignment:", spam)
do_global ()

print ("After global assignment:", spam)

scope_test ()
print ("In global scope:", spam)

The output of the example code is:

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test’s binding of spam. The nonlocal assignment
changed scope_test’s binding of spam, and the global assignment changed the module-level binding.

You can also see that there was no previous binding for spam before the global assignment.

9.2. Python Scopes and Namespaces 71

Python Tutorial, %(E] 3.7.14

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (de f statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an i f statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful --- we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods --- again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope --- thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj . name. Valid attribute names
are all the names that were in the class’s namespace when the class object was created. So, if the class definition looked
like this:

class MyClass:
""rnaA simple example class"""
i = 12345

def f (self):
return 'hello world'

thenMyClass.iandMyClass. f are valid attribute references, returning an integer and a function object, respectively.
Class attributes can also be assigned to, so you can change the value of MyClass. i by assignment. __doc___isalsoa
valid attribute, returning the docstring belonging to the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a new
instance of the class. For example (assuming the above class):

x = MyClass ()

72 Chapter 9. Classes

Python Tutorial, %$(E] 3.7.14

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__ (), like
this:

def _ init_ (self):
self.data = []

When a class defines an __init__ () method, class instantiation automatically invokes __init__ () for the newly-
created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass ()

Of course, the __init__ () method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed onto __init__ (). For example,

>>> class Complex:
def __init__ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex (3.0, —-4.5)
>>> x.r, X.1
(3.0, —-4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute references.
There are two kinds of valid attribute names: data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to "data members” in C++. Data attributes need not be
declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the instance
of MyClass created above, the following piece of code will print the value 1 6, without leaving a trace:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2

print (x.counter)
del x.counter

The other kind of instance attribute reference is a method. A method is a function that ”belongs to” an object. (In Python,
the term method is not unique to class instances: other object types can have methods as well. For example, list objects
have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll use the term
method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function objects
define corresponding methods of its instances. So in our example, x . £ is a valid method reference, since MyClass. £
is a function, but x . i is not, since MyClass. i is not. But x . £ is not the same thing as MyClass. £ --- it is a method
object, not a function object.

9.3. A First Look at Classes 73

Python Tutorial, %(E] 3.7.14

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.£()

In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a method
right away: x . £ is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print (xf())

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x . £ () was called without an argument above,
even though the function definition for £ () specified an argument. What happened to the argument? Surely Python raises
an exception when a function that requires an argument is called without any --- even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed as the
first argument of the function. In our example, the call x. £ () is exactly equivalent to MyClass. f (x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that
is created by inserting the method’s instance object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When a non-
data attribute of an instance is referenced, the instance’s class is searched. If the name denotes a valid class attribute that
is a function object, a method object is created by packing (pointers to) the instance object and the function object just
found together in an abstract object: this is the method object. When the method object is called with an argument list, a
new argument list is constructed from the instance object and the argument list, and the function object is called with this
new argument list.

9.3.5 Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and
methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances
def _ init_ (self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido")
>>> e = Dog('Buddy")

>>> d.kind # shared by all dogs
'canine'

>>> e.kind # shared by all dogs
'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e
'Buddy'

As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with involving mutable
objects such as lists and dictionaries. For example, the fricks list in the following code should not be used as a class variable
because just a single list would be shared by all Dog instances:

74 Chapter 9. Classes

Python Tutorial, %$(E] 3.7.14

class Dog:
tricks = [] # mistaken use of a class variable

def _ init_ (self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")

>>> e = Dog('Buddy")

>>> d.add_trick ('roll over')

>>> e.add_trick('play dead")

>>> d.tricks # unexpectedly shared by all dogs

['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

def _ init_ (self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")

>>> e = Dog('Buddy")

>>> d.add_trick('roll over')
>>> e.add_trick('play dead")

>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause hard-
to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts. Possible
conventions include capitalizing method names, prefixing data attribute names with a small unique string (perhaps just an
underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (”clients”) of an object. In other words, classes
are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce data hiding
--- it is all based upon convention. (On the other hand, the Python implementation, written in C, can completely hide
implementation details and control access to an object if necessary; this can be used by extensions to Python written in
C)

Clients should use data attributes with care --- clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting the
validity of the methods, as long as name conflicts are avoided --- again, a naming convention can save a lot of headaches
here.

9.4. Random Remarks 75

Python Tutorial, %(E] 3.7.14

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when glancing
through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that relies
upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the function
definition is textually enclosed in the class definition: assigning a function object to a local variable in the class is also ok.
For example:

Function defined outside the class
def fl(self, x, y):
return min(x, x+y)

class C:
f = f1

def g(self):
return 'hello world'

h =g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C --- h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the self argument:

class Bag:
def _ init__ (self):
self.data = []

def add(self, x):
self.data.append (x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a method
is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters a good
reason for using global data in a method, there are many legitimate uses of the global scope: for one thing, functions and
modules imported into the global scope can be used by methods, as well as functions and classes defined in it. Usually,
the class containing the method is itself defined in this global scope, and in the next section we’ll find some good reasons
why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its fype). It is stored as object.__class__.

76 Chapter 9. Classes

Python Tutorial, %$(E] 3.7.14

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for a
derived class definition looks like this:

class DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base class
name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is defined in
another module:

class DerivedClassName (modname.BaseClassName) :

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the class,
the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived from some
other class.

There’s nothing special about instantiation of derived classes: DerivedClassName () creates a new instance of the
class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the chain
of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class may
end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively
virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method
of the same name. There is a simple way to call the base class method directly: just call BaseClassName.
methodname (self, arguments). This is occasionally useful to clients as well. (Note that this only works if
the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

e Use isinstance () to check an instance’s type: isinstance (obj, int) will be True only if obj.
__class___is int or some class derived from int.

e Use issubclass () to check class inheritance: issubclass (bool, int) is True since bool is a sub-
class of int. However, issubclass (float, int) isFalse since float is not a subclass of int.

9.5.1 Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

class DerivedClassName (Basel, Base2, Base3):
<statement-1>

<statement-N>

9.5. Inheritance 77

Python Tutorial, %(E] 3.7.14

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as depth-
first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if an attribute is
not found in DerivedClassName, it is searched for in Basel, then (recursively) in the base classes of Basel, and
if it was not found there, it was searched for in Base?2, and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support cooperative calls
to super (). This approach is known in some other multiple-inheritance languages as call-next-method and is more
powerful than the super call found in single-inheritance languages.

Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships (where
at least one of the parent classes can be accessed through multiple paths from the bottommost class). For example, all
classes inherit from object, so any case of multiple inheritance provides more than one path to reach object. To
keep the base classes from being accessed more than once, the dynamic algorithm linearizes the search order in a way
that preserves the left-to-right ordering specified in each class, that calls each parent only once, and that is monotonic
(meaning that a class can be subclassed without affecting the precedence order of its parents). Taken together, these
properties make it possible to design reliable and extensible classes with multiple inheritance. For more detail, see https:
/Iwww.python.org/download/releases/2.3/mro/.

9.6 Private Variables

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there
is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be
treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered an
implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names defined by
subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of the form __spam (at
least two leading underscores, at most one trailing underscore) is textually replaced with _classname___spam, where
classname is the current class name with leading underscore(s) stripped. This mangling is done without regard to the
syntactic position of the identifier, as long as it occurs within the definition of a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For example:

class Mapping:
def _ init__ (self, iterable):
self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:
self.items_list.append(item)

__update = update # private copy of original update () method
class MappingSubclass (Mapping) :

def update (self, keys, values):
provides new signature for update()
but does not break __init__ ()
for item in zip (keys, values):
self.items_list.append(item)

The above example would work even if MappingSubclass were to introduce a ___update identifier since
it is replaced with _Mapping__update in the Mapping class and _MappingSubclass__update in the
MappingSubclass class respectively.

78 Chapter 9. Classes

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Tutorial, %$(E] 3.7.14

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable that
is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec () or eval () does not consider the classname of the invoking class to be the current
class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is
byte-compiled together. The same restriction applies to getattr (), setattr () and delattr (), as well as when
referencing ___dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C "struct”, bundling together a few named data
items. An empty class definition will do nicely:

class Employee:
pass

john = Employee () # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods
of that data type instead. For instance, if you have a function that formats some data from a file object, you can define a
class with methods read () and readline () that get the data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.__self__ is the instance object with the method m (), and m.
___func___is the function object corresponding to the method.

9.8 lterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print (element)

for element in (1, 2, 3):
print (element)

for key in {'one':1, 'two':2}:
print (key)

for char in "123":
print (char)

for line in open("myfile.txt"):
print (line, end='")

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes,
the for statement calls iter () on the container object. The function returns an iterator object that defines the method
__next__ () which accesses elements in the container one at a time. When there are no more elements, __next__ ()
raises a StopIteration exception which tells the for loop to terminate. You can call the __next__ () method
using the next () built-in function; this example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)

(Rt

9.7. Odds and Ends 79

Python Tutorial, %(E] 3.7.14

(R —H)

>>> it

<iterator object at O0x00A1DB50>

>>> next (it)

a0

>>> next (it)

lbl

>>> next (it)

ICI

>>> next (it)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

next (it)

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an
__iter__ () method which returns an object witha __next___ () method. If the class defines __next__ (), then
__iter__ () can justreturn self:

class Reverse:
"""Tterator for looping over a sequence backwards."""
def _ init_ (self, data):
self.data = data
self.index = len (data)

def _ iter_ (self):
return self

def _ next_ (self):
if self.index ==
raise Stoplteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse ('spam')
>>> iter (rev)
<__main__ .Reverse object at 0x00A1DB50>
>>> for char in rev:
print (char)

nw o e 3 -

9.9 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the yield
statement whenever they want to return data. Each time next () is called on it, the generator resumes where it left off (it
remembers all the data values and which statement was last executed). An example shows that generators can be trivially
easy to create:

def reverse (data) :
for index in range(len(data)-1, -1, -1):

(Rt

80 Chapter 9. Classes

Python Tutorial, %$(E] 3.7.14

(R —H)

yield data[index]

>>> for char in reverse('golf'):
print (char)

Q O H tho»

Anything that can be done with generators can also be done with class-based iterators as described in the previous section.
What makes generators so compact is that the __iter_ () and __next__ () methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made the
function easier to write and much more clear than an approach using instance variables like sel1f.index and self.
data.

In addition to automatic method creation and saving program state, when generators terminate, they automatically raise
StopIteration. In combination, these features make it easy to create iterators with no more effort than writing a
regular function.

9.10 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of square brackets. These expressions are designed for situations where the generator is used right
away by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions
and tend to be more memory friendly than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range (10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range (0, 91)}

>>> unique_words = set (word for line in page for word in line.split())
>>> valedictorian = max((student.gpa, student.name) for student in graduates)
>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1, -1, -1))
['f', 'l', 'O', lg']

9.10. Generator Expressions 81

Python Tutorial, %(E] 3.7.14

[Elfi:

82

Chapter 9. Classes

cHAPTER 10

Python 2k pg =X JBAR B

10.1 R RSl

os AT T et HL V3 AR ATl) i o

>>> import os

>>> os.getcwd () # Return the current working directory

'C:\\Python37'

>>> os.chdir ('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

B import os Tk from os import *. i@l REFAIRE M EEA 25EM os.open () B
[E)7# K open ()«

TER os wE AR B R LB @ KX dir O il help () RAERH M

>>> import os

>>> dir (os)

<returns a list of all module functions>

>>> help (os)

<returns an extensive manual page created from the module's docstrings>

S HEA A H D BAES;, shutil BARAL 725 f T i e I A i -

>>> import shutil

>>> shutil.copyfile('data.db', 'archive.db'")
'archive.db'

>>> shutil.move ('/build/executables', 'installdir')
'installdir'

83

Python Tutorial, %(E] 3.7.14

10.2 FERZ BT

The glob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob('*.py")
['"primes.py', 'random.py', 'quote.py']

10.3 w4415 1%

B TAEAWFE R A58 25 8 AR IE AL sys BN argy LM . BUnAE Ay
A5+ python demo.py one two three @7 DA F#iH &5 R

>>> import sys
>>> print (sys.argv)
['demo.py', 'one', 'two', 'three']

The argparse module provides a more sophisticated mechanism to process command line arguments. The following
script extracts one or more filenames and an optional number of lines to be displayed:

import argparse

parser = argparse.ArgumentParser (prog = 'top',

description = 'Show top lines from each file')
parser.add_argument ('filenames', nargs='+")
parser.add_argument ('-1', '—--lines', type=int, default=10)

args = parser.parse_args()
print (args)

When run at the command line with python top.py --lines=5 alpha.txt beta.txt, the script sets
args.linesto5and args.filenamesto ['alpha.txt', 'beta.txt'].

10.4 B i 1 o8 g LR A%k

sys B A stdin, stdout, F stderr 22558, BIfliE; stdout ¥y B), 18 stderr W] B 522N 4

2 2

reatlUEL o

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

FAEEIA R E R TR A sys.exit (),

84 Chapter 10. Python £ i g 28 i i 55

Python Tutorial, %}(F] 3.7.14

10.5 “pH bk EE ¥

re BEHFLHLIEBIFRA (regular expression) i i i 7 H B FE . 22 B PRIEVAE R HL 38 DA R BRAFIRE , IERLROR
A2 R AR iR A RE T R

>>> import re

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
["foot', 'fell', 'fastest']

>>> re.sub(r' (\b[a-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

WA TR R TR A, PRI DA BT (RS, A AR B TR LR Y

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6 S0 HIE

math B AL T C b2 i A B O iy e oK

>>> import math

>>> math.cos (math.pi / 4)
0.70710678118654757

>>> math.log (1024, 2)
10.0

random FEAIER AL T REMEIRM TH.

>>> import random

>>> random.choice (['apple', 'pear', 'banana'])

'apple'

>>> random.sample (range (100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random () # random float

0.17970987693706186

>>> random.randrange (6) # random integer chosen from range (6)

4

statistics BUAHIRML TRBE R RIFH A SR (A5, e, SEREESE) w6k,

>>> import statistics

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> statistics.mean (data)

1.6071428571428572

>>> statistics.median (data)

1.25

>>> statistics.variance (data)

1.3720238095238095

Scipy BLZE <https:/scipy.org> A 712 WUE FTEAH B R4 .

10.5. “yH bR ALE S 85

https://scipy.org

Python Tutorial, %}[F] 3.7.14

10.7 245 A7 IR

Python WA 71 2 A7 BUAR % DA B Sl PRAB IS 7 5« B FE B A W 481 745 urllib. request AL A PAREATHEIN
BUEEIA K smtplib 0] DA AR HE ¢, -

>>> from urllib.request import urlopen
>>> with urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl') as response:
for line in response:
line = line.decode('utf-8") # Decoding the binary data to text.
if 'EST' in line or 'EDT' in line: # look for Eastern Time
print (line)

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib.SMTP ('localhost')

>>> server.sendmail ('soothsayer@example.org', 'jcaesar@example.org',
"""To: jcaesar@example.org
From: soothsayer(@example.org

Beware the Ides of March.

n n)

>>> server.quit ()

(SR RG] rh 75 BEAE A g A T — R 3) A)

10.8 H J]HLIks]

datetime B HA FFLBEPL AT H DAL, (E R RAEEREARAT . AR SOIR TSRS R S 0, T
ORI B2 A ORI i S A S RS S AR A . AL AR A S0 e (F S

>>> # dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date (2003, 12, 2)

>>> now.strftime ("$m-2¢d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> pbirthday = date (1964, 7, 31)

>>> age = now - birthday

>>> age.days

14368

86 Chapter 10. Python £ pfy 5 i ik

Python Tutorial, %$(E] 3.7.14

10.9 2%

LI R A VA S I i AR B SR . 4 21ib, gzip, bz2, lzma, zipfile R tarfile.

>>> import zlib
>>> s = b'witch which has which witches wrist watch'
>>> len(s)

41

>>> t = zlib.compress(s)
>>> len(t)

37

>>> zlib.decompress (t)

b'witch which has which witches wrist watch'
>>> zlib.crc32(s)

226805979

10.10 4 fig il

A28 Python i F 2 ARAEL 1 g) (T S LY AN [) BE A R 8RB 22 (). Python SR ALFFAL T2 AE2ZE MY T A,

SOPRE, A A REGRE wple pFT G AL ES AR M 5 7K. timeit B AT ATRGEHI IR

>>> from timeit import Timer

>>> Timer ('t=a; a=b; b=t', 'a=1; b=2"'").timeit ()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1l; b=2").timeit ()

0.54962537085770791

AR timeit FALIRALEEAMAKE, profile HAPAK pstats AL T —SbrE A Y A AR A
(Eljs 4 e FLIE R (Critical Section)) T.H.,

10.11 AVE#4%

TR R A RT) — {16 35 R 0 0 300 (1 i R 0t DA R A 8 e A v A B B 1 2

doctest BUALHLPE T —(HTH, Al VRt b ERNg S b F s T, BURAHEE o] 5.4
P 8 S IR B SCPE e . ST ARG T, T 1 3CHF, Auif doctest HEBEALEAL
B 55 A3 L 5L

def average (values):
"""Computes the arithmetic mean of a list of numbers.

>>> print (average ([20, 30, 70]))
40.0

mn

return sum(values) / len(values)

import doctest
doctest.testmod () # automatically validate the embedded tests

unittest BHAG doctest BABEMA L, (HREHRAL T E 2R RIS E H AT A ATEAR IR H .

10.9. ¥k} 87

Python Tutorial, %(E] 3.7.14

import unittest
class TestStatisticalFunctions (unittest.TestCase) :

def test_average(self):
self.assertEqual (average ([20, 30, 70]1), 40.0)
self.assertEqual (round (average([1, 5, 71), 1), 4.3)
with self.assertRaises (ZeroDivisionError) :
average ([])
with self.assertRaises (TypeError):
average (20, 30, 70)

unittest.main () # Calling from the command line invokes all tests

10.12 BfERLAI

“batteries included” J2& Python g5, & (YU IR 2 1] A8 e B ¢l B3 B E R) TR . ol an:
* {fifi] xmlrpc.client fl xmlrpc.server AT Bl HAE S EERS . MHRTHATELT
AR R RN B A2 4 XML (145 B Al Al 1L 122325 10 44 1 R B

o PR email B HAAY T MIME F1H At RFC 2822 AH B & 7B CHRUE R0 S0 MHEDR Hofth 28 T
B smtplib fil poplib i SLEEHK HACHR A B BGAIUR, , B B 5u A TR S e it il W S A A)
MR AOATHE (CL I PRAESE) AT B A B Rl 2 0 0 R G ELASTSE 1

« B Json BHEAL ISON ERHFMTEIR M 2B 2. cov TR R BRI B4 s 50 LA 9% 40 W E 1
LR, XEIREREEE T . xml.etree.ElementTree , xml.dom B xml.sax E{}HI
SO XML Jife. SRBUTH, ELeRTIRIE R (L T Python g AR 2B At T B Y 2ok A2 ().

* sqllite3 BfFHEEIWE SQLite ERHHA AR, FME— 8 — Uiy EoRHE] AU B Sl 6 25 il
AEERMERY SQL FHIE -

o HEME SR BB gettext, locale, fil codecs &£,

88 Chapter 10. Python £ pfy 5 i ik

https://tools.ietf.org/html/rfc2822.html

cHAPTER 11

Brief Tour of the Standard Library --- Part Il

5 R R S 2 SR AR R T R A A . R SR AR A B/ NE A

11.1 Output Formatting

The reprlib module provides a version of repr () customized for abbreviated displays of large or deeply nested
containers:

>>> import reprlib
>>> reprlib.repr (set ('supercalifragilisticexpialidocious'))
ll{lal’ 'C', ldl, 'e', lfl, 'gl, .‘.}_"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that
is readable by the interpreter. When the result is longer than one line, the “pretty printer” adds line breaks and indentation
to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
'yvellow'], 'blue']]]

>>> pprint.pprint (t, width=30)

[[[['"black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that it returns
a list of strings instead of one big string with newlines to separate
the wrapped lines."""

(Rt

89

Python Tutorial, %(E] 3.7.14

(R —H)

>>> print (textwrap.fill (doc, width=40))
The wrap () method is just like £ill ()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The 1ocale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English United States.1252")
'English_United States.1252'

>>> conv = locale.localeconv () # get a mapping of conventions
>>> x = 1234567.8

>>> locale.format ("2d", x, grouping=True)

'1,234,567"

>>> locale.format_string (" ", (conv(['currency_symbol'],

. conv|['frac digits'], x), grouping=True)
'$1,234,567.80"

11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and underscores).
Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces.
Writing $$ creates a single escaped $:

>>> from string import Template

>>> t = Template ('S folk send $$10 to S$cause.')

>>> t.substitute(village="'Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

The substitute () method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute ()
method may be more appropriate --- it will leave placeholders unchanged if data is missing:

>>> t = Template ('Return the $item to Sowner.')
>>> d = dict(item='unladen swallow')

>>> t.substitute (d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute (d)
'Return the unladen swallow to S$Sowner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect
to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = ['img_1074.9pg', 'img_1076.7pg', 'img_1077.3pg'l]

90 Chapter 11. Brief Tour of the Standard Library --- Part Il

Python Tutorial, %$(E] 3.7.14

HEH L5

>>> class BatchRename (Template) :

delimiter = 'S%'
>>> fmt = input ('Enter rename style (—date %n-seqgnum —format) : ")
Enter rename style (%d-date %n-seqnum $f-format): Ashley_%n%f
>>> t = BatchRename (fmt)
>>> date = time.strftime (' 2d%b%sy")
>>> for i, filename in enumerate (photofiles):

base, ext = os.path.splitext (filename)

newname = t.substitute (d=date, n=i, f=ext)

print (' ——> ' format (filename, newname))

img_1074.jpg ——> Ashley_0.7Jpg
img_1076.jpg —-> Ashley_1.7pg
img_1077.jpg ——-> Ashley_2.7pg

Another application for templating is separating program logic from the details of multiple output formats. This makes it
possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The st ruct module provides pack () and unpack () functions for working with variable length binary record for-
mats. The following example shows how to loop through header information in a ZIP file without using the zipfile
module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<" indicates that
they are standard size and in little-endian byte order:

import struct

with open('myfile.zip', 'rb') as f:
data = f.read()

start = 0

for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack ('<IIIHH', datal[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]

print (filename, hex(crc32), comp_size, uncomp_size)

start += extra_size + comp_size # skip to the next header

11.3. Working with Binary Data Record Layouts 91

Python Tutorial, %(E] 3.7.14

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case is
running I/O in parallel with computations in another thread.

The following code shows how the high level t hreading module can run tasks in background while the main program
continues to run:

import threading, zipfile

class AsyncZip (threading.Thread):

def _ init_ (self, infile, outfile):
threading.Thread.__init__ (self)
self.infile = infile

self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print ('Finished background zip of:', self.infile)

background = AsyncZip ('mydata.txt', 'myarchive.zip')
background.start ()
print ('The main program continues to run in foreground.')

background. join () # Wait for the background task to finish
print ('Main program waited until background was done.')

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that
end, the threading module provides a number of synchronization primitives including locks, events, condition variables,
and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred
approach to task coordination is to concentrate all access to a resource in a single thread and then use the queue module
to feed that thread with requests from other threads. Applications using Queue objects for inter-thread communication
and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The 1ogging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file
orto sys.stderr:

import logging

logging.debug ('Debugging information')

logging.info('Informational message')

logging.warning ('Warning:config file not found', 'server.conf')
logging.error ('Error occurred')

logging.critical ('Critical error —- shutting down')

This produces the following output:

92 Chapter 11. Brief Tour of the Standard Library --- Part Il

Python Tutorial, %$(E] 3.7.14

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output
options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different
routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for
customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they are
being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The
weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed,
it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications
include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
def _ init_ (self, wvalue):
self.value = value
def _ _repr__ (self):
return str(self.value)

>>> a = A(10) # create a reference

>>> d = weakref.WeakValueDictionary ()

>>> d['primary'] = a # does not create a reference

>>> d['primary'] # fetch the object if it is still alive
10

>>> del a # remove the one reference

>>> gc.collect () # run garbage collection right away

0

>>> d['primary"'] # entry was automatically removed

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
d['primary'] # entry was automatically removed
File "C:/python37/1lib/weakref.py", line 46, in _ getitem_
o = self.datalkey] ()
KeyError: 'primary'

11.6. Weak References 93

Python Tutorial, %(E] 3.7.14

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.

The array module provides an array () object that is like a list that stores only homogeneous data and stores it more
compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode
"H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 222221])
>>> sum(a)

26932

>>> af[l:3]

array ('H', [10, 7001)

The collections module provides a deque () object that is like a list with faster appends and pops from the left side
but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

>>> from collections import deque

>>> d = deque(["taskl", "task2", "task3"])
>>> d.append("task4")

>>> print ("Handling", d.popleft())
Handling taskl

unsearched = deque ([starting_node])
def breadth_first_search (unsearched) :
node = unsearched.popleft ()
for m in gen_moves (node) :
if is_goal (m):
return m
unsearched. append (m)

In addition to alternative list implementations, the library also offers other tools such as the b i sect module with functions
for manipulating sorted lists:

>>> import bisect

>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort (scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, '"lua'), (500, 'python')]

The heapg module provides functions for implementing heaps based on regular lists. The lowest valued entry is always
kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run
a full list sort:

>>> from heapg import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list into heap order
>>> heappush (data, -5) # add a new entry

>>> [heappop (data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

94 Chapter 11. Brief Tour of the Standard Library --- Part Il

Python Tutorial, %$(E] 3.7.14

11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

* financial applications and other uses which require exact decimal representation,

e control over precision,

* control over rounding to meet legal or regulatory requirements,

« tracking of significant decimal places, or

* applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary
floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *

>>> round (Decimal ('0.70") * Decimal('1.05"), 2)
Decimal ('0.74")

>>> round (.70 * 1.05, 2)

0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating
point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for
binary floating point:

>>> Decimal ('1.00") % Decimal('.10")
Decimal ('0.00")

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal ('0.1"')]1*10) == Decimal('1.0")
True

>>> sum([0.1]*%10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext () .prec = 36
>>> Decimal (1) / Decimal (7)
Decimal ('0.142857142857142857142857142857142857")

11.8. Decimal Floating Point Arithmetic 95

Python Tutorial, %(E] 3.7.14

96

Chapter 11. Brief Tour of the Standard Library --- Part Il

CHAPTER 12

(EV5E B 5 Bl 1

12.1 {4

Python 15X /1) 1 7 200 B LA B P ROSLAL. TR I 0 A A I A
PR i 1 R 5 5 R R 0 S5 11, sl A YL A2 AR o IR R A 7 1
.

JEE TR R P A5 M5 Python ST A S PFAT IEFI AR 020K . ISR B A 78— R A
[LO T, (L3 Sh—(REAIRER B 5% 2.0 1, MBI R RTS8 1.0 S0 2.0 #BGrifie, LABCRIE
AR

E T SRR — RIS (virmal environment) , & R—WBSLHY VDR, (A IDE SR TRFE A
Python, LAJ—FRAAHIMILLE.

A IR R P UA G RO . DA i SO0 T4, MEFIAL A R 1
B, LA 10 ML, SATIMEA R B H T LA 53 50— iy 2.0 MU ESERL. 32 R MEFIFEA B 7
BRI 3.0 10, VR 5 S HIME B A TS

12.2 Gt e ra s

A gy B PRE R B A MU venv ., venv & @ 2 AR BEET S 9 e BT AR (1) Python., BRI
RHARIFEIAK) Python, R0 PAZE# python3 gl 15 0 BE 1R E Bl M4 Y Python.

FEHT [EUsE R R R, FEARE)E B E M B B 1 okl e 2 4%, #E script th#UAT venv #E4HIE B4 %ok}
7 path:

python3 -m venv tutorial-env

MR tutorial-env NEFEWEE, BEES tutorial-env Ehlsk, [H W E7EEw &7 —{f4 Python
FAE R IEIAS, MR R . DASOR RS2 IR A R A R

— HARESL T —MESERE, ARATAEE) f.
1E Windows R %5H, i :

97

Python Tutorial, %(E] 3.7.14

’tutorialfenv\Scripts\activate.bat

T£ Unix 8% MacOS %%, {#1H:

source tutorial-env/bin/activate

(3& Br A= % 18) it bash shell, f ARk 22 JH esh 3% £ish shell, % &1 activate.csh Bl
activate.fish [FIZ,)

(EV) (EV6E 2456 € oA 5 R 1 shell $2 70 T e AR AR IEZE (T i (EE B, (B ELAS BSOS ARIRAE AT python
FRIRFAE T AT 24552) Python A%, {51 4N[E]:

$ source ~/envs/tutorial-env/bin/activate
(tutorial-env) $ python
Python 3.5.1 (default, May 6 2016, 10:59:36)

>>> import sys

>>> sys.path

['', '/usr/local/lib/python35.zip', ...,
'~/envs/tutorial-env/lib/python3.5/site-packages']
>>>

12.3)il pip FHAEM:

PRET DAGE] — M n i pip MR R G 4. THR MR E M. pip FH# & ¢ Python Package Index <https:
/lpypi.org> LB, YRAT DA VR [EE 2 EIE Python Package Index, S/2 i pip P& #RIkE:

(tutorial-env) $ pip search astronomy

skyfield - Elegant astronomy for Python

gary - Galactic astronomy and gravitational dynamics.

novas — The United States Naval Observatory NOVAS astronomy library
astroobs - Provides astronomy ephemeris to plan telescope observations
PyAstronomy — A collection of astronomy related tools for Python.

pip A8 17454 “search”, “install”, “uninstall”, “freeze” %%, (38 DA installing-index [FIH 2 5 HL
% pip MISEEESCIHEIN .)

VRAT DA 9 5 2 R4 T AL B RO A B

(tutorial-env) $ pip install novas
Collecting novas
Downloading novas-3.1.1.3.tar.gz (136kB)
Installing collected packages: novas
Running setup.py install for novas
Successfully installed novas-3.1.1.3

PRt R] ASZE IR RS {44 i 2 AR b == RIS A R i A

(tutorial-env) $ pip install requests==2.6.0
Collecting requests==2.6.0

Using cached requests-2.6.0-py2.py3-none—-any.whl
Installing collected packages: requests
Successfully installed requests-2.6.0

98 Chapter 12. (P51 £k

https://pypi.org
https://pypi.org

Python Tutorial, %$(E] 3.7.14

FORIREHATIIR S, pip GRIERMAR QRGN , SRR EAM. ARl DA BRI i AA SR <
TZA, B2 ARAT pip install -—upgrade AUEE TR B T RA

(tutorial-env) $ pip install —--upgrade requests
Collecting requests
Installing collected packages: requests
Found existing installation: requests 2.6.0
Uninstalling requests-2.6.0:
Successfully uninstalled requests-2.6.0
Successfully installed requests-2.7.0

pip uninstall MR 2 HE 4 5] AR R R BB 1
pip show W PABUR—fFFE B &R

(tutorial-env) $ pip show requests
Metadata-Version: 2.0

Name: requests

Version: 2.7.0

Summary: Python HTTP for Humans.
Home-page: http://python-requests.org
Author: Kenneth Reitz

Author-email: me@kennethreitz.com
License: Apache 2.0

Location: /Users/akuchling/envs/tutorial-env/lib/python3.4/site-packages
Requires:

pip list GHUREHEEREE PITA CRLHNEN:

(tutorial-env) $ pip list
novas (3.1.1.3)

numpy (1.9.2)

pip (7.0.3)

requests (2.7.0)
setuptools (16.0)

pip freeze MIABIE—HMECRLRMEMFE, (H2MIHH pip install WAFHEMAEX. —@
A B2 S B H] — UM requirements. txt HFEHE:

(tutorial-env) $ pip freeze > requirements.txt
(tutorial-env) $ cat requirements.txt
novas==3.1.1.3

numpy==1.9.2

requests==2.7.0

requirements.txt W] DAFERZ F AR TEHI, Eﬂz%ﬂjl@ﬂ%ﬁﬁﬁ@—%ﬁﬁo i ZE P PAFEA install
—r A L

(tutorial-env) $ pip install -r requirements.txt
Collecting novas==3.1.1.3 (from -r requirements.txt (line 1))

Collecting numpy==1.9.2 (from -r requirements.txt (line 2))
Collecting requests==2.7.0 (from -r requirements.txt (line 3))

Installing collected packages: novas, numpy, requests

123. J1l pip fRLELAE 99

Python Tutorial, %(E] 3.7.14

(R —H)

Running setup.py install for novas

Successfully installed novas-3.1.1.3 numpy-1.9.2 requests-2.7.0

pip A HLIEE. W PAZ¥ installing-index [FIW]HE ARG 5234 pip 2% k. HIREES T MEAFE R
AEELE B T PATE Python Package Index [W] DABUARWE, W PAZ% distributing-index [EJFH .

100

Chapter 12. [FIfitE Bz 6UE 14

cHAPTER 13

BITE AT PASC B S AHET?

(A T RS 1) Python) L — 45 0% 934188 5264 1) Python ASREAEB B2 1o A 1)
P N

AHE 2 Python SR —AB4Y .m0y OISR ET B At SO (L

library-index :

PRz ESE G T, et e (HERR) 252K 8, w2 s o o EI R 50
Ao FFMENY Python B4 THUA & (0 & K 2 M INARAS . A US4 nl DAGEHK Unix (546 . il HTTP 504
R, EAERLE. TSI, e CGLAE. AR, MarZ HAbEs . EEwAmEs%
FE AT AGAR 1 fif AT VR LEAA T DA -

installing-index : - [EJ SELfi# A58 41] <22 56 HoAt Python 71 25 4 55 (AL

reference-index: Python 553 DA K sER M FEANEI . S0 o ERGE A A 2z 7y, (AfEE—MsES
B se a2 Aa .

T4 Python [{ &5 :

https://www.python.org: Python [48N . B A&, SO S 45 2 Python FHER A H . 44
s B IR E A A A, GO B . H AL SR RR s SeR 48l o 5 € Lb Al AR A s B, R
1 L B)58 TR AR A) Hb BT

https://docs.python.org: id 55 B Python f{) 344,

https://pypi.org: The Python Package Index, previously also nicknamed the Cheese Shop', is an index of user-
created Python modules that are available for download. Once you begin releasing code, you can register it here so
that others can find it.

https://code.activestate.com/recipes/langs/python/: Python Cookbook J&— 1R FH & KRG @il e, K=
B DA KA A . — S8 15 2 B Re (F) ek) e I B 7 — 45 44 [E) Python Cookbook (O Reilly &
Associates, ISBN 0-596-00797-3.) [t

http://www.pyvideo.org fERF T & B 2 ff 4H 2R € [E)Iriic S 52 Python AH I 32)1 4

https:/scipy.org: The Scientific Python S58 12— {1l {5 i i i i [1) 86 S0 LA AR g AL, DA KT A D
PSR ABERE). JEEM RIS BRI E. SE e R B,

! »Cheese Shop” is a Monty Python’s sketch: a customer enters a cheese shop, but whatever cheese he asks for, the clerk says it’s missing.

101

https://www.python.org
https://docs.python.org
https://pypi.org
https://code.activestate.com/recipes/langs/python/
http://www.pyvideo.org
https://scipy.org

Python Tutorial, %(E] 3.7.14

7% Python AH B i1 5] B B RE I H, AT DASRIE BB BIREAL comp. lang. python, B E %2 python-
list@python.org FYTZFiE B (mailing list) o 7 B HHEAEL T80 2 V5 2 I PO T80, AT JLL SR U 30 HG o F) T 4115 1 B
Wt — . BREAMBAEFINELR, Sl (R E) M. gt re s g B, Base e
TEAEAE https://mail.python.org/pipermail/

FERRIEZ T, W SGHER L 470 SRR (UIREA FAQ) i MWL), FAQ #1125 th BUR &y I A
MR AR R 35 L o 2 R R 7

102 Chapter 13. Bifen] DLk S5 e fHE] ?

mailto:python-list@python.org
mailto:python-list@python.org
https://mail.python.org/pipermail/

cHAPTER 14

Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library, which
supports various styles of editing. This library has its own documentation which we won’t duplicate here.

14.1 Tab Completion and History Editing

Completion of variable and module names is automatically enabled at interpreter startup so that the Tab key invokes
the completion function; it looks at Python statement names, the current local variables, and the available module names.
For dotted expressions such as st ring. a, it will evaluate the expression up to the final ' . ' and then suggest comple-
tions from the attributes of the resulting object. Note that this may execute application-defined code if an object with a
__getattr__ () method is part of the expression. The default configuration also saves your history into a file named
.python_history in your user directory. The history will be available again during the next interactive interpreter
session.

14.2 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are left:
It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent token is
required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or even
suggest) matching parentheses, quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite some time is [Python, which features tab
completion, object exploration and advanced history management. It can also be thoroughly customized and embedded
into other applications. Another similar enhanced interactive environment is bpython.

103

https://tiswww.case.edu/php/chet/readline/rltop.html
https://ipython.org/
https://www.bpython-interpreter.org/

Python Tutorial, %(E] 3.7.14

104 Chapter 14. Interactive Input Editing and History Substitution

cHAPTER 15

R [R

TERTAMAERE T, I B OE S A NIFOR . BIINE, FE g hr/ N

’0.125

Al g AE) 1/10 + 2/100 + 5/1000, [RIEEAYET, i/ Ng:

’0.00I

B E 0/2 + 0/4 + 1/8 . i M IE/INECH AR O B, 1 PE— ELIE AR RIE TR B4 DA TIOR3 DAt
PR

ASEMR, KE MO MERERE A 0 MEGRIR . —IRAETRI, S AR i i 7 B e B
FEAERT R b) e N B BOR

FEEOL T, B P A S W . ASM B 1/3 [V, T DA HU (o)it (o N

’0.3 ‘

o, AR

’0.33 ‘

e S bpUR S

’0.333

R, AR 2 DA MR NE, AR RSP RAR IR FOR 173, (BRI BEBOIGHOR 1E b2
a~ 1/3,

[IRRRYTERE, AN RIS A A AR e /N, e /N 0.1 FREETA R 3 i/ NEOR i 3% . A
THEC/NE, 1710 g R AER N

0.0001100110011001100110011001100110011001100110011...

105

Python Tutorial, %(E] 3.7.14

NSRRI R O3, SO a2 OME . B R B, REUEEE I 375y Bl
eIy, ﬁqjéa\%ﬁé%%ﬁ&iumﬁﬁﬁnﬂﬂ 53 fEficoR, R CERA e . £ /10 fFrp,
M5 #4(E) 3602879701896397 / 2 ** 55, M@K R T, HRSEES MR 1/10 fEIE#K
1H.

HUR BESURI07750, REMHE EEG S B2 LM . Python W& B — M+ AL MIfE, HITM
TR R R T B O AL UE R A ME . FERZ BRI R T, W2 Python B & E I 52480 1
HEALHE, HIOR AR AR R 0.1 i i Ona e, e EURE:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

i8N A R 2, BTA Python i (B BRFFAE nT AR Z M IR, HBUR & AR RUHE:

>>> 1 / 10
0.1

—E SO, MESR B R BT ARG HERY 110, (HELIE ARSI REFR I i Ry o, B
TS Y

AR, ARFZARE O, MR — @ m A /e flimE: #5010 Fo.
10000000000000001 H 0.1000000000000000055511151231257827021181583404541015625,

#h 3602879701896397 / 2 ** 55 Y. NS = (8 Bt R IR — T UM, A fo— i (EL 56 T
PARERR, [AREERER eval (repr(x)) == x.

&5 |, Python (42787 JC (prompt) BLEIE) repr () K€ 548 FREIA A 17 ARG 0.
10000&)00000000010 #% Python 3.1 fiiBA%A, Python (XEKFR/MHIZRST L) AT ASESS H v i it (B i
HHUREI 0.1

HE, B J@ﬂﬁcgﬁéﬁ_ﬁ%@f%ﬁkéﬁ%ﬁ [EIR 2 Python [A§3% (bug), SR m‘“ﬁiﬁﬁ%é’]ia HEHR
g%miiﬁgﬁﬂ?ﬁ{ﬁmkﬁ Gt & A B BRI BT (RESRIESRERE S Tﬂﬁfﬁl 4
t

[ELRSEEPRER M, AT REAR A 5 R A% 54 (string formatting) (1A= BR 7 A 28007

>>> format (math.pi, '.12g') # give 12 significant digits
'3.14159265359"'

>>> format (math.pi, '.2f") # give 2 digits after the point
'3.14"

>>> repr (math.pi)
'3.141592653589793"

W MHMREEMSE, EREERLD, BN —BL5E: REA EAE & A IR BE TR 7 89
18-

BEELEREGEIE T L8, S (E, 0.1 AREIER 1/10, {E=A8 0.1 (KEA N, A EELE
FEER 0.3:

>> .1 + .1 4+ .1 == .3
False

[F] IR 0.1 NEEFFEEHATRGERY 1710, 3274 0.3 REEFF B HIDRMERY 3/10, FSeH round () MAEAE
AEHED:

>>> round (.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False

106 Chapter 15. {FRBETE: A8 5L PR i

Python Tutorial, %$(E] 3.7.14

HESR T AN G E A M RORS HERE, (A round O BRI A SRR AG BT R B, At —2¢, Ak§Hg
R SRS P DATELAH B

>>> round (.1 + .1 + .1, 10) == round(.3, 10)
True

TR R 2 B . IR [FORESE S B, SEAMRE T [0 moRE. aRAe
TH A R SRR, ATPAZ % The Perils of Floating Point (V755 #10 E%) .

As that says near the end, "there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in Python
float operations are inherited from the floating-point hardware, and on most machines are on the order of no more than
1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind that it’s not
decimal arithmetic and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you'll see the result you expect in the
end if you simply round the display of your final results to the number of decimal digits you expect. str () usually
suffices, and for finer control see the str. format () method’s format specifiers in formatstrings.

For use cases which require exact decimal representation, try using the decimal module which implements decimal
arithmetic suitable for accounting applications and high-precision applications.

Another form of exact arithmetic is supported by the f ract i ons module which implements arithmetic based on rational
numbers (so the numbers like 1/3 can be represented exactly).

If you are a heavy user of floating point operations you should take a look at the Numerical Python package and many
other packages for mathematical and statistical operations supplied by the SciPy project. See <https://scipy.org>.

Python provides tools that may help on those rare occasions when you really do want to know the exact value of a float.
The float.as_integer_ratio () method expresses the value of a float as a fraction:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

Since the ratio is exact, it can be used to losslessly recreate the original value:

>>> x == 3537115888337719 / 1125899906842624
True

The float.hex () method expresses a float in hexadecimal (base 16), again giving the exact value stored by your
computer:

>>> x.hex ()
'0x1.921f9f01b866ep+1"’

This precise hexadecimal representation can be used to reconstruct the float value exactly:

>>> x == float.fromhex ('0x1.921£f9f01b866ep+1")
True

Since the representation is exact, it is useful for reliably porting values across different versions of Python (platform
independence) and exchanging data with other languages that support the same format (such as Java and C99).

Another helpful tool is the math . fsum () function which helps mitigate loss-of-precision during summation. It tracks
“lost digits” as values are added onto a running total. That can make a difference in overall accuracy so that the errors do
not accumulate to the point where they affect the final total:

>>> sum([0.1] * 10) == 1.0
False

(N ITgkss)

107

http://www.lahey.com/float.htm
https://scipy.org

Python Tutorial, %(E] 3.7.14

(R —H)

>>> math.fsum([0.1] * 10) == 1.0
True

15.1 Representation Error

This section explains the ”0.1” example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as binary
(base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often won’t
display the exact decimal number you expect.

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double precision”. 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2**N where J is an integer containing exactly 53 bits. Rewriting

’1 / 10 ~= J / (2**N)
as
’J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2*%*52 <= 2**56 // 10 < 2**53
True

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> g, r = divmod (2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> gtl
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is:

’7205759403792794 / 2 ** 56

Dividing both the numerator and denominator by two reduces the fraction to:

’3602879701896397 / 2 ** 55

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approximation it
can get:

108 Chapter 15. {FRBETE: A8 5L PR i

Python Tutorial, %$(E] 3.7.14

>>> 0.1 * 2 ** 55
3602879701896397.0

If we multiply that fraction by 10¥*55, we can see the value out to 55 decimal digits:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

meaning that the exact number stored in the computer is equal to the decimal value
0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full decimal
value, many languages (including older versions of Python), round the result to 17 significant digits:

>>> format (0.1, '.17f")
'0.10000000000000001"

The fractions and decimal modules make these calculations easy:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float (0.1)
Fraction (3602879701896397, 36028797018963968)

>>> (0.1) .as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float (0.1)
Decimal ('0.1000000000000000055511151231257827021181583404541015625")

>>> format (Decimal.from_float (0.1), '.17")
'0.10000000000000001"

15.1. Representation Error 109

Python Tutorial, %(E] 3.7.14

110 Chapter 15. {FESWURST: [RE BRI

cHAPTER 16

b

16.1 HEjEX

16.1.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns to the
primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace. (Exceptions
handled by an except clause in a t ry statement are not errors in this context.) Some errors are unconditionally fatal
and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of running out of memory.
All error messages are written to the standard error stream; normal output from executed commands is written to standard
output.

Typing the interrupt character (usually Control-C or Delete) to the primary or secondary prompt cancels
the input and returns to the primary prompt.! Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a t ry statement.

16.1.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#!/usr/bin/env python3.5

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable mode.
The # ! must be the first two characters of the file. On some platforms, this first line must end with a Unix-style line
ending (' \n"'), not a Windows (' \r\n') line ending. Note that the hash, or pound, character, ' # ', is used to start a
comment in Python.

The script can be given an executable mode, or permission, using the chmod command.

$ chmod +x myscript.py

1" A problem with the GNU Readline package may prevent this.

111

Python Tutorial, %(E] 3.7.14

On Windows systems, there is no notion of an “executable mode”. The Python installer automatically associates . py files
with python . exe so that a double-click on a Python file will run it as a script. The extension can also be . pyw, in that
case, the console window that normally appears is suppressed.

16.1.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a file
containing your start-up commands. This is similar to the . profile feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in the
same namespace where interactive commands are executed, so that objects that it defines or imports can be used without
qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps?2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up file
usingcodelike 1f os.path.isfile('.pythonrc.py'): exec(open('.pythonrc.py').read()).
If you want to use the startup file in a script, you must do this explicitly in the script:

import os
filename = os.environ.get ('PYTHONSTARTUP")
if filename and os.path.isfile(filename) :
with open(filename) as fobj:
startup_file = fobj.read()
exec (startup_file)

16.1.4 The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and usercustomize. To see how it works,
you need first to find the location of your user site-packages directory. Start Python and run this code:

>>> import site
>>> site.getusersitepackages ()
'/home/user/.local/lib/python3.5/site-packages’

Now you can create a file named usercustomize.py in that directory and put anything you want in it. It will affect
every invocation of Python, unless it is started with the —s option to disable the automatic import.

sitecustomize works in the same way, but is typically created by an administrator of the computer in the global
site-packages directory, and is imported before usercustomize. See the documentation of the site module for
more details.

[Elfit

112 Chapter 16. [f}[F)

APPENDIX A

Glossary

>>>

The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

. The default Python prompt of the interactive shell when entering the code for an indented code block, when within

2to3

a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1 1 b2t 03; a standalone entry point is provided as Tools/scripts/
2t o03. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other

techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ;seethe abc module documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the i o module), import
finders and loaders (in the import1lib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention

as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following calls to
complex ():

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

113

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Tutorial, %(E] 3.7.14

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for,and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an awa it expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of 10.BytesIO
and gzip.GzipFile.

See also text file for a file object able to read and write st r objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes,bytearray,and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

114 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Tutorial, %$(E] 3.7.14

Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-
like objects”. Example mutable buffer objects include bytearrayandamemoryviewof abytearray. Other
operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4. 5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a 7 suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you're not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492,

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
”CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

115

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Tutorial, %(E] 3.7.14

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__ (), set_ (),or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary view The objects returned from dict .keys (),dict.values (),anddict.items () are called dic-
tionary views. They provide a dynamic view on the dictionary’ s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full listuse 1ist (dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (”If it looks like a duck and quacks like a duck, it must be a
duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note, however, that
duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr () tests or
EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many t ry and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string String literals prefixed with '£' or 'F' are commonly called ”f-strings” which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

116 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498

Python Tutorial, %$(E] 3.7.14

There are actually three categories of file objects: raw binary files, buffered binary files and fext files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note that (-11)
// 4is -3 because that is —2 . 75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for rype hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the ___future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clause
defining a loop variable, range, and an optional i f clause. The combined expression generates values for an en-
closing function:

117

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Tutorial, %(E] 3.7.14

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes Python
bytecode at a time. This simplifies the CPython implementation by making the object model (including critical
built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing 1/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (itneedsan__eq___ () method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their 1d ().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys . path, but for subpackages it may also come from the parent
package’s __path___ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating

118 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0443

Python Tutorial, %$(E] 3.7.14

an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ _main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
genemt()r.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits __next__ () method justraise StopIteration again. Iterators are required tohavean __iter__ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest (), heapq.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and "the leaping”. For example, the code, 1f key in mapping: return mappinglkey] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

119

Python Tutorial, %(E] 3.7.14

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called se1f). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id (). See also immutable.

named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements
are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[1l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

120 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Tutorial, %$(E] 3.7.14

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open () are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init__ .
py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path___ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func (foo, bar=None) :

* positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs ()).

* keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_onlyl and kw_only2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the

121

https://www.python.org/dev/peps/pep-0420

Python Tutorial, %(E] 3.7.14

parameter name with * *, for example kwargs in the example above.
Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a st r or byt es object represent-
ing a path, or an object implementing the os . PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath () function; os.
fsdecode () and os.fsencode () can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards
compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously -- they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the APL

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated "Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

122 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411

Python Tutorial, %$(E] 3.7.14

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname___

YC’

>>> C.D.__qgqualname___
'C.D'

>>> C.D.meth._ gualname
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name_
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containingan __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iferable which supports efficient element access using integer indices via the __getitem__ () special
method and defines a __len__ () method that returns the length of the sequence. Some built-in sequence types
are 1ist, str,tuple,andbytes. Note that dict also supports __getitem__ () and __len__ (), butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just _ getitem__ () and _ _len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)

123

https://www.python.org/dev/peps/pep-3155

Python Tutorial, %(E] 3.7.14

notation uses s11ice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, while or for.

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of i0.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark () or an apostrophe ().
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying rype hints. For example:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) —-> List[Tuplel[int, int, int]]:
pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]
def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention ' \n', the Windows convention ' \r\n"', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

124 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Python Tutorial, %$(E] 3.7.14

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for rype hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byrecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing "import this” at the interactive prompt.

125

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Tutorial, %(E] 3.7.14

126 Appendix A. Glossary

APPENDIX B

772 3 LE(EIRH S

15 LB S 28 Sphinx (—{# 5(E] Python [EJWA SR 85 1 SRR BERS) M0 reStructured Text 4#57
PR B L A A T o

4l Python [&, iith H A1) %5 1 I SCPRELERHEAR H BT TR . F AR IR A ik, 75 52 reporting-
bugs EUTE, [EVSAHBA A FoAM i Balpy BB A

B
* Fred L. Drake, Jr., J5lf Python SC{ TR AR M RIEE DA R — K EIAHI1ER .
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx 4¢f) Alternative Python Reference w1-#] H IS 2 00 5 .

B.1 Python {1 ok 411

7% A\#RH[E] Python 1& 137 . Python 121 ik X AN Python [EJRA SCAFET MR . Python FT#(EIfY 5 AA RS &
A ERCEREH, @5 R Misc/ACKS ,

TEFAE] Python A (1488 g B B8R A 4 3 35 [EDRR A [ET] SO - e T A B R g AL A !

127

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

Python Tutorial, %(E] 3.7.14

128 Appendix B. iz SeEW 1k

apPENDIX C

JRE: S B4 A

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

129

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Tutorial, %(E] 3.7.14

#iE): GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.14

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSEF"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.7.14 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.14 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2022 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.7.14 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.14 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.14.

4. PSF is making Python 3.7.14 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—0OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.14 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.14

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.14, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

130 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.14, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(Rt

C.2. Terms and conditions for accessing or otherwise using Python 131

Python Tutorial, %(E] 3.7.14

(R —H)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(FItakss)

132 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

(R —H)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

C.3. Licenses and Acknowledgements for Incorporated Software 133

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Tutorial, %(E] 3.7.14

(R —H)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate

source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(Rt

134 Appendix C. &y Bl fZHE

http://www.wide.ad.jp/

Python Tutorial, %$(E] 3.7.14

(R —H)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

CFItakREs)

C.3. Licenses and Acknowledgements for Incorporated Software 135

Python Tutorial, %(E] 3.7.14

(R —H)

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse

CFItakREs)

136 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

(R —H)

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 137

Python Tutorial, %(E] 3.7.14

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

138 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

C.3.10 SipHash24

The file Pyt hon/pyhash. c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3. Licenses and Acknowledgements for Incorporated Software 139

http://www.netlib.org/fp/

Python Tutorial, %(E] 3.7.14

C.3.12 OpenSSL

The modules hashlib, posix, ss1, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

L T R S I S N S R T S N IS S N S N S S NS S SN S S S S S S SR P S S N .

(Rt

140 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

(R —H)

L I S S S R

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

P T N S S S S S N S N S S N S S S T S N S S S T N S N

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1.

Redistributions of source code must retain the copyright

notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
All advertising materials mentioning features or use of this software
must display the following acknowledgement:

"This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).

If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

(Rt

C.3. Licenses and Acknowledgements for Incorporated Software 141

Python Tutorial, %(E] 3.7.14

(R —H)

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L A S N S N S N .

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

142 Appendix C. &y Bl fZHE

Python Tutorial, %$(E] 3.7.14

C.3.14 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured

——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old

to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software

143

Python Tutorial, %(E] 3.7.14

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system-libmpdec

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(Rt

144 Appendix C. Ji#\ BLEZHE

Python Tutorial, %$(E] 3.7.14

(R —H)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software

145

Python Tutorial, %(E] 3.7.14

146 Appendix C. &y Bl fZHE

APPENDIX D

JRREE

Python i 46 S/

Copyright © 2001-2022 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com {4 55— HEF] .

Copyright © 1995-2000 Corporation for National Research Initiatives {5 i —4JJ#EF] .
Copyright © 1991-1995 Stichting Mathematisch Centrum 45 & —4J#EF)

SRR R A G 2 R At

147

Python Tutorial, %(E] 3.7.14

148 Appendix D. RR#EE &

=5l

ElF‘? awaitable, 114
..., 113
F (e SDFL 114
comment, 9 ,
* (asterisk) Eir}iry file, 114
uiltins

in function calls, 26
- F4H, 48

in function calls, 27 bytecode, 115

2to03, 113 bytes-like object, 114
: (colon)
function annotations, 28 C
> C-contiguous, 115
function annotations, 28 class, 115
>>> 113 class variable, 115
all ,50 coding
__ future_ , 117 style, 29
_ _slots_ ,123 coercion, 115
i complex number, 115
file, 57 context manager, 115
method, 73 context variable, 115
PRIt contiguous, 115
PATH, 46, 111 coroutine, 115
PYTHONPATH, 46, 47 coroutine function, 115
PYTHONSTARTUP, 112 CPython, 115
for, 20 D
A decorator, 115
descriptor, 116
abstract base class, 113 dictionary, 116
annotation, 113 dictionary view, 116
annotations docstring, 116
function, 28 docstrings, 23,28
argument, 113 documentation strings,?23, 28
asynchronous context manager, 114 duck-typing, 116
asynchronous generator, 114
asynchronous generator iterator, 114 E
asynchronous iterable, 114 EAFP, 116
asynchronous iterator, 114 expression, 116
attribute, 114 extension module, 116

149

Python Tutorial, %(E] 3.7.14

F

f-string, 116
file
Y, 57
file object, 116
file-like object, 117
finder, 117
floor division, 117
for
B, 20
Fortran contiguous, 115
function, 117
annotations, 28
function annotation, 117

G

garbage collection, 117
generator, 117

generator expression, 117
generator iterator, 117
generic function, 118

GIL, 118

global interpreter lock, 118

F{

hash-based pyc, 118
hashable, 118
help

[l R =, 83

IDLE, 118

immutable, 118

import path, 118
importer, 118

importing, 118
interactive, 118
interpreted, 118
interpreter shutdown, 119
iterable, 119

iterator, 119

J
json

i4H, 59
K

key function, 119
keyword argument, 119

L

lambda, 119
LBYL, 119

list, 120
list comprehension, 120
loader, 120

M

magic
method, 120
magic method, 120
mangling
name, 78
mapping, 120
meta path finder, 120
metaclass, 120
method, 120
magic, 120
special, 124
Wi, 73
method resolution order, 120
module, 120
search path, 46
module spec, 120
MRO, 120
mutable, 120

N

name
mangling, 78

named tuple, 120

namespace, 121

namespace package, 121

nested scope, 121

new-style class, 121

O

object, 121
open

[l ek, 57
P

package, 121
parameter, 121
PATH, 46, 111
path

module search, 46
path based finder, 122
path entry, 122
path entry finder, 122
path entry hook, 122
path-like object, 122
PEP, 122
portion, 122
positional argument, 122
provisional APT, 122
provisional package, 122

150

Python Tutorial, %$(E] 3.7.14

Python 3000, 122

Python Enhancement Proposals

PEP 1,122

PEP 8,29

PEP 238,117

PEP 278,124

PEP 302,117,120
PEP 343,115

PEP 362,114,122
PEP 411,122

PEP 420, 117,121,122
PEP 443,118

PEP 451,117

PEP 484,28,113, 117,124,125
PEP 492,114,115

PEP 498,116
PEP 519, 122
PEP 525,114
PEP 526, 113,125
PEP 3107,28
PEP 3116, 124
PEP 3147,46

PEP 3155, 123
Pythonic, 122
PYTHONPATH, 46, 47
PYTHONSTARTUP, 112

Q

qualified name, 123

R

reference count, 123
regular package, 123
RFC

RFC 2822, 88

S

search

path, module, 46
sequence, 123
single dispatch, 123
slice, 123
special

method, 124
special method, 124
statement, 124
strings, documentation,?23,28
style

coding, 29
sys

Tt 47
T

text encoding, 124

text file, 124
triple—-quoted string, 124
type, 124

type alias, 124

type hint, 124

universal newlines, 124
Vv
variable annotation, 124
(E 7 b =X

help, 83

open, 57

virtual environment, 125
virtual machine, 125

W

1EEAH
builtins, 48
json, 59
sys, 47

Z

Zen of Python, 125

#51

	淺嘗滋味
	使用 Python 直譯器
	啟動直譯器
	直譯器與它的環境

	一個非正式的 Python 簡介
	把 Python 當作計算機使用
	初探程式設計的前幾步

	深入了解流程控制
	if Statements
	for Statements
	range() 函式
	break and continue Statements, and else Clauses on Loops
	pass Statements
	定義函式 (function)
	More on Defining Functions
	Intermezzo: Coding Style

	資料結構
	進一步了解 List（串列）
	The del statement
	Tuples 和序列 (Sequences)
	集合 (Sets)
	字典（Dictionary）
	迴圈技巧
	更多條件式主題
	序列和其他資料結構之比較

	模組
	More on Modules
	Standard Modules
	The dir() Function
	Packages

	輸入和輸出
	更華麗的輸出格式
	Reading and Writing Files

	錯誤和例外
	語法錯誤
	例外
	處理例外
	Raising Exceptions
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	A First Look at Classes
	Random Remarks
	Inheritance
	Private Variables
	Odds and Ends
	Iterators
	Generators
	Generator Expressions

	Python 標準函式庫概覽
	作業系統介面
	檔案之萬用字元
	命令列引數
	錯誤輸出重新導向與程式終止
	字串樣式比對
	數學相關
	網路存取
	日期與時間
	資料壓縮
	效能量測
	品質控管
	標準模組庫

	Brief Tour of the Standard Library --- Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating Point Arithmetic

	虛擬環境與套件
	簡介
	建立虛擬環境
	用 pip 管理套件

	現在可以來學習些什麼？
	Interactive Input Editing and History Substitution
	Tab Completion and History Editing
	Alternatives to the Interactive Interpreter

	浮點數運算：問題與限制
	Representation Error

	附錄
	互動模式

	Glossary
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	版權宣告
	索引

