
Python Tutorial
發� 3.6.8

Guido van Rossum
and the Python development team

6月 19, 2019

Python Software Foundation
Email: docs@python.org

Contents

1 淺嘗滋味 3

2 使用 Python直譯器 5
2.1 �動直譯器 . 5
2.2 直譯器與它的環境 . 6

3 一個非正式的 Python簡介 9
3.1 把 Python當作計算機使用 . 9
3.2 初探程式設計的前幾步 . 16

4 深入了解流程控制 19
4.1 if陳述式 . 19
4.2 for陳述式 . 19
4.3 range()函式 . 20
4.4 break和 continue陳述、�圈� else段落 . 21
4.5 pass陳述式 . 22
4.6 定義函式 (function) . 22
4.7 More on Defining Functions . 24
4.8 Intermezzo: Coding Style . 29

5 資料結構 31
5.1 進一步了解 List（串列） . 31
5.2 del陳述式 . 35
5.3 Tuples和序列 (Sequences) . 36
5.4 集合 (Sets) . 37
5.5 字典（Dictionary） . 38
5.6 �圈技巧 . 39
5.7 更多條件式主題 . 40
5.8 序列和其他資料結構之比較 . 40

6 模組 43
6.1 More on Modules . 44
6.2 Standard Modules . 46
6.3 The dir() Function . 47
6.4 Packages . 48

7 輸入和輸出 53

i

7.1 更華麗的輸出格式 . 53
7.2 Reading and Writing Files . 56

8 錯誤和例外 61
8.1 語法錯誤 . 61
8.2 例外 . 61
8.3 處理例外 . 62
8.4 Raising Exceptions . 64
8.5 User-defined Exceptions . 65
8.6 Defining Clean-up Actions . 66
8.7 Predefined Clean-up Actions . 67

9 Classes 69
9.1 A Word About Names and Objects . 69
9.2 Python Scopes and Namespaces . 70
9.3 A First Look at Classes . 72
9.4 Random Remarks . 75
9.5 Inheritance . 76
9.6 Private Variables . 78
9.7 Odds and Ends . 79
9.8 Iterators . 79
9.9 Generators . 80
9.10 Generator Expressions . 81

10 Python標準函式庫概覽 83
10.1 作業系統介面 . 83
10.2 檔案之萬用字元 . 84
10.3 命令列引數 . 84
10.4 錯誤輸出重新導向與程式終止 . 84
10.5 字串樣式比對 . 84
10.6 數學相關 . 85
10.7 網路存取 . 85
10.8 日期與時間 . 86
10.9 資料壓縮 . 86
10.10 效能量測 . 86
10.11 品質控管 . 87
10.12 標準模組庫 . 87

11 Brief Tour of the Standard Library—Part II 89
11.1 Output Formatting . 89
11.2 Templating . 90
11.3 Working with Binary Data Record Layouts . 91
11.4 Multi-threading . 91
11.5 Logging . 92
11.6 Weak References . 93
11.7 Tools for Working with Lists . 93
11.8 Decimal Floating Point Arithmetic . 94

12 �擬環境與套件 97
12.1 簡介 . 97
12.2 建立�擬環境 . 97
12.3 用 pip管理套件 . 98

13 現在可以來學習些什�？ 101

ii

14 Interactive Input Editing and History Substitution 103
14.1 Tab Completion and History Editing . 103
14.2 Alternatives to the Interactive Interpreter . 103

15 浮點數運算：問題與限制 105
15.1 Representation Error . 108

16 附� 111
16.1 互動模式 . 111

A Glossary 113

B 關於這些�明文件 127
B.1 Python文件的貢獻者們 . 127

C 歷史與授權 129
C.1 History of the software . 129
C.2 Terms and conditions for accessing or otherwise using Python . 130
C.3 Licenses and Acknowledgements for Incorporated Software . 133

D 版權宣告 147

索引 149

iii

iv

Python Tutorial,發� 3.6.8

Python是一種易學、功能�大的程式語言。它有高效能的高階資料結構，也有簡單但有效的方法去實現物件
導向程式設計。Python優雅的語法和動態型�，結合其直譯特性，使它成��多領域和大多數平臺上，撰寫
�本和快速開發應用程式的理想語言。

使用者可以自由且免費地從 Python官網上 (https://www.python.org/)取得各大平台上用的 Python直譯器和標
準函式庫，下載其源碼或二進位形式執行檔，同時，也可以將其自由地散�。另外，Python官網也提供了許
多自由且免費的第三方 Python模組、程式與工具、以及額外�明文件，有興趣的使用者，可在官網上找到相
關的發行版本與連結網址。

使用 C或 C++（或其他可被 C呼叫的程式語言），可以很容易在 Python直譯器�新增功能函式及資料型�。
同時，對可讓使用者自�功能的應用程式來�，Python也適合作�其擴充用界面語言 (extension language)。
這份教學將簡介 Python語言與系統的基本概念及功能。除了�讀之外、實際用 Python直譯器寫程式跑範例，
將有助於學習。但如果只用讀的，也是可行的學習方式，因�所有範例的�容皆獨立且完整。

若想了解 Python標準物件和模組的描述，請參� library-index。在 reference-index中，您可以學到 Python語
言更正規的定義。想用 C或 C++寫延伸套件 (extensions)的讀者，請�讀 extending-index和 c-api-index。此
外，市面上也能找到更深入的 Python學習書。
這份教學中，我們不會介紹每一個功能，甚至，也不打算介紹完每一個常用功能。取而代之，我們的重心將
放在介紹 Python中最值得一提的那些功能，幫助您了解 Python語言的特色與風格。讀完教學後，您將有能
力�讀和撰寫 Python模組與程式，也做好進一步學習 library-index中各類型的 Python函式庫模組的準備。
Glossary頁面也值得細讀。

Contents 1

https://www.python.org/

Python Tutorial,發� 3.6.8

2 Contents

CHAPTER1

淺嘗滋味

如果你經常在電腦上工作，最終總能發現有些工作你會想要自動化。舉例來�，你會想在很多文字檔案�做
相同的搜尋取代，或者是用個�雜的規則重新命名或整理一群照片。也有可能你想寫個自己的小資料庫，一
個專門的 GUI應用程式，或一個小�戲。
如果你是一個職業軟體開發者，你可能要操作數個 C/C++/Java程式庫，�覺得平常寫程式碼、編譯、測試、
再編譯的流程太慢；有可能你正�了一個程式庫撰寫一套測試集，但發現寫測試單調乏味；也有可能你正在
開發一個能使用某一語言擴充的程式，但�不想要�了這程式特�設計一個全新的擴充語言。

在上述的例子中，Python正是你合適的語言。
也許你可以�了某些任務而寫個 Unix shell�本或者Windows批次檔來處理，但 shell�本最適合於搬動檔案
或更動文字�容，而不適於圖形應用程式或�戲。你可以�此寫個 C/C++/Java程式，但僅僅是完成個草稿也
需要很長的開發時間。相較而言，Python更易於使用，�能在Windows、Mac OSX、Unix作業系統上執行，
且能更快速地幫助你完成工作。

Python即便易用也是個貨真價實的程式語言。它提供比 shell�本、批次檔更多樣的程式架構與更多的支援。
另一方面，Python提供比 C更豐富的錯語檢查。相較於 C，Python作�一個「非常高階的程式語言」，它�
建了高階的資料型�如彈性的數列與字典。因�這些多用途的資料型�，Python適用解�比 Awk（甚至是
Perl）能處理的更多問題上。至少在許多事情中，使用 Python處理起來跟其他語言是同樣容易的。
Python允許你把程式切割成許多模組 (module)�將他們重覆運用至其他 Python程式中。Python自帶了一個
很大集合的標準模組，它們能做�你程式的基礎—或把它們當作一開始學寫 Python程式的範例。有些模組
提供了如檔案 I/O、系統呼叫、socket的功能，甚至提供了 Tk等圖形介面工具庫 (GUI toolkit)的介面。
Python是個直譯式語言，因�不需要編譯與連結，能�你在開發過程中省下可觀的時間。它的直譯器能互動
地使用，因此能很方便地實驗每個語言的功能、寫些用完即�的程式、幫助測試一些從細部開始開發的函
式。它也是個好用的計算機。

Python讓程式寫得精簡�易讀。用 Python實作的程式長度往往遠比用 C、C++、Java實作的短。這有以下幾
個原因：

• Python高階的資料型�能在一陳述句 (statement)中表達很�雜的操作；
• 陳述句的段落以縮排�區格而非括號；
• 不需要宣告變數和引數；

3

Python Tutorial,發� 3.6.8

Python是可擴充的：如果你會寫 C程式，那�要加個新的�建函式或模組到直譯器中是很容易的。無論是�
了用最快速的執行速度完成一些關鍵的操作，或是讓 Python連結到一些僅以二進元形式 (binary form)釋出的
程式庫（例如特定供應商的繪圖程式庫）。如果你想更多這樣的結合，你其實也可以把 Python直譯器連結到
用 C寫的應用程式，�在該應用程式中使用 Python寫擴充或者作�下達指令的語言。
順帶一提，這個語言是以 BBC的戲劇《Monty Python’s Flying Circus》命名，與爬蟲類完全�有關�。在�
明文件中引用他們的喜劇不但�問題，這甚至是個被鼓勵的行�！

如果你現在已經躍躍欲試，你會想了解 Python更多細節，而學習語言的最好方式就是直接使用它。接下來這
個教學就將帶領你，一邊�讀，一邊將所學用在 Python直譯器中玩耍。
在下個章節中，將會解�如何使用該直譯器。這也許只是個普通的資訊，但你必須試著操作接下來呈現的範
例。

接下來的教學�，將會透過許多範例介紹 Python 語言與其系統的諸多特色。一開始是簡單的表示句
(expression)、陳述句 (statement)和資料型� (data type)；接著是函式 (function)與模組 (module)；最後會接觸一
些較進階的主題如例外狀� (exception)與使用者自定義類� (class)。

4 Chapter 1. 淺嘗滋味

CHAPTER2

使用 Python直譯器

2.1 �動直譯器

The Python interpreter is usually installed as /usr/local/bin/python3.6 on those machines where it is available;
putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command:

python3.6

能�動 Python1。因�直譯器存放的目�是個安裝選項，其他的目�也是有可能的；請洽談在地的 Python達
人或者系統管理員。（例如：/usr/local/python是個很常見的另類存放路徑。）

On Windows machines, the Python installation is usually placed in C:\Python36, though you can change this when
you’re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

set path=%path%;C:\python36

在主提示符輸入一個 end-of-file字元（在 Unix上� Control-D；在Windows上� Control-Z）會使得直
譯器以零退出狀� (zero exit status)離開。如果上述的做法�有效，也可以輸入指令 quit()離開直譯器。

直譯器的指令列編輯功能有很多，在支援 readline函式庫的系統上包含：互動編輯、歷史取代、指令補完等功
能。最快檢查有無支援 readline的方法�在第一個 Python提示符後輸入 Control-P，如果出現��聲，就
代表有支援；見附�Interactive Input Editing and History Substitution介紹相關的快速鍵。如果什�事�有發生，
或者出現一個 ^P，就代表��有這指令列編輯功能；此時只能使用 backspace去除該行的字元。
這個直譯器使用起來像是 Unix shell：如果它被呼叫時連結至一個 tty裝置，它會互動式地讀取�執行指令；
如果被呼叫時給定檔名�引數或者使用 stdin傳入檔案�容，它會將這個檔案視��本來�讀。
另一個起動直譯器的方式� python -c command [arg] ...，它會執行在 command�的指令（們），行
�如同 shell的 -c選項。因� Python的指令包含空白等 shell用到的特殊字元，通常建議用單引號把 command
包起來。

有些 Python模組使用上如�本般一樣方便。透過 python -m module [arg] ...可以執行 module模組
的原始碼，就如同直接傳入那個模組的完整路徑一樣的行�。

1 在 Unix中，Python 3.x直譯器預設安裝不會以 python作�執行檔名稱，以避免與現有的 Python 2.x執行檔名稱衝突。

5

Python Tutorial,發� 3.6.8

當要執行一個�本檔時，有時候會希望在�本結束時進入互動模式。此時可在執行�本的指令加入 -i。

所有指令可用的參數都詳記在 using-on-general。

2.1.1 傳遞引數

當直擇器收到�本的名稱和額外的引數後，他們會轉��由字串所組成的 list（串列）�指派給 sys模組的
argv變數。你可以執行 import sys取得這個串列。這個串列的長度至少�一；當�有給任何�本名稱和
引數時，sys.argv[0]�空字串。當�本名� '-'（指標準輸入）時，sys.argv[0]� '-'。當使用 -c
command時，sys.argv[0]� '-c'。當使用 -m module時，sys.argv[0]�該模組存在的完整路徑。其
餘非 -c command 或 -m module的選項不會被 Python直譯器吸收掉，而是留在 sys.argv變數中給後續的
command或 module使用。

2.1.2 互動模式

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for the
next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts with the
secondary prompt, by default three dots (...). The interpreter prints a welcome message stating its version number and
a copyright notice before printing the first prompt:

$ python3.6
Python 3.6 (default, Sep 16 2015, 09:25:04)
[GCC 4.8.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

接續多行的情�出現在需要多行才能建立完整指令時。舉例來�，像是 if�述：

>>> the_world_is_flat = True
>>> if the_world_is_flat:
... print("Be careful not to fall off!")
...
Be careful not to fall off!

更多有關互動模式的使用，請見互動模式。

2.2 直譯器與它的環境

2.2.1 原始碼的字元編碼 (encoding)

預設 Python原始碼檔案的字元編碼使用 UTF-8。在這個編碼中，世界上多數語言的文字可以同時被使用在
字串�容、識�名 (identifier)及�解中—雖然在標準函式庫中只使用 ASCII字元作�識�名，這也是個任何
portable程式碼需遵守的慣例。如果要正確地顯示所有字元，您的編輯器需要能�認識檔案� UTF-8，�且
需要能顯示檔案中所有字元的字型。

To declare an encoding other than the default one, a special comment line should be added as the first line of the file. The
syntax is as follows:

-*- coding: encoding -*-

where encoding is one of the valid codecs supported by Python.
For example, to declare that Windows-1252 encoding is to be used, the first line of your source code file should be:

6 Chapter 2. 使用 Python直譯器

Python Tutorial,發� 3.6.8

-*- coding: cp1252 -*-

One exception to the first line rule is when the source code starts with a UNIX「shebang」line. In this case, the encoding
declaration should be added as the second line of the file. For example:

#!/usr/bin/env python3
-*- coding: cp1252 -*-

�解

2.2. 直譯器與它的環境 7

Python Tutorial,發� 3.6.8

8 Chapter 2. 使用 Python直譯器

CHAPTER3

一個非正式的 Python簡介

在下面的例子中，輸入與輸出的區�在於有無提示符（prompt，>>>和⋯）：如果要重做範例，你必須在提
示符出現的時候，輸入提示符後方的所有�容；那些非提示符開始的文字行是直譯器的輸出。注意到在範例
中，若出現單行只有次提示符時，代表該行你必須直接�行；這被使用在多行指令結束輸入時。

在本手�中的許多範例中，即便他們�互動式地輸入，仍然包含�解。Python中的�解 (comments)由 hash
字元 #開始一直到該行結束。�解可以從該行之首、空白後、或程式碼之後開始，但不會出現在字串之中。
hash字元在字串之中時仍視�一 hash字元。因��解只是用來�明程式而不會被 Python解讀，在練習範例
時不一定要輸入。

一些範例如下：

this is the first comment
spam = 1 # and this is the second comment

... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 把 Python當作計算機使用

讓我們來試試一些簡單的 Python指令。�動直譯器�等待第一個主提示符 >>>出現。（應該不會等太久）

3.1.1 數字 (Number)

直譯器如同一台簡單的計算機：你可以輸入一個 expression（運算式），它會寫出該式的值。Expression的語
法很使用：運算子 +、-、*和 /的行�如同大多數的程式語言（例如：Pascal或 C）；括號 ()可以用來分群。
例如：

>>> 2 + 2
4
>>> 50 - 5*6
20

(continues on next page)

9

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6

整數數字（即 2、4、20）� int型態，數字有小數點部份的（即 5.0、1.6）� float型態。我們將在之
後的教學中看到更多數字相關的型態。

除法 (/)永遠回傳一個 float。如果要做floor division�拿到整數的結果（即去除所有小數點的部份），你可以
使用 //運算子；計算餘數可以使用 %：

>>> 17 / 3 # classic division returns a float
5.666666666666667
>>>
>>> 17 // 3 # floor division discards the fractional part
5
>>> 17 % 3 # the % operator returns the remainder of the division
2
>>> 5 * 3 + 2 # result * divisor + remainder
17

在 Python中，計算�次 (powers)可以使用 **運算子1：

>>> 5 ** 2 # 5 squared
25
>>> 2 ** 7 # 2 to the power of 7
128

等於符號 (=)可以用於�變數賦值。賦值完之後，在下個指示符前�不會顯示任何結果：

>>> width = 20
>>> height = 5 * 9
>>> width * height
900

如果一個變數未被「定義 (defined)」（即變數未被賦值），試著使用它時會出現一個錯誤：

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

浮點數的運算有完善的支援，運算子 (operator)遇上混合的運算元 (operand)時會把整數的運算元轉��浮點
數：

>>> 4 * 3.75 - 1
14.0

在互動式模式中，最後一個印出的運算式的結果會被指派至變數 _中。這表示當你把 Python當作桌上計算
機使用者，要接續計算變得容易許多：

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax

(continues on next page)
1 因� **擁有較 -高的優先次序，-3**2會被解釋� -(3**2)�得到 -9。如果要避免這樣的優先順序以得到 9，你可以使用

(-3)**2。

10 Chapter 3. 一個非正式的 Python簡介

Python Tutorial,發� 3.6.8

(繼續上一頁)
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

這個變數應該被使用者視�只能讀取。不應該明確地�它賦值—你可以創一個獨立但名稱相同的本地變數來
覆蓋掉預設變數和它的神奇行�。

除了 int和 float，Python還支援了其他的數字型態，包含 Decimal和 Fraction。Python亦�建支援�
數 (complex numbers)，�使用 j和 J後綴來指定�數的部份（即 3+5j）。

3.1.2 字串 (String)

除了數字之外，Python也可以操作字串，而表達字串有數種方式。它們可以用包含在單引號 ('...')或雙引
號 ("...")之中，兩者會得到相同的結果2。使用 \跳�出現於字串中的引號：

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"
>>> '"Yes," they said.'
'"Yes," they said.'
>>> "\"Yes,\" they said."
'"Yes," they said.'
>>> '"Isn\'t," they said.'
'"Isn\'t," they said.'

在互動式的直譯器中，輸出的字串會被引號包圍且特殊符號會使用反斜� (\)跳�。雖然這有時會讓它看起
來跟輸入的字串不相同（包圍用的引號可能會改變），輸入和輸出兩字串實�相同。一般來�，字串包含單
引號而�有雙引號時，會使用雙引號包圍字串。函式 print()會�生更易讀的輸出，它會去除掉包圍的引
號，�且直接印出被跳�的字元和特殊字元：

>>> '"Isn\'t," they said.'
'"Isn\'t," they said.'
>>> print('"Isn\'t," they said.')
"Isn't," they said.
>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'
>>> print(s) # with print(), \n produces a new line
First line.
Second line.

如果你不希望字元前出現 \就被當成特殊字元時，可以改使用 raw string，在第一個包圍引號前加上 r：

>>> print('C:\some\name') # here \n means newline!
C:\some
ame
>>> print(r'C:\some\name') # note the r before the quote
C:\some\name

2 不像其他語言，特殊符號如 \n在單 ('...')和雙 ("...")括號中有相同的意思。兩種刮號的唯一差�，在於使用單刮號時，不需
要跳� (escape) "（但需要跳� \'），反之亦同。

3.1. 把 Python當作計算機使用 11

Python Tutorial,發� 3.6.8

字串值可以跨越數行。其中一方式是使用三個重覆引號："""..."""或 '''...'''。此時�行會被自動加
入字串值中，但也可以在�行前加入 \來取消這個行�。在以下的例子中：

print("""\
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

""")

會�生以下的輸出（注意第一個�行��有被包含進字串值中）：

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

字串可以使用 +運算子連接 (concatenate)，�用 *重覆該字串的�容：

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium'

兩個以上相鄰的字串值（string literal，即被引號包圍的字串）會被自動連接起來：

>>> 'Py' 'thon'
'Python'

當你想要分段一個非常長的字串時，兩相鄰字串值自動連接的特性十分有用：

>>> text = ('Put several strings within parentheses '
... 'to have them joined together.')
>>> text
'Put several strings within parentheses to have them joined together.'

但這特性只限於兩相鄰的字串值間，而非兩相鄰變數或表達式：

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal

...
SyntaxError: invalid syntax
>>> ('un' * 3) 'ium'

...
SyntaxError: invalid syntax

如果要連接變數們或一個變數與一個字串值，使用 +：

>>> prefix + 'thon'
'Python'

字串可以被「索引 indexed」(下標，即 subscripted)，第一個字元的索引值� 0。�有獨立表示字元的型�；一
個字元就是一個大小� 1的字串：

>>> word = 'Python'
>>> word[0] # character in position 0
'P'
>>> word[5] # character in position 5
'n'

索引值可以是負的，此時改成從右開始計數：

12 Chapter 3. 一個非正式的 Python簡介

Python Tutorial,發� 3.6.8

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

注意到因� -0等同於 0，負的索引值由 -1開始。
除了索引外，字串亦支援「切片 slicing」。索引用來拿到單獨的字元，而切片則可以讓你拿到子字串 (substring)：

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

注意到起點永遠被包含，而結尾永遠不被包含。這確保了 s[:i] + s[i:] 永遠等於 s：

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

切片索引 (slice indices)有很常用的預設值，省略起點索引值時預設� 0，而省略第二個索引值時預設整個字
串被包含在 slice中：

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

這�有個簡單記住 slice是如何運作的方式。想像 slice的索引值指著字元們之間，其中第一個字元的左側邊
緣由 0計數。則 n個字元的字串中最後一個字元的右側邊緣會有索引值 n，例如：

+---+---+---+---+---+---+
| P | y | t | h | o | n |
+---+---+---+---+---+---+
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

第一行數字給定字串索引值� 0⋯6的位置；第二行則標示了負索引值的位置。由 i至 j的 slice包含了標示 i
和 j邊緣間的所有字元。

對非負數的索引值而言，一個 slice的長度等於其索引值之差，如果索引值落在字串邊界�。例如，word[1:3]
的長度是 2。
嘗試使用一個過大的索引值會造成錯誤：

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

然而，超出範圍的索引值在 slice中會被妥善的處理：

3.1. 把 Python當作計算機使用 13

Python Tutorial,發� 3.6.8

>>> word[4:42]
'on'
>>> word[42:]
''

Python字串無法被改變—它們是immutable。因此，嘗試對字串中某個索引位置賦值會�生錯誤：

>>> word[0] = 'J'
...

TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'

...
TypeError: 'str' object does not support item assignment

如果你需要一個不一樣的字串，你必須建立一個新的：

>>> 'J' + word[1:]
'Jython'
>>> word[:2] + 'py'
'Pypy'

�建的函式 len()回傳一個字串的長度：

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

也參考:
textseq 字串是 sequence型�的範例之一，�支援該型�常用的操作。

string-methods 字串支援非常多種基本轉�和搜尋的方法。
f-strings 包含有表示式的字串值。
formatstrings 關於透過 str.format()字串格式化 (string formatting)的資訊。
old-string-formatting 在字串� %的左運算元時，將觸發舊的字串格式化操作，更多的細節在本連結中介紹。

3.1.3 List（串列）

Python理解數種�合型資料型�，用來組合不同的數值。當中最多樣變化的型�� list，可以寫成一系列以
逗號分隔的數值（稱之元素，即 item），包含在方括號之中。List可以包合不同型�的元素，但通常這些元素
會有相同的型�：

>>> squares = [1, 4, 9, 16, 25]
>>> squares
[1, 4, 9, 16, 25]

如同字串（以及其他�建的sequence型�），list可以被索引和切片 (slice)：

>>> squares[0] # indexing returns the item
1
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

14 Chapter 3. 一個非正式的 Python簡介

Python Tutorial,發� 3.6.8

所有 slice操作都會回傳一個新的 list包含要求的元素。這意謂著以下這個 slice��了原本 list（淺��，即
shallow copy）：

>>> squares[:]
[1, 4, 9, 16, 25]

List對支援如接合 (concatenation)等操作：

>>> squares + [36, 49, 64, 81, 100]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

不同於字串是immutable，list是mutable型�，即改變 list的�容是可能的：

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!
64
>>> cubes[3] = 64 # replace the wrong value
>>> cubes
[1, 8, 27, 64, 125]

你也可以在 list的最後加入新元素，透過使用 append()方法 (method)（我們稍後會看到更多方法的�明）：

>>> cubes.append(216) # add the cube of 6
>>> cubes.append(7 ** 3) # and the cube of 7
>>> cubes
[1, 8, 27, 64, 125, 216, 343]

也可以對 slice賦值，這能改變 list的大小，甚至是清空一個 list：

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> # replace some values
>>> letters[2:5] = ['C', 'D', 'E']
>>> letters
['a', 'b', 'C', 'D', 'E', 'f', 'g']
>>> # now remove them
>>> letters[2:5] = []
>>> letters
['a', 'b', 'f', 'g']
>>> # clear the list by replacing all the elements with an empty list
>>> letters[:] = []
>>> letters
[]

�建的函式 len()亦可以作用在 list上：

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

也可以嵌套多層 list（建立 list包含其他 list），例如：

>>> a = ['a', 'b', 'c']
>>> n = [1, 2, 3]
>>> x = [a, n]
>>> x
[['a', 'b', 'c'], [1, 2, 3]]

(continues on next page)

3.1. 把 Python當作計算機使用 15

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> x[0]
['a', 'b', 'c']
>>> x[0][1]
'b'

3.2 初探程式設計的前幾步

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can write
an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print(b)
... a, b = b, a+b
...
1
1
2
3
5
8

這例子引入了許多新的特性。

• 第一行出現了多重賦值：變數 a與 b同時得到了新的值 0與 1。在最後一行同樣的賦值再被使用了一
次，示範了等號的右項運算 (expression)會先被計算 (evaluate)，賦值再發生。右項的運算式由左至右依
序被計算。

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-zero
integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence; anything
with a non-zero length is true, empty sequences are false. The test used in the example is a simple comparison.
The standard comparison operators are written the same as in C: < (less than), > (greater than), == (equal to), <=
(less than or equal to), >= (greater than or equal to) and != (not equal to).

• �圈的主體會縮排：縮排在 Python中用來關連一群陳述式。在互動式提示符中，你必須在�圈�的每
一行一開始鍵入 tab或者（數個）空白來維持縮排。實務上，你會先在文字編輯器中準備好比較�雜的
輸入；多數編輯器都有自動縮排的功能。當一個�合陳述式以互動地方式輸入，必須在結束時多加一
行空行來代表結束（因�語法解析器無法判斷你何時輸入�合陳述的最後一行）。注意在一個縮排段落
�的縮排方式與數量必須維持一致。

• print()函式印出它接收到引數（們）的值。不同於先前僅我們寫下想要的運算（像是先前的計算機
範例），它可以處理�數個引數、浮點數數值和字串。印出的字串將不帶有引號，�且不同項目間會插
入一個空白，因此可以讓你容易格式化輸出，例如：

>>> i = 256*256
>>> print('The value of i is', i)
The value of i is 65536

關鍵字引數 end可以被用來避免額外的�行符加入到輸出中，或者以不同的字串結束輸出：

>>> a, b = 0, 1
>>> while b < 1000:

(continues on next page)

16 Chapter 3. 一個非正式的 Python簡介

Python Tutorial,發� 3.6.8

(繼續上一頁)
... print(b, end=',')
... a, b = b, a+b
...
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

�解

3.2. 初探程式設計的前幾步 17

Python Tutorial,發� 3.6.8

18 Chapter 3. 一個非正式的 Python簡介

CHAPTER4

深入了解流程控制

除了剛才介紹的 while，Python擁有在其他程式語言中常用的流程控制語法，�有ㄧ些不一樣的改變。

4.1 if陳述式

或許最常見的陳述式種類就是 if了。舉例來�：

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More

可以有零個或多個 elif段落，且 else段落可有可無。關鍵字 elif只是「else if」的縮寫，�且用來避免
過多的縮排。一個 if⋯elif⋯elif⋯序列可以用來替代其他語言中出現的 switch或 case陳述式。

4.2 for陳述式

在 Python中的 for陳述式可能不同於在 C或 Pascal中所看到的使用方式。與其只能�代 (iterate)一個等差
級數（如 Pascal），或給與使用者定義�代步進方式與結束條件（如 C），Python的 for陳述�代任何序列
（list或者字串）的元素，以他們出現在序列中的順序。例如（無意雙關）：

19

Python Tutorial,發� 3.6.8

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12

如果你在�圈中需要修改一個你正在�代的序列（例如重�一些選擇的元素），那�會建議你先建立一個序
列的拷貝。�代序列�不暗示建立新的拷貝。此時 slice語法就讓這件事十分容易完成：

>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

在 for w in words: 的情�，這個例子會試著重覆不斷地插入 defenestrate，�生一個無限長的 list。

4.3 range()函式

如果你需要�代一個數列的話，使用�建 range()函式就很方便。它可以生成一等差級數：

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

給定的結束值永遠不會出現在生成的序列中；range(10)生成的 10個數值，即對應存取一個長度� 10的
序列�每一個元素的索引值。也可以讓 range從其他數值計數，或者給定不同的級距（甚至�負；有時稱之
� step）：

range(5, 10)
5, 6, 7, 8, 9

range(0, 10, 3)
0, 3, 6, 9

range(-10, -100, -30)
-10, -40, -70

欲�代一個序列的索引值，你可以搭配使用 range()和 len()如下：

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary

(continues on next page)

20 Chapter 4. 深入了解流程控制

Python Tutorial,發� 3.6.8

(繼續上一頁)
1 had
2 a
3 little
4 lamb

然而，在多數的情�，使用 enumerate()函式將更�方便，詳見�圈技巧。

如果直接印出一個 range則會出現奇怪的輸出：

>>> print(range(10))
range(0, 10)

在很多情�下，由 range()回傳的物件的行�如同一個 list，但實際上它�不是。它是一個物件在你�代時
會回傳想要的序列的連續元素，�不會真正建出這個序列的 list，以節省空間。
我們稱這樣的物件� iterable（可�代的），意即能作�函式、陳述式中能一直獲取連續元素直到用盡的部件。
我們已經看過 for陳述式可做�如此的 iterator（�代器）。list()函式�另一個例子，他可以自 iterable
（可�代物件）建立 list：

>>> list(range(5))
[0, 1, 2, 3, 4]

待會我們可以看到更多函式回傳 iterable和接受 iterable�引數。

4.4 break和 continue陳述、�圈� else段落

break陳述，如同 C語言，終止包含其最�部的 for或 while�圈。

�圈可以帶有一個 else段落。當�圈歷遍�代的 list（在 for中）或條件��（在 while中）時，這個段
落會被執行；但�圈被 break陳述終止時則不會。底下尋找質數的�圈即示範了這個行�：

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

（�錯，這是正確的程式碼。請看仔細：else段落屬於 for�圈，�非 if陳述。）

當 else段落與�圈使用時，相較於搭配 if陳述使用，它的行�與搭配 try陳述使用時更�相似：try的
else段落在�有任何例外 (exception)時執行，而�圈的 else段落在�有任何 break時執行。更多有關
try陳述和例外的介紹，見處理例外。

continue陳述，亦承襲於 C語言，讓所屬的�圈繼續執行下個�代：

4.4. break和 continue陳述、�圈� else段落 21

Python Tutorial,發� 3.6.8

>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5 pass陳述式

pass陳述不執行任何動作。它用在語法上需要一個陳述但不需要執行任何動作的時候。例如：

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

這經常用於定義一個最簡單的類�：

>>> class MyEmptyClass:
... pass
...

pass亦可作�一個函式或條件判斷主體的預留位置，它可幫助你以更宏觀的角度思考�撰寫新的程式碼。
pass可被忽略：

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.6 定義函式 (function)

我們可以建立一個函式來�生費式數列到任何一個上界：

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

22 Chapter 4. 深入了解流程控制

Python Tutorial,發� 3.6.8

關鍵字 def帶入一個函式的定義。它之後必須連著該函式的名稱和置於括號之中的參數。自下一行起，所
有縮排的陳述成�該函式的主體。

一個函式的第一個陳述可以是一個字串值；此情�該字串值被視�該函式的�明文件字串，即 docstring。（關
於 docstring的細節請參見�明文件字串段落。）有些工具可以使用 docstring來自動�生�上或可列印的文件，
或讓使用者能自由地自原始碼中�覽文件。在原始碼中加入 docstring是個好慣例，應該養成這樣的習慣。
函式執行期間會建立一個新的符號表（symbol table）來儲存該函式�的區域變數。更精確地�，所有在函式
�的變數賦值都會把該值儲存在一個區域符號表。然而，在讀取一個變數時，會先從區域符號表起搜尋，其
次�所有包含其函式的區域符號表，其次�全域符號表，最後�所有�建的名稱。因此，在函式中，全域變
數無法被直接賦值（除非該變數有被 global陳述句提及），但它們可以被讀取。

在一個函式被呼叫的時候，實際傳入的參數（引數）會被加入至該函數的區域符號表。因此，引數傳入的方
式�傳值呼叫 (call by value)（這�傳遞的「值」永遠是一個物件的參照（reference），而不是該物件的值）。1當
一個函式呼叫�的函式時，在被呼叫的函式中會建立一個新的區域符號表。

一個函式定義會把該函式名稱加入至當前的符號表。該函式名稱的值帶有一個型�，�被直譯器辨識�使用
者自定函式（user-defined function）。該值可以被賦予給�的變數名，而該變數也可以被當作函式使用。這即
是常見的重新命名方式：

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

如果你是來自�的語言，你可能不同意 fib是個函式，而是個程序 (procedure)，因�它��有回傳值。實
際上，即使一個函式缺少一個 return陳述，它亦有一個固定的回傳值。這個值� None（它是一個�建名
稱）。在直譯器中單獨使用 None時，通常不會被顯示。你可以使用 print()來看到它：

>>> fib(0)
>>> print(fib(0))
None

如果要寫一個函式回傳費式數列的 list而不是直接印出它，這也很容易：

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

這個例子一樣示範了一些新的 Python特性：
• return陳述會讓一個函式回傳一個值。單獨使用 return不外加一個表達式作�引數會回傳 None。
一個函式執行到結束也會回傳 None。

• result.append(a)陳述呼叫了一個 list物件的 result method（方法）。method�「屬於」一個物件
的函式，命名規則� obj.methodname，其中 obj�某個物件（亦可�一表達式），而 methodname
�該method的名稱，�由該物件的型�所定義。不同的型�代表不同的method。不同型�的method可

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes
to it (items inserted into a list).

4.6. 定義函式 (function) 23

Python Tutorial,發� 3.6.8

以擁有一樣的名稱而不會讓 Python混淆。（你可以使用 class定義自己的物件型�和 method，見Classes）
這� append() method定義在 list物件中；它會加入一個新的元素在該 list的末端。這個例子等同於
result = result + [a]，但更有效率。

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, reminder='Please try again!'):
while True:

ok = input(prompt)
if ok in ('y', 'ye', 'yes'):

return True
if ok in ('n', 'no', 'nop', 'nope'):

return False
retries = retries - 1
if retries < 0:

raise ValueError('invalid user response')
print(reminder)

This function can be called in several ways:
• giving only the mandatory argument: ask_ok('Do you really want to quit?')

• giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2)

• or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only
yes or no!')

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):
print(arg)

i = 6
f()

will print 5.
Important warning: The default value is evaluated only once. This makes a difference when the default is a muta-
ble object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

(continues on next page)

24 Chapter 4. 深入了解流程控制

Python Tutorial,發� 3.6.8

(繼續上一頁)
print(f(1))
print(f(2))
print(f(3))

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("-- This parrot wouldn't", action, end=' ')
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It's", state, "!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This function
can be called in any of the following ways:

parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match
one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function), and their
order is not important. This also includes non-optional arguments (e.g. parrot(voltage=1000) is valid too). No
argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)

(continues on next page)

4.7. More on Defining Functions 25

Python Tutorial,發� 3.6.8

(繼續上一頁)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form **name is present, it receives a dictionary (see typesmapping) containing all
keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter
of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond
the formal parameter list. (*name must occur before **name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:

print(arg)
print("-" * 40)
for kw in keywords:

print(kw, ":", keywords[kw])

It could be called like this:

cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were
provided in the function call.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments.
These arguments will be wrapped up in a tuple (seeTuples和序列 (Sequences)). Before the variable number of arguments,
zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
file.write(separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining
input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are
『keyword-only』arguments, meaning that they can only be used as keywords rather than positional arguments.

26 Chapter 4. 深入了解流程控制

Python Tutorial,發� 3.6.8

>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop
arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out
of a list or tuple:

>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin'␣
↪→demised !

4.7.5 Lambda Expressions

Small anonymous functions can be created with the lambda keyword. This function returns the sum of its two arguments:
lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They are syntactically
restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested
function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])

(continues on next page)

4.7. More on Defining Functions 27

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6 �明文件字串

Here are some conventions about the content and formatting of documentation strings.
The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state
the object’s name or type, since these are available by other means (except if the name happens to be a verb describing
a function’s operation). This line should begin with a capital letter and end with a period.
If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.
The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation
have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line
of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since
it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace
「equivalent」to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should
not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested
after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.

No, really, it doesn't do anything.

4.7.7 Function Annotations

Function annotations are completely optional metadata information about the types used by user-defined functions (see
PEP 3107 and PEP 484 for more information).
Annotations are stored in the __annotations__ attribute of the function as a dictionary and have no effect on any
other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an
expression evaluating to the value of the annotation. Return annotations are defined by a literal ->, followed by an
expression, between the parameter list and the colon denoting the end of the def statement. The following example has
a positional argument, a keyword argument, and the return value annotated:

>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...

(continues on next page)

28 Chapter 4. 深入了解流程控制

https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most
languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it
easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.
For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-
pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted
for you:

• Use 4-space indentation, and no tabs.
4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

• Wrap lines so that they don’t exceed 79 characters.
This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.

• Use blank lines to separate functions and classes, and larger blocks of code inside functions.
• When possible, put comments on a line of their own.
• Use docstrings.
• Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2) +
g(3, 4).

• Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for the first
method argument (see A First Look at Classes for more on classes and methods).

• Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default,
UTF-8, or even plain ASCII work best in any case.

• Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a
different language will read or maintain the code.

�解

4.8. Intermezzo: Coding Style 29

https://www.python.org/dev/peps/pep-0008

Python Tutorial,發� 3.6.8

30 Chapter 4. 深入了解流程控制

CHAPTER5

資料結構

這個章節將會更深入的介紹一些你已經學過的東西的細節上，�且加入一些你還�有接觸過的部分。

5.1 進一步了解 List（串列）

List（串列）這個資料型態，具有更多操作的方法。下面條列了所有關於 list的物件方法：
list.append(x)

將一個新的項目加到 list的尾端。等同於 a[len(a):] = [x]。

list.extend(iterable)
將 iterable（可列舉物件）接到 list的尾端。等同於 a[len(a):] = iterable。

list.insert(i, x)
將一個項目插入至 list中給定的位置。第一個引數�插入處前元素的索引值，所以 a.insert(0, x)
會插入� list首位，而 a.insert(len(a), x)則相當於 a.append(x)。

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.pop([i])
移除 list中給定位置的項目，�回傳它。如果�有指定位置，a.pop()將會移除 list中最後的項目�回
傳它。（在 i周圍的方括號代表這個參數是選用的，�不代表你應該在該位置輸入方括號。你將會常常
在 Python函式庫參考指南中看見這個表示法）

list.clear()
�除 list中所有項目。這等同於 del a[:] 。

list.index(x[, start[, end]])
Return zero-based index in the list of the first item whose value is x. Raises a ValueError if there is no such
item.
引數 start和 end的定義跟在 slice表示法中相同，搜尋的動作被這兩個引數限定在 list中特定的子序列。
但要注意的是，回傳的索引值是從 list的開頭開始算，而不是從 start開始算。

31

Python Tutorial,發� 3.6.8

list.count(x)
回傳數值� x在 list中所出現的次數。

list.sort(key=None, reverse=False)
將 list中的項目排序。（有參數可以使用來進行客�化的排序，請參考 sorted()部分的解釋）

list.reverse()
將 list中的項目前後順序反過來。

list.copy()
回傳一個淺�� (shallow copy)的 list。等同於 a[:]。

以下是一個使用到許多 list物件方法的例子：

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count('apple')
2
>>> fruits.count('tangerine')
0
>>> fruits.index('banana')
3
>>> fruits.index('banana', 4) # Find next banana starting a position 4
6
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()
'pear'

你可能會注意到一些方法，像是 insert、remove或者是 sort，�不會印出回傳的值，事實上，他們回
傳預設值 None1。這是一個用於 Python中所有可變資料結構的設計法則。

5.1.1 將 List作� Stack（堆�）使用

List的操作方法使得它非常簡單可以用來實作 stack（堆�）。Stack�一個遵守最後加入元素最先被取回（後
進先出，」last-in, first-out」）規則的資料結構。你可以使用方法 append()將一個項目放到堆�的頂層。而使
用方法 pop()且不給定索引值去取得堆�最上面的項目。舉例而言：

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()

(continues on next page)
1 其他語言可能可以回傳可變的物件�允許方法串連，例如 d->insert("a")->remove("b")->sort();。

32 Chapter 5. 資料結構

Python Tutorial,發� 3.6.8

(繼續上一頁)
5
>>> stack
[3, 4]

5.1.2 將 List作� Queue（�列）使用

我們也可以將 list當作 queue（�列）使用，即最先加入元素最先被取回（先進先出，」first-in, first-out」）的資
料結構。然而，list在這種使用方式下效率較差。使用 append和 pop來加入和取出尾端的元素較快，而使
用 insert和 pop來插入和取出頭端的元素較慢（因�其他元素都需要挪動一格）。

如果要實作 queue，請使用 collections.deque，其被設計成能快速的從頭尾兩端加入和取出。例如：

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

5.1.3 List Comprehensions（串列綜合運算）

List Comprehension（串列綜合運算）讓你可以用簡潔的方法創建 list。常見的應用是基於一個 list或 iterable
（可列舉物件），將每一個元素經過某個運算的結果串接起來成�一個新的 list。或是創建一個 list的子序列，
其每一個元素皆滿足一個特定的條件。

舉例來�，假設我們要創建一個「平方的 list」：

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

注意這是創建（或�寫）一個變數叫 x其在�圈結束後仍然存在。我們可以這樣�生平方串列而不造成任何
side effects（副作用）：

squares = list(map(lambda x: x**2, range(10)))

或與此相等的：

squares = [x**2 for x in range(10)]

這樣更簡潔和易讀。

一個 list comprehension的組成，是包含著一個 expression（運算式）和一個 for語句，再接著零個或多個 for
或 if語句的一對方括號。結果會是一個新的串列，�容是在接著的 for和 if語句的環境下，執行前面
expression的結果。例如，這個 list comprehension是由兩個串列中互相不同的元素組合所組成：

5.1. 進一步了解 List（串列） 33

Python Tutorial,發� 3.6.8

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

而這和下者相同：

>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

注意 for和 if在這兩段程式�的順序是相同的。

如果 expression是一個 tuple（例如上面例子中的 (x, y)），它必須加上小括弧：

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]

File "<stdin>", line 1, in <module>
[x, x**2 for x in range(6)]

^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions可以含有�雜的 expression和巢狀的函式呼叫：

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4 巢狀的 List Comprehensions

最初放在 list comprehesion中的 expression可以是任何形式的 expression，包括再寫一個 list comprehension。
考慮以下表示 3x4矩陣的範例，使用 list包含 3個長度� 4的 list：

34 Chapter 5. 資料結構

Python Tutorial,發� 3.6.8

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

以下的 list comprehesion會將矩陣的行與列作轉置：

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

如同我們在上一節看到的，此巢狀的 list comprehension�一個 list comprehension在 for之前先被計算，接著
再作一次 list comprehension，所以，這個例子和下者相同：

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

因此，也和下者相同：

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

在實際運用上，我們傾向於使用�建函式 (built-in functions)而不是�雜的流程控制陳述式。在這個例子中，
使用 zip()函式會非常有效率：

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

關於星號的更多細節，請參考Unpacking Argument Lists。

5.2 del陳述式

有一個方法可以藉由索引而不是值來�除 list中的項：del陳述式。這和 pop()方法傳回一個值不同，del
陳述式可以用來�除 list中的片段或者清空整個 list（我們之前藉由指派一個空的 list給想�除的片段來完成
這件事）。例如：

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a

(continues on next page)

5.2. del陳述式 35

Python Tutorial,發� 3.6.8

(繼續上一頁)
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del也可以用來�除變數：

>>> del a

�除之後，對 a的參照將會造成錯誤（至少在另一個值又被指派到它之前）。我們將在後面看到更多關於
del的其他用法。

5.3 Tuples和序列 (Sequences)

我們看到 lists和 strings有許多共同的特性，像是索引操作 (indexing)以及切片操作 (slicing)。他們是序列資
料結構中的兩個例子（請參考 typesseq）。由於 Python是個持續發展中的語言，未來可能還會有其他的序列
資料結構加入。接著要介紹是下一個標準序列資料結構：tuple。

一個 tuple是由若干個值藉由逗號區隔而組成，例如：

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

如同我們看到的，被輸出的 tuple總是以括號包著，如此巢狀的 tuple才能被正確的直譯 (interpret)；他們可以
是以被括號包著或不被包著的方式當作輸入，雖然括號的使用常常是有其必要的（譬如此 tuple是一個較大
的陳述式的一部分）。指派東西給 tuple中個�的項是不行的，但是可以在 tuple中放入含有可變項的物件，譬
如 list。
雖然 tuple和 list看起來很類似，但是他們通常用在不同的情�與不同目的。tuple是immutable（不可變的），
通常儲存�質的序列元素，�可經由拆解 (unpacking)（請參考本節後段）或索引 (indexing)來存取（或者在
使用 namedtuples的時候藉由屬性 (attribute)來存取）。list是mutable（可變的），其元素通常是同質的且可
藉由迭代整個串列來存取。

一個特�的議題是，關於創建一個含有 0個或 1個項目的 tuple：語法上會�納一些奇怪的用法。空的 tuple
藉由一對空括號來創建；含有一個項目的 tuple經由一個值加上一個逗點來創建（不需要用括號把一個單一
的值包住）。醜，但有效率。例如：

36 Chapter 5. 資料結構

Python Tutorial,發� 3.6.8

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

陳述式 t = 12345, 54321, 'hello!'就是一個 tuple packing的例子：12345，54321和 'hello!'一
起被放進 tuple�。反向操作也可以：

>>> x, y, z = t

這個正是我們所�序列拆解 (sequence unpacking)，可運用在任何位在等號右邊的序列。序列拆解要求等號左
邊的變數數量必須與等號右邊的序列中的元素數量相同。注意，多重指派就只是 tuple packing和序列拆解的
結合而已。

5.4 集合 (Sets)

Python也包含了一種用在集合 (sets)的資料結構。一個 set是一組無序且�有重�的元素。基本的使用方式包
括了成員測試和消除重�項。Set物件也支援聯集，交集，差集和互斥等數學操作。
大括號或 set()函式都可以用來創建 set。注意：要創建一個空的 set，我們必須使用 set()而不是 {}；
後者會創建一個空的 dictionary，一種我們將在下一節討論的資料結構。
這�是一個簡單的演示：

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

和list comprehensions類似，也有 set comprehensions（集合綜合運算）：

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}

5.4. 集合 (Sets) 37

Python Tutorial,發� 3.6.8

5.5 字典（Dictionary）

下一個常用的 python�建資料結構� dictionary（請參考 typesmapping）。Dictionary有時被稱�「關聯記憶體」
(associative memories)或「關聯矩陣」(associative arrays)。不像序列是由一個範圍�的數字當作索引，dictionary
是由 key（鍵）來當索引，key可以是任何不可變的型態；字串和數字都可以當作 key。Tuple也可以當作 key
如果他們只含有字串、數字或 tuple；若一個 tuple直接或間接地含有任何可變的物件，它就不能當作 key。我
們無法使用 list當作 key，因� list可以經由索引操作、切片操作或是方法像是 append()和 extend()來
修改。

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.
Dict主要的操作�藉由鍵來儲存一個值�且可藉由該鍵來取出該值。也可以使用 del來�除鍵值對。如果我
們使用用過的鍵來儲存，該鍵所對應的較舊的值會被覆蓋。使用不存在的鍵來取出值會造成錯誤。

Performing list(d.keys()) on a dictionary returns a list of all the keys used in the dictionary, in arbitrary order (if
you want it sorted, just use sorted(d.keys()) instead).2 To check whether a single key is in the dictionary, use the
in keyword.
這是個使用一個字典的簡單範例：

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

函式 dict()可直接透過一串鍵值對序列來創建 dict：

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

此外，dict comprehensions也可以透過鍵與值的陳述式來創建 dict：

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

當鍵是簡單的字串時，使用關鍵字引數 (keyword arguments)有時會較�簡潔：

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

2 Calling d.keys() will return a dictionary view object. It supports operations like membership test and iteration, but its contents are not inde-
pendent of the original dictionary – it is only a view.

38 Chapter 5. 資料結構

Python Tutorial,發� 3.6.8

5.6 �圈技巧

當對 dict作�圈時，鍵以及其對應的值可以藉由使用 items()方法來同時取得：

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave

當對序列作�圈時，位置索引及其對應的值可以藉由使用 enumerate()函式來同時取得：

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe

要同時對兩個以上的序列作�圈，可以將其以成對的方式放入 zip()函式：

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

要對序列作反向的�圈，首先先寫出正向的序列，在對其使用 reversed()函式：

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

要以�圈對序列作排序，使用 sorted()函式會得到一個新的經排序過的 list，但不會改變原本的序列：

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear

有時我們會想要以�圈來改變的一個 list，但是，通常創建一個新的 list會更簡單且安全：

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]

(continues on next page)

5.6. �圈技巧 39

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.7 更多條件式主題

使用在 while和 if�的陳述式可以包含任何運算子，而不是只有比較運算子 (comparisons)。
比較運算子 in和 not in檢查一個數值是否存在（不存在）於一個序列中。運算子 is和 not is比較兩
個物件是否真的是相同的物件；這對可變物件例如 list來�很重要。所有的比較運算子優先度都相同且都低
於數值運算子。

比較運算是可以串連在一起的。例如，a < b == c就是在測試 a是否小於 b和 b是否等於 c。

比較運算可以結合布林運算子 and和 or，且一個比較運算的結果（或任何其他布林表達式）可以加上 not
來否定。這些運算子的優先度都比比較運算子還低，其中，not的優先度最高，or的優先度最低，因此 A
and not B or C等同於 (A and (not B)) or C。一如往常，括號可以用來表示任何想要的組合。

布林運算子 and和 or也被稱�短路 (short-circuit)運算子：會將其引數從左至右進行運算，當結果出現時即
結束運算。例如，若 A和 C�真但 B�假，則 A and B and C的運算�不會執行到 C。當運算結果被當
成一般數值而非布林值時，短路運算子的回傳值�最後被運算的引數。

將一個比較運算或其他布林表達式的結果指派給一個變數是可以的。例如：

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

注意，Python不像 C語言，在表達式�進行指派是不行的。C語言的程式設計師可能會抱怨這件事，但這樣
做避免了在 C語言�常見的一種問題：想要打 ==�在表達式�輸入 =。

5.8 序列和其他資料結構之比較

序列物件可以拿來和其他相同型態的物件做比較。這種比較使用詞典式順序 (lexicographical ordering)：首先
比較各自最前面的那項，若不相同，便可�定結果，若相同，則比較下ㄧ項，以此類推，直到其中一個序列
完全用完。如果被拿出來比較的兩項本身又是相同的序列型態，則詞典式順序的比較會遞�處理。如果兩個
序列所有的項都相等，則此兩個序列被認�是相等的。如果其中一個序列是另一個的子序列，則較短的那個
序列�較小的序列。字串的詞典式順序使用 Unicode的碼位 (code point)編號來排序個�字元。以下是一些相
同序列型態的比較：

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

40 Chapter 5. 資料結構

Python Tutorial,發� 3.6.8

注意，若使用 <或 >來比較不同型態的物件是合法的，表示物件擁有適當的比較方法。例如，混合型數值比
較是根據它們數字的值來做比較，所以 0等於 0.0，等等。否則直譯器會選擇�出一個 TypeError錯誤而
不是提供一個任意的排序。

�解

5.8. 序列和其他資料結構之比較 41

Python Tutorial,發� 3.6.8

42 Chapter 5. 資料結構

CHAPTER6

模組

如果從 Python直譯器離開後又再次進入，之前（幫函式或變數）做的定義都會消失。因此，想要寫一些比較
長的程式時，你最好使用編輯器來準備要輸入給直譯器的�容，�且用該檔案來運行它。這就是一個�本
（script）。隨著你的程式越變越長，你可能會想要把它分開成幾個檔案，讓它比較好維護。你可能也會想用一
個你之前已經在其他程式寫好的函式，但不想要��該函式的原始定義到所有使用它的程式�。

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the main
module (the collection of variables that you have access to in a script executed at the top level and in calculator mode).
A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py
appended. Within a module, the module’s name (as a string) is available as the value of the global variable __name__.
For instance, use your favorite text editor to create a file called fibo.py in the current directory with the following
contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print(b, end=' ')
a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

43

Python Tutorial,發� 3.6.8

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement.1 (They are
also run if the file is executed as a script.)
Each module has its own private symbol table, which is used as the global symbol table by all functions defined in the
module. Thus, the author of a module can use global variables in the module without worrying about accidental clashes
with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s global
variables with the same notation used to refer to its functions, modname.itemname.
Modules can import other modules. It is customary but not required to place all import statements at the beginning of
a module (or script, for that matter). The imported module names are placed in the importing module’s global symbol
table.
There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example,
fibo is not defined).
There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not use
this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you have already
defined.
Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions.
If the module name is followed by as, then the name following as is bound directly to the imported module.

1 In fact function definitions are also『statements』that are『executed』; the execution of a module-level function definition enters the function
name in the module’s global symbol table.

44 Chapter 6. 模組

Python Tutorial,發� 3.6.8

>>> import fibo as fib
>>> fib.fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only difference of it being
available as fib.
It can also be used when utilising from with similar effects:

>>> from fibo import fib as fibonacci
>>> fibonacci(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

備�: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter – or, if it’s just one module you want to test interactively, use importlib.
reload(), e.g. import importlib; importlib.reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to "__main__". That
means that by adding this code at the end of your module:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command line
only runs if the module is executed as the「main」file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the module
as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. If not
found, it then searches for a file named spam.py in a list of directories given by the variable sys.path. sys.path
is initialized from these locations:

• The directory containing the input script (or the current directory when no file is specified).
• PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

6.1. More on Modules 45

Python Tutorial,發� 3.6.8

• The installation-dependent default.

備�: On file systems which support symlinks, the directory containing the input script is calculated after the symlink
is followed. In other words the directory containing the symlink is not added to the module search path.

After initialization, Python programs can modify sys.path. The directory containing the script being run is placed
at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory will be
loaded instead of modules of the same name in the library directory. This is an error unless the replacement is intended.
See section Standard Modules for more information.

6.1.3 「Compiled」Python files

To speed up loading modules, Python caches the compiled version of each module in the __pycache__ directory under
the name module.version.pyc, where the version encodes the format of the compiled file; it generally contains
the Python version number. For example, in CPython release 3.3 the compiled version of spam.py would be cached
as __pycache__/spam.cpython-33.pyc. This naming convention allows compiled modules from different re-
leases and different versions of Python to coexist.
Python checks the modification date of the source against the compiled version to see if it’s out of date and needs to be
recompiled. This is a completely automatic process. Also, the compiled modules are platform-independent, so the same
library can be shared among systems with different architectures.
Python does not check the cache in two circumstances. First, it always recompiles and does not store the result for the
module that’s loaded directly from the command line. Second, it does not check the cache if there is no source module.
To support a non-source (compiled only) distribution, the compiled module must be in the source directory, and there
must not be a source module.
Some tips for experts:

• You can use the -O or -OO switches on the Python command to reduce the size of a compiled module. The
-O switch removes assert statements, the -OO switch removes both assert statements and __doc__ strings. Since
some programs may rely on having these available, you should only use this option if you know what you’re
doing. 「Optimized」modules have an opt- tag and are usually smaller. Future releases may change the effects
of optimization.

• A program doesn’t run any faster when it is read from a .pyc file than when it is read from a .py file; the only
thing that’s faster about .pyc files is the speed with which they are loaded.

• The module compileall can create .pyc files for all modules in a directory.
• There is more detail on this process, including a flow chart of the decisions, in PEP 3147.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference (
「Library Reference」hereafter). Some modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating
system primitives such as system calls. The set of such modules is a configuration option which also depends on the
underlying platform. For example, the winreg module is only provided on Windows systems. One particular module
deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1 and sys.ps2
define the strings used as primary and secondary prompts:

46 Chapter 6. 模組

https://www.python.org/dev/peps/pep-3147

Python Tutorial,發� 3.6.8

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Yuck!')
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.
The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized to
a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not set.
You can modify it using standard list operations:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__',
'__package__', '__stderr__', '__stdin__', '__stdout__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
'_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',
'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
'call_tracing', 'callstats', 'copyright', 'displayhook',
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
'thread_info', 'version', 'version_info', 'warnoptions']

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

6.3. The dir() Function 47

Python Tutorial,發� 3.6.8

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module builtins:

>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
'__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']

6.4 Packages

Packages are a way of structuring Python’s module namespace by using「dotted module names」. For example, the
module name A.B designates a submodule named B in a package named A. Just like the use of modules saves the authors
of different modules from having to worry about each other’s global variable names, the use of dotted module names
saves the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s module
names.
Suppose you want to design a collection of modules (a「package」) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff,
.au), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are also many different operations you might want to perform on sound data (such as mixing, adding
echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations. Here’s a possible structure for your package (expressed in terms of a
hierarchical filesystem):

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
(continues on next page)

48 Chapter 6. 模組

Python Tutorial,發� 3.6.8

(繼續上一頁)
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories on sys.path looking for the package subdirec-
tory.
The __init__.py files are required to make Python treat the directories as containing packages; this is done to prevent
directories with a common name, such as string, from unintentionally hiding valid modules that occur later on the
module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute initialization
code for the package or set the __all__ variable, described later.
Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. The import statement first tests
whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to find it, an
ImportError exception is raised.

6.4. Packages 49

Python Tutorial,發� 3.6.8

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a
package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous
item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when the
sub-module is explicitly imported.
The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s __init__.py code defines a list named __all__, it is taken to be the list
of module names that should be imported when from package import * is encountered. It is up to the package
author to keep this list up-to-date when a new version of the package is released. Package authors may also decide not
to support it, if they don’t see a use for importing * from their package. For example, the file sound/effects/
__init__.py could contain the following code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import *would import the three named submodules of the sound
package.
If __all__ is not defined, the statement from sound.effects import * does not import all submodules from
the package sound.effects into the current namespace; it only ensures that the package sound.effects has been
imported (possibly running any initialization code in __init__.py) and then imports whatever names are defined in
the package. This includes any names defined (and submodules explicitly loaded) by __init__.py. It also includes
any submodules of the package that were explicitly loaded by previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in
the sound.effects package when the from...import statement is executed. (This also works when __all__
is defined.)
Although certain modules are designed to export only names that follow certain patterns when you use import *, it is
still considered bad practice in production code.
Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this
is the recommended notation unless the importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs
to use the echo module in the sound.effects package, it can use from sound.effects import echo.
You can also write relative imports, with the from module import name form of import statement. These imports
use leading dots to indicate the current and parent packages involved in the relative import. From the surroundmodule
for example, you might use:

50 Chapter 6. 模組

Python Tutorial,發� 3.6.8

from . import echo
from .. import formats
from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is always
"__main__", modules intended for use as the main module of a Python application must always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the
directory holding the package’s __init__.py before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.
While this feature is not often needed, it can be used to extend the set of modules found in a package.

�解

6.4. Packages 51

Python Tutorial,發� 3.6.8

52 Chapter 6. 模組

CHAPTER7

輸入和輸出

有數種方式可以顯示程式的輸出；資料可以以人類易讀的形式印出，或是寫入檔案以供未來所使用。這章節
會討論幾種不同的方式。

7.1 更華麗的輸出格式

目前�止我們已經學過兩種寫值的方式：表示式陳述 (expression statements)與 print()函式。（第三種方法
是使用檔案物件的 write()方法；標準輸出的檔案是使用 sys.stdout來達成的。詳細的資訊請參考對應
的函示庫�明。）

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There are
two ways to format your output; the first way is to do all the string handling yourself; using string slicing and concatenation
operations you can create any layout you can imagine. The string type has some methods that perform useful operations
for padding strings to a given column width; these will be discussed shortly. The second way is to use formatted string
literals, or the str.format() method.
The string module contains a Template class which offers yet another way to substitute values into strings.
One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to
a string: pass it to the repr() or str() functions.
Thestr() function ismeant to return representations of values which are fairly human-readable, whilerepr() is meant
to generate representations which can be read by the interpreter (or will force a SyntaxError if there is no equivalent
syntax). For objects which don’t have a particular representation for human consumption, str() will return the same
value as repr(). Many values, such as numbers or structures like lists and dictionaries, have the same representation
using either function. Strings, in particular, have two distinct representations.
一些範例：

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"

(continues on next page)

53

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> str(1/7)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print(s)
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print(hellos)
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print(repr(x).rjust(2), repr(x*x).rjust(3), end=' ')
... # Note use of 'end' on previous line
... print(repr(x*x*x).rjust(4))
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

>>> for x in range(1, 11):
... print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that in the first example, one space between each column was added by the way print() works: by default it
adds spaces between its arguments.)
This example demonstrates the str.rjust()method of string objects, which right-justifies a string in a field of a given
width by padding it with spaces on the left. There are similar methods str.ljust() and str.center(). These
methods do not write anything, they just return a new string. If the input string is too long, they don’t truncate it, but
return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative, which would be
lying about a value. (If you really want truncation you can always add a slice operation, as in x.ljust(n)[:n].)
There is another method, str.zfill(), which pads a numeric string on the left with zeros. It understands about plus

54 Chapter 7. 輸入和輸出

Python Tutorial,發� 3.6.8

and minus signs:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

Basic usage of the str.format() method looks like this:

>>> print('We are the {} who say "{}!"'.format('knights', 'Ni'))
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the str.
format() method. A number in the brackets can be used to refer to the position of the object passed into the str.
format() method.

>>> print('{0} and {1}'.format('spam', 'eggs'))
spam and eggs
>>> print('{1} and {0}'.format('spam', 'eggs'))
eggs and spam

If keyword arguments are used in the str.format() method, their values are referred to by using the name of the
argument.

>>> print('This {food} is {adjective}.'.format(
... food='spam', adjective='absolutely horrible'))
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print('The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
other='Georg'))

The story of Bill, Manfred, and Georg.

'!a' (apply ascii()), '!s' (apply str()) and '!r' (apply repr()) can be used to convert the value before it
is formatted:

>>> contents = 'eels'
>>> print('My hovercraft is full of {}.'.format(contents))
My hovercraft is full of eels.
>>> print('My hovercraft is full of {!r}.'.format(contents))
My hovercraft is full of 'eels'.

An optional ':' and format specifier can follow the field name. This allows greater control over how the value is
formatted. The following example rounds Pi to three places after the decimal.

>>> import math
>>> print('The value of PI is approximately {0:.3f}.'.format(math.pi))
The value of PI is approximately 3.142.

Passing an integer after the ':' will cause that field to be a minimum number of characters wide. This is useful for
making tables pretty.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():

(continues on next page)

7.1. 更華麗的輸出格式 55

Python Tutorial,發� 3.6.8

(繼續上一頁)
... print('{0:10} ==> {1:10d}'.format(name, phone))
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the variables
to be formatted by name instead of by position. This can be done by simply passing the dict and using square brackets
'[]' to access the keys

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
... 'Dcab: {0[Dcab]:d}'.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the『**』notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print('Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars(), which returns a dictionary containing all
local variables.
For a complete overview of string formatting with str.format(), see formatstrings.

7.1.1 Old string formatting

The % operator can also be used for string formatting. It interprets the left argument much like a sprintf()-style
format string to be applied to the right argument, and returns the string resulting from this formatting operation. For
example:

>>> import math
>>> print('The value of PI is approximately %5.3f.' % math.pi)
The value of PI is approximately 3.142.

More information can be found in the old-string-formatting section.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: open(filename, mode).

>>> f = open('workfile', 'w')

The first argument is a string containing the filename. The second argument is another string containing a few characters
describing the way in which the file will be used. mode can be 'r' when the file will only be read, 'w' for only writing
(an existing file with the same name will be erased), and 'a' opens the file for appending; any data written to the file is
automatically added to the end. 'r+' opens the file for both reading and writing. The mode argument is optional; 'r'
will be assumed if it’s omitted.
Normally, files are opened in text mode, that means, you read and write strings from and to the file, which are encoded in
a specific encoding. If encoding is not specified, the default is platform dependent (see open()). 'b' appended to the

56 Chapter 7. 輸入和輸出

Python Tutorial,發� 3.6.8

mode opens the file in binary mode: now the data is read and written in the form of bytes objects. This mode should be
used for all files that don’t contain text.
In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \r\n on Windows) to
just \n. When writing in text mode, the default is to convert occurrences of \n back to platform-specific line endings.
This behind-the-scenes modification to file data is fine for text files, but will corrupt binary data like that in JPEG or EXE
files. Be very careful to use binary mode when reading and writing such files.
It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is properly
closed after its suite finishes, even if an exception is raised at some point. Using with is also much shorter than writing
equivalent try-finally blocks:

>>> with open('workfile') as f:
... read_data = f.read()
>>> f.closed
True

If you’re not using the with keyword, then you should call f.close() to close the file and immediately free up
any system resources used by it. If you don’t explicitly close a file, Python’s garbage collector will eventually destroy
the object and close the open file for you, but the file may stay open for a while. Another risk is that different Python
implementations will do this clean-up at different times.
After a file object is closed, either by a with statement or by calling f.close(), attempts to use the file object will
automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.
To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string (in text
mode) or bytes object (in binary mode). size is an optional numeric argument. When size is omitted or negative, the entire
contents of the file will be read and returned; it’s your problem if the file is twice as large as your machine’s memory.
Otherwise, at most size bytes are read and returned. If the end of the file has been reached, f.read() will return an
empty string ('').

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if f.
readline() returns an empty string, the end of the file has been reached, while a blank line is represented by '\n',
a string containing only a single newline.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

7.2. Reading and Writing Files 57

Python Tutorial,發� 3.6.8

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple code:

>>> for line in f:
... print(line, end='')
...
This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can also use list(f) or f.readlines().
f.write(string) writes the contents of string to the file, returning the number of characters written.

>>> f.write('This is a test\n')
15

Other types of objects need to be converted – either to a string (in text mode) or a bytes object (in binary mode) – before
writing them:

>>> value = ('the answer', 42)
>>> s = str(value) # convert the tuple to string
>>> f.write(s)
18

f.tell() returns an integer giving the file object’s current position in the file represented as number of bytes from
the beginning of the file when in binary mode and an opaque number when in text mode.
To change the file object’s position, use f.seek(offset, from_what). The position is computed from adding
offset to a reference point; the reference point is selected by the from_what argument. A from_what value of 0 measures
from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point.
from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'rb+')
>>> f.write(b'0123456789abcdef')
16
>>> f.seek(5) # Go to the 6th byte in the file
5
>>> f.read(1)
b'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13
>>> f.read(1)
b'd'

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are allowed (the
exception being seeking to the very file end with seek(0, 2)) and the only valid offset values are those returned from
the f.tell(), or zero. Any other offset value produces undefined behaviour.
File objects have some additional methods, such asisatty() andtruncate()which are less frequently used; consult
the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only
returns strings, which will have to be passed to a function like int(), which takes a string like '123' and returns
its numeric value 123. When you want to save more complex data types like nested lists and dictionaries, parsing and
serializing by hand becomes complicated.

58 Chapter 7. 輸入和輸出

Python Tutorial,發� 3.6.8

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows
you to use the popular data interchange format called JSON (JavaScript Object Notation). The standard module called
json can take Python data hierarchies, and convert them to string representations; this process is called serializing.
Reconstructing the data from the string representation is called deserializing. Between serializing and deserializing, the
string representing the object may have been stored in a file or data, or sent over a network connection to some distant
machine.

備�: The JSON format is commonly used by modern applications to allow for data exchange. Many programmers are
already familiar with it, which makes it a good choice for interoperability.

If you have an object x, you can view its JSON string representation with a simple line of code:

>>> import json
>>> json.dumps([1, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps() function, called dump(), simply serializes the object to a text file. So if f is a text file
object opened for writing, we can do this:

json.dump(x, f)

To decode the object again, if f is a text file object which has been opened for reading:

x = json.load(f)

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON
requires a bit of extra effort. The reference for the json module contains an explanation of this.
也參考:
pickle - the pickle module
Contrary to JSON, pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As such, it is
specific to Python and cannot be used to communicate with applications written in other languages. It is also insecure by
default: deserializing pickle data coming from an untrusted source can execute arbitrary code, if the data was crafted by
a skilled attacker.

7.2. Reading and Writing Files 59

http://json.org

Python Tutorial,發� 3.6.8

60 Chapter 7. 輸入和輸出

CHAPTER8

錯誤和例外

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 語法錯誤

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are still
learning Python:

>>> while True print('Hello world')
File "<stdin>", line 1
while True print('Hello world')

^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little『arrow』pointing at the earliest point in the line where the error
was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is
detected at the function print(), since a colon (':') is missing before it. File name and line number are printed so
you know where to look in case the input came from a script.

8.2 例外

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to handle
them in Python programs. Most exceptions are not handled by programs, however, and result in error messages as shown
here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

(continues on next page)

61

Python Tutorial,發� 3.6.8

(繼續上一頁)
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed as
part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The string
printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in exceptions,
but need not be true for user-defined exceptions (although it is a useful convention). Standard exception names are built-in
identifiers (not reserved keywords).
The rest of the line provides detail based on the type of exception and what caused it.
The preceding part of the error message shows the context where the exception happened, in the form of a stack traceback.
In general it contains a stack traceback listing source lines; however, it will not display lines read from standard input.
bltin-exceptions lists the built-in exceptions and their meanings.

8.3 處理例外

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user for
input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C or whatever
the operating system supports); note that a user-generated interruption is signalled by raising theKeyboardInterrupt
exception.

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

The try statement works as follows.
• First, the try clause (the statement(s) between the try and except keywords) is executed.
• If no exception occurs, the except clause is skipped and execution of the try statement is finished.
• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type matches
the exception named after the except keyword, the except clause is executed, and then execution continues after
the try statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed on to outer try
statements; if no handler is found, it is an unhandled exception and execution stops with a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler
will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the
same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for example:

62 Chapter 8. 錯誤和例外

Python Tutorial,發� 3.6.8

... except (RuntimeError, TypeError, NameError):

... pass

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the
other way around—an except clause listing a derived class is not compatible with a base class). For example, the following
code will print B, C, D in that order:

class B(Exception):
pass

class C(B):
pass

class D(C):
pass

for cls in [B, C, D]:
try:

raise cls()
except D:

print("D")
except C:

print("C")
except B:

print("B")

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B—the first matching
except clause is triggered.
The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it is
easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise the
exception (allowing a caller to handle the exception as well):

import sys

try:
f = open('myfile.txt')
s = f.readline()
i = int(s.strip())

except OSError as err:
print("OS error: {0}".format(err))

except ValueError:
print("Could not convert data to an integer.")

except:
print("Unexpected error:", sys.exc_info()[0])
raise

The try ⋯except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:
try:

f = open(arg, 'r')
except OSError:

print('cannot open', arg)
else:

print(arg, 'has', len(f.readlines()), 'lines')

(continues on next page)

8.3. 處理例外 63

Python Tutorial,發� 3.6.8

(繼續上一頁)
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching
an exception that wasn’t raised by the code being protected by the try⋯except statement.
When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence and
type of the argument depend on the exception type.
The except clause may specify a variable after the exception name. The variable is bound to an exception instance with the
arguments stored in instance.args. For convenience, the exception instance defines __str__() so the arguments
can be printed directly without having to reference .args. One may also instantiate an exception first before raising it
and add any attributes to it as desired.

>>> try:
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print(type(inst)) # the exception instance
... print(inst.args) # arguments stored in .args
... print(inst) # __str__ allows args to be printed directly,
... # but may be overridden in exception subclasses
... x, y = inst.args # unpack args
... print('x =', x)
... print('y =', y)
...
<class 'Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

If an exception has arguments, they are printed as the last part (『detail』) of the message for unhandled exceptions.
Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur inside
functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as err:
... print('Handling run-time error:', err)
...
Handling run-time error: division by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: HiThere

64 Chapter 8. 錯誤和例外

Python Tutorial,發� 3.6.8

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from Exception). If an exception class is passed, it will be implicitly instantiated
by calling its constructor with no arguments:

raise ValueError # shorthand for 'raise ValueError()'

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

>>> try:
... raise NameError('HiThere')
... except NameError:
... print('An exception flew by!')
... raise
...
An exception flew by!
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python classes).
Exceptions should typically be derived from the Exception class, either directly or indirectly.
Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only offering
a number of attributes that allow information about the error to be extracted by handlers for the exception. When creating
a module that can raise several distinct errors, a common practice is to create a base class for exceptions defined by that
module, and subclass that to create specific exception classes for different error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

"""

(continues on next page)

8.5. User-defined Exceptions 65

Python Tutorial,發� 3.6.8

(繼續上一頁)

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in「Error」, similar to the naming of the standard exceptions.
Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter Classes.

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed under
all circumstances. For example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print('Goodbye, world!')
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):

File "<stdin>", line 2, in <module>

A finally clause is always executed before leaving the try statement, whether an exception has occurred or not. When
an exception has occurred in the try clause and has not been handled by an except clause (or it has occurred in an
except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also
executed「on the way out」when any other clause of the try statement is left via a break, continue or return
statement. A more complicated example:

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print("division by zero!")
... else:
... print("result is", result)
... finally:
... print("executing finally clause")
...
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

66 Chapter 8. 錯誤和例外

Python Tutorial,發� 3.6.8

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.
In real world applications, the finally clause is useful for releasing external resources (such as files or network con-
nections), regardless of whether the use of the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of whether
or not the operation using the object succeeded or failed. Look at the following example, which tries to open a file and
print its contents to the screen.

for line in open("myfile.txt"):
print(line, end="")

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the code
has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with
statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:

print(line, end="")

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines.
Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

8.7. Predefined Clean-up Actions 67

Python Tutorial,發� 3.6.8

68 Chapter 8. 錯誤和例外

CHAPTER9

Classes

Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of object,
allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining its
state. Class instances can also have methods (defined by its class) for modifying its state.
Compared with other programming languages, Python’s class mechanism adds classes with aminimum of new syntax and
semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the standard
features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a derived class
can override any methods of its base class or classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake of the dynamic
nature of Python: they are created at runtime, and can be modified further after creation.
In C++ terminology, normally classmembers (including the datamembers) are public (except see belowPrivate Variables),
and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the object’s members from
its methods: the method function is declared with an explicit first argument representing the object, which is provided
implicitly by the call. As in Smalltalk, classes themselves are objects. This provides semantics for importing and renaming.
Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most
built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.
(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms.
I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that
few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known as
aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored when
dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect on the
semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is usually used
to the benefit of the program, since aliases behave like pointers in some respects. For example, passing an object is cheap
since only a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller
will see the change—this eliminates the need for two different argument passing mechanisms as in Pascal.

69

Python Tutorial,發� 3.6.8

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.
Let’s begin with some definitions.
A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (containing functions such as abs(), and built-in exception names); the global
names in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form
a namespace. The important thing to know about namespaces is that there is absolutely no relation between names in
different namespaces; for instance, two different modules may both define a function maximize without confusion—
users of the modules must prefix it with the module name.
By the way, I use the word attribute for any name following a dot—for example, in the expression z.real, real is
an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression
modname.funcname, modname is a module object and funcname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s attributes and the global names defined in the module: they share
the same namespace!1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can write modname.the_answer = 42. Writable attributes may also be deleted with the del state-
ment. For example, del modname.the_answer will remove the attribute the_answer from the object named
by modname.
Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in names
is created when the Python interpreter starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last until the interpreter quits. The statements
executed by the top-level invocation of the interpreter, either read from a script file or interactively, are considered part of
a module called __main__, so they have their own global namespace. (The built-in names actually also live in a module;
this is called builtins.)
The local namespace for a function is created when the function is called, and deleted when the function returns or raises
an exception that is not handled within the function. (Actually, forgetting would be a better way to describe what actually
happens.) Of course, recursive invocations each have their own local namespace.
A scope is a textual region of a Python program where a namespace is directly accessible. 「Directly accessible」here
means that an unqualified reference to a name attempts to find the name in the namespace.
Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least
three nested scopes whose namespaces are directly accessible:

• the innermost scope, which is searched first, contains the local names
• the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contains non-
local, but also non-global names

• the next-to-last scope contains the current module’s global names
• the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the middle scope containing the module’
s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be used; if
not declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply create a new local
variable in the innermost scope, leaving the identically named outer variable unchanged).

1 Except for one thing. Module objects have a secret read-only attribute called __dict__ which returns the dictionary used to implement the
module’s namespace; the name __dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

70 Chapter 9. Classes

Python Tutorial,發� 3.6.8

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local scope
references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.
It is important to realize that scopes are determined textually: the global scope of a function defined in a module is that
module’s namespace, no matter from where or by what alias the function is called. On the other hand, the actual search
for names is done dynamically, at run time—however, the language definition is evolving towards static name resolution,
at「compile」time, so don’t rely on dynamic name resolution! (In fact, local variables are already determined statically.)
A special quirk of Python is that – if noglobal statement is in effect – assignments to names always go into the innermost
scope. Assignments do not copy data—they just bind names to objects. The same is true for deletions: the statement
del x removes the binding of x from the namespace referenced by the local scope. In fact, all operations that introduce
new names use the local scope: in particular, import statements and function definitions bind the module or function
name in the local scope.
The global statement can be used to indicate that particular variables live in the global scope and should be rebound
there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be rebound there.

9.2.1 Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and how global and
nonlocal affect variable binding:

def scope_test():
def do_local():

spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam"
do_local()
print("After local assignment:", spam)
do_nonlocal()
print("After nonlocal assignment:", spam)
do_global()
print("After global assignment:", spam)

scope_test()
print("In global scope:", spam)

The output of the example code is:

After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test’s binding of spam. Thenonlocal assignment
changed scope_test’s binding of spam, and the global assignment changed the module-level binding.
You can also see that there was no previous binding for spam before the global assignment.

9.2. Python Scopes and Namespaces 71

Python Tutorial,發� 3.6.8

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an if statement, or inside a function.)
In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful—we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods—again, this is explained later.
When a class definition is entered, a new namespace is created, and used as the local scope —thus, all assignments to
local variables go into this new namespace. In particular, function definitions bind the name of the new function here.
When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.
Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute names
are all the names that were in the class’s namespace when the class object was created. So, if the class definition looked
like this:

class MyClass:
"""A simple example class"""
i = 12345

def f(self):
return 'hello world'

thenMyClass.i andMyClass.f are valid attribute references, returning an integer and a function object, respectively.
Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. __doc__ is also a
valid attribute, returning the docstring belonging to the class: "A simple example class".
Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a new
instance of the class. For example (assuming the above class):

x = MyClass()

72 Chapter 9. Classes

Python Tutorial,發� 3.6.8

creates a new instance of the class and assigns this object to the local variable x.
The instantiation operation (「calling」a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__(), like
this:

def __init__(self):
self.data = []

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the newly-
created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the
class instantiation operator are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute references.
There are two kinds of valid attribute names, data attributes and methods.
data attributes correspond to「instance variables」in Smalltalk, and to「data members」in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the
instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print(x.counter)
del x.counter

The other kind of instance attribute reference is a method. A method is a function that 「belongs to」an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example, list
objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll use the
term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)
Validmethod names of an instance object depend on its class. By definition, all attributes of a class that are function objects
define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f
is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f—it is a method
object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

9.3. A First Look at Classes 73

Python Tutorial,發� 3.6.8

x.f()

In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:

print(xf())

will continue to print hello world until the end of time.
What exactly happens when a method is called? Youmay have noticed that x.f()was called without an argument above,
even though the function definition for f() specified an argument. What happened to the argument? Surely Python raises
an exception when a function that requires an argument is called without any—even if the argument isn’t actually used
⋯

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed as the
first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that
is created by inserting the method’s instance object before the first argument.
If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When a
non-data attribute of an instance is referenced, the instance’s class is searched. If the name denotes a valid class attribute
that is a function object, a method object is created by packing (pointers to) the instance object and the function object
just found together in an abstract object: this is the method object. When the method object is called with an argument
list, a new argument list is constructed from the instance object and the argument list, and the function object is called
with this new argument list.

9.3.5 Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and
methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

As discussed in AWord About Names and Objects, shared data can have possibly surprising effects with involvingmutable
objects such as lists and dictionaries. For example, the tricks list in the following code should not be used as a class variable
because just a single list would be shared by all Dog instances:

74 Chapter 9. Classes

Python Tutorial,發� 3.6.8

class Dog:

tricks = [] # mistaken use of a class variable

def __init__(self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

def __init__(self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause hard-
to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts. Possible
conventions include capitalizing method names, prefixing data attribute names with a small unique string (perhaps just an
underscore), or using verbs for methods and nouns for data attributes.
Data attributes may be referenced by methods as well as by ordinary users (「clients」) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce data
hiding—it is all based upon convention. (On the other hand, the Python implementation, written in C, can completely
hide implementation details and control access to an object if necessary; this can be used by extensions to Python written
in C.)
Clients should use data attributes with care—clients may mess up invariants maintained by the methods by stamping on
their data attributes. Note that clients may add data attributes of their own to an instance object without affecting the
validity of the methods, as long as name conflicts are avoided—again, a naming convention can save a lot of headaches
here.

9.4. Random Remarks 75

Python Tutorial,發� 3.6.8

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually
increases the readability of methods: there is no chance of confusing local variables and instance variables when glancing
through a method.
Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that relies
upon such a convention.
Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the function
definition is textually enclosed in the class definition: assigning a function object to a local variable in the class is also ok.
For example:

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1

def g(self):
return 'hello world'

h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C—h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a
program.
Methods may call other methods by using method attributes of the self argument:

class Bag:
def __init__(self):

self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a method
is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters a good
reason for using global data in a method, there are many legitimate uses of the global scope: for one thing, functions and
modules imported into the global scope can be used by methods, as well as functions and classes defined in it. Usually,
the class containing the method is itself defined in this global scope, and in the next section we’ll find some good reasons
why a method would want to reference its own class.
Each value is an object, and therefore has a class (also called its type). It is stored as object.__class__.

9.5 Inheritance

Of course, a language feature would not be worthy of the name「class」without supporting inheritance. The syntax for
a derived class definition looks like this:

76 Chapter 9. Classes

Python Tutorial,發� 3.6.8

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base class
name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is defined in
another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the class,
the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived from some
other class.
There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the
class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the chain
of base classes if necessary, and the method reference is valid if this yields a function object.
Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class may
end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively
virtual.)
An overriding method in a derived class may in fact want to extend rather than simply replace the base class method
of the same name. There is a simple way to call the base class method directly: just call BaseClassName.
methodname(self, arguments). This is occasionally useful to clients as well. (Note that this only works if
the base class is accessible as BaseClassName in the global scope.)
Python has two built-in functions that work with inheritance:

• Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if obj.
__class__ is int or some class derived from int.

• Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a sub-
class of int. However, issubclass(float, int) is False since float is not a subclass of int.

9.5.1 Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as depth-
first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if an attribute is
not found in DerivedClassName, it is searched for in Base1, then (recursively) in the base classes of Base1, and
if it was not found there, it was searched for in Base2, and so on.

9.5. Inheritance 77

Python Tutorial,發� 3.6.8

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support cooperative calls
to super(). This approach is known in some other multiple-inheritance languages as call-next-method and is more
powerful than the super call found in single-inheritance languages.
Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships (where
at least one of the parent classes can be accessed through multiple paths from the bottommost class). For example, all
classes inherit from object, so any case of multiple inheritance provides more than one path to reach object. To
keep the base classes from being accessed more than once, the dynamic algorithm linearizes the search order in a way
that preserves the left-to-right ordering specified in each class, that calls each parent only once, and that is monotonic
(meaning that a class can be subclassed without affecting the precedence order of its parents). Taken together, these
properties make it possible to design reliable and extensible classes with multiple inheritance. For more detail, see https:
//www.python.org/download/releases/2.3/mro/.

9.6 Private Variables

「Private」instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there
is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be
treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered an
implementation detail and subject to change without notice.
Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names defined by
subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of the form __spam (at
least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam, where
classname is the current class name with leading underscore(s) stripped. This mangling is done without regard to the
syntactic position of the identifier, as long as it occurs within the definition of a class.
Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For example:

class Mapping:
def __init__(self, iterable):

self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:

self.items_list.append(item)

__update = update # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
provides new signature for update()
but does not break __init__()
for item in zip(keys, values):

self.items_list.append(item)

The above example would work even if MappingSubclass were to introduce a __update identifier since
it is replaced with _Mapping__update in the Mapping class and _MappingSubclass__update in the
MappingSubclass class respectively.
Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable that
is considered private. This can even be useful in special circumstances, such as in the debugger.
Notice that code passed to exec() or eval() does not consider the classname of the invoking class to be the current
class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is

78 Chapter 9. Classes

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Tutorial,發� 3.6.8

byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as well as when
referencing __dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal「record」or C「struct」, bundling together a few named
data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods
of that data type instead. For instance, if you have a function that formats some data from a file object, you can define a
class with methods read() and readline() that get the data from a string buffer instead, and pass it as an argument.
Instance method objects have attributes, too: m.__self__ is the instance object with the method m(), and m.
__func__ is the function object corresponding to the method.

9.8 Iterators

By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print(element)

for element in (1, 2, 3):
print(element)

for key in {'one':1, 'two':2}:
print(key)

for char in "123":
print(char)

for line in open("myfile.txt"):
print(line, end='')

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes,
the for statement calls iter() on the container object. The function returns an iterator object that defines the method
__next__()which accesses elements in the container one at a time. When there are no more elements, __next__()
raises a StopIteration exception which tells the for loop to terminate. You can call the __next__() method
using the next() built-in function; this example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
'a'
>>> next(it)

(continues on next page)

9.7. Odds and Ends 79

Python Tutorial,發� 3.6.8

(繼續上一頁)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
next(it)

StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an
__iter__() method which returns an object with a __next__() method. If the class defines __next__(), then
__iter__() can just return self:

class Reverse:
"""Iterator for looping over a sequence backwards."""
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print(char)
...
m
a
p
s

9.9 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the yield
statement whenever they want to return data. Each time next() is called on it, the generator resumes where it left off (it
remembers all the data values and which statement was last executed). An example shows that generators can be trivially
easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse('golf'):
... print(char)
...

(continues on next page)

80 Chapter 9. Classes

Python Tutorial,發� 3.6.8

(繼續上一頁)
f
l
o
g

Anything that can be done with generators can also be done with class-based iterators as described in the previous section.
What makes generators so compact is that the __iter__() and __next__() methods are created automatically.
Another key feature is that the local variables and execution state are automatically saved between calls. This made the
function easier to write and much more clear than an approach using instance variables like self.index and self.
data.
In addition to automatic method creation and saving program state, when generators terminate, they automatically raise
StopIteration. In combination, these features make it easy to create iterators with no more effort than writing a
regular function.

9.10 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with
parentheses instead of square brackets. These expressions are designed for situations where the generator is used right
away by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions
and tend to be more memory friendly than equivalent list comprehensions.
Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1, -1, -1))
['f', 'l', 'o', 'g']

�解

9.10. Generator Expressions 81

Python Tutorial,發� 3.6.8

82 Chapter 9. Classes

CHAPTER10

Python標準函式庫概覽

10.1 作業系統介面

os模組提供了數十個與作業系統溝通的函式：

>>> import os
>>> os.getcwd() # Return the current working directory
'C:\\Python36'
>>> os.chdir('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

務必使用 import os而非 from os import *。這將避免因系統不同而實作有差�的 os.open()覆蓋
�建函式 open()。

在使用 os諸如此類大型模組時搭配�建函式 dir()和 help()是非常有用的:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

對於日常檔案和目�管理任務，shutil模組提供了更容易使用的高階介面：

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
'archive.db'
>>> shutil.move('/build/executables', 'installdir')
'installdir'

83

Python Tutorial,發� 3.6.8

10.2 檔案之萬用字元

The glob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

10.3 命令列引數

通用工具�本常需要處理命令列引數。這些引數會以串列形式存放在 sys模組的 argv此變數中。例如在命
令列執行 python demo.py one two three會有以下輸出結果:

>>> import sys
>>> print(sys.argv)
['demo.py', 'one', 'two', 'three']

getopt模組使用 Unix getopt()函式來處理 sys.argv。更�大且具有彈性的命令列處理可由 argparse模
組提供。

10.4 錯誤輸出重新導向與程式終止

sys模組也有 stdin，stdout，和 stderr等變數。即使當 stdout 被重新導向時，後者 stderr可輸出發送警告和錯
誤訊息。

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

終止�本最直接的方式就是利用 sys.exit()。

10.5 字串樣式比對

re模組提供正規表示式 (regular expression)做進階的字串處理。當要處理�雜的比對以及操作時，正規表示
式是簡潔且經過最佳化的解�方案。

>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

當只需要簡單的字串操作時，因�可讀性以及方便除錯，字串本身的方法是比較建議的。

>>> 'tea for too'.replace('too', 'two')
'tea for two'

84 Chapter 10. Python標準函式庫概覽

Python Tutorial,發� 3.6.8

10.6 數學相關

math模組提供了 C函式庫中底層的浮點數運算的函式。

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0

random模組提供了隨機選擇的工具。

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(range(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

statistics模組提供了替數值資料計算基本統計量（包括平均、中位數、變�量數等）的功能。

>>> import statistics
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> statistics.mean(data)
1.6071428571428572
>>> statistics.median(data)
1.25
>>> statistics.variance(data)
1.3720238095238095

Scipy專案 <https://scipy.org>上也有許多數值計算相關的模組。

10.7 網路存取

Python中有許多存取網路以及處理網路協定。最簡單的兩個例子包括 urllib.request模組可以從網址抓
取資料以及 smtplib可以用來寄郵件。:

>>> from urllib.request import urlopen
>>> with urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl') as response:
... for line in response:
... line = line.decode('utf-8') # Decoding the binary data to text.
... if 'EST' in line or 'EDT' in line: # look for Eastern Time
... print(line)

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
... """To: jcaesar@example.org
... From: soothsayer@example.org

(continues on next page)

10.6. 數學相關 85

https://scipy.org

Python Tutorial,發� 3.6.8

(繼續上一頁)
...
... Beware the Ides of March.
... """)
>>> server.quit()

（注意第二個例子中需要在本地端執行一個郵件伺服器）

10.8 日期與時間

datetime模組中有許多類�供以操作日期以及時間，從簡單從�雜都有。模組支援日期與時間的運算，而
實作的重點是有效率的成員�取以達到輸出格式化以及操作。模組也提供支援時區�算的類�。

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9 資料壓縮

常見的解壓縮以及壓縮格式都有直接支援。包括：zlib，gzip，bz2，lzma，zipfile以及 tarfile。

>>> import zlib
>>> s = b'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
b'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979

10.10 效能量測

有一些 Python使用者很想了解同個問題的不同實作方法的效能差�。Python提供評估了效能差�的工具。
舉例來�，有人可能會試著用 tuple的打包機制來交�引數代替傳統的方式。timeit模組可以迅速地展示
效能的進步。

86 Chapter 10. Python標準函式庫概覽

Python Tutorial,發� 3.6.8

>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

相對於 timeit模組提供這�細的粒度，profile模組以及 pstats模組則提供了一些在大型的程式碼識
�關鍵臨界區間（Critical Section）的工具。

10.11 品質控管

達到高品質軟體的一個方法當開發時對每個函式寫測試以及在開發過程中要不斷的跑這些測試。

doctest模組提供了一個工具，掃描模組�根據程式中�嵌的文件字符串執行測試。測試構造如同簡單的
將它的輸出結果剪下�貼上到文件字符串中。通過用�提供的例子，它�化了文件，允許 doctest模塊組認代
碼的結果是否與文件一致:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print(average([20, 30, 70]))
40.0
"""
return sum(values) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

unittest模組不像 doctest模組這般容易，但是它提供了更完整的測試集�且可以整合在不同的檔案間。

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
with self.assertRaises(ZeroDivisionError):

average([])
with self.assertRaises(TypeError):

average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 標準模組庫

「batteries included」是 Python設計哲學。它的好處是可以透過這些套件使用�雜與�大的功能。例如:
• 使用 xmlrpc.client和 xmlrpc.server模組實現遠端控制看似變更�容易。使用前也不需要先了
解相關知識或是掌握 XML的技能就能直接透過名稱使用模組。

• 函式庫 email套件用來管理MIME和其他 RFC 2822相關電子郵件訊息的文件。相�於其他電子郵件
套件 smtplib和 poplib這些實際用來發送與接收訊息，擁有更完整的工具設置提供建置與解析�
雜訊息的結構（包含附件檔案）和實現網路傳送之間的解碼與標頭協定。

10.11. 品質控管 87

https://tools.ietf.org/html/rfc2822.html

Python Tutorial,發� 3.6.8

• 函式庫 json套件提供 JSON資料解析�大的交�格式。csv模組則提供直接讀寫以逗號分隔值的檔
案格式，支援一般資料庫與電子表格。xml.etree.ElementTree，xml.dom與 xml.sax套件則
支援 XML流程。綜觀所有，這些模組和套件都簡化了 Python應用程式與其他工具之間的資料交�。

• sqllite3套件作�包覆 SQLite資料庫的函式庫，提供一個一致性的資料庫用來更新與操作使用些微
非標準的 SQL語法。

• 有數種支援國際化模組 gettext，locale，和 codecs等套件。

88 Chapter 10. Python標準函式庫概覽

CHAPTER11

Brief Tour of the Standard Library—Part II

第二部分涵蓋更多支援專業程式設計所需要的進階模組。這些模組很少出現在小�本中。

11.1 Output Formatting

The reprlib module provides a version of repr() customized for abbreviated displays of large or deeply nested
containers:

>>> import reprlib
>>> reprlib.repr(set('supercalifragilisticexpialidocious'))
"{'a', 'c', 'd', 'e', 'f', 'g', ...}"

The pprintmodule offers more sophisticated control over printing both built-in and user defined objects in a way that is
readable by the interpreter. When the result is longer than one line, the「pretty printer」adds line breaks and indentation
to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],

'white',
['green', 'red']],
[['magenta', 'yellow'],
'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""

(continues on next page)

89

Python Tutorial,發� 3.6.8

(繼續上一頁)
...
>>> print(textwrap.fill(doc, width=40))
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale’s format
function provides a direct way of formatting numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
... conv['frac_digits'], x), grouping=True)
'$1,234,567.80'

11.2 Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users.
This allows users to customize their applications without having to alter the application.
The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and underscores).
Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces.
Writing $$ creates a single escaped $:

>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword
argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute()
method may be more appropriate—it will leave placeholders unchanged if data is missing:

>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):

...
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect
to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']

(continues on next page)

90 Chapter 11. Brief Tour of the Standard Library—Part II

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> class BatchRename(Template):
... delimiter = '%'
>>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format): ')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print('{0} --> {1}'.format(filename, newname))

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple output formats. This makes it
possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record for-
mats. The following example shows how to loop through header information in a ZIP file without using the zipfile
module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<" indicates that
they are standard size and in little-endian byte order:

import struct

with open('myfile.zip', 'rb') as f:
data = f.read()

start = 0
for i in range(3): # show the first 3 file headers

start += 14
fields = struct.unpack('<IIIHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print(filename, hex(crc32), comp_size, uncomp_size)

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve
the responsiveness of applications that accept user input while other tasks run in the background. A related use case is
running I/O in parallel with computations in another thread.

11.3. Working with Binary Data Record Layouts 91

Python Tutorial,發� 3.6.8

The following code shows how the high level threading module can run tasks in background while the main program
continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):

threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print('Finished background zip of:', self.infile)

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print('The main program continues to run in foreground.')

background.join() # Wait for the background task to finish
print('Main program waited until background was done.')

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that
end, the threading module provides a number of synchronization primitives including locks, events, condition variables,
and semaphores.
While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred
approach to task coordination is to concentrate all access to a resource in a single thread and then use the queuemodule
to feed that thread with requests from other threads. Applications using Queue objects for inter-thread communication
and coordination are easier to design, more readable, and more reliable.

11.5 Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file
or to sys.stderr:

import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output
options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different
routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

92 Chapter 11. Brief Tour of the Standard Library—Part II

Python Tutorial,發� 3.6.8

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for
customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last reference to it has been eliminated.
This approach works fine for most applications but occasionally there is a need to track objects only as long as they are
being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The
weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed,
it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications
include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
d['primary'] # entry was automatically removed

File "C:/python36/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()

KeyError: 'primary'

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative
implementations with different performance trade-offs.
The array module provides an array() object that is like a list that stores only homogeneous data and stores it more
compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode
"H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])

11.6. Weak References 93

Python Tutorial,發� 3.6.8

The collectionsmodule provides a deque() object that is like a list with faster appends and pops from the left side
but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print("Handling", d.popleft())
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):

node = unsearched.popleft()
for m in gen_moves(node):

if is_goal(m):
return m

unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as thebisectmodule with functions
for manipulating sorted lists:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always
kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run
a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8 Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in
float implementation of binary floating point, the class is especially helpful for

• financial applications and other uses which require exact decimal representation,
• control over precision,
• control over rounding to meet legal or regulatory requirements,
• tracking of significant decimal places, or
• applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary
floating point. The difference becomes significant if the results are rounded to the nearest cent:

94 Chapter 11. Brief Tour of the Standard Library—Part II

Python Tutorial,發� 3.6.8

>>> from decimal import *
>>> round(Decimal('0.70') * Decimal('1.05'), 2)
Decimal('0.74')
>>> round(.70 * 1.05, 2)
0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two
place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating
point cannot exactly represent decimal quantities.
Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for
binary floating point:

>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')

11.8. Decimal Floating Point Arithmetic 95

Python Tutorial,發� 3.6.8

96 Chapter 11. Brief Tour of the Standard Library—Part II

CHAPTER12

�擬環境與套件

12.1 簡介

Python應用程式通常會用到不在標準函式庫的套件和模組。應用程式有時候會需要某個特定版本的函式庫，
因�這個應用程式可能需要某個特殊的臭蟲修正，或是這個應用程式是根據該函式庫特定版本的介面所撰
寫。

這意味著不太可能安裝一套 Python就可以滿足所有應用程式的要求。如果應用程式 A需要一個特定的模組
的 1.0版，但另外一個應用程式 B需要 2.0版，那�這整個需求不管安裝 1.0或是 2.0都會衝突，以致於應用
程式無法使用。

解�方案是創建一個�擬環境（virtual environment），這是一個獨立的資料夾，�且�面裝好了特定版本的
Python，以及一系列相關的套件。
不同的應用程式可以使用不同的�擬環境。以前述中需要被解�的例子中，應用程式 A能�擁有它自己的�
擬環境，�且是裝好 1.0版，然而應用程式 B則可以是用另外一個有 2.0版的�擬環境。要是應用程式 B需
要某個函式庫被升級到 3.0版，這�不會影響到應用程式 A的環境。

12.2 建立�擬環境

用來建立與管理�擬環境的模組叫做 venv。venv通常會安裝你能�取得的最新版本的 Python。要是你的
系統有不同版本的 Python，你可以透過 python3這個指令選擇特定或是任意版本的 Python。
在建立�擬環境的時候，在你�定要放該�擬環境的資料夾之後，在 script中執行 venv模組�且給定資料
夾 path：

python3 -m venv tutorial-env

如果 tutorial-env不存在的話，這會建立 tutorial-env資料夾，�且也會在�面建立一個有 Python
直譯器的�本、標準函式庫、以及不同的支援檔案的資料夾。

一旦你建立了一個�擬環境，你可以�動他。

在Windows系統中，使用：

97

Python Tutorial,發� 3.6.8

tutorial-env\Scripts\activate.bat

在 Unix或MacOS系統，使用：

source tutorial-env/bin/activate

（這段程式碼適用於 bash shell。如果你是用 csh 或者 fish shell，應當使用替代的 activate.csh 與
activate.fish�本。）

�動�擬環境會改變你的 shell提示字元來顯示你正在使用的�擬環境，�且修改環境以讓你在執行 python
的時候可以得到特定的 Python版本，例如�：

$ source ~/envs/tutorial-env/bin/activate
(tutorial-env) $ python
Python 3.5.1 (default, May 6 2016, 10:59:36)

...
>>> import sys
>>> sys.path
['', '/usr/local/lib/python35.zip', ...,
'~/envs/tutorial-env/lib/python3.5/site-packages']
>>>

12.3 用 pip管理套件

你可以使用一個叫做 pip 的程式來安裝、升級和移除套件。pip 預設會從 Python Package Index <https:
//pypi.org>安裝套件。你可以透過你的�覽器�覽 Python Package Index，或是使用 pip的限定搜索功能：

(tutorial-env) $ pip search astronomy
skyfield - Elegant astronomy for Python
gary - Galactic astronomy and gravitational dynamics.
novas - The United States Naval Observatory NOVAS astronomy library
astroobs - Provides astronomy ephemeris to plan telescope observations
PyAstronomy - A collection of astronomy related tools for Python.
...

pip有好幾個子指令：」search」、」install」、」uninstall」、」freeze」等等。（這可以參考 installing-index�明書來
取得 pip的完整文件�明。）

你可以透過指定套件名字來安裝最新版本的套件：

(tutorial-env) $ pip install novas
Collecting novas

Downloading novas-3.1.1.3.tar.gz (136kB)
Installing collected packages: novas

Running setup.py install for novas
Successfully installed novas-3.1.1.3

你也可以透過在套件名稱之後接上 ==和版號來指定特定版本：

(tutorial-env) $ pip install requests==2.6.0
Collecting requests==2.6.0

Using cached requests-2.6.0-py2.py3-none-any.whl
Installing collected packages: requests
Successfully installed requests-2.6.0

98 Chapter 12. �擬環境與套件

https://pypi.org
https://pypi.org

Python Tutorial,發� 3.6.8

要是你重新執行此指令，pip會知道該版本已經安裝過，然後什�也不做。你可以提供不同的版本號碼來取
得該版本，或是可以執行 pip install --upgrade來把套件升級到最新的版本：

(tutorial-env) $ pip install --upgrade requests
Collecting requests
Installing collected packages: requests

Found existing installation: requests 2.6.0
Uninstalling requests-2.6.0:

Successfully uninstalled requests-2.6.0
Successfully installed requests-2.7.0

pip uninstall後面接一個或是多個套件名稱可以從�擬環境中移除套件。

pip show可以顯示一個特定套件的資訊：

(tutorial-env) $ pip show requests

Metadata-Version: 2.0
Name: requests
Version: 2.7.0
Summary: Python HTTP for Humans.
Home-page: http://python-requests.org
Author: Kenneth Reitz
Author-email: me@kennethreitz.com
License: Apache 2.0
Location: /Users/akuchling/envs/tutorial-env/lib/python3.4/site-packages
Requires:

pip list會顯示�擬環境中所有已經安裝的套件：

(tutorial-env) $ pip list
novas (3.1.1.3)
numpy (1.9.2)
pip (7.0.3)
requests (2.7.0)
setuptools (16.0)

pip freeze可以��一整個已經安裝的套件清單，但是輸出使用 pip install可以讀懂的格式。一個
常見的慣例是放這整個清單到一個叫做 requirements.txt的檔案：

(tutorial-env) $ pip freeze > requirements.txt
(tutorial-env) $ cat requirements.txt
novas==3.1.1.3
numpy==1.9.2
requests==2.7.0

requirements.txt可以提交到版本控制，�且作�釋出應用程式的一部分。使用者可以透過 install
-r安裝對應的的套件：

(tutorial-env) $ pip install -r requirements.txt
Collecting novas==3.1.1.3 (from -r requirements.txt (line 1))

...
Collecting numpy==1.9.2 (from -r requirements.txt (line 2))

...
Collecting requests==2.7.0 (from -r requirements.txt (line 3))

...
Installing collected packages: novas, numpy, requests

(continues on next page)

12.3. 用 pip管理套件 99

Python Tutorial,發� 3.6.8

(繼續上一頁)
Running setup.py install for novas

Successfully installed novas-3.1.1.3 numpy-1.9.2 requests-2.7.0

pip還有更多功能。可以參考 installing-index�明書來取得完整的 pip參考資料。當你撰寫了一個套件�且
想要讓它可以在 Python Package Index上可以取得的話，可以參考 distributing-index�明。

100 Chapter 12. �擬環境與套件

CHAPTER13

現在可以來學習些什�？

�讀本教學可能增�您對於使用 Python的興趣—您應該非常渴望使用 Python來解�在現實生活中所遭遇的
問題。該從哪�學習更多呢？

本教學是 Python文件中的一部分。這份文件集�頭的其他文件包含：
• library-index：
你該好好的�覽這份手�，它提供了完整的（但簡潔）參考素材像是型�、函式與標準函式庫�的模
組。標準的 Python發行版本會包含大量的附加程式碼。有些模組可以讀取 Unix信箱、通過 HTTP來檢
索文件、�生亂數、分析命令列選項、編寫 CGI程式、壓縮資料、及許多其他任務。�覽函式庫參考
手�可以讓你了解有哪些模組可以用。

• installing-index：�明與解釋如何安裝其他 Python使用者所編寫的模組。
• reference-index：Python語法以及語意的詳細�明。這份文件�讀起來會有些吃力，但作�一個語言本
身的完整指南是非常有用的。

更多 Python的資源：
• https://www.python.org：Python的主要網站。它包含程式碼、文件以及連結到 Python相關聯的網頁。網
站�鏡像的�設置於世界各地，像是歐洲、日本以及澳大利亞；鏡像網站也許會比主網站來得更快，不
過具體速度則還是取�於你所在的地理位置。

• https://docs.python.org：快速訪問 Python的文件。
• https://pypi.org：Python套件索引（The Python Package Index），之前也被�稱� Cheese Shop，�總了使
用者開發 Python模組的索引，�提供模組能�被下載。一旦開始發�相關程式碼，你可以將開發的作
品��到這��且讓其他人找到。

• https://code.activestate.com/recipes/langs/python/：Python Cookbook是一個相當大的程式碼範例集，大量
的模組以及有用的�本。一些值得注意與特�貢獻則被收集在一本名� Python Cookbook (O’Reilly &
Associates, ISBN 0-596-00797-3.) 的書籍中。

• http://www.pyvideo.org從研討會與使用者群組聚會�所收集與 Python相關的影片連結。
• https://scipy.org：The Scientific Python專案是一個包含用於高速陣列運算與操作的模組，以及用於如�
性代數、傅利葉變�、非�性求解器、隨機數分�、統計分析等一系列的套件。

101

https://www.python.org
https://docs.python.org
https://pypi.org
https://code.activestate.com/recipes/langs/python/
http://www.pyvideo.org
https://scipy.org

Python Tutorial,發� 3.6.8

對於 Python相關的疑問與問題回報，您可以張貼到新聞群組 comp.lang.python，或將它們寄至 python-
list@python.org的郵寄清單（mailing list）。新聞群組和郵寄清單是個閘道，因此張貼到其中的郵件都將自動
轉發給另一個。每天會有數以百計的�容，詢問（和回答）問題、建議新功能與發�新的模組。郵寄清單會
存檔在 https://mail.python.org/pipermail/。
在張貼之前，請先確認問題是否在常見問題（也被稱 FAQ）這個清單�。FAQ會回答出現很多次的問題及
解答，有很多問題甚至已經包含解�問題的方法。

102 Chapter 13. 現在可以來學習些什�？

mailto:python-list@python.org
mailto:python-list@python.org
https://mail.python.org/pipermail/

CHAPTER14

Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library, which
supports various styles of editing. This library has its own documentation which we won’t duplicate here.

14.1 Tab Completion and History Editing

Completion of variable and module names is automatically enabled at interpreter startup so that the Tab key invokes
the completion function; it looks at Python statement names, the current local variables, and the available module names.
For dotted expressions such as string.a, it will evaluate the expression up to the final '.' and then suggest comple-
tions from the attributes of the resulting object. Note that this may execute application-defined code if an object with a
__getattr__() method is part of the expression. The default configuration also saves your history into a file named
.python_history in your user directory. The history will be available again during the next interactive interpreter
session.

14.2 Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are left:
It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent token is
required next). The completion mechanism might use the interpreter’s symbol table. A command to check (or even
suggest) matching parentheses, quotes, etc., would also be useful.
One alternative enhanced interactive interpreter that has been around for quite some time is IPython, which features tab
completion, object exploration and advanced history management. It can also be thoroughly customized and embedded
into other applications. Another similar enhanced interactive environment is bpython.

103

https://tiswww.case.edu/php/chet/readline/rltop.html
https://ipython.org/
http://www.bpython-interpreter.org/

Python Tutorial,發� 3.6.8

104 Chapter 14. Interactive Input Editing and History Substitution

CHAPTER15

浮點數運算：問題與限制

在計算機架構中，浮點數透過二進位小數表示。例如�，在十進位小數中：

0.125

可被分� 1/10 + 2/100 + 5/1000，同樣的道理，二進位小數：

0.001

可被分� 0/2 + 0/4 + 1/8。這兩個小數有相同的數值，而唯一真正的不同在於前者以十進位表示，後者以二進
位表示。

不幸的是，大多數十進位小數無法精準地以二進位小數表示。一般的結果�，您輸入的十進位浮點數由實際
存在計算機中的二進位浮點數近似。

在十進位中，這個問題更容易被理解。以分數 1/3�例，您可以將其近似�十進位小數：

0.3

或者，更好的近似：

0.33

或者，更好的近似：

0.333

依此類推，不論你使用多少位數表示小數，最後的結果都無法精準地表示 1/3，但你還是能越來越精準地表
示 1/3。
同樣的道理，不論你願意以多少位數表示二進位小數，十進位小數 0.1都無法被二進位小數精準地表達。在
二進位小數中，1/10會是一個無限循環小數：

0.0001100110011001100110011001100110011001100110011...

105

Python Tutorial,發� 3.6.8

只要您停在任何有限的位數，您就只會得到近似值。而現在大多數的計算機中，浮點數是透過二進位分數近
似的，其中分子從最高有效位元使開始用 53個位元表示，分母則是以二�底的指數。在 1/10的例子中，二
進位分數� 3602879701896397 / 2 ** 55，而這樣的表示十分地接近，但不完全等同於 1/10的真正數
值。

由於數值顯示的方式，很多使用者��有發現數值是個近似值。Python只會印出一個十進位近似值，其近似
了儲存在計算機中的二進位近似值的十進位數值。在大多數的計算機中，如果 Python真的會印出完整的十
進位數值，其表示儲存在計算機中的 0.1的二進位近似值，它將顯示�：

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

這比一般人感到有用的位數還多，所以 Python將位數保持在可以接受的範圍，只顯示捨入後的數值：

>>> 1 / 10
0.1

一定要記住，雖然印出的數字看起來是精準的 1/10，但真正儲存的數值是能表示的二進位分數中，最接近精
準數值的數。

有趣的是，有許多不同的十進位數，共用同一個最接近的二進位近似小數。例如�：數字 0.1 和 0.
10000000000000001 和 0.1000000000000000055511151231257827021181583404541015625，
都由 3602879701896397 / 2 ** 55 近似。由於這三個數值共用同一個近似值，任何一個數值都可
以被顯示，同時保持 eval(repr(x)) == x。

歷史上，Python的提示字元 (prompt)與�建的 repr()函式會選擇上段�明中有 17個有效位元的數：0.
10000000000000001。從 Python 3.1版開始，Python（在大部分的系統上）可以選擇其中最短的數�簡單
地顯示� 0.1。

注意，這是二進位浮點數理所當然的特性，�不是 Python的錯誤 (bug)，更不是您程式碼的錯誤。只要有程
式語言支持硬體的浮點數運算，您將會看到同樣的事情出現在其中（雖然某些程式語言預設不顯示差�，或
者預設全部輸出）。

�求更優雅的輸出，您可能想要使用字串的格式化 (string formatting)�生限定的有效位數：

>>> format(math.pi, '.12g') # give 12 significant digits
'3.14159265359'

>>> format(math.pi, '.2f') # give 2 digits after the point
'3.14'

>>> repr(math.pi)
'3.141592653589793'

要了解一件很重要的事，在真正意義上，浮點數的表示是一種幻覺：你基本上在捨入真正機器數值所展示的
值。

這種幻覺可能會�生下一個幻覺。舉例來�，因� 0.1不是真正的 1/10，把三個 0.1的值相加，也不會�生
精準的 0.3：

>>> .1 + .1 + .1 == .3
False

同時，因� 0.1不能再更接近精準的 1/10，還有 0.3不能再更接近精準的 3/10，預先用 round()函式捨入�
不會有幫助：

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False

106 Chapter 15. 浮點數運算：問題與限制

Python Tutorial,發� 3.6.8

雖然數字不會再更接近他們的精準數值，但 round()函式可以對事後的捨入有所幫助，如此一來，不精確
的數值就變得可以互相比較：

>>> round(.1 + .1 + .1, 10) == round(.3, 10)
True

二進位浮點數架構擁有很多這樣的驚喜。底下的「表示法錯誤」章節，詳細的解釋了「0.1」的問題。如果想
要其他常見驚喜更完整的描述，可以參考 The Perils of Floating Point（浮點數的風險）。
As that says near the end, 「there are no easy answers.」Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no more
than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind that it’
s not decimal arithmetic and that every float operation can suffer a new rounding error.
While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect in
the end if you simply round the display of your final results to the number of decimal digits you expect. str() usually
suffices, and for finer control see the str.format() method’s format specifiers in formatstrings.
For use cases which require exact decimal representation, try using the decimal module which implements decimal
arithmetic suitable for accounting applications and high-precision applications.
Another form of exact arithmetic is supported by thefractionsmodule which implements arithmetic based on rational
numbers (so the numbers like 1/3 can be represented exactly).
If you are a heavy user of floating point operations you should take a look at the Numerical Python package and many
other packages for mathematical and statistical operations supplied by the SciPy project. See <https://scipy.org>.
Python provides tools that may help on those rare occasions when you really do want to know the exact value of a float.
The float.as_integer_ratio() method expresses the value of a float as a fraction:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

Since the ratio is exact, it can be used to losslessly recreate the original value:

>>> x == 3537115888337719 / 1125899906842624
True

The float.hex() method expresses a float in hexadecimal (base 16), again giving the exact value stored by your
computer:

>>> x.hex()
'0x1.921f9f01b866ep+1'

This precise hexadecimal representation can be used to reconstruct the float value exactly:

>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True

Since the representation is exact, it is useful for reliably porting values across different versions of Python (platform
independence) and exchanging data with other languages that support the same format (such as Java and C99).
Another helpful tool is the math.fsum() function which helps mitigate loss-of-precision during summation. It tracks
「lost digits」as values are added onto a running total. That can make a difference in overall accuracy so that the errors
do not accumulate to the point where they affect the final total:

>>> sum([0.1] * 10) == 1.0
False

(continues on next page)

107

http://www.lahey.com/float.htm
https://scipy.org

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> math.fsum([0.1] * 10) == 1.0
True

15.1 Representation Error

This section explains the「0.1」example in detail, and shows how you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point representation is assumed.
Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as binary
(base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often won’t
display the exact decimal number you expect.
Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754「double precision」. 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2**N where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best value for N is 56:

>>> 2**52 <= 2**56 // 10 < 2**53
True

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is:

7205759403792794 / 2 ** 56

Dividing both the numerator and denominator by two reduces the fraction to:

3602879701896397 / 2 ** 55

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case can it be exactly 1/10!
So the computer never「sees」1/10: what it sees is the exact fraction given above, the best 754 double approximation it
can get:

108 Chapter 15. 浮點數運算：問題與限制

Python Tutorial,發� 3.6.8

>>> 0.1 * 2 ** 55
3602879701896397.0

If we multiply that fraction by 10**55, we can see the value out to 55 decimal digits:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

meaning that the exact number stored in the computer is equal to the decimal value
0.1000000000000000055511151231257827021181583404541015625. Instead of displaying the full decimal
value, many languages (including older versions of Python), round the result to 17 significant digits:

>>> format(0.1, '.17f')
'0.10000000000000001'

The fractions and decimal modules make these calculations easy:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'

15.1. Representation Error 109

Python Tutorial,發� 3.6.8

110 Chapter 15. 浮點數運算：問題與限制

CHAPTER16

附�

16.1 互動模式

16.1.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns to the
primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace. (Exceptions
handled by an except clause in a try statement are not errors in this context.) Some errors are unconditionally fatal
and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of running out of memory.
All error messages are written to the standard error stream; normal output from executed commands is written to standard
output.
Typing the interrupt character (usually Control-C or Delete) to the primary or secondary prompt cancels
the input and returns to the primary prompt.1 Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try statement.

16.1.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#!/usr/bin/env python3.5

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The #! must be the first two characters of the file. On some platforms, this first line must end with a Unix-style
line ending ('\n'), not a Windows ('\r\n') line ending. Note that the hash, or pound, character, '#', is used to start
a comment in Python.
The script can be given an executable mode, or permission, using the chmod command.

$ chmod +x myscript.py

1 A problem with the GNU Readline package may prevent this.

111

Python Tutorial,發� 3.6.8

On Windows systems, there is no notion of an「executable mode」. The Python installer automatically associates .py
files with python.exe so that a double-click on a Python file will run it as a script. The extension can also be .pyw,
in that case, the console window that normally appears is suppressed.

16.1.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a file
containing your start-up commands. This is similar to the .profile feature of the Unix shells.
This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in the
same namespace where interactive commands are executed, so that objects that it defines or imports can be used without
qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.
If you want to read an additional start-up file from the current directory, you can program this in the global start-up file
using code like if os.path.isfile('.pythonrc.py'): exec(open('.pythonrc.py').read()).
If you want to use the startup file in a script, you must do this explicitly in the script:

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):

with open(filename) as fobj:
startup_file = fobj.read()

exec(startup_file)

16.1.4 The Customization Modules

Python provides two hooks to let you customize it: sitecustomize and usercustomize. To see how it works,
you need first to find the location of your user site-packages directory. Start Python and run this code:

>>> import site
>>> site.getusersitepackages()
'/home/user/.local/lib/python3.5/site-packages'

Now you can create a file named usercustomize.py in that directory and put anything you want in it. It will affect
every invocation of Python, unless it is started with the -s option to disable the automatic import.
sitecustomize works in the same way, but is typically created by an administrator of the computer in the global
site-packages directory, and is imported before usercustomize. See the documentation of the site module for
more details.

�解

112 Chapter 16. 附�

APPENDIXA

Glossary

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

113

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Tutorial,發� 3.6.8

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.
此术语通常是指异步生成器函数，但在某些情况下则可能是指异步生成器迭代器。如果需要清楚表达
具体含义，请使用全称以避免歧义。

An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.
此对象属于asynchronous iterator，当使用 __anext__()方法调用时会返回一个可等待对象来执行异步
生成器函数的代码直到下一个 yield表达式。

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode

('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

114 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Python Tutorial,發� 3.6.8

Some operations need the binary data to be mutable. The documentation often refers to these as「read-write bytes-
like objects」. Example mutable buffer objects include bytearray and a memoryview of a bytearray.
Other operations require the binary data to be stored in immutable objects (「read-only bytes-like objects」);
examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This「intermediate language」is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

coroutine Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
「CPython」is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(...):
...

f = staticmethod(f)

(continues on next page)

115

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Tutorial,發� 3.6.8

(繼續上一頁)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors』methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called dic-
tionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (「If it looks like a duck and quacks like a duck, it must
be a duck.」) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called「f-strings」which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-

source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

116 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498

Python Tutorial,發� 3.6.8

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.
函数标注通常用于类型提示：例如以下函数预期接受两个 int参数并预期返回一个 int值:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.
By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for ex-
pression defining a loop variable, range, and an optional if expression. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed ofmultiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

117

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Python Tutorial,發� 3.6.8

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.
GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical
built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded bymulti-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a「free-threaded」interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
All of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except with
themselves), and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

118 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0443

Python Tutorial,發� 3.6.8

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), ⋯
). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between「the looking」
and「the leaping」. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

119

https://www.python.org/dev/peps/pep-0302

Python Tutorial,發� 3.6.8

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,

time.localtime() returns a tuple-like object where the year is accessible either with an index such as t[0]
or with a named attribute like t.tm_year).
A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee(name='jones', title='programmer').

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and

120 Appendix A. Glossary

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

Python Tutorial,發� 3.6.8

not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for defining
positional-only parameters. However, some built-in functions have positional-only parameters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.
path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to

locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object represent-

ing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike

121

https://www.python.org/dev/peps/pep-0362

Python Tutorial,發� 3.6.8

protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards

compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a「solution of last resort」- every attempt
will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated「Py3k」.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct,
so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the「path」from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'

(continues on next page)

122 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Tutorial,發� 3.6.8

(繼續上一頁)
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return the
reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a 「block」of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and the
return value of os.stat().

text encoding A codec which encodes Unicode strings to bytes.
text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream

and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

123

Python Tutorial,發� 3.6.8

See also binary file for a file object able to read and write bytes-like objects.
triple-quoted string A string which is bound by three instances of either a quotation mark (「) or an apostrophe (『).

While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention
'\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

124 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Tutorial,發� 3.6.8

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing「import this」at the interactive prompt.

125

Python Tutorial,發� 3.6.8

126 Appendix A. Glossary

APPENDIXB

關於這些�明文件

這些�明文件是透過 Sphinx（一個專� Python�明文件所撰寫的文件處理器）將使用 reStructuredText撰寫
的原始檔轉�而成。

如同 Python自身，透過自願者的努力下�出文件與封裝後自動化執行工具。若想要回報臭蟲，請見 reporting-
bugs頁面，�含相關資訊。我們永遠歡迎新的自願者加入！
致謝：

• Fred L. Drake, Jr.，原始 Python文件工具集的創造者以及一大部份�容的作者。
• 創造 reStructuredText和 Docutils工具組的 Docutils專案；
• Fredrik Lundh先生，Sphinx從他的 Alternative Python Reference計劃中獲得許多的好主意。

B.1 Python文件的貢獻者們

許多人都曾� Python這門語言、Python標準函式庫和 Python�明文件貢獻過。Python所發�的原始碼中含
有部份貢獻者的清單，請見Misc/ACKS。
正因� Python社群的撰寫與貢獻才有這份這�棒的�明文件 –感謝所有貢獻過的人們！

127

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Python Tutorial,發� 3.6.8

128 Appendix B. 關於這些�明文件

APPENDIXC

歷史與授權

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see http:
//www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

129

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
http://www.zope.com/
http://www.zope.com/
https://www.python.org/psf/
https://opensource.org/

Python Tutorial,發� 3.6.8

備�: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.6.8

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.6.8 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.8 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.6.8 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.8 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.6.8.

4. PSF is making Python 3.6.8 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.6.8 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.8
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.8, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

130 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.6.8, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 131

Python Tutorial,發� 3.6.8

(繼續上一頁)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(continues on next page)

132 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

(繼續上一頁)
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 133

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Tutorial,發� 3.6.8

(繼續上一頁)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND

(continues on next page)

134 Appendix C. 歷史與授權

http://www.wide.ad.jp/

Python Tutorial,發� 3.6.8

(繼續上一頁)
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 135

Python Tutorial,發� 3.6.8

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

(continues on next page)

136 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

(繼續上一頁)
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. Licenses and Acknowledgements for Incorporated Software 137

Python Tutorial,發� 3.6.8

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

138 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

C.3.10 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski』implementation of Dan Bernstein’s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. Licenses and Acknowledgements for Incorporated Software 139

Python Tutorial,發� 3.6.8

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The
original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the

(continues on next page)

140 Appendix C. 歷史與授權

http://www.netlib.org/fp/

Python Tutorial,發� 3.6.8

(繼續上一頁)
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 141

Python Tutorial,發� 3.6.8

(繼續上一頁)
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

(continues on next page)

142 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

(繼續上一頁)
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 143

Python Tutorial,發� 3.6.8

(繼續上一頁)

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

144 Appendix C. 歷史與授權

Python Tutorial,發� 3.6.8

C.3.18 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 145

Python Tutorial,發� 3.6.8

146 Appendix C. 歷史與授權

APPENDIXD

版權宣告

Python和這些文件是：
Copyright © 2001-2019 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com保留一切權利。
Copyright © 1995-2000 Corporation for National Research Initiatives保留一切權利。
Copyright © 1991-1995 Stichting Mathematisch Centrum保留一切權利。

完整的授權條款資訊請參見歷史與授權。

147

Python Tutorial,發� 3.6.8

148 Appendix D. 版權宣告

索引

Non-alphabetical
..., 113
(hash)

comment, 9
* (asterisk)

in function calls, 26
**

in function calls, 27
2to3, 113
: (colon)

function annotations, 28
->

function annotations, 28
>>>, 113
__all__, 50
__future__, 117
__slots__, 123
物件

file, 56
method, 73

環境變數
PATH, 45, 111
PYTHONPATH, 45, 47
PYTHONSTARTUP, 112

陳述式
for, 19

A
abstract base class, 113
annotation, 113
annotations

function, 28
argument, 113
asynchronous context manager, 114
asynchronous generator, 114
asynchronous generator iterator, 114
asynchronous iterable, 114
asynchronous iterator, 114
attribute, 114

awaitable, 114

B
BDFL, 114
binary file, 114
builtins

模組, 47
bytecode, 115
bytes-like object, 114

C
C-contiguous, 115
class, 115
class variable, 115
coding

style, 29
coercion, 115
complex number, 115
context manager, 115
contiguous, 115
coroutine, 115
coroutine function, 115
CPython, 115

D
decorator, 115
descriptor, 116
dictionary, 116
dictionary view, 116
docstring, 116
docstrings, 23, 28
documentation strings, 23, 28
duck-typing, 116

E
EAFP, 116
expression, 116
extension module, 116

149

Python Tutorial,發� 3.6.8

F
file

物件, 56
file object, 116
file-like object, 117
finder, 117
floor division, 117
for

陳述式, 19
Fortran contiguous, 115
f-string, 116
function, 117

annotations, 28
function annotation, 117

G
garbage collection, 117
generator, 117
generator expression, 117
generator iterator, 117
generic function, 117
GIL, 118
global interpreter lock, 118

H
hashable, 118
help

�建函式, 83

I
IDLE, 118
immutable, 118
import path, 118
importer, 118
importing, 118
interactive, 118
interpreted, 118
interpreter shutdown, 118
iterable, 119
iterator, 119

J
json

模組, 58

K
key function, 119
keyword argument, 119

L
lambda, 119
LBYL, 119
list, 119

list comprehension, 119
loader, 119

M
mangling

name, 78
mapping, 120
meta path finder, 120
metaclass, 120
method, 120

物件, 73
method resolution order, 120
module, 120

search path, 45
module spec, 120
MRO, 120
mutable, 120

N
name

mangling, 78
named tuple, 120
namespace, 120
namespace package, 120
nested scope, 120
new-style class, 121

O
object, 121
open

�建函式, 56

P
package, 121
parameter, 121
PATH, 45, 111
path

module search, 45
path based finder, 121
path entry, 121
path entry finder, 121
path entry hook, 121
path-like object, 121
PEP, 122
portion, 122
positional argument, 122
provisional API, 122
provisional package, 122
Python 3000, 122
Python Enhancement Proposals

PEP 1, 122
PEP 8, 29
PEP 238, 117
PEP 278, 124

150 索引

Python Tutorial,發� 3.6.8

PEP 302, 117, 119
PEP 343, 115
PEP 362, 114, 121
PEP 411, 122
PEP 420, 117, 120, 122
PEP 443, 118
PEP 451, 117
PEP 484, 28, 113, 117, 124
PEP 492, 114, 115
PEP 498, 116
PEP 519, 122
PEP 525, 114
PEP 526, 113, 124
PEP 3107, 28
PEP 3116, 124
PEP 3147, 46
PEP 3155, 122

Pythonic, 122
PYTHONPATH, 45, 47
PYTHONSTARTUP, 112

Q
qualified name, 122

R
reference count, 123
regular package, 123
RFC

RFC 2822, 87

S
search

path, module, 45
sequence, 123
single dispatch, 123
slice, 123
special method, 123
statement, 123
strings, documentation, 23, 28
struct sequence, 123
style

coding, 29
sys

模組, 46

T
text encoding, 123
text file, 123
triple-quoted string, 124
type, 124
type alias, 124
type hint, 124

U
universal newlines, 124

V
variable annotation, 124
�建函式

help, 83
open, 56

virtual environment, 125
virtual machine, 125

W
模組

builtins, 47
json, 58
sys, 46

Z
Zen of Python, 125

索引 151

	淺嘗滋味
	使用 Python 直譯器
	啟動直譯器
	直譯器與它的環境

	一個非正式的 Python 簡介
	把 Python 當作計算機使用
	初探程式設計的前幾步

	深入了解流程控制
	if 陳述式
	for 陳述式
	range() 函式
	break 和 continue 陳述、迴圈內 else 段落
	pass 陳述式
	定義函式 (function)
	More on Defining Functions
	Intermezzo: Coding Style

	資料結構
	進一步了解 List（串列）
	del 陳述式
	Tuples 和序列 (Sequences)
	集合 (Sets)
	字典（Dictionary）
	迴圈技巧
	更多條件式主題
	序列和其他資料結構之比較

	模組
	More on Modules
	Standard Modules
	The dir() Function
	Packages

	輸入和輸出
	更華麗的輸出格式
	Reading and Writing Files

	錯誤和例外
	語法錯誤
	例外
	處理例外
	Raising Exceptions
	User-defined Exceptions
	Defining Clean-up Actions
	Predefined Clean-up Actions

	Classes
	A Word About Names and Objects
	Python Scopes and Namespaces
	A First Look at Classes
	Random Remarks
	Inheritance
	Private Variables
	Odds and Ends
	Iterators
	Generators
	Generator Expressions

	Python 標準函式庫概覽
	作業系統介面
	檔案之萬用字元
	命令列引數
	錯誤輸出重新導向與程式終止
	字串樣式比對
	數學相關
	網路存取
	日期與時間
	資料壓縮
	效能量測
	品質控管
	標準模組庫

	Brief Tour of the Standard Library — Part II
	Output Formatting
	Templating
	Working with Binary Data Record Layouts
	Multi-threading
	Logging
	Weak References
	Tools for Working with Lists
	Decimal Floating Point Arithmetic

	虛擬環境與套件
	簡介
	建立虛擬環境
	用 pip 管理套件

	現在可以來學習些什麼？
	Interactive Input Editing and History Substitution
	Tab Completion and History Editing
	Alternatives to the Interactive Interpreter

	浮點數運算：問題與限制
	Representation Error

	附錄
	互動模式

	Glossary
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	版權宣告
	索引

