The Python/C API
([3.6.8

Guido van Rossum
and the Python development team

6 A 19,2019

Python Software Foundation
Email: docs@python.org

Contents

fiisr 3
1.1 Include Files e 3
1.2 Objects, Types and Reference Counts 4
1.3 EXCEptions o o e e e e e e e e e e e e e 7
14 HAIZUPYthOn o e e 9
1.5 Debugging Builds L e e e e e e 10
Stable Application Binary Interface 13
The Very High Level Layer 15
SIGHE 21
Bilshz AL 23
5.1 Printingand clearing L e e 23
5.2 RaiSINg @XCEPLIONS .« v v v v v o i e 24
5.3 ISSUIN@ WATNINGS .« « v v v v e e i e 26
54 Querying the error indicator oL e 27
5.5 SignalHandling L e 29
56 Exception Classes o v v i it e e e e e e 29
5.7 Exception ObJects ot i e e e e e e e e e e e e e e e 29
5.8 Unicode Exception Objects v i i v it e e e e e e e e e e 30
5.9 Recursion Control L e e 31
5.10 Standard Exceptions e 32
5.11 Standard Warning Categories o v v vt e e e e e e e e e e 33
TH 35
6.1 AMEEZRGTH . . 35
6.2 ARBEEI . 37
6.3 ATRE (Process) M . . o o . 38
6.4 FEABIAL 38
6.5 Datamarshalling support e e 42
6.6 Parsing arguments and building values L. 0oL o Lo 43
6.7 FEEEEMA .. 50
6.8 Reflection L 52
6.9 Codec registry and support functions oo e e e e e e e e 52

7

10

11

12

P 7 T]
7.1

Object Protocol e e e e e e
7.2 Number Protocol e e e e e e e e e
7.3 Sequence Protocol
7.4 Mapping Protocol oL e
7.5 Tterator Protocol e e e e e e e
7.6 Buffer Protocol e e e e e e
7.7 Old Buffer Protocol e e e e e e e e e

Concrete Objects Layer

8.1 Fundamental ObJects o i e e e e e e e e e e e e e e e
8.2 Numeric ODJECtS o v o o e e e e e e e e e e e e e e e
83 Sequence Objects e e e e e
8.4 Container OJEctS i i e e e e e e e e e e

8.5 BRI . . . o e e
8.6 Other ObJECtS v v v v i e e e e e e e e e e e e e e e e e e

Initialization, Finalization, and Threads

9.1 Initializing and finalizing the interpretero e
0.2 Process-wide parameters i e
9.3 Thread State and the Global Interpreter Lock
9.4 Sub-interpreter SUpPport L. e e e e e e e e e e
9.5 Asynchronous Notifications e
9.6 Profilingand Tracing L e e e e
9.7 Advanced Debugger Support L. e e e e e e e e e

Al TR A B

101 BB o e
10.2 Raw Memory Interface e e e e e e
10.3 Memory Interface L L e e e e e e e
10.4 Objectallocators o e e e e e e e
10.5 Customize Memory Allocators o e e e e e e e e e e
10.6 The pymalloc allocator o e e e e
10.7 Examples o e e e e e e e e e e e e e e e e e

Object Implementation Support

11.1 Allocating Objectsonthe Heap i
1.2 GEHPIEERE . . o
11.3 Type ObJeCts o v v o e e e e e e e e e e e e e e e e
11.4 Number Object StrUCtUIES« . ottt e ettt e e e e e e e e e
11.5 Mapping Object Structures o v v i it et e e e e e e e e e e e e
11.6 Sequence Object StruCtUres o o v vt i e e e e e e e e e
11.7 Buffer Object Structures 0 i e e e e e e e e e e e
11.8 Async Object Structures o v i v v e
11.9 Supporting Cyclic Garbage Collection

API and ABI Versioning
Glossary

Y SEalipe s
B.l Python SCHFRIETRREAM .« o o o

Pl B

C.1 Historyof thesoftware e

55
55
59
62
64
65
66
72

75
75
77
82
107
111
114

129
129
130
133
138
139
140
141

143
143
144
145
146
147
148
149

151
151
152
156
170
171
171
172
173
174

177

179

193
193

195

C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D i Y

#51

The Python/C API, () 3.6.8

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

Contents 1

The Python/C API, 5(F) 3.6.8

2 Contents

CHAPTER 1

The Application Programmer’ s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C APL
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.

Writing an extension module is a relatively well-understood process, where a [cookbook | approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’ re embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it’ s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

’ #include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

f#[E): Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

The Python/C API, 5(F) 3.6.8

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’ s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’ s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under pre f£ix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C",so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject *. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyOb ject, only pointer variables of type PyOb ject * can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

All Python objects (even Python integers) have a type and a reference count. An object’ s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a) is true
if (and only if) the object pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’ s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’ s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’ s an obvious
problem with objects that reference each other here; for now, the solution is [don’ tdo that.|)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’ s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’ s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’ s needed. There’ s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’ s reference count for every local variable that contains a pointer to an object.
In theory, the object’ s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count

4 Chapter 1. &4y

The Python/C API, () 3.6.8

hasn’ t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREEF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). [Owning a reference]
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’ s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three™) could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

3);

t, 0, PyLong_FromLong(1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’ s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,

1.2. Objects, Types and Reference Counts 5

The Python/C API, 5(F) 3.6.8

the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’ t have to increment a reference count so you can give a reference away ([have it
be stolen |). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PylLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’ t enter into it/ Thus, if you extract
an item from a list using PyList_GetItem(),youdon’ town the reference —but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */

(continues on next page)

6 Chapter 1. &4y

The Python/C API, () 3.6.8

(R —H)

for (i = 0; 1 < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; 1 < n; 1i++) {
item = PySequence_GetItem(sequence, 1);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’ s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

1.3. Exceptions 7

The Python/C API, 5(F) 3.6.8

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’ s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’ s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ---except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’ s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’ s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception —that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’ t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */

(continues on next page)

8 Chapter 1. &4y

The Python/C API, () 3.6.8

(R —H)

if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.4 g AR Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py_Tnitialize () doesnotsetthe [scriptargument list/(sys .argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,

1.4. #& AR Python 9

The Python/C API, 5(F) 3.6.8

assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (Infact, this particular path is also the [fallback] location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix (), and Py GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to [uninitialize | Python. For instance, the application may want to start over (make another call
to Py_Tnitialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py _TsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by [a debug build| of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBRUG is enabled in the Unix build,
compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
 Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
¢ Downcasts from wide types to narrow types are checked for loss of information.

* A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires a
test_c_api () method.

¢ Sanity checks of the input arguments are added to frame creation.

 The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
* Low-level tracing and extra exception checking are added to the runtime virtual machine.

» Extra checks are added to the memory arena implementation.

» Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

10 Chapter 1. &4y

The Python/C API, () 3.6.8

Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.5. Debugging Builds 11

The Python/C API, 5(F) 3.6.8

12 Chapter 1. &4y

CHAPTER 2

Stable Application Binary Interface

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed after
being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the API, but
can break the ABI. As a consequence, extension modules need to be recompiled for every Python release (although an
exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows, extension modules
link with a specific pythonXY.dll and need to be recompiled to link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing to use this
API (called [limited API]) need to define Py_LIMITED_API. A number of interpreter details then become hidden
from the extension module; in return, a module is built that works on any 3.x version (x>=2) without recompilation.

In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these new
APIs need to set Py_ LIMITED_APT to the PY_VERSION_HEX value (see APl and ABI Versioning) of the minimum
Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all subsequent
Python releases, but fail to load (because of missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API documentation,
API elements that are not part of the limited API are marked as [Not part of the limited APL. |

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, 5(F) 3.6.8

14 Chapter 2. Stable Application Binary Interface

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’ s main () function
(converted to wchar_t according to the user’ s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

15

The Python/C API, 5(F) 3.6.8

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filenameis NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when Python’
s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is ignored.
Overriding this hook can be used to integrate the interpreter’ s prompt with other event loops, as done in the
Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’ s prompt.
The function is expected to output the string prompt if it’ s not NULL, and then read a line of input from the
provided standard input file, returning the resulting string. For example, The readline module sets this hook to
provide line-editing and tab-completion features.

16 Chapter 3. The Very High Level Layer

The Python/C API, () 3.6.8

The result must be a string allocated by PyMem_RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

3.4 R B 4#: The result must be allocated by PyMem_RawMalloc () or PyMem RawRealloc (), instead of
being allocated by PyMem_Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *swr, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

17

The Python/C API, 5(F) 3.6.8

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code cannot
be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 BUHTMA.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Like Py CompileStringObject (), but filename is a byte string decoded from the filesystem encoding (os .
fsdecode ()).

3.2 HTMA.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *kwdefs, PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of a dictionary of global variables, a mapping object of local variables, arrays of arguments, keywords and defaults,
a dictionary of default values for keyword-only arguments and a closure tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_ EvalFrameEx (), for backward com-
patibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

3.4 K B4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

18 Chapter 3. The Very High Level Layer

The Python/C API, () 3.6.8

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int

flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as [true division | according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, 5(F) 3.6.8

20 Chapter 3. The Very High Level Layer

cHAPTER 4

\

SR

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Increment the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’ t sure that itisn’ t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’ s type’ s deallocation function (which must
not be NULL) is invoked.

% te: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with
a__del__ () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global variable
should be in a consistent state before Py DECREF () is invoked. For example, code to delete an object from
a list should copy a reference to the deleted object in a temporary variable, update the list data structure, and
then call Py_DECREF () for the temporary variable.

void Py_XDECREF (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

21

The Python/C API, 5(F) 3.6.8

The following functions are for runtime dynamic embedding of Python: Py_IncRef (PyObject *o),

Py_DecRef (PyObject *o0). They are simply exported function versions of Py XTINCREF () and
Py_XDECREF (), respectively.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference (), _Py_NewReference (), as well as the global variable _Py_RefTotal.

22 Chapter 4. &5t

CHAPTER D

BI5h ez IR

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’ t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’ s type, the exception’ s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’ t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’ t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

#i[E): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the errorisa SystemExit. In

23

The Python/C API, 5(F) 3.6.8

that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sys . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

5.2 Raising exceptions

These functions help you set the current thread’ s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8J .

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the [value]
of the exception.

PyObject* PyExrr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr Format (),buttakinga va_11ist argument rather than a variable
number of arguments.

3.5 BUBTINA.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and

24 Chapter 5. fl5hE 2

The Python/C API, () 3.6.8

then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_ CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of type as a third parameter. In the case of OSError exception, this is used to define
the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

3.4 BT

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnolWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()). Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter speci-

fying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-
name?2)
Similar to PyErr_SetExcFromWindowsErrWithFilenameObject (), but accepts a second filename

object. Availability: Windows.
3.4 BUHTMA.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
This is a convenience function to raise ImportError. msg will be set as the exception’ s message string. name
and path, both of which can be NULL, will be set as the ImportError’ srespective name and path attributes.

5.2. Raising exceptions 25

The Python/C API, 5(F) 3.6.8

3.3 BUHTMA.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exception isa SyntaxError.

3.4 BUHTMA.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (),but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

3.2 OB

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
—1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py._ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *msg, PyObject *name, PyObject *path)
Much like PyErr_Set ImportError () but this function allows for specifying a subclass of ImportError
to raise.

3.6 UM

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 BUBTIA.

26 Chapter 5. fl5hE 2

The Python/C API, () 3.6.8

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () exceptthat message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

3.2 UHTIMA.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and pass source to
warnings.WarningMessage ().

3.6 BUHTIA.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py DECREF () it.

#iE): Do not compare the return value to a specific exception; use PyErr_ ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

#E]: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

5.4. Querying the error indicator 27

The Python/C API, 5(F) 3.6.8

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’ t understand this, don’ t use this function.
I warned you.)

#(E): This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr Fetch () below can be [unnormalized | , meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

#i[E: This function does not implicitly set the __t raceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

#iF): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or clear
the exception state.

3.3 HUHTIA.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

#i(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 BUHTIA.

28

Chapter 5. ISR

The Python/C API, () 3.6.8

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’ s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for STGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_ SetInterrupt ()
This function simulates the effect of a STGINT signal arriving —the next time PyErr_CheckSignals () is
called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

3.5 Ji#E 4%: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_NewException (), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 BUHTMA.

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the exception

5.5. Signal Handling 29

The Python/C API, 5(F) 3.6.8

as a new reference, as accessible from Python through __context__. If there is no context associated, this
returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return the cause (either an exception instance, or None, set by raise ... from .. .) associated with the
exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context__ isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason is a

UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

30 Chapter 5. ISR

The Python/C API, () 3.6.8

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return O on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py _EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Endsa Py_ReprEnter (). Must be called once for each invocation of Py ReprEnter () that returns zero.

5.9. Recursion Control 31

The Python/C API, 5(F) 3.6.8

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C Name Python Name [Lf
PyExc_BaseException BaseException (1)
PyExc_Exception Exception ()
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (D
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError @))
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclteration StopAsynclIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError

m ik%—l—\-—g

32

Chapter 5. ISR

The Python/C API, () 3.6.8

x1-EEL—H

C Name Python Name EfR
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError
33 it pen yill] A PyExc_BlockingIOQError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,

PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.

3.5 fRFT A PyExc_StopAsyncIteration and PyExc_RecursionError.
3.6 G PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

C Name Iz

PyExc_EnvironmentError

PyExc_IOError
PyExc_WindowsError 3)

3.3 Jfiu ¥ 58 These aliases used to be separate exception types.
figt:

(1) This is a base class for other standard exceptions.

=

(2) This is the same as weakref .ReferenceError

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

5.11. Standard Warning Categories 33

https://www.python.org/dev/peps/pep-3151

The Python/C API, 5(F) 3.6.8

C Name Python Name [Ffg
PyExc_Warning Warning Q)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

3.2 GHTINA: PyExc_ResourceWarning

[Elfe

(1) This is a base class for other standard warning categories.

34

Chapter 5. ISR

CHAPTER O

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 ERZFEIA

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for parh. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

3.6 BUHTIMA.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

35

The Python/C API, 5(F) 3.6.8

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)

Set the signal handler for signal i to be %; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py _DecodeLocale (const char* arg, size_t *size)

char*

Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS and Android;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions use the ISO-8859-1 encoding.

e the current locale encoding (LC_CTYPE locale).

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size.

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
hz%:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

3.5 BUHTIMA.

Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
* UTF-8 on macOS and Android;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to the index of the invalid character on encoding error, or set to
(size_t) —1 otherwise.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
W%

The PyUnicode_ EncodeFSDefault () and PyUnicode_ EncodelLocale () functions.

3.5 BB

36

Chapter6. TH

The Python/C API, () 3.6.8

6.2 ZREAN

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’ s sys module’ s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys .warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted [%s] formats should occur; these should be
limited using [%.<N>s_| where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for [%f] , which can print hundreds of digits for very
large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’ t truncate the message to an arbitrary length.

3.2 UGHTIA.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys.stderr or stderr instead.

3.2 BUHTMA.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions ().

3.2 BUHTMA.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

6.2. ZREHN 37

The Python/C API, 5(F) 3.6.8

3.2 BUHTMA.

6.3 T2 (Process) gl

void Py_FatalError (const char *message)

Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)

Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

3.6 it § 4 Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’ s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 EANEH

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’ s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’ t leave the module in sys.modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)

This function is a deprecated alias of Py Import_ImportModule ().

3.3 it BE 4#: This function used to fail immediately when the import lock was held by another thread. In Python 3.3
though, the locking scheme switched to per-module locks for most purposes, so this function’ s special behaviour
isn’ t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

38

Chapter6. TH

The Python/C API, () 3.6.8

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-

cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

3.3 OB

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

3.3 R H 58 Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)

Return value: New reference. This is a higher-level interface that calls the current [import hook function | (with an
explicit level of 0, meaning absolute import). It invokes the __import__ () functionfromthe __builtins_
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

This function always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)

Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)

Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’ s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

#E]: This function does not load or import the module; if the module wasn’ t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

3.3 BUHTA.

PyObject* PyImport_AddModule (const char *name)

Return value: Borrowed reference. Similar to Py Import_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’ s intents) state.

The module’ s __spec___and __loader___ will be set, if not set already, with the appropriate values. The
spec’ s loader will be set to the module’ s ___loader__ (if set) and to an instance of SourceFilelLoader
otherwise.

6.4.

EAR 39

The Python/C API, 5(F) 3.6.8

Themodule’s ___file__attribute will be set to the code object’s co_filename. If applicable, ___cached___
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyTImport_ExecCodeModule (), butthe __file_ attribute of the
module object is set to pathname if it is non-NULL.

See also Py Import_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Tmport_ExecCodeModuleEx (), butthe __ _cached_ _ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

3.3 BUHTA.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpath-

name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.

3.2 UHTIA.

3.3 R EE 4% Uses imp.source_from_cache () in calculating the source path if only the bytecode path is
provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

3.3 R ¥4 Return value of —1 upon failure.

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

3.2 BT

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path___ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’ t yet cached, traverse sys . path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

40 Chapter6. TH

https://www.python.org/dev/peps/pep-3147

The Python/C API, () 3.6.8

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char * char *)
For internal use only.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_ImportModule (). (Note the misnomer —this function would reload the module if it
was already imported.)

3.3 OB
3.4 Jju ¥4 The ___file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import . h,is:

struct _frozen {
char *name;
unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.4. EAHEH 41

The Python/C API, 5(F) 3.6.8

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings
in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE * opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’
t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

42 Chapter 6. TH

The Python/C API, () 3.6.8

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and exam-
ples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more [format units. | A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’ t have to provide raw storage for
the returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and the
buffer shares the lifetime of this object. You won’ t have to release any memory yourself. The only exceptions are es,
es#, et and et #.

However, when a Py_buf fer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer Release () after you have finished processing the data (or in any
early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Some formats require a read-only byfes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’ s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

#i([E): For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t) is con-
trolled by defining the macro PY_SSIZE_T_CLEAN before including Python . h. If the macro was defined, length is
aPy_ssize_t rather than an int. This behavior will change in a future Python version to only support Py_ssize_t
and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects
are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

#[E): This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode_FSConverter () as converter.

3.5 iR 5 5% Previously, TypeError was raised when embedded null code points were encountered in the Python
string.

6.6. Parsing arguments and building values 43

The Python/C API, 5(F) 3.6.8

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only byfes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’ t accept mu-
table objects. The result is stored into two C variables, the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted to C strings using 'ut £-8 ' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, int] Like s#, but the Python object may also be None,
in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does, a
ValueError exception is raised.

3.5 it 3E %% Previously, TypeError was raised when embedded null bytes were encountered in the bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’ taccept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’ t accept Unicode objects, only bytes-like
objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyOb ject *.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a byt earray object, without attempting
any conversion. Raises TypeError if the objectisnotabytearray object. The C variable may also be declared
as PyObject *.

u (str) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Unicode
characters. You must pass the address of a Py_ UNICODE pointer variable, which will be filled with the pointer
to an existing Unicode buffer. Please note that the width of a Py UNTCODE character depends on compilation
options (it is either 16 or 32 bits). The Python string must not contain embedded null code points; if it does, a
ValueError exception is raised.

3.5 i ¥ 4#: Previously, TypeError was raised when embedded null code points were encountered in the Python
string.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTICODE API; please
migrate to using PyUnicode_ AsWideCharString().

u# (str) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a Unicode data
buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API,; please
migrate to using PyUnicode AsWideCharString().

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsWideCharString().

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

44 Chapter 6. TH

The Python/C API, () 3.6.8

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsWideCharString ().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer
interface. It fills a Py_buf fer structure provided by the caller. The buffer may contain embedded null bytes.
The caller have to call PyBuffer Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised