The Python/C API
2l 3.6.12

Guido van Rossum
and the Python development team

10 A 06, 2020

Python Software Foundation
Email: docs@python.org

Contents

fiigr 3
I O o 4 3
120 g, BARGFISIHTIEL . . o o o 4
L3 B e 7
14 HAIZUPYthOn o e e 9
15 ERHIE . . 10
FerE i AR ki 0 11
The Very High Level Layer 13
SIGHE 19
Bilshz AL 21
5.1 Printingand clearing L e e 22
52 B SEE . . e e 22
5.3 ISSUIN@ WATNINGS .« « v v v v e e i e 24
54 Querying the error indicator oL e 25
5.5 SignalHandling L e e e e 27
5.6 Exception Classes o i i e e e e e 27
5.7 Exception ObJects ot i e e e e e e e e e e e e e e e 28
5.8 Unicode Exception Objects v i i v it e e e e e e e e e e 28
59 BBRIFFEH] . . o 29
500 FRUESEB . o 30
501 FRUEEREZRT © . 32
TH 33
6.1 AMEEZRGTH . . 33
6.2 RHEEIL . . e 35
6.3 ATRE (Process) M . . o o . 36
6.4 FEABIAL 36
6.5 F¥E marshal BEVE T . . . L 40
6.6 fEMTSEOFERMEASE e 41
6.7 FEHREIEREAL . . . o 48
6.8 SLHT 49
6.9 UMMRRLEREMHSSERIIAE . .. 50

10

11

12

fm%%ﬂ)%

TP . o e
7.2 BUFTIL . o o o
T3 JFEHIMML . o
T4 BEFIL . .
7.5 GEACESTINL .
7.6 B . .
T IHEML .« o

FLAAR Xt 5)2

8.1 FASKIG . e
82 BUELNIZL . .
83 FHUNIGL .
8.4 ZRBENILE
8.5 BRIUMIME . .
8.6 HABNIZ . .

Initialization, Finalization, and Threads

9.1 Initializing and finalizing the interpretero e
0.2 Process-wide parameters i e
9.3 Thread State and the Global Interpreter Lock
9.4 Sub-interpreter SUpPport L. e e e e e e e e e e
95 BIEHAL . . .
9.6 AHTFIEREE . . o o o
9.7 mOIRER T .

so TR A B
10.1 #AEs

03, == Y

102 JFUHAITFIELL © o o
103 IAEEELT o o
104 SFRTLES -« o o o e e
10.5 B NTAIEE
10.6 pymalloc 7] Hgs - . o o o e e e e e e
10.7 BT o o e

RIS

TLT FEHE BATERTAL © o
1.2 GEHPIEERE . . o
113 BAIRFG e
11.4 Number Object StrUCtUIES« . ottt e ettt e e e e e e e e e
11.5 Mapping Object Structures o v v i it et e e e e e e e e e e e e
11.6 Sequence Object StruCtUres o o v vt i e e e e e e e e e
11.7 Buffer Object Structures 0 i e e e e e e e e e e e
11.8 Async Object Structures o v i v v e

119 (PR ARB RISo
API il ABI it 455 Bt
N LEES

Y SEalipe s
1 Python SCEFRIERRE™ . . . o o

B
JEE S L
Cl ZEMBIIIE « o o

>
bad
™

53
53
58
61
62
63
64
70

73
73
75
80
106
110
113

129
129
130
133
138
139
140
141

143
143
144
145
146
147
148
149

151
151
152
156
170
171
171
172
173
174

177

179

191
191

193

C2 FRERE PAHA A Python FOZRERAIAE - o o o o o e

C3 WOSGRA ARV T IE 5 i
D JiHEE

#51

The Python/C API, [F) 3.6.12

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, [F) 3.6.12

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

Writing an extension module is a relatively well-understood process, where a | cookbook] approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

VFZ APT BRI A B Python sX PR NARREAEIE I BN, KR A Python [1Y I FE 7
WHRERALEE YR, A RS FR Y H i A Python 2 B Je B S RV X &2 15

1.1 BaXH

{71} Python/C API It 2R 4l eR . AU E SCRTd 1 T i AT v A 4 35 2) AR 2 o

’ #include "Python.h"

XEWREC SN REL S <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
Ml <stdlib.h> (WEEFH).

HilE): T Python AT flE £ i X HORETERESE R 10T S SCPERYBUAL FIAS 52 3L, TR I 6 4 (A A
SCHEZ I, 1 4RSS Python. b,

Python.h s SCHY AR Fa] LAAAR (il A 3 AR Sk SCPRRTE SLRRR AN) B A RIS Py 2% _Py. DA _Py
TR PRt Python SCELNERGE IR, ARG g 52 (U o S5A4 R4 PRIAT PR B RS
Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes

the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The Python/C API, [F) 3.6.12

BT 45 Python —i 7% . fF Unix |, BV TLPANHD: prefix/include/pythonversion/
M exec_prefix/include/pythonversion/, H W prefix il exec_prefix +& Hi [a] Python [
configure I AE AIXT K ST € X, T version Wk '%d.%d' % sys.version_info[:2]. fE
Windows |, KIFL4T prefix/include, HH prefix g 45 e 4% H .

TSSO, WA H R (MR) #CEIRBT i as it SRR P o 3 R20F5CH R
REARRGM] #include <pythonX.Y/Python.h>; XIFMMREF-EHIFATN, HAprefix T
BIKRALSFHF LM TR A exec_prefix FHEEFGHILIIT.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C",so there is no need to do anything special to use the API from C++.

1.2 g, FBF05| AT

KZ# Python/C API REERE — PN ZNSEPA K — A Pyobject * KRR EME . BRAUE—ANFRE, 48
6] /R — ML Python Xt R AN BEIABIE XA, HTFFERZSEIEN T (BIANRIE. 7500 A2 5 tL
%) Python iE 5 #8< AR RER 7 AL BEFTA Python XF 42581 M EATH — B C AR TR 2R
EHE . JLFFrf Python Xf AR A e e b R4 RSB —A4-Pyobject RAK Bl SARE, H
HPyobject * BEUKFRE AL BT AR . ME—RF1 42 type XF52; BT AT Gk AN RERRERL, FTPA
BATEE RSPy TypeObject W4,

P Python X4t (F & Python B%y) #H —1 type Fl—A> reference count . X4 HIZEAE 2 AT
Xtge (BAnEEg.)Tk e XEREG AL, A types TR) o XFFREAS AR FNAG2EAL, #H —A%
RGN R BT ETZEA; i, X4 (HAY) a FriERXT4)2 Python 51 Af PyList_Check (a) HE.

1.21 S|RHH

The reference count is important because today’ s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’ s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’ s an obvious
problem with objects that reference each other here; for now, the solutionis [don’ tdo that. |)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to increment an
object’ s reference count by one, and Py_ DECREF () to decrement it by one. The Py DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’ s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’ s needed. There’ s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’ s reference count for every local variable that contains a pointer to an object.
In theory, the object’ s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’ t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. &4y

The Python/C API, [F) 3.6.12

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). [Owning a reference
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’ s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3

t, 0, PyLong_FromLong (1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ INCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’ s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

12. &, %EF03| Bt 5

The Python/C API, [F) 3.6.12

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’ t have to increment a reference count so you can give a reference away ([have it
be stolen |). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; i++) |
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
t
Py_DECREF (index) ;
;

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyObject_GetItem ()

and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’ t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(),youdon’ town the reference —but if you obtain the same item from
the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

(Rt

6 Chapter 1. &4y

The Python/C API, [F) 3.6.12

(R —H)

total += value;

}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.2.2 2H

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 &

Python F&fy i1 A T LA PR & To BAL BIR B DR e 8 RACPRR S & G R 1, SR JG fe i 2l &
MR, KRN, ERMIRIATHA MRS, FEIR R eI A4 P P RS [l)

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’ s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’ s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions
are always explicitly documented.

1.3. &% 7

The Python/C API, [F) 3.6.12

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ---except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’ s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’ s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception —that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’ t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;

(Rt

8 Chapter 1. &4y

The Python/C API, [F) 3.6.12

(R —H)

const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_ Clear() to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.4 # AR Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py_Tnitialize () doesnotsetthe [scriptargument list/(sys .argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (Infact, this particular path is also the [fallback | location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

1.4. #& AR Python 9

The Python/C API, [F) 3.6.12

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py _GetPrefix (), Py GetExecPrefix (), and Py_GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to [uninitialize] Python. For instance, the application may want to start over (make another call
to Py_Initialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py IsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.5 A

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by [a debug build | of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

B T AT AT T ROR 2 AL, AT A T B M A -
o BOME ARSI B 53 Bi s -
BN ARSI 2 AT a8 A 2 i o
* Downcasts from wide types to narrow types are checked for loss of information.
s FZWE PR MB IR G LI d . Ji5h, RAEXNRAUE test_c_api () Tiks
A AS R e B A B2 A
B B TS IR AL B TR, AR RGBS T
o INIRJZ IR ERANBS) S AR A 2 R B AT
 Extra checks are added to the memory arena implementation.
o USIMAENE R LA
X HLATREVCA B 2 A MG A

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

A REZEAEE, W25 Python JFAH) Misc/SpecialBuilds. txt .

10 Chapter 1. &4y

CHAPTER 2

TR EH R B2 Fr — i O

&4 I, Python) C APLIFRfiRENUAN I ZE (b . KRB HCA S IR Az, % HAs i APL, I A2 B
BA APTEUMER AP (A28 5 0 2| Je i AR IR) .

RNEME, APTIREERA Y R i HIas I (ABL). JR R 32 2@ 8540 @ EAE , 78k BB Ing 7 Brak
WM F BRI BEAR SR APL, {HAJRESHER ABL, I, 44> Python fUASH T S B B iy etk (EP
e A AT A 32 52 R B2 AR LR, Unix BB RESHEILRH). BL4h, #E Windows I, ¥ EiH 5 4E
FE) pythonXY.dIl #5482, FFEEHH A B S5 pythonXY.dll £z .

M Python3.2 2, ELFEH] T4~ APLRY T4, PAWGPREER) ABL. WISR{AT L AP (Hhalfrhy “sZFR APTY)
9 AR BTG 2L X “Py_LIMITED_API*, -2 MR REAR 411 R M3 AR P IGRG: PR, AEARAT 3.x A
(x>=2) _F A ARSI AN TG 2 B 1

ERLEERT, FEARMIT R Y B E R ABL. 7 2 H] X 25 APL /Y 9 @ 11 B 95 228
Py_LIMITED_APT ik B A {148 35 & %5 1Y &% ik Python iR A< PY_VERSION_HEX {H (fi: Python 3.3
4 0x03030000) (SWAPI o ABI jp A 32) o WRBIHCREE T 0T J54¢ Python JiUAS, {HIGYEFEIHMRAS I
m#E (F R 0555) .

M Python 3.2 JF 41, 52 APL W] B HLAEICTAE PEP 384 . 5 C APLSCHYh, R T32 APL {1y APTIEH
FRiZh “RETZH AP,

11

https://www.python.org/dev/peps/pep-0384

The Python/C API, [F) 3.6.12

12 Chapter 2. F2EBIN ARERFZ#H#ED

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’ s main () function
(converted to wchar_t according to the user’ s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

13

The Python/C API, [F) 3.6.12

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filenameis NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when Python’
s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is ignored.
Overriding this hook can be used to integrate the interpreter’ s prompt with other event loops, as done in the
Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’ s prompt.
The function is expected to output the string prompt if it’ s not NULL, and then read a line of input from the
provided standard input file, returning the resulting string. For example, The readline module sets this hook to
provide line-editing and tab-completion features.

14 Chapter 3. The Very High Level Layer

The Python/C API, [F) 3.6.12

The result must be a string allocated by PyMem_RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

3.4 R B 4#: The result must be allocated by PyMem_RawMalloc () or PyMem RawRealloc (), instead of
being allocated by PyMem_Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *swr, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

15

The Python/C API, [F) 3.6.12

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code cannot
be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 BUHTMA.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Like Py CompileStringObject (), but filename is a byte string decoded from the filesystem encoding (os .
fsdecode ()).

3.2 HTMA.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *kwdefs, PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of a dictionary of global variables, a mapping object of local variables, arrays of arguments, keywords and defaults,
a dictionary of default values for keyword-only arguments and a closure tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_ EvalFrameEx (), for backward com-
patibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

3.4 K B4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

16 Chapter 3. The Very High Level Layer

The Python/C API, [F) 3.6.12

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input

The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as [true division | according to PEP 238.

17

https://www.python.org/dev/peps/pep-0238

The Python/C API, [F) 3.6.12

18 Chapter 3. The Very High Level Layer

cHAPTER 4

SR

O
.

AT ZAR RN T HE Python R YT AL

void Py_ INCREF (PyObject *0)
Increment the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’ s type’ s deallocation function (which must
not be NULL) is invoked.

Bl BEOR BT S EUL R Python AU BUAGETA N (HIHINY— Ml __del () JrikAg2EILHIHE
RN NIE) o EIRBERACHD T F WA S, ERI TR RERS [Hi1J517 BT Python
ArJr SR XA AT AL I 4 R AL BRI RAEPy_DECREF () AR 2 BT R. 24 4T
FERFRAS . BT, 503 I IR 0 G 14 AR B2 224 K7 R B3 e R A 5 | P 9 DL 81— A i 2
OB R AR, ARG AN R i Py _DECREF ()

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

2SR LI WA [T R Sl I B AL BRI, B e — M

DA BB %50E T Python Bz TR 8 &k A: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o).
TV MR Py XINCREF () FlPy XDECREF () [{fa A5 H BB AR

19

The Python/C API, [F) 3.6.12

PAR B BB A v FE R ORE S B 0 N IR B H: _Py_Dealloc(), _Py_ForgetReference(),
_Py_NewReference () ANAFE Py_RefTotal,

20 Chapter 4. &5t

CHAPTER D

BI5h ez IR

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’ t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’ s type, the exception’ s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’ t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’ t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

#i[E): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

21

The Python/C API, [F) 3.6.12

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sy s . stderr and clear the error indicator. Unless the errorisa SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obyj)
This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

5.2 filth &%

These functions help you set the current thread’ s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8J .

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr SetString () butlets you specify an arbitrary Python object for the [value |
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (),buttakingava_11st argument rather than a variable
number of arguments.

3.5 BUHTMA.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

22 Chapter 5. fl5hE 2

The Python/C API, [F) 3.6.12

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of fype as a third parameter. In the case of OSError exception, this is used to define
the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

3.4 BB

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()). Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter speci-
fying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-

name2)
Similar to PyErr_SetExcFromWindowsErrWithFilenameObject (), but accepts a second filename

object. Availability: Windows.
3.4 FCHTINA.

52. H%&E 23

The Python/C API, [F) 3.6.12

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_ SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
This is a convenience function to raise ImportError. msg will be set as the exception’ s message string. name
and path, both of which can be NULL, will be set as the ImportError’ srespective name and path attributes.

3.3 BUBTINA.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionisa SyntaxError.

3.4 BUBTIA.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr SyntaxLocationObject (),but filename is a byte string decoded from the filesystem encoding
(0os.fsdecode ()).

3.2 BTN

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is O if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 47 /& 224 3% 1.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *msg, PyObject *name, PyObject *path)
Much like PyErr SetImportError () but this function allows for specifying a subclass of ImportError
to raise.

3.6 BUHTIA.

24 Chapter 5. fl5hE 2

The Python/C API, [F) 3.6.12

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 BUBTIA.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () exceptthat message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASClII-encoded string.

3.2 BUHTIMA.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and pass source to
warnings.WarningMessage ().

3.6 BUHTIA.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py DECREF () it.

#iE): Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

#E): This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

5.4. Querying the error indicator 25

The Python/C API, [F) 3.6.12

PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’ t understand this, don’ t use this function.
I warned you.)

#(E): This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr Fetch () below can be [unnormalized | , meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

#i(E): This function does not implicitly set the __t raceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

#E]: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_ SetExcInfo () to restore or clear
the exception state.

3.3 BUHTIA.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

#i(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code

26 Chapter 5. HlipEIE

The Python/C API, [F) 3.6.12

needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 BUBTINA.

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’ s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of a STGINT signal arriving —the next time PyErr_ CheckSignals () is
called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

3.5 iR #4#: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_NewException (),except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 BTN

5.5. Signal Handling 27

The Python/C API, [F) 3.6.12

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the exception
as a new reference, as accessible from Python through __context__. If there is no context associated, this
returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return the cause (either an exception instance, or None, set by raise ... from .. .) associated with the
exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___ isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason is a

UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

28 Chapter 5. fl5hE 2

The Python/C API, [F) 3.6.12

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return O on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 I

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

5.9. I 29

The Python/C API, [F) 3.6.12

int Py_ReprEnter (PyObject *object)

Called at the beginning of the tp_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist

objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_ repr implemen-

tation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Endsa Py _ReprEnter (). Must be called once for each invocation of Py ReprEnter () that returns zero.

510 IrERE

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &/ Python Z#R Lfg
PyExc_BaseException BaseException (1)
PyExc_Exception Exception (D)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError

m ik'%:-ig_l—\-—E

30

Chapter 5. ISR

The Python/C API, [F) 3.6.12

33 fi

PyExc_ChildProcessError,

x1-EEL—H

C &R Python Z#R [
PyExc_OSError OSError @))
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclIteration StopAsyncIteration
PyExc_StopIteration StopIlteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError

UnicodeError

PyExc_UnicodeTranslateError

UnicodeTranslateError

PyExc_ValueError

ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

ooom A

PyExc_BlockingIOError,
PyExc_ConnectionError,

PyExc_BrokenPipeError,
PyExc_ConnectionAbortedError,

PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,

PyExc_FileNotFoundError,
PyExc_NotADirectoryError,

PyExc_TimeoutError fZEHNN PEP 3151.

PyExc_InterruptedError,
PyExc_PermissionError,

3.5 GHTINA: PyExc_StopAsynclIteration fil PyExc_RecursionError.

3.6 iRFT A PyExc_ModuleNotFoundError

XL R4 PyExc_OSError:

C &k [Ef#
PyExc_EnvironmentError
PyExc_TIOError
PyExc_WindowsError 3)

3.3 MU A XL B 280 B S R R

=)

fift:

(1) X AR H R RS

(2) This is the same as weakref .ReferenceError

PyExc_ProcessLookupError

PyExc_IsADirectoryError,
and

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

5.10. IRERE

31

https://www.python.org/dev/peps/pep-3151

The Python/C API, [F) 3.6.12

5.11 FREEE LS

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &% Python Z#R [Fifg
PyExc_Warning Warning D
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

3.2 GHT A PyExc_ResourceWarning

[Elfi
(1) X2 H AR 1

PR

32

Chapter 5. ISR

CHAPTER O

ARFE PRI T S S] T RAR S, wdRAT) C AU SETHES -Gl B AR, 7E C P A Python A58, DA
L @R R B S HOT AR C (B4 7 Python HH (B AF4E

6.1 ERZFEIA

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for parh. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

3.6 BUHTIMA.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

33

The Python/C API, [F) 3.6.12

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)

Set the signal handler for signal i to be %; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py _DecodeLocale (const char* arg, size_t *size)

char*

Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 ¥F macOS #1 Android I;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions use the ISO-8859-1 encoding.

e the current locale encoding (LC_CTYPE locale).

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size.

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
hz%:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

3.5 BUHTIMA.

Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 ¥E macOS # Android F;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to the index of the invalid character on encoding error, or set to
(size_t) —1 otherwise.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
W%

The PyUnicode_ EncodeFSDefault () and PyUnicode_ EncodelLocale () functions.

3.5 BB

34

Chapter6. TH

The Python/C API, [F) 3.6.12

6.2 ZREAN

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’ s sys module’ s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys .warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less —after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted [%s] formats should occur; these should be
limited using [%.<N>s_| where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for [%f] , which can print hundreds of digits for very
large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’ t truncate the message to an arbitrary length.

3.2 UGHTIA.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys.stderr or stderr instead.

3.2 BUHTMA.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions ().

3.2 BUHTMA.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

6.2. ZREHN 35

The Python/C API, [F) 3.6.12

3.2 BUHTMA.

6.3 T2 (Process) gl

void Py_FatalError (const char *message)

Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)

Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

3.6 it § 4 Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’ s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 EANEH

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’ s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’ t leave the module in sys.modules.

AR B X AR T

PyObject* PyImport_ImportModuleNoBlock (const char *name)

ZEHRE R Py Import_ImportModule () H— A F 1 H14 o

3.3 it BE 4#: This function used to fail immediately when the import lock was held by another thread. In Python 3.3
though, the locking scheme switched to per-module locks for most purposes, so this function’ s special behaviour
isn’ t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

36

Chapter6. TH

The Python/C API, [F) 3.6.12

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-
cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
3.3 OB

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

3.3 R H 58 Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current [import hook function | (with an
explicit level of 0, meaning absolute import). It invokes the __import__ () functionfromthe __builtins_
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

AR B R AR T

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’ s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

#E]: This function does not load or import the module; if the module wasn’ t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

3.3 BUHTA.

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Similar to Py Import_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’ s intents) state.

The module’ s __spec___and __loader___ will be set, if not set already, with the appropriate values. The
spec’ s loader will be set to the module’ s ___loader__ (if set) and to an instance of SourceFilelLoader
otherwise.

6.4. EANEH 37

The Python/C API, [F) 3.6.12

Themodule’s ___file__attribute will be set to the code object’s co_filename. If applicable, ___cached___
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyTImport_ExecCodeModule (), butthe __file_ attribute of the
module object is set to pathname if it is non-NULL.

Z: L PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Tmport_ExecCodeModuleEx (), butthe __ _cached_ _ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

3.3 BUHTA.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpath-

name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.

3.2 UHTIA.

3.3 R EE 4% Uses imp.source_from_cache () in calculating the source path if only the bytecode path is
provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

3.3 iR A: SRR [EI(E -1

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

3.2 BT

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path___ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’ t yet cached, traverse sys . path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

38 Chapter6. TH

https://www.python.org/dev/peps/pep-3147

The Python/C API, [F) 3.6.12

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char * char *)
For internal use only.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_ImportModule (). (Note the misnomer —this function would reload the module if it
was already imported.)

3.3 OB
3.4 Jju ¥4 The ___file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import . h,is:

struct _frozen {
char *name;
unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.4. EANEH 39

The Python/C API, [F) 3.6.12

6.5 #i#E marshal i#{Exx#F

X LEBiRE FeiF C AV AL S marshal BT AT REAR s e 21 Ax G . oA S ek 50n] I ARRF A 5
ANEMFPBIRE, 55— L8 s O] A O B . 1T 77 6 marshal B i) SCPF 2 A~ E il A
1%

BOAHEAEAF I SR B ARG 1 RT3k o

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings
in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
F—A> Long BEHY value PA marshal 5 NE A file. XK HE A value FAKH 32 £ ToiRAHL Long FH
HC AN o version $8BH SCEERS R AR o

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Ff—~ Python %f 4 value D\ marshal }8 X5 A file. version $§W]SCAA& A .

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. i [1]—/~3% value 1] marshal Z5R R FETTERXTE . version YU UL
XAIIAR .

PATR BB R VRSO I S A7 il marshal #55XR1E

long PyMarshal_ReadLongFromFile (FILE *file)
MATTE AT B0 FTLE* BRI EAR IR A —A~ C Long. (LR % BN 32 fEM(E, ToigAHL
long KA BEAIf .
KAEERRIY, R BRI M 7 H (EOFError) k] -1,

int PyMarshal_ReadShortFromFile (FILE *file)
MFTF T8 FILE* BXF R B B4~ C short. i BLeR UL BEEEER 16 MLAOME, ToigAs
Bl short K AT,
KAEERRI, R BRI M 7 H (EOFError) k] -1,

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. MFT I T E2HUHY) FILE* AYXT R EUHE 7% [7]—~ Python X4 .

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. MFTIF T 2B FILE* {9 %5 N B0 86 7 4% [l — 4~ Python ¥ 4. A [H
TPyMarshal ReadObjectFromFile (), MpREBEREATFEMIZSCHRICE Z %14, ARrHRG
SCUFER BRI A A, PAE ST 2 A R W] DATE A s 48R TS 2 B R SO s i — A
FAT o HUA MR B AN 2 B SCHBEERAT A P9 25) AT A oty =K

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. ML 1510 data W len -5 B35 5 0 X %F B B9 8038 7L 1% 9] —> Python
POE -3

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

40 Chapter6. TH

The Python/C API, [F) 3.6.12

6.6 BTSHHMBELE

TERVEIRH CHY FERRECRITI AR, XL Boe 7 FI0. HERIE BFIFEG] L extending-index .
X B R B HE AR W BT = 4>, PyvArg ParseTuple (), PyArg ParseTupleAndKeywords (), DA

JepyArg Parse (), BN 46 XA 5 45 B o5 o8 00 15 19 2 808 0 ek 4 3 28 R 2509 6 71 A
[l TR R A A AT R

6.6.1 BEITS

— AR F AR 0 B 2 AR IC. — MRS TR IA 4> Python X4 EilH 27
PFEE RIS SRR R ITTA . B T ARBISL, — ARG S PSS 2 BTGl 0 X 28 e By By
IR SR FERE TRl T, WG 15 A FEAGRE G B O W X A8 BT
Python XfRFEA; Trii's (1 Wi feidng C ALkt (Ieiide) 2.,

FHBNZFEX

X LA 2 SRV RF X G 4% B 2L B N AF S AT 1) o ARV B AER 0] Y unicode 45 5 & 17 IX Y IR 4R
BT -

— By, YRR E—AREHER R X, XSGRk AT AR R Y Python X445 88, - HaX A4~
Getp RIL XA R AE R . RARR E N REAT A NAEZSE] . B TiXEE es, es#, et and et #.
SR, M4—"Py_buffer Z5MPRIE, HAEMZE XS, BT AR & 7R 5 (0 X A~ o X, B
TEPy_BEGIN_ALLOW_THREADS HtH, W DAEA w]AZ B R AR B/ INBS a5 1 55 iy R g XUz . PRI, IR
AW PyBuffer Release () TEMRGEARAR AL LT ECEAEZ AR W ff)

BRAES A, ZrpRERNSPASL LK.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’ s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

WE: pra # FEXWAER (s#, v, F%), RKIESHHZB A E py_ssize_t) ¥EEF Python.h
L2 Bt PY_SSIZE_T_CLEAN ZZ [XAl WA 9w L, KER— Py_ssize_t Python
JCR/NEAMA R — int B, FEARRKN Python AP RF&MAE, HIkE Py _ssize_t MisF3CHF int
A Bif—HE N PY _SSIZE_T_CLEAN X%,

s (str) [const char *] Kf—4> Unicode X G54 il— M8 M FAFEHE I C F55F. —ANREHE I — DN EAFEN
TR, XN FRBRIEE B N TR B . C PR RO SE9R K. Python PR EEAREML S
AR TR RS s, —4> ValueError F# 245 % . Unicode XL @E LA 'utf-8" 4
Mo C 4. WSRHEIREIK, —4> UnicodeError RH#HI K.

) XAFIE R AR Zbytes-like objects, QNSRRI Z ARG EATFALN C 74575, Bl
i os EERAEEGPyUnicode FSConverter () VEN #10J%,

3.5 filCEESE: DART, 24 Python “FAFHR Al 2| T i A null 55 55255 % TypeError .
s* (str or byfes-like object) [Py_buffer] x5 14252 Unicode X 4 32K F A R AN 4 . B i E

HARHER Py buffer Z5MIRIE. X BERAY C FAFER T REAL & ik AR NUL “#45, Unicode %} 48 i
rut£-8" GIHFEALIN C AR

6.6. BITSHHLEETE M

The Python/C API, [F) 3.6.12

s# (str, Hiftbytes-like object) [const char *, int or Py_ssize_t] 1 s*, BT ERNEZL WXL, 45817
HEEMAS C AR R, S— 2481 C FAFR RS, B MR EMKE. PR TR & i A/ null
F7. Unicode XJR#PHE LT 'ut £-8" galbibal C FA4FH .

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, int] Like s#, but the Python object may also be None,
in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] X Fk G — DI FEAT RS ZEAL R — 8 1 T4 19 C F5
BFi ERHER Unicode XH4. WL AUR B A HEAR mull 475 HURELA T null 47, 5] %—
4~ valueError JH .

3.5 fRCHEAE: DART, 4515 KB] AR null P45 & 5| % TypeError .

y* (bytes-like object) [Py_buffer] s* A5, A$23Z Unicode %4, N2 Rmar g, dodd2 Eh

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’ t accept Unicode objects, only bytes-like
objects.

S (bytes) [PyBytesObject *] ZK Python Xf R 2 —>bytes KRR, BA MM, WIRAR—
PMFRRBNR AT K TypeError . CAREMURERN]PyObject * KA,

Y (bytearray) [PyByteArrayObject *] ZizK Python X} % @& —A> bytearray FHIX 4, A R M 5
oo WMRAZ—A bytearray RENR LTk TypeError 7FH . CARWWEEFEW HPyobject
HA,

u (str) [Py_UNICODE *] f—~ Python Unicode X} 5544k 18 [n]— A~ PAZS 2 1LY Unicode 4728 i X [48
Efo ARG N—~Py_UNICODE 85145 Btk , #76& T — 48 B SAF7E Unicode ZZnf X145
o TR Py_UNICODE B FAF S B RT 4 R 6T (16 A7k 32 fir). Python FAFHRUAM
RNEEAL R AN null 15,5 WIRAE, 51K —4 ValueError ¥ .

3.5 Wi s DARG, 4 Python “FAFHR ARl 2| TR ARY null f245 5 25| % TypeError .

Deprecated since version 3.3, will be removed in version 4.0: X &2 [H R £t =,y _UNICODE API; i iF #%
ZPyUnicode_AsWideCharString/().

u# (str) [Py_UNICODE *, int] u {72850, FAEmi4> C 285, 25— D855 1—4> Unicode HHRZAFX,
TASREREE. BV null AR
Deprecated since version 3.3, will be removed in version 4.0: X &2 |H R £t :,Py_UNICODE API; i iF #
ZPyUnicode_AsWideCharString/().

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R X Py_UNICODE API; it %
ZPyUnicode_AsWideCharString/().

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R FE X Py_UNICODE API; i iT %
FPyUnicode_AsWideCharString().

U (str) [PyObject ¥] %K Python X5 jg—> Unicode X5, A L ULMAYHA . WA Z—4> Unicode Xf
Z25| Kk TypeError JFH . CARWARESEWNPyobject « KA,

42 Chapter 6. TH

The Python/C API, [F) 3.6.12

w* (W[55 bytes-like object) [Py_buffer] X >3 15 3 32 A1] 52 B AT 525 G A7 D3 LI IR R BT &
fefbfipy_burfer FiMIRIE. ot KT REFFAEIRA MY null T35, 24 Zeof DX 5 i) 1 3 7 2508
HPyBuffer Release (),

es (str) [const char *encoding, char **buffer] s 17255, ‘B¥ 4551 Unicode FRHFEAFHENIX ., B H
ARV A NUL 45 2 g i 5 ds

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg ParseTuple () S Bi—1 RS R/NGMIX, K89 b0 f5 ALt +5 DUE A Geh X HicE:
“buffer 5| X AHr 2 FEHI AAFEE] T E A SHEAEME ST Pyiem_Free () RREIRC LRI
WX,

et (str,bytes or bytearray) [const char *encoding, char **buffer] il es F[F], & T A EHRLE AN
FAFHRSR. MR, BREEANSECR LS A 2RAL.

es# (str) [const char *encoding, char **buffer, int *buffer_length] s# (255, 4T 4Ly Unicode 45
FANTFRZ X, AME es KKK, BEARFEARENE S NUL F4F,
It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char * *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the

encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

A PR

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

TEX PG, *buffer_length RSt B4 o 4 A NUL i8R i) K JEE

et# (str, bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] fil es# [, &%
TAHERSE AR FEIFRNS. Mk, BIREANSECE R IA.

#8¥
b (int) [unsigned char] Ff—/~E17 1) Python B RUEE AL)l — N TCAF5 O AL, fAAEFE— 1> C unsigned
char 258y,

B (int) [unsigned char] §—~ Python #& B340 Bl — M B ARG A i 8T, (FAEFE—1 C unsigned
char R,

h (int) [short int] > Python B AUV i —4> C short int 487,

H (int) [unsigned short int] }f—~ Python 3 ZU%£4k ii—4~ C unsigned short int JTLAFSEREAL, HA
A Y) A

i (int) [int] $f—> Python FERFEA Y —~ C int FEHL,
I (int) [unsigned int] $§—> Python FAUELAL i —4~ C unsigned int JEFFSHEAL, HNA A A

6.6. BITSHHLEETE 43

The Python/C API, [F) 3.6.12

1 (int) [long int] > Python ¥ AUH 4k 4 C long int KEEHY,

k (int) [unsigned long] §—> Python ¥R (L i— 1> C unsigned long int JEAFS KB, JEAKA
it AR

L (int) [long long] f—> Python BAULAY I{—4> C long long KRB,

K (int) [unsigned long long] ¥—> Python #&Z%£4k ili—4~> Cunsigned long long LS KKIEAL,
AN AT i 4 TV A

n (int) [Py_ssize_t] §—> Python 3HU%E4k il —/~ C Py_ssize_t Python JuRK/NJEHL,

c (bytes s bytearray KJ¥h 1) [char] Ff—> Python Fi7 KM, f— KK 1 1) bytes B #H
bytearray %2, ALK —1 C char F&H5LH,

3.3 fOES#: Ui bytearray KBRS .

C(str KIEHM D) [int] £F—4> Python F4F, W—PKEN LAY str FRFHXIR, FAM—4 C int $ARE
it

f (float) [float] }§—~ Python 3% S5 —14> C float %A%,
d (float) [double] ¥~ Python 7% S 8444 A4 C double AU TR SEL.
D (complex) [Py_complex] — Python &g B4 Il,— 1 C Py_complex Python &g 425,

HipatxR

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’ s reference count is not increased. The pointer stored is not
NULL.

o! (object) [typeobject, PyObject *] Kf—~ Python Xf RAEA—A> C $84F. Fl 0), (HE2FEMWA C 34
H5— 42 Python AN bk, 55 — AR AFMEXT R85 C A2 & (PyObject * A8 &) bl W2
Python X} JBURN}, &l TypeError 5.

0& (object) [converter, anything] i —> converter BREF—> Python %t G4 # fi— 4~ C 48 &, XFEIHA
SH BN R REL, BN A CAR R HE (R ZRAAY), #44bkh void * AL, converter
PR IR X FER IR FH -

status = converter (object, address);

object* 7% 1555 184 Python 3t %5 B *address Zf5 A\PyArg Parse* () B void* KEISH . kA
(1) status j2 1 RGBT, O FCFEARRI . BFARTING, converter™ J3 251 X —N 77 B &1E
7% *address [N2

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

3.1 Ji ¥ #%: Py_CLEANUP_SUPPORTED ¥/

p (bool) [int] WM& ARIME T NE (— A KB I B L5 R AT) C true/false BEAUE ., Q12K
FRANEE “1¢, BWE “0“. BIEZAEMAYAR Python {. 2 I truth ZREUE £ 5T Python 411 faf i
WENERER.

3.3 HUHTIA.

(items) (tuple) [matching-items] X5 0755& Python [¥ 31, BERKEIE items g HITH AR C 4
IAATKF Y. items Fdg— AL RS TE . 8 kg R TR BE A i E

44 Chapter 6. TH

The Python/C API, [F) 3.6.12

i R B CBRAAEEE TSR LONG_MAX FRiE) ZRIRERT, SR EAT B TIE 24 B JE AR ——4
BT BRSO BIERS 5 S G R AT (SEPs b, C iR 5 S7EE AR 1 BLAt_E 3 i 282
et —— W ME T RE & KAL) -

AT AT H b Ay — LA AT B RR AR S . XN R AR EAE R S . B

| FHITE Python ZH5| K | N S ECER @ ATk Ry . C A8 8 B Al SR EWI b B ——4—
PMAESHAATREN, PyArg ParseTuple () AREVFFIMINAY C AL H (L H) KINA

$ PyArg ParseTupleAndKeywords () only: FEBAYE Python Z:4i4 3% th) R S BN Z 00] X EF S50
T, ARG R ETF SR RS, ST AR | U —EAE S BT .

3.3 BUHTIA.
o A BITHIPIRE AR B B TR T KA N BRI B P B BB (PyArg_ParseTuple () B
BEIRR) “RERE” 5.
i REUEICIPIRERAR A S SR AT R B RAE N B D B RBOA R BRI R .« A1 HIEHER .
FERAEAT] 2 B it Python XfR 5 HIE 45 Rka9 5115 AZLEBENHIT HTE

2 K L8 pR RS RIS b e A AL T4 H il s) A SR s X e IR AT il A G, A
—SufEL, 0 ETE AR R TS R AR, XSS B B X OLT, BATM A ICREC RS
E AR AT

N TN, arg XS IEBCAE 2O HAS AR . Wi, PyArg parse* () s¥LRIA true, X
ZENTRN false H HE K—AE@H R . YPyArg Parse* () BB AR X BT AL 2R M 25 K
I, RS R A DA K JE S A% s B el A) AE B AS g B

APl

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
ST — BRI 24, KB SEAS BB F AN R AL B . IR IE] true; KRR] false
I H5 1 ZAMH I 575

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
MpyArg_ParseTuple () M, SRIMIEHEZ A va_list BRSO A i RIS L.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

3.6 WU 5 VN T positional-only parameters 1 32 3

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words(], va_list vargs)

MPyArg ParseTupleAndKeywords () FIE], SR EREZ—> va_list 2B S50 A 2 v A5 B E 1Y)

int PyArg_ValidateKeywordArguments (PyObject *)
R M Y KB SRR AR . XA BRECA N T PyArg ParseTupleAndKeywords () A
PR, J5# C &N XAk A .
3.2 JRHTIA.

int PyArg_Parse (PyObject *args, const char *format, ...)
BRECH T R AT “IHZRALY R S H R X U Bl) METH_OLDARGS SHEHT 7 kM
Python 3 WS IR . IXRAERE A TR ARSI S @ pT, I+ HAE R EMPRES Ty RZ B e piigek, 2
ANEHTZEW . B8R BT ocd, SRmn] 5e R XA~ B rgidkee i i

6.6. BITSHHLEETE 45

The Python/C API, [F) 3.6.12

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

— AT 7 E SRR R LA SRR . SRR RS L R B %
TR E T kB W METH_VARARGS . W SBR S TCHI AR IA args TR BAE N B il —
ASEERICAL . JCALR R AL 2 A2 min I HANEIE max; min 71 max Al REAATH . ONK S Hn e
B REL, B NSRRI PyObject « RAVERIIIEE EATRHBIRIEN args BIH; E
PR EL S RG] . ATE args BRI AT S BN BRI & 58 AT IR 1L . BR B0 S iR 1]
true F HANR args A2 ol ol 00 & 55 B TR IR] false; A1RKIN T 251 K —1P R

KRR B R B, BUA _weakref i BIAHUTI R LT | A IR TR :

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

}

return result;

}

EAME TP PyArg UnpackTuple () 5B T PyArg ParseTuple():

’PyArg_ParseTuple(args, "O[O:ref", &object, &callback)

6.6.2 BIETE

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () #A—HAE I, HAYEREAMMTRS A ECES R RICA
Aol RS R R SS, BRE None; MR B AEG—MEIT, BRI g
TCRIR BT —XE 5. I 5 (s A 4 Al ARl &R [l — SR/ 0 303 1 gocdl

Y N AFGAE X B A S RO UM 38 R M BT bt 0 s Al s# AR BoT, &3 TR B
. EHEZRMAENSEH XXM EEARA S HPy _Buildvalue () BN RS H., A,
R AT malloc () H HAFELM NS L 845 Py_Buildvalue (), WRIFISHEA TTE
FEPy _BuildValue () IREIBEM free ()

TE R, G 5 i RIE AT, B35S O WA RA% IR 2R [Python X467 ;
TS 0 NItk C AL i (ER4R) sl

TREBIINES S, WIEAT, B oM SAER A AT T S P2 (B AT, Wst). Xn]
PABEAR A (A% A A A LA S Py AT B

s (str or None) [char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"' encoding.
If the C string pointer is NULL, None is used.

s# (str or None) [char *, int] Convert a C string and its length to a Python st r object using 'ut£-8"' en-
coding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [char *] This converts a C string to a Python bytes object. If the C string pointer is NULL, None
is returned.

46

Chapter6. TH

The Python/C API, [F) 3.6.12

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (str or None) [char *] FI “s“—%.
z# (str or None) [char *, int] F “s#“—FF,

u (str) [wchar_t *] Convert anull-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data to a Python
Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [wchar_t *, int] Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode
object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [char *] FI “s“—kf,

U# (str or None) [char *, int] I “s#“—FFf.

i (int) [int] Ff—4> C int BEAELAY F{ Python BRI 5L,

b (int) [char] §—4> C char “FAFAEL (LAY Python FEAIXF R

h (int) [short int] #f—> C short int SFR&AUHEAL i Python BEAUN 4

1 (int) [long int] $—4 C long int KEEAELAY A Python BEHIN 4,

B (int) [unsigned char] ¥/~ Cunsigned char L5 F5FAHAL I Python B AUN 42 .
H (int) [unsigned short int] ¥—{> C unsigned long JLAFS 4R AL A Python #E NI 4 ,
I (int) [unsigned int] }f—/> C unsigned long JLAFS 4R RIELAY il Python XA 4 ,

k (int) [unsigned long] ¥—/ C unsigned long JLf5K BRI AL B Python 3 AU 42
L (int) [long long] 5 4 C Long long K KHETHE{LA Python B4 .

K (int) [unsigned long long] ¥—> C unsigned long long JLfF 5K KIEREE(L L Python B}
%

n (int) [Py_ssize_t] ¥—14> CPy_ssize_t J5HI%E4k A Python #&7Y

c (bytes KA 1) [char] Ff—4> C int BEAU R FAFFE LN Python bytes KN 1 IFIX L.
C(str KD D) [int] Kf—4> C int BAARRYFAFEN Python str KN 1 IFRFHRXTS .

d (float) [double] K~ C double WU AT s AU ALk Python 77 ;S AR AR .

£ (£loat) [float] Kf—/> C float HURGREIF ML A Python 7 SR IUAF .

D (£ #0) [Py_complex *] f—4> C Py_complex KA RN Python 247

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’ t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] F1 “O“fH A .
N (object) [PyObject *] F1 “O“fH[A], SR B FH AIEMXTZB95] T M@/ HSH0 £ H x5
Fa i B T e AR S

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) asits argument and should return a [new
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Fi—A~ C 42 & 74§54 i Python JCZH I CRFpAH R 1 e R AR
[items] (list) [MRMICEK] K4 C A E 7550 K Python 51| I LRHFH [¥ T R A &

6.6. BITSHHLEETE 47

The Python/C API, [F) 3.6.12

{items} (dict) [HIRIITH] KA CASHFHFAR AL Python 7l &—XFHELER) C AL N —
ATCEBAT A, 7B TR

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Mpy_Buildvalue () fld, SRIMEHEZ—A va_list B SHOMAZ 0 AL BRI S8

6.7 FREMEX L

7 ET el ORI B AL T A A

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
FRIEAS AT formar MUESNSEL, AL size 7358 sor o 320 Unix T 01 snprintf (2) .

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
P X FRF R formar FNAS &S HH)FR va , ANteh it size FA5 2] str o 52 W Unix F M} 50
vsnprintf (2) .

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

FLRERFIRER str[*size-1] FEAR BB IR L2 '\O" o BAIMNAEG AR size FH45 (RFEL5REM '\0") F|FEFFH.
PR B ER ST/ str = NULL,size > O #l format !'= NULL.,

If the platform doesn’ t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

B I (rv) 4595 20 bR O X e A 2
* M0 <= rv < size, HBFAHSINNEH v DNFRFREA st ORISR sor vl 1 1\ 0" F77)

* Yrv >= size , HFHHBREEWIFBBITEEWH ov + 1 FAENPIX. FEXFELT,
str¥[*size-1] B "\0"' .

* Hrv < 0, KRELERFRYFN . TEEXFEFLT, str¥[*size-1] FEALZ "\0" , {E2 str B HARTR
IIARBE Lo FERIT DR BT REF 5 .
PATR BRI B 5 1 5 PR T R Y A R BRI
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
FEFAFE s B4y double 2RA, RIGINT| % Python S5 . Hs2 77 H3 BYAE A% B T4 Python
float () WIERBHEZHFRBRNES, BT s UAA RIS RS . FAn UM T 214 13 X
1

If endptr is NULL, convert the whole string. Raise ValueError and return -1 .0 if the string is not a valid
representation of a floating-point number.

U5 endptr R NULL , AT RS HUREHF AR IFAF *endpt - BB A 55— AR BEHE 0744
WERFAF R RGBSR R A R RE T, K+ endptr WE NI FAFRIF L, 51K
ValueError %%, FHikH -1.0 .

WIR s FR—DNKKMAREEEFE— R B0RE (LU, "le500" ¥EF L 16 L7
) RFUER overflow_exception & NULL ik 0] Py_HUGE_VAL (HiEX4MIAS) HHAKET
S . FEHAN 7T, overflow_exception MZFE [—> Python EX4; 5]k FHEH &R -1.0
o TERXPAMEL T, &'E *endptr 7 MEIREZ JFHH— T4

WERAERE I 10 e AR AR AT A A R (EC AN — DA R BB R) |, BT 24 1Y) Python 4 3 HR [l
-1.0,

48 Chapter6. TH

The Python/C API, [F) 3.6.12

3.1 UGBTI

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
e double val —AME format_code, precision Fl1 flags W) 545 ER
e XU AEN T H P Z—, e, "B, "£', 'F', g, "G BUE et XPT et BRI
0. 'r' A& HEE ThrE k%L repr () #5K.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed to-
gether:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.
e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

* Py_DTSF_ALT means to apply [alternate] formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

3.1 BUETIA.

int PyOS_stricmp (const char *s/, const char *s2)
FRARARS KNG . ZEEILFS stremp () B TAERXAME, R T RN,

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)

TAHRARD KNG . ZRBILFS strnemp O LA AME, 2B TN,

6.8 5

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. 3% [F] 4 HIFRA T P9 B R A F L, QiR S /1A WUEAE AT, WHRE
LFRR SRR .

PyObject* PyEval_GetLocals ()

Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’ s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
R frame 4B IEAEIATHIATS o

const char* PyEval_GetFuncName (PyObject *func)
MR func ZeR%. KBELBIXTGE, WHAREIERAFR, HMERE func B4 FR.

const char* PyEval_GetFuncDesc (PyObject *func)
A func FZEALIR AR FAF AR o & MBS R B4 T 0,] constructor |,] instance] 1] object J.
YpPyEval_GetFuncName () BIZERZER:, 4552 func FIFHIAR.

6.8. R 49

The Python/C API, [F) 3.6.12

6.9 mAFEDREMSZIRThEE

int PyCodec_Register (PyObject *search_function)

WA B) AR T R 2R eR

TERREIER, HEm#k encodings 0, WEPRMARTEM, R ERACTRRREIERH L.
int PyCodec_KnownEncoding (const char *encoding)

AWML E encoding W ZwfEISGAS & 75 CAFAEM IR 1 8¢ 0. BLRREUE RENIZN .
PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)

2 B g B AR i Y APL.

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)

17 B G fir i g B A RS APL,

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec &1k API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
N4 ERY encoding BRI — G T3 R AL -

PyObject* PyCodec_Decoder (const char *encoding)
NEREN encoding BRI— RIS R KL -

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
R ERY encoding 3Bl—4~ IncrementalEncoder X4,

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
SHZE E W) encoding $El—-~ IncrementalDecoder X4,

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
WY E) encoding $EL— St reamReader) L.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
NS EW encoding FEL— StreamWriter] K%L,

50 Chapter6. TH

The Python/C API, [F) 3.6.12

6.9.2 FF Unicode 4wt IBIEFRYEME API

int PyCodec_RegisterError (const char *name, PyObject *error)
TELR FE W name 21 JE MRS 1R A0 38 5] pR KR error o 2 [R1 %] R BSCRFAE — 1> J R A 71 388 3] 0 Y5 4 S 1)
PFITCIE SRS 0 7 s I HL name B4 %€ 4 encode/decode b KT I 1Y) error JEZ I pht 2 2 ¢ it s A 1A
e

Z | O KR K & ¥ % — 4 UnicodeEncodeError, UnicodeDecodeError &}
UnicodeTranslateError I SEBifE N B S50, H b & X T M85 A5 8CF 1 7 9 S
TR T A A RS B (1S 4 Unicode Exception Objects T fEFEBUNAE B BREEN) o 2% 0l R £
WG| KGR W S, B AR Bl — AN)87 8 S B R i A i e, AR — N RR Im S
IREEL, 2B I AR AT 26 E RS i/ AR 4

B R A <O SR [m] -1

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for ['strict] will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Gk exc VEh 4
PyObject* PyCodec_IgnoreErrors (PyObject *exc)

2 unicode 1%, BRI RAVEIA .

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
i 2 B U+FFFD %4 unicode 2 iB4E 1%

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
i XML 455 | 4 unicode 2% .

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
(P RS SUAF (\x, \u Hl \U) 4 unicode Zi 4% .

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
AT AN .y B SCRPE G unicode St A %

3.5 BUBTINA.

6.9. JRARILSEEMEXISThEE o1

The Python/C API, [F) 3.6.12

52 Chapter6. TH

CHAPTER /

MRMEE

AF PRI Python XIRACH,, Fib HRM, LA Z RIS R (Flan, Prafuadesy, Sy
FIRR) . MR GRBIEATE I, 1474 —4 Python 54 .

XL R R AN AT B TR IE WAL AT B 0, In— B Ry List_New () A, (HH ARG H 3%
AWK E 2 “NULL“fA{E.

7.1 HRMY

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

53

The Python/C API, [F) 3.6.12

Note that exceptions which occur while calling _ getattr__ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’ s tp_getattro slot. It looks for a
descriptor in the dictionary of classes in the object’ s MRO as well as an attribute in the object’ s __dict___
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’ t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’ s tp_setattroslot. It
looks for a data descriptor in the dictionary of classes in the object’ s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’ s
__dict__ (if present). On success, O is returned, otherwise an At t ributeError is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
A generic implementation for the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

3.3 BUHTMA.

int PyObject_GenericSetDict (PyObject *o, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

3.3 BUHTMA.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of ol and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=

54 Chapter 7. #i&¥4B

The Python/C API, [F) 3.6.12

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

#i(E): If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

3.4 Wi B4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

PyObject* PyObject_ASCII (PyObject *o)
As PyObject_Repr (), compute a string representation of object o, but escape the non-ASCII characters in
the string returned by PyObject_Repr () with \x, \u or \U escapes. This generates a string similar to that
returned by PyObject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and, therefore, by the print () function.

3.4 W ¥4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is
equivalent to the Python expression bytes (o), when o is not an integer. Unlike bytes (o), a TypeError is
raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1, &N 55

https://www.python.org/dev/peps/pep-3119

The Python/C API, [F) 3.6.12

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must
not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression callable_object (*args, **kw).

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args.
If no arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL on failure.
This is the equivalent of the Python expression callable_object (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue () style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is
the equivalent of the Python expression callable (*args). Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs () is a faster alternative.

3.4 i H 5 The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *o, const char *method, const char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on fail-
ure. This is the equivalent of the Python expression o .method (args) . Note that if you only pass PyObject
*args, PyObject_CallMethodObjArgs () is a faster alternative.

3.4 R T4 The types of method and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyOb ject * arguments. The arguments are provided
as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

3.2 R #4584 The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

56 Chapter 7. #i&¥4B

https://www.python.org/dev/peps/pep-3119

The Python/C API, [F) 3.6.12

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type (o).
This function increments the reference count of the return value. There’ s really no reason to use this function
instead of the common expression o—>ob_type, which returns a pointer of type PyTypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *0)
Return the length of object 0. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using

__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).
3.4 FCHTINA.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del ol[key].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.1, &N 57

The Python/C API, [F) 3.6.12

7.2 il

int PyNumber_Check (PyObject *0)
MRG0 FRAECARIPINN, IRIIE 1, BWEREMER. XA RO 2 R

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o02.

PyObject* PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python
expression ol @ o2.

3.5 BT

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
[classic | division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is [approximate | because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *o0l, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

58 Chapter 7. #i&¥4B

The Python/C API, [F) 3.6.12

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise and | of 0l and 02 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xorx (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise exclusive or | of o] by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise or| of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression 01 | o02.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement o1 += o02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 —-= o02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= 02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement 01 @= o2.

3.5 BT

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is [approximate | because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 **= o2 wheno3is Py_None, or
an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass Py_ None in its place (passing
NULL for 03 would cause an illegal memory access).

7.2. ¥l 59

The Python/C API, [F) 3.6.12

PyObject* PyNumber_InPlaceLshift (PyObject *o0l, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise and] of ol and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise exclusive or] of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise or] of 0 and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
AR [RERY n FEASR LA base BB FATHR IR IR . XA base ZHLLIE 2, 8, 10 8 16 o XT3k
ez, 8, w16, R FAFE R AN EHEEARH op, T00", or " 0x . HISR n g Python Hif#E
Boine 2880 ghdeiE i PyNumber Tndex () KB LB T,

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
R 0 R— MR RREAL, IR o Fedfe ii—A> Py_ssize_t (USSR . AR KRN, &1l
-1 51Kk
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or

OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
IR 02— DRGIEEEL (f74 nb_index i B I tp_as_number JLAFLH) MLRIE 1, AHIGRIE 0 o X
AR TR R

60 Chapter 7. #ZR¥ERE

The Python/C API, [F) 3.6.12

7.3 FR5IiY

int PySequence_Check (PyObject *0)
WX SLARMEF I, REORI] 1, HWERE 0. HEEERNAA __getitem () JyiAHY Python
FKaR 1, BRAFENTR dict B2, PRUNTE— g OL T JoiRsi e B B SCRi 8. IR B2 2l
A7,

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
JEIFR 51 v *o* BIRF G, SRR 0] -1, 4124 Python [“len(0)“Fik k.

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
FERIGE v IR(EST 0 WU5R i e . RN 251 R E IR E -1; JRZhRHR[E 0, 5XAH4 T Python 1]
oli] = v. BLEREL & BB v 5.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_ti)
MIERXTSE 0 B95E i ZoeK . RIMEHRE] -1, XAH24 T Python iE/4] del olil.

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
RIS v IAEZE P A5 o BIM il B 2 Y]y XA T Python ififi] o[11:12] = v

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
BB FEFUAT 5 0 WM i1 3] i2 BYT R . RIGIHR] -1, XA 24F Python 141 del o[il:i2],

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
R[] value 75 o W I REL, BIRIEETS o [key] == value WHEMEE . RIGEHRF -1, XA
F Python ik 0. count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
i€ o R value, AR o "PIYIE—TTET value, MR 1, FHIGRIE 0o HIFEHS, &0 -1, XAH
4 F Python A, value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
RAIZE—AEG] *i*, Hp o[i] == value. H45HT, 121 —1. #124TF Python) “o.index(value)“ZFik=.

7.3. FliL 61

The Python/C API, [F) 3.6.12

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as a list, unless it is already a tuple or list, in which
case oisreturned. Use PySequence_Fast_GET_TITEM () to access the members of the result. Returns NULL
on failure. If the object is not a sequence or iterable, raises TypeError with m as the message text.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. ~ Return the ith element of o, assuming that o was returned by
PySequence_Fast (), ois not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast () and
ois not NULL.

THTERE, WERSZRHE IS, FT 70 Bl vl e 2 R E (7 items B4 PRI, 7R 81 ok BB R S0
EOIEE-T ki edikiga

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. = Macro form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

7.4 BRG Y

Z W PyObject_GetItem(). PyObject_SetItem() 5PyObject_DelItem(),

int PyMapping_Check (PyObject *o)
Return 1 if the object provides mapping protocol or supports slicing, and O otherwise. Note that it returns 1 for
Python classes witha __getitem__ () method since in general case it is impossible to determine what the type
of keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
JEENIN IR IR o AR, RIGINTIR] -1, 53X 4T Python #3A3 1en (o) .

PyObject* PyMapping_ GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
TEXR o TRFFAFER key WU FIE v RIS A -1, JXAH2 T Python if541) o [key] = v. 7S
WPyObject_SetItem(),

62 Chapter 7. #i&¥4B

The Python/C API, [F) 3.6.12

int PyMapping_DelItem (PyObject *o, PyObject *key)
MXFG o PRI R key HYBEGF. RIS IR M) -1, XA 24T Python i /4] del olkey]. X

BPyobject_DelItem() H—" 514,

int PyMapping_DelItemString (PyObject *o, const char *key)

MAFE o MREERTF AT H key BRI . RIGINHRIA] -1 3XAH24T Python i541) del o[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
WRWLNS G B AT B key WIR] 1, FRIER[E] 0. JEXAH 24T Python Kk key in o. BLERELE RS
AT

WHEBEWA _getitem__ () &M E K EMN S H R/ 200500 2208 BUAT 32455 &
HPyObject_GetItem().

int PyMapping_HasKeyString (PyObject *o, const char *key)
TRWLS G BAT B key IR] 1, A3 UR[E] 0. 3XAH 24T Python %Kik key in oo BUERELE RS
kT
WHEBEEWMM _getitem () Ty YK A K A2 B R ORE 2 BlBR WC. SEAR RO OIS U
fﬂPyMappingﬁGetItemString()o
PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. On success, return a list or tuple of the keys in object 0. On failure, return NULL.
PyObject* PyMapping_Values (PyObject *0)
Return value: New reference. On success, return a list or tuple of the values in object 0. On failure, return NULL.
PyObject* PyMapping_Items (PyObject *o0)
Return value: New reference. On success, return a list or tuple of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL.

ER 2R

A P BR L
int PyIter_Check (PyObject *0)
R true , QRIS o STRFEEAAR AT .
PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

BREREGERE — A DEER, C AU NI%E R,

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next (iterator)) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

(FItgkss)

7.5. XMW 63

The Python/C API, [F) 3.6.12

(R —H)

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
¥
else {
/* continue doing useful work */

}

7.6 i

& Python #f m] fiff il — L8305 R A B X iR J2= N AR B BB 22 0P 97 1) USRS RAFE N B 1) bytes M
bytearray AW &—2840l array.array XARMY M. 5 =J7 R BB T HFIRRY H RGN & L ENTH
CRRAL, G T R BAE BB 4%

BRI P & — R H CAYIE S, (BEATRA T BRI A Gt X SR I S AL . AR L
DU, A BT b DX o R e A

Python PAZZ i #33 IEAE C)24 ERe B FER DI AE . BRI ANT7 I

o FEATREIX T, BB T AR A G XEEOT, AT ATFERIRZZWIKGER. %
L 38 IA8ME EAE Buffer Object Structures —5 713

o TEHTE M, A IURIER T IRASE mx R R R Z B s s (PIan—DInkmigEs) .

LR IN R G4 bytes Al bytearray £PAH TR ATFE M RBZEMIX . T 4 I HAL
Jst; Bl arcay.arcay FRATFRGCE AT LR ST (.

P X O ITH S 1 — MO SCHEXT R write () ¥ AR A] DA ok — R A F A5 T X 42 T LA
AN SR write () TIERGERT AR AR, HAR L, W readinto () TJFESHN
AT Geirh DX L R R AT DA B A v sl F 208 5 R i G X 341

XF O RE A S, AR XORIRI—A B X5 & ap .
o HHIEMMSECREPyObject_GetBuffer () B
s Wl PyArg ParseTuple () (SEFIHSZZ—) HAEA y*, wr or s* 14X KA H—,

TEEXFIEOL S, YA BRI KA] PyBuf fer Release () o MIRMARERI, TTRES FH%
ol A P

7.6.1 ZRXLEH

e X G (ol o) SRR “buffers”) XFTF1F OB R B M 75— AR ATT4 Python F2/7 RAERA M. €
AR AFIVEE P DL R AL BEEATS I N AFBREIRE TS, AT AR 5 HUREAE AT &5 24 JT 47 Python 2 /7
5o WAFRTLAE C ¥R — R BRI, tnT DURTERG 13 B B R G0 P 2 i 1 TR AR LR N AR
oE AT DA RAL BB AL N AR A S A AL B -

5 Python fFREAR A TTHY R ZHREAEIAUAE, G XA g Pyobject HigfH e B C 45, X B EA]
A PAARF R RN . MFREO G O B B gR)y, AR —AS A AL XA .

ARXWMMHEHFFHNROEEUWY, HSHE PR3 24848, BRREPRENE, S
RlPyObject_GetBuffer ().

Py_buffer

64 Chapter 7. #i&¥4B

The Python/C API, [F) 3.6.12

void *buf
T8 1) i v X 7 B) 2 S g5 A AR I 48 EE . X T DA S5 R 7 IS 2 P PR N A7 B v R AT A 07 B
Bihn, MR st rides (HPTREFR I NAEIRIOARE o

X Fcontiguous , AR Hed, {EAS WALk .

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer Release (). The field is the equivalent of the return value of any
standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView_ FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t 1en
product (shape) * itemsize, X TIELEAH, X 2R KE . X TIRES%0H, 0
KB R B ELFREX, WZKERFEAZKE.
24 2% o X 2 38 oF PR IE 7% 22 P 09 SR AR BUEF, A 5 M ((char *)buf) [0] up to

((char *)buf) [len-1] B A H M. FERZEHWE LT, LW KK HPyBUF_SIMPLE
B PyBUF_WRITABLE.,

int readonly
Zh X N R e es . W FBt PyBUF_WRITABLE Frifatil .

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but i tems i ze still has the value for the original format.

MR shape F£1E, MAHZEN) product (shape) * itemsize == len {RIELE, HHETTLA
{fifitemsize EFHFE X,

If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.

WF Bt PyBUF_FORMAT Frida il .

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu £ points to a single
item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsize MUST beequal to Ien.

Shape JEARECA T I(EM PR Z#E shape[n] >= 0. shape[n] == 0 X—EEFREFRHIER.
W25 B Z W complex arrays

shape ZCZH X100 H K i H i

7.6. iy 65

The Python/C API, [F) 3.6.12

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride A MRECEH AP (AT DUORATATRE R X T 5 HUEE, AP IREH o R 5L, (HR U A Ress Ak
M strides[n] <= 0 BEN. BL(EBIE S Fcomplex arrays .

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

Python Imaging Library (PIL) F{#] T X M H AT XK. S Hcomplex arrays T fRANAT X
FE— N PR T .

suboffsets £ 20T F ki 2 H i .

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyOb ject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |] d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be |] d to any of the flags except PyBUF _SIMPLE. The latter already implies format B (unsigned

bytes).

66

Chapter 7. #iZ4%B

The Python/C API, [F) 3.6.12

AR, HiE FRBE

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

ik 3 % | B | TREE
B[R | WRERE

PyBUF_INDIRECT

=] =] LL
PyBUF_STRIDES = = NU

NULL | NULL

P

PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

ELEMRIER

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

LES R | 5k | TRBE | 08

= =
PyBUF_C_CONTIGUOUS & = NULL C

= =
PyBUF_F_CONTIGUOUS = = NULL F

| NULL CiF

PyBUF_ANY_ CONTIGUOUS

PyBUF_ND 2 | NULL | NULL C

Ty
B TR RS L bR L (15 2 S SR IR, ER I HLBR B IO ALty
.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () todetermine contiguity.

7.6. ZEHihiY 67

The Python/C API, [F) 3.6.12

5K K | iR | FIRBE | Rk | %X
PyBUF_FULL = 2 MR | U 0 =
PyBUF_FULL_RO = | WARFTEMI | U | 1500 | &2
PyBUF_RECORDS = | R NULL U |0 "
PyBUF_RECORDS_RO 2| NULL U ETRE
PyBUF_STRIDED | e NULL U 0 NULL
PyBUF_STRIDED_RO =R NULL U 15{ 0 [NULL
PyBUF_CONTIG & | NULL | NULL C 0 NULL
PyBUF_CONTIG_RO & | NULL | NULL C 150 | NULL

7.6.3 EZH4A
NumPy-Ritg: FRF0LIE

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both
shape and strides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] *
strides[n-1] item = * ((typeof (item) *)ptr);

As noted above, bu £ can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

(F ks

68 Chapter 7. #ZR¥ERE

The Python/C API, [F) 3.6.12

(R —H)

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shapel[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+titemsize <= memlen

PIL-R#E: R, SEFFRBE

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. Insuboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.6.4 ZPXHEXER

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’ t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>obj to NULL and return - 1.

On success, fill in view, set view—>ob3j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

7.6. iy 69

The Python/C API, [F) 3.6.12

void PyBuffer_ Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (constchar *)
Return the implied i temsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ') or Fortran-style (order is ' F ') contiguous or
either one (order is 'A"). Return 0 otherwise. This function always succeeds.

int PyBuffer_ ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' (for C-style or Fortran-
style ordering). O is returned on success, —1 on error.

This function fails if len != src->len.

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
Fill the strides array with byte-strides of a contiguous (C-style if orderis ' C' or Fortran-style if order is 'F ') array

of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,

int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to readonly.

buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporter and return O. Otherwise, raise
PyExc_BufferError, set view—>o0b]j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 1B Al

3.0 Hﬁféﬁﬂ%-

PR%UE Python 2w “IHZEnh " APT 4Ly 7E Python 3 i, BUMMME AL, HIXLL R A1)
?Mi"ﬂﬂ/\@%ﬁﬁ 2x (AN . ENTRUNER 200 Vsl ARA RS, (BB A e Tt I 1] %
FRAEXT BIr gk T I A A= i JET I o

Wi, #WEEARFEfPyobject_GetBuffer () (BE G PyArg ParseTuple () BREUGEMHEH v* B w* #4 X,
) KRR G, FAEZ P A P PRI A PyBuffer_Release ().

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
L@*Aj‘ﬁﬁ VERET A AR SN 185 . obf SR R B P AF eop e O . B
R[]0, Ff buffer ek NAFHIIEFF K buffer_len 1% Ry vp XA FE « B AR] -1 FFi& ¥ —1> TypeError,

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
A [l — A 1) A S AL R R) L B AL AR 5L . oby SRS BT BEGE g 11 I paR (o]
0, FF buffer 5 WNAEHUIEFERE buffer_len PR IX K. AR IRE] -1 HE— TypeError.

int PyObject_CheckReadBuffer (PyObject *0)
AR o SCRFERBCAT g o LR [E] 10 AGRIE 0, BRI R 2 AT .

70 Chapter 7. #i&¥4B

The Python/C API, [F) 3.6.12

Note that this function tries to get and release a buffer, and exceptions which occur while calling correspoding
functions will get suppressed. To get error reporting use PyOb ject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

AR Bl A)]G N AP R B . oby MR BC AT S5 1 . WIS [O, Ff buffer B
FFHINEFFF buffer_len A G XA . AR [E] -1 H5E—4> TypeError,

7.7. |BZ Y 4

The Python/C API, [F) 3.6.12

72 Chapter 7. SR¥i14E

CHAPTER 8

BEFRXRE

A I BRI BURR 2 TR 28 Python X 4 388, IR BB SAL A EADEAR B — N s R EM
Python & FH2IE]— X%, (HAHE T B4 BA IEMAERL, WM e a8 88 B, Baxt
SRAERNTH, EHHPyDict_Check (), ARIEAYLEMIZET Python X5 IERIM) “ Kt

#x .. While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 BEAMR

AATHHIA Python ZERXH G A —SLHIXNFR 5 None.

8.1.1 HEMKR

PyTypeObject
XA C Z544 1 T4 built-in 2878
PyObject* PyType_Type
X2JE T type X4 type object, EFE Python 2T type s [HIXI 4L
int PyType_Check (PyObject *0)
?H%Xﬁ% 0 —NRASG, WIRAAR TARMERAN R LRSLH], REE. 7EHE AL TR
.
int PyType_CheckExact (PyObject *o)
WERM LR 0 @—PMRAXS G, (A RIRHESAR R TR, IRIEH. EHEFTA L TIREE.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

73

The Python/C API, [F) 3.6.12

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not part
of the limited API.

3.2 BCHTNA.
3.4 Jft ¥4 The return type is now unsigned long rather than 1ong.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’ s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the t p_new slot of a type object. Create a new instance using
the type’ s tp_allocslot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’ s base class. Return O on success, or return —1 and sets an
exception on error.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)

Creates and returns a heap type object from the spec. In addition to that, the created heap type contains all types
contained by the bases tuple as base types. This allows the caller to reference other heap types as base types.

3.3 JHTNA.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.

3.4 BTN

74 Chapter 8. E#HMRE

The Python/C API, [F) 3.6.12

8.1.2 None Y&

WYER, None fJPyTypeOb ject A HAEFE Python / C API H/AFF. fT None ZHf, WX EARR (#8
CHiH ==) MAE®T. BTHENER, %4 PyNone_Check () %L,

PyObject* Py_None
Python None ¥4, FRhZ(H. X MMREATE. EFERT TR PULATH AR 52

Py_RETURN_NONE
IERALRER B C RN Py _None 3R] (HEZYE, I None 95| HiHE0FREIE.)

8.2 F{EMR

8.2.1 BRI

P A B CER H DMEER N RBE B 30

R, KZ%H PyLong_As* APL R[] (REE X A)-1 , BLES - BWEFEX Ik, WM
W PyErr_Occurred () FX4y.

PyLongObject
7 Python BE [PyObject F2AL,

PyTypeObject PyLong_Type
XAPyTypeObject KSR Python A, 5 Python JZ2H1 () int AH[H .

int PyLong_Check (PyObject *p)
MRS E PyLongObject B{PyLongObject WA, 1&[A| true ,

int PyLong_CheckExact (PyObject *p)
AR SHIEPyLongObject (HANZPyLongObject WFAL, R[] true,

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_t v)
Return a new PyLongObject object froma C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_tv)
Return anew PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongOb ject object from the integer part of v, or NULL on failure.

8.2. HEMR 75

The Python/C API, [F) 3.6.12

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in st which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Convert a sequence of Unicode digits in the string u to a Python integer value. The Unicode string is first encoded to
a byte string using PyUnicode_EncodeDecimal () and then converted using PyLong_FromString ().

3.3 HUHTIA.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. M54t p B —4> Python #%§. W[PAff/IPyLong _AsvVoidPtr () iRIAIH
FRETMH

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, firstcall its __int__ ()
method (if present) to convert it to a PyLongObject.

W obj EESH T long MUTERE, & overflowError,
RAFSRERE] -1 o i PyErr Occurred () FiHibi L.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to O and return —1 as usual.

KRR -1 . M PyErr Occurred () SRIHE X,

long long PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertittoa PyLongObject.

sk obj e T Llong UFER], &b overflowError.
KRR E] -1 o [PyErr_Occurred () iyl X,

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or —1,
respectively, and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return —1 as usual.

RAEREREHRE] -1 . fifPyErr_Occurred () RiHE X,
3.2 JGHT A

76 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.
KAGERRN -1 .] PyErr_Occurred () RiHE L.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t) -1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Returna Cunsigned long long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.
3.1 ffiu 5484 A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertittoa PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

KRR E] -1 . i PyErr_Occurred () RIHE X,

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obyj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject, first
callits __int__ () method (if present) to convertitto a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY ULLONG_MAX + 1.

AR RRRE] -1 . i PyErr_Occurred () RIHE X,

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. = This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2. HEMR 77

The Python/C API, [F) 3.6.12

8.2.2 Tk iF

Python *Fi T RIER AN BEY TR . A Py_False fll Py_True WN/R{H. B, IEHRYE)E
ARSI REAE I TR fE. (22, FAERTH.
int PyBool_Check (PyObject *o)

2k o & PyBool_Type KA, MR [true,
PyObject* Py_False

Python 1) “False“%f 5 . A ZREAIEM L. BNZEH MG TR E R —FEE T .
PyObject* Py_True

Python [“True“Xf 5. ZAGIALM V. ERREHEM MGG B .
Py_RETURN_FALSE

MEREGR I Py_False I, FFEHIMERGIHHEL

Py_RETURN_TRUE
MEREGRE] Py_True W, FFEEIMEREIHITEL

PyObject* PyBool_FromLong (long v)
Return value: New reference. 134 v ISEFR(E, 1REl—4> Py_True 8{# Py_False HIH5I -

8.2.3 FE & (Floating Point) ¥4

PyFloatObject
XA C A pyobject B FHRAMFK A Python iF Fi N 4.
PyTypeObject PyFloat_Type
XRMNET CFRAMpyTypeobject HUFK Python ¥ RSB, FE Python JZTHIFZEAL float 2]
— 5.
int PyFloat_Check (PyObject *p)
L) SHE—A C KB pyrloatobject i# & C KMpyFrloatobject WFAHRMET, REH.

int PyFloat_CheckExact (PyObject *p)
Dby SR —A C KB pyFloatobject (HAE C KM pyFloatObject RN, R&IFH.
PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyF'loatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatOb ject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
& [l — K pyfloar WAL C K8 double, R floar /K& —A> Python 3F MM 4, (Hi2 &
__float__ () Jrik, XIS EEHIIM, 5 pyfloar Feife ili— 7 i R I XS J7 ¥R]
-1.0, FrPANIZIEM C REkPyErr_Occurred () ftrbiz.
double PyFloat_AS_DOUBLE (PyObject *pyfloat)
&[] —A> pyfloat W% C double i, EEAHT AL A
PyObject* PyFloat_GetInfo (void)
Rl —A> structseq L0, H AL EA K float BURTEE . S/ MERIERMERIEE . Bkt float .h iy
AT A
NGIEROE
double PyFloat_GetMax ()
AR [1] f5e K P i A FRPE i 8 DBL_MAX 4 C double .

78 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

double PyFloat_GetMin ()
i Al fge /N KRR A — AL IE I 58 DBL_MIN “} C double .

int PyFloat_ClearFreeList ()

ERERE IR € ClIE AT PN GRS k4@

8.2.4 BHMR

M CAPIF, Python [N G il P AR HR > SE B : —@FE Python A2)3l /il 1) Python X4, 55 4h#Y
e MR EIEESEY) C Z5H1k . APTHRAE T s B M BRI .

RREHW C &k

s BE R R 2 XS R REA SHOT YA R T R R B, #Refeid “(EH” TS5 ST, s
1T HEAS APL

Py_complex
X — A, Python 52 BOG RAIERR 311 C G A . 28073 BRI 0N G 14 R B3CHTS 1 i S AU 4544
WA A B RS, e TRl S8 :

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

REIPHA LA,] CRBPy complex iR,

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
R EA SR 2E,] CRAPy complex FIR,

Py_complex _Py_c_neg (Py_complex complex)
IR B complex I TE, F C 2Py complex Fin.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
R EPA SRR, B C KB Py complex F£iR.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

BB, M CEBpy _complex FoR.
W divisor 25, XA TTEIREBIZEHRE errno S5 EDOM,

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
1R8] num) exp K&, i C2EBpy complex IR,

ISR num N7s H exp R IESLEL, XA R EIZE I errno S EDOM,

8.2. HEMR 79

The Python/C API, [F) 3.6.12

FRE#HH) Python &

PyComplexObject
XA CE A Pyobject HTIAAEK—> Python ZHXIR .

PyTypeObject PyComplex_Type
K@ T Py Typeobject K Python SZ HRAU S, 7E Python JZHIYZEAL complex Jg [fl—4
POE-3

int PyComplex_Check (PyObject *p)
MR EMERRE—A CRMpyComplexObject i F & C KMpyComplexObject HFHM, iR[u|
H.

int PyComplex_CheckExact (PyObject *p)

WREMSEGZ A CEKBlpycomplexObject (HAR C FBPyComplexObject FAHAL, kA
B,

==

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. 131 C 258 py complex WA B— 1Y Python & 5ixt4 .

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. 1R real 1 imag 12 [8]—/ N8 C 22 pyComplexObject R4 .

double PyComplex_RealAsDouble (PyObject *op)
PA C 2% double iR A op [SEH.

double PyComplex_ImagAsDouble (PyObject *op)
PA C 2K# double iR [8] op FAIREES.

Py_complex PyComplex_AsCComplex (PyObject *op)
BRIEE op 1) C 2K pPy_complex {H,

WK op Ajg—> Python SN, (HZF A __complex_ () Tk, EANTIESELBOAM, *F
op FeHe)i —A~ Python SR G o ARIUNF, BTk 1] -1 . 0 15 LB (H.

8.3 FFIIRR

FPAR G — B AEAE T — T e 4595744 Python i35 B AR E R PSR R

8.3.1 bytes %

B DT R ESEAE AR R RS gAY, X5 K TypeError,
PyBytesObject

XFhPyobject 1§ RAFKIR—> Python “FATXIR.
PyTypeObject PyBytes_Type

PyTypeObject [HFFIHZF—> Python F{5JEAL, ¥E Python JZTHI'E 5 bytes @AlRIIXT 4.
int PyBytes_Check (PyObject *0)

WERXFR 0 2 A RE 1 28 AU TR S, R A true.
int PyBytes_CheckExact (PyObject *0)

WX 0 BT IR, (AR PRI TIAAYSLH], WIRME true,

PyObject* PyBytes_FromString (const char *v)
Return a new bytes object with a copy of the string v as value on success, and NULL on failure. The parameter v
must not be NULL; it will not be checked.

80 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return a new bytes object with a copy of the string v as value and length len on success, and NULL on failure. If v
is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
#Z—A> Cprintf () WAKHY formar “FAFERAIMT AL RS R SEL, TS5 Python TR AR/ NIF
R P SHUEAAF A SE R FATER R GR . ARG I SEL A C A HAMUE IS format 755
R TR Y. . VPR TR A S A e

BRFF | KA TR

53 TiE R 3% TAE

sc int — AP, BERA A CIEF A

%d int Exactly equivalent to printf ("$% d").

%u unsigned int Exactly equivalent to printf ("$u").

$1d R Exactly equivalent to print £ (" %1 "y,

%$1lu unsigned long | Exactly equivalent to printf ("$1u").

%$zd Py_ssize_t Exactly equivalent to printf ("$zd").

%zu size_t Exactly equivalent to printf ("$zu").

%1 int Exactly equivalent to printf ("$1i").

$x int Exactly equivalent to printf ("$x").

%s char* A null 2% (5511 C FAFEUEH .

$p void* —A> CHREH AR RIE . BALEN T print £ ("sp") HES
Eﬁ%%?ﬁﬁ 0x 3k, AMERGETH L printf E’J%Jthzsﬁ/ o

%E‘EiiﬂﬁﬂB@T%iﬁ?%‘%%?ﬂ%i‘%ﬁ?ﬁ%E‘J/H—/%F)fﬁ NERFEREE RIS/ R, HEFIAZ RIS
PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
HPyBytes_FromFormat () SEAAHE, BT ERENNSEL.

PyObject* PyBytes_FromObject (PyObject *0)

IR A RSB DR G o
Py_ssize_t PyBytes_Size (PyObject *0)

MR ARG *o* AT
Py_ssize_t PyBytes_GET_SIZE (PyObject *0)

FEWAN PyBytes_size () (HRRIAEIRIAT .

char* PyBytes_AsString (PyObject *o)
Return a pointer to the contents of 0. The pointer refers to the internal buffer of o, which consists of 1en (o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
WA PyBytes_AsString () {HEAWH AL .

int PyBytes_AsStringAndSize (P)Objecz *obj, char **buffer, Py_ssize_t *length)
iy AR B buffer 1 length 32 [8] DA null S 2 1 EFFIRIRTE obf N2 .

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

RG] obj MINFZ0R, EMRRBEE —MNEIMIEFTT ORBAE length J:‘ItP)a ZHE AN T
RSk E M, BIEENI{#] PyBytes_FromStringAndSize (NULL, size) GIEHZXN£. B

3. FIINR 81

The Python/C API, [F) 3.6.12

AT TC . WIR obj ARAA R —DFHRAS, WrPyBytes AsStringAndSize () $fikln] -1
H5| % TypeError.

3.5 HUHEAE: DART, 50X GR A BUR AR 2 F A5 & TypeError.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own the
new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old
reference to byfes will still be discarded and the value of *bytes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
TE *bytes WRIEH TG, HAp U E] bytes () newpart BN . MRAS 2 W/D newpart (175
iR

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is [immutable | . Only use this to build up a brand new bytes object;
don’ t use this if the bytes may already be known in other parts of the code. It is an error to call this function
if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it
may be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 FTRAMR
PyByteArrayObject
XAPyobject [TIAFEIR—A Python FH HAIN R .

PyTypeObject PyByteArray_Type
Python bytearray 257K Py TypeObject HISEHI; X5 Python 2 bytearray EAHE N4,

KBRER

int PyByteArray_Check (PyObject *o)

BXFR 0 AT ARG Fg— AP WA IR 2R RSB, R .
int PyByteArray_CheckExact (PyObject *0)

BXFR 0 2 —NFHHARNMNER, (AR — DT EAHRAR 7RG, RIE.

EH#= APl B%

PyObject* PyByteArray FromObject (PyObject *0)
FRAFAEATSLIL T 2% F R0 BIXTR o, 3R Wl —ASE) 8N R

PyObject* PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray Concat (PyObject *a, PyObject *b)
BRIV a F b IR A — AN G5 R HT 7
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

82 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Ft bytearray 1] NFBZE DX K/ INJEHE A len,

Mt

XTI AR AEVE AU RS, ENTA AR
char* PyByteArray_AS_STRING (PyObject *bytearray)
C ¥ PyByteArray AsString () WIZEMAS.

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
C ¥ (PyByteArray Size () WA .

8.3.3 Unicode Y4 HiRTE

Unicode &

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, unicode objects can internally be in two states depending
on how they were created:

* [canonical | unicode objects are all objects created by a non-deprecated unicode API. They use the most efficient
representation allowed by the implementation.

e [legacy] unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_READY () on them before calling any other APL

Unicode 3£#Y

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

3.3 OB

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

3.3 ffit ¥ 58 In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected a
[narrow] or [wide] Unicode version of Python at build time.

PyASCIIObject
PyCompactUnicodeObject

8.3. FFIIMZR 83

https://www.python.org/dev/peps/pep-0393

The Python/C API, [F) 3.6.12

PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’ t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

3.3 BUBTINA.

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the [canonical | representation. This is required before using any of the access
macros described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

3.3 BUBTINA.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the [canonical | repre-
sentation (not checked).

3.3 BUBTIMA.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *o)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_ KIND () to select the right macro. Make sure PyUnicode READY () has been called before
accessing this.

3.3 G

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode_ KIND () macro.

3.3 BUBTIA.

int PyUnicode_KIND (PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the [canonical] representation (not checked).

3.3 BUBTINA.

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw unicode buffer. o has to be a Unicode object in the [canonical | representation
(not checked).

3.3 BUBTIA.

The Python/C API, [F) 3.6.12

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

3.3 BUHTMA.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

3.3 BUHTMA.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the [canonical | representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

3.3 BUBTINA.

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
[canonical | representation. This is always an approximation but more efficient than iterating over the string.

3.3 BUBTINA.

int PyUnicode_ClearFreeList ()
R IR [PR 2% H 4L

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_ GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

3.3 W ¥ &%: This macro is now inefficient —because in many cases the Py UNTCODE representation does not exist
and needs to be created —and can fail (return NULL with an exception set). Try to port the code to use the new
PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

8.3. FIIFtg 85

The Python/C API, [F) 3.6.12

Unicode =&

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether c/ is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py _UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether c#/ is an alphabetic character.

int Py _UNICODE_ISALNUM (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as [Other] or [Separator | , excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py UNICODE ch)
Return the character ¢ converted to lower case.

3.3 Jift#& 2. [This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

3.3 jiftf& EL[F] This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

3.3 fiftf% 2. [FJf: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

86 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return -1 .0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py _UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py _UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC0O0 <= ch <= O0xDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Create a new Unicode object. maxchar should be the true maximum code point to be placed in the string. As an
approximation, it can be rounded up to the nearest value in the sequence 127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.

3.3 BUBTINA.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Create a new Unicode object with the given kind (possible values are PyUnicode_1BYTE_KIND etc., as returned
by PyUnicode_ KIND ()). The buffer must point to an array of size units of 1, 2 or 4 bytes per character, as
given by the kind.

3.3 BUHTMA.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Create a Unicode object from the char buffer u. The bytes will be interpreted as being UTF-8 encoded. The buffer
is copied into the new object. If the buffer is not NULL, the return value might be a shared object, i.e. modification
of the data is not allowed.

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Take a C printf () -style format string and a variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into it. The variable arguments must be C types
and must correspond exactly to the format characters in the format ASCII-encoded string. The following format
characters are allowed:

8.3. FRIINigR 87

The Python/C API, [F) 3.6.12

%% RiE A LF% FAE

$c int BATFRE, oo C Il ERYRAL

%d int Exactly equivalent to printf ("$d").

$u unsigned int Exactly equivalent to printf ("$u").

%1d KA Exactly equivalent to printf ("$1d").

11 R Exactly equivalent to print £ ("$1i").

%$1lu unsigned long Exactly equivalent to printf ("$1u").

$11d long long Exactly equivalent to print £ ("$11d").

$111 long long Exactly equivalent to printf ("$11i")

$1llu unsigned long long | Exactly equivalent to printf ("$11u")

%zd Py_ssize_t Exactly equivalent to printf ("%$zd")

$z1 Py_ssize_t Exactly equivalent to printf ("$z1i")

%zu size_t Exactly equivalent to printf ("$zu")

$i int Exactly equivalent to printf ("$i").

%X int Exactly equivalent to printf ("$x").

$s char* PA null "2 [FAFY C 4804 .

Sp void* —C ?H%JrE’JJr/\iFr&ﬁJ%/Tﬁ/ito FAEMT printf ("sp") {H
E%Bﬁﬂ%w\?ﬁﬁ 0x I3k, NERGFH L printf Bt
Ao

SA PyObject* ascii () WHMEH.

$U PyObject* A unicode object.

SV PyObject*, char * | A unicode object (which may be NULL) and a null-terminated C character
array as a second parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str ().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

#(E): The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for "$A",
"$U", "$S", "$R" and "$V" (if the PyObject* argument is not NULL).

3.2 i H 4 Support for "$11d" and "$11u" added.
3.3 fR s 5 Support for "$11", "$11i" and "$zi" added.

3.4 Jjx ¥4 Support width and precision formatter for "$s™", "$A", "$U", "$V", "$S", "S$R" added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)

Identical to PyUnicode_FromFormat () except that it takes exactly two arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)

Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ ing the returned objects.

88

Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

3.3 HUHTIA.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t fto_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

3.3 BUHTMA.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.

Return the number of written character, or return —1 and raise an exception on error.

3.3 HUGHTIA.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

3.3 BUBTINA.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode_READ_CHAR ().

3.3 OB

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return a substring of sz, from character index start (included) to character index end (excluded). Negative indices
are not supported.

3.3 UM

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string « into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of). buffer is returned on
success.

3.3 BUBTIA.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

3.3 BUBTINA.

8.3. FIIFtg 89

The Python/C API, [F) 3.6.12

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’ s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_ FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’ s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_ AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Create a Unicode object by replacing all decimal digits in Py UNICODE buffer of the given size by ASCII digits
0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py_ UNTCODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

3.3 BUHTMA.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free the
buffer). Note that the resulting Py_ UNICODE * string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.

3.2 OB
Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

90 Chapter 8. EFRIMRE

https://www.python.org/dev/peps/pep-0393

The Python/C API, [F) 3.6.12

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Decode a string from the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is NULL. str must
end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

hz%:
The Py_DecodeLocale () function.

3.3 BT

3.6.5 Jj ¥ 4% The function now also uses the current locale encoding for the surrogateescape error handler.
Previously, Py_DecodeLocale () was used for the surrogateescape, and the current locale encoding was
used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

3.3 BUBTINA.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Encode a Unicode object to the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is NULL. Return
a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

L4
The Py_EncodeLocale () function.

3.3 BUHTMA.

3.6.5 Jift B % The function now also uses the current locale encoding for the surrogateescape error handler.
Previously, Py_EncodeLocale () was used for the surrogateescape, and the current locale encoding was
used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects —obtained directly or through the os.PathLike interface —to
bytes using PyUnicode_EncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

3.1 BUETIA.

8.3. FFIIMZR 91

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, [F) 3.6.12

3.6 W H S A% — " path-like object

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects —obtained either directly or indirectly through the os .PathLike
interface —to str using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result
must be a PyUnicodeObject * which must be released when it is no longer used.

3.2 JRHTIA.
3.6 W H S 32— path-like object .

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-

not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().
W%

The Py _DecodelLocale () function.
3.6 it #%#: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Decode a null-terminated string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
3.6 it i 4k: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting
bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding isinitialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

hz%:

The Py _EncodeLocale () function.

3.2 BUHTIMA.

3.6 Jilt i #4#: Use Py_FileSystemDefaultEncodeErrors error handler.

92 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing —1
as the size indicates that the function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size
is not NULL, write the number of wide characters (excluding the trailing null termination character) into *size.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_Free () to free it) on success. On error, returns
NULL, *size is undefined and raises a MemoryError. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions.

3.2 RGBT

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system
calls should use PyUnicode_FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is [strict] (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and

8.3. FIIFtg 93

The Python/C API, [F) 3.6.12

errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNTCODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API,; please
migrate to using PyUnicode AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

3.3 BUBTIMA.

char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

3.3 BUHTMA.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsUTF8String (), PyUnicode AsUTEF8AndSize () or
PyUnicode_AsEncodedString().

The Python/C API, [F) 3.6.12

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to [strict | .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTEF32 (). If consumed is not NULL,

PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is [strict| . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_ AsUTF32String () or PyUnicode_AsEncodedString ().

8.3. FIIFtg 95

The Python/C API, [F) 3.6.12

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to [strict | .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is [strict] . Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_ UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_ AsEncodedString ().

96 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTF 7 (). If consumed is not NULL, trailing incomplete

UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,

int base64 WhiteSpace, const char *errors)
Encode the Py_ UNTCODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL

if an exception was raised by the codec.

If base64SetO is nonzero, [Set O | (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python [utf -7
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTICODE API; please
migrate to using PyUnicode AsEncodedString ().

Unicode-Escape Codecs

These are the [Unicode Escapej codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the [Raw Unicode EscapeJ codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is [strict] . Return NULL if an exception was raised by the codec.

8.3. FRIINigR 97

The Python/C API, [F) 3.6.12

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsLatinlString () or PyUnicode_ AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCITI (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsASCIIString () or PyUnicode_AsEncodedString ().

98 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes —ones which cause a LookupError, as well as ones which get mapped to None, OxFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is [strict] . Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as [undefined mapping] and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API,; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. FFIIMZR 99

The Python/C API, [F) 3.6.12

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Encode the Unicode object using the specified code page and return a Python bytes object. Return NULL if an
exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

3.3 BUBTINA.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

100 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] at the given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), O otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

3.3 UM

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_ Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively. It
is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

* NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

8.3. FRIINigR 101

The Python/C API, [F) 3.6.12

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
A combination of PyUnicode FromString () and PyUnicode_InternInPlace (), returning either a
new unicode string object that has been interned, or a new ([owned |) reference to an earlier interned string object
with the same value.

8.3.4 jtil (Tuple) ¥4

PyTupleObject
XAPyobject FRIZE— Python T4 .
PyTypeObject PyTuple_Type
pyTypeObject KB L —1 Python JLAH LA, XY Python ZH) tuple ZHFIXILR.

int PyTuple_Check (PyObject *p)
R p R— TN G TCH R T I AU LB, R] B .

int PyTuple_CheckExact (PyObject *p)
Wk p R—DICHN G, AR —DICH TRAR B, R B

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_Buildvalue (" (OO)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and sets an IndexError exception.
PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it as a new tuple.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return O on success.

102 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

H5E): This function [steals] a reference to o.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_ SetItem (), butdoes no error checking, and should only be used to fill in brand new tuples.

#5[E): This function [steals] a reference to o.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList ()

R R PR 2% H 2.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Create a new struct sequence type from the data in desc, described below. Instances of the resulting type can be
created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

3.4 BUHTMA.

PyStructSequence_Desc

(RSl S I BN PTR Y SE

15 C Type FX
name char * LR ES GBS
doc char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject*. The index in the fields array of the PySt ruct Sequence_Desc determines which field
of the struct sequence is described.

8.3. FIIMR 103

The Python/C API, [F) 3.6.12

m | C aX

Type
name| char name for the field or NULL to end the list of named fields, set to PyStructSe-
* quence_UnnamedField to leave unnamed

doc | char | field docstring or NULL to omit

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStruct Sequence_New (PyTypeObject *type)

Creates an instance of fype, which must have been created with Py St ruct Sequence_NewType ().
PyObject* PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)

Return the object at position pos in the struct sequence pointed to by p. No bounds checking is performed.
PyObject* PyStruct Sequence_GET_ITEM (PyObject *p, Py_ssize_t pos)

Macro equivalent of Py St ruct Sequence_GetItem().
void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)

Sets the field at index pos of the struct sequence p to value o. Like PyTuple_SET ITEM (), this should only be
used to fill in brand new instances.

H#5E): This function [steals] a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of Py St ruct Sequence_SetItem().

#5[E): This function [steals] a reference to o.

8.3.6 List (&%) Wit

PyListObject
XA C LA Pyobject BTHAAFK— Python F|FXI R .
PyTypeObject PyList_Type
XN @ T PyTypeobject KR Python 53R LM . 7E Python JZHEIFIZKAL 1ist 2 [F—AXf
%o
int PyList_Check (PyObject *p)
R p R— IR G 2 — P REB 7RG, R E,
int PyList_CheckExact (PyObject *p)
M p R MINIRNG, HRARIIFREAN T HASLHIN, R,
PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Bl 4 len KT ZHEF, R 95 %% & 00 H 96 8% R NULL. B AR R AR 2K C o
¥pySequence_SetTtem () W% APl 8{F] C BR$(PyList_SetTtem () ¥ HKENE
SEXAEDN Python AU 2 FFIXANREE

104 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

Py_ssize_t PyList_Size (PyObject *list)

AR 0] list AV FXFGRRILE; EXEFETAEIIRM RPN Len (1ist) o

Py_ssize_t PyList_GET_SIZE (PyObject *list)
TR C EfpyList_Size () , WA,

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position
must be positive, indexing from the end of the list is not supported. If index is out of bounds, return NULL and set
an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. J2JUAI C BREPyList_GetItem() , ARG,

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or —1 on failure.

il pessss “AiE” — X irem W51 EFE—AXIP R PP R ALE B E A A H S .

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *o)
AR) B RA Py List _SetTtem (). I RGN T 51 £ T Z BCA WA R AL B AT
FEo

W %z “fik” —AXFiem (51 H, (A5PyList_SetTtem () RRIRE T & EFAHMEMYE
B HMBIUR 1E list 1 i 78 AATAT 5 | ECRE B2 .

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
54 H item 30 AFNF 3R list R51%5 index ZHIMIALE . QARG B 05 QAR TR B -1 H1%

BN, HYMT list.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
FEXFG item PSIB|FIZE list WA . QAREIFFIRIA] 05 WERA BN MGR] -1 HRE— A H . Y
F list.append(item),

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Negative indices, as when slicing
from Python, are not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to 1list [low:high] =

itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return O
on success, —1 on failure. Negative indices, as when slicing from Python, are not supported.

int PyList_Sort (Py Objecl *[ist)

Xt list A% H AT IR . BRIE] 0, JRIKTR o XEMT List.sort (),
int PyList_Reverse (P\Object *list)
X list "R A& H BT ISR o BRI 0, SR ISR o KXEFEMT list.reverse ().

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. 32 [\l —ANFiHITCEHX 4, HoA a8 list BINE: ZMMT tuple (list) .

int PyList ClearFreelist ()

R 3. R I ORI A% H &L
SSW%MA.

3. FIIxR 105

The Python/C API, [F) 3.6.12

8.4 HHMUR
8.4.1 syt

PyDictObject
pPyobject ALAEM K —fH Python FFHLYI{F.
PyTypeObject PyDict_Type
PyTypeObject B HIfLE—1H Python FIAIFE . I HL Python g) dict B —MP{k.

int PyDict_Check (PyObject *p)
A p LY R S T R REEC I 6 ul £ true

int PyDict_CheckExact (PyObject *p)
p e —EF Y HEEARR — M T BB BB, R true.

PyObject* PyDict_New ()
Return value: New reference. [R{E—1f #1123 7L, Bir g B [a] 8 NULL.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. J&[8] types .MappingProxyType %4, Tl HtT BT 0 s,
IO T QUL IR AR (A8 el Sh A 2R A A 7

void PyDict_Clear (PyObject *p)
T2 B TS AT B

int PyDict_Contains (PyObject *p, PyObject *key)
WE key e AL ETETF L p o Q2R key VEFE |- p WYFE—ST, MM 1, ARWGRIE 0 o 3&[A -1 FIRH
B o X Z[F] T Python ik key in p.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. 1R |05 p 35 AH [B] 8B X) 8T 2 L

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
i key 1ENEERF value AN FH p o key WhiiNhashable ; IR, &I TypeError 5. L)
:\'BIE] 0 9 %m&ﬁlﬁl -1 °

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyUnicode_FromString (key). Return O on success or —1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
B key MIBRT p HAYZEH o key WAUZ IR WRAZ, WAL TypeError . M
BE 0, KRR -1 .

int PyDict_DelItemString (PyObject *p, const char *key)
TER 54t p o o AT key (NSRS H o JREIINEE] 0, RIGRHR] -1,

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

W EEEMRE, MM _hash._ () Ml _eq () HERTFEMERT A SHME. &
HPyDict_GetItemWithError () 3RB4ERIRE .

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Variant of PyDict_GetItem () that does not suppress exceptions. Return NULL with an exception set if an
exception occurred. Return NULL without an exception set if the key wasn’ t present.

106 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem (), but key is specified as a char*,
rather than a PyOb ject *.

TEHENZ, WH _hash__ () . _eq__ () FEMAIE NIRRT RSB A FE A2
Wi s . W PyDict_GetItemWithError () 48R,

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *default)
Return value: Borrowed reference. Xt Python 211 dict .setdefault () —Fkf. WUIRE key I74E, B
RPIAEF I p BUADO Y (E . WARSENIAAE , B defaultobj — it AFF 1R 0] defaultoby o X~ ER%L
HOUH key WOV BRE—IR, TN R FE B B AIE AR 331 E

3.4 BUHTMA.

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. iR [A|— A& i Frg S{H i Py ListObject,

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. 1R [Al—A~0 & 7 M TG 8 (keys) BPyListObject,

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. 1R[] — A& FrG {H (values) [PyListObject,

Py_ssize_t PyDict_Size (PyObject *p)
REFH AP H AL, ST X p T 1en (p) .

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject *
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

Bian

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

}

?J/ﬁifr AN BAZA i 0) e 2R R o A P Ry, O B (R iy, EAURT AR A A K
A . Bl

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {

long i = PyLong_AsLong(value);

if (1 == -1 && PyErr_Occurred()) A
return -1;

}

PyObject *o = PylLong_FromLong (i + 1);

if (o == NULL)
return -1;

if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;

(Rt

8.4. BE}IIR 107

The Python/C API, [F) 3.6.12

(R —H)

return -1;
}
Py_DECREF (0) ;
}

int PyDict_Merge (PyObject *a, PyObject *b, int override)
XX b HATIEAN, RSB E] F i a. b ATAR—AF M, BUEMT S ffpyMapping Keys ()
MPpyobject _GetTtem() WIXIR. MR override JEAE, WHNRAE b HHR M RN o HEFAER
FHI SRR Do 4, A5 IANSRAE @ v A A [R D 22 R I SBAEL RS o 24 BNy iR] O sl 45| &
SERGER] 1.

int PyDict_Update (PyObject *a, PyObject *b)
X5 C iy pyDict_Merge(a, b, 1) —F¢, #WE{LIT Python) a.update (b), 2 HI7E
Frybict_Update () FE55 ASHA [keys| JEYERA 2 MR B35 AR EEXT)P 24 R
R0 B M5 K E IR -1,

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
K seq2 AN EREAFH BN F M a. seq2 WA 2 1 JIAVEBEDN R TR A PR AR
MAFAE I IS, Q2R override B B)5 i AR SERE Y o 4 BTN R E] O B 45| K S IR [m]
-1. “FHriY Python X f5 (GRIEERRSL) -

def PyDict_MergeFromSeqg2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()

AR . 3%] FTRE I &5 B4k
3.3 HUHTIA.

8.4.2 FEWMR

X—FA AT set fl frozenset WA A I APL ALAT AR TE T 1H 51 H A) B8 5 b7 2 1 T il 42
Xt & i (F FE5Pyobject_CallMethod (), PyObject_RichCompareBool (), PyObject_Hash (),
PyObject_Repr (), PyObject_IsTrue (), PyObject_Print () PAPyObject_GetIter()) B&Hh
2B F I (B F5PyNumber_And (), PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr () PA
K PyNumber_InPlaceXor ()) ¥,

PySetObject
XAPyobject BT RPN HKIRIE set Ml frozenset WRIYNTEE . BREITPyDictobject,
PR A% T /INROT SR A R 2 i R/ (RAGTCAL At =), I BT SRR RO R AR E
Kefe) A W] AR N AR (RGBS RIAEE) o AR 7 BOR N A I HLT RE K
AR o BT IR T8 B 5 A SO APTSRIEST, AN il e R N A (A A

PyTypeObject PySet_Type
XR— N PyTypeobject 5L, Fsn Python set 257,

PyTypeObject PyFrozenSet_Type
XR—APyTypeObject 52, /R Python frozenset 2%,
NHI ARG A TR [6]4E & Python XFRAGFEEF. JSLUM, 33k e i R B tE T TR R AT 15 ALY Python
5.
int PySet_Check (PyObject *p)
R p @A set XFR B & H T IR S B3R [n] FLAE .

108 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

int PyFrozenSet_Check (PyObject *p)
MR p&—A frozenset XREFE & H 1IN SLH] R 5] B A

int PyAnySet_Check (PyObject *p)
WR p B set W4, frozenset XfHE & H IR LB MR 7] EAH .

int PyAnySet_CheckExact (PyObject *p)
W p B2 set MR frozenset XfHIEAEH T ZEA A S5 W3R 7] EAH

int PyFrozenSet_CheckExact (PyObject *p)
WS p &—> frozenset XFGAHANZH AU SLA 3R o] ELAE

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-
able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

THNRECN 728 T set 8 frozenset [SEHIE & H 2B ARG SLH4i

Py_ssize_t PySet_Size (PyObject *anyset)
A set Bf frozenset MR KIE. ZMT len (anyset) . W anyset N2 set, frozenset B
H RSN 25| & PyExc_SystemError,

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
TR PySet_Size (), AU

int PySet_Contains (PyObject *anyset, PyObject *key)
AR FR A 1, WA R 0, WS BEHRNR M -1, R[ET Python __contains__ () J5
A, EKLJ?&TAQZJJHT—WAFFEE’J%A%EELJII IHTRZE Ao QIR key SR ATG A b W 25 5] &
TypeError., I anyset ~NJ& set, frozenset BH TR LFIN &5 & PyExc_SystemError,

int PySet_Add (PyObject *set, PyObject *key)
NI key 3| —A> set SLfl. AT frozenset SLf| (AT PyTuple_Setitem(), BRI K
RERREEECE AT A HADRID 2 B2 HE) . BIIhRE 0, RIEHFRIE 1. 41 key R
ARG 255 & TypeError., QARBAMGK A EIMS5] % MemoryErroro 2R set Njg set 5§
HA 2RI SL i 25| & SystemError,

THNRFCE N T set s T2RAA LB, (HAWT frozenset sH T-2RAAY LB,
int PySet_Discard (PyObject *set, PyObject *key)

WERARFPTFRRRRE] 1, WAL (JoffE) &2E o, BB RNLRE -1, XFAEEREARN
45|k KeyError, W key HANA[MGZE RN &5 % TypeError., A[ET Python discard () ¥,
RS 2% H 3RS TG A B A IR I BT IR G5 S o IR set R Jg set iﬂ?%@ﬂﬂ’b&T’ﬂWA
5| % PyExc_SystemError,

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the sef, and removes the object from

the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)

B2 B B I A B
int PySet ClearFreeList ()

RN o R[] BRI 2% H AL
3.3 BUHTIA.

8.4. BAMR 109

The Python/C API, [F) 3.6.12

8.5 ENMIF

8.5.1 X (Function) ¥

T 48/0 8 Python iR 37 i B ETH]
PyFunctionObject

FIT R C S5k 1A
PyTypeObject PyFunction_Type
X E—A~PyTypeobject SLAIH-3n Python pRECEAL, BEAEA types.FunctionType [1] Python 2
F A TT
int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. &[] 5 CHXT 4 code FIRIPIHTREN G o globals W/FI&— 73, % pREL AT
DAV IF) 42 Ry o
The function’ s docstring and name are retrieved from the code object. __module__is retrieved from globals. The

argument defaults, annotations and closure are set to NULL. __qualname__is set to the same value as the function’
S name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’ s
__qualname___ attribute. qualname should be a unicode object or NULL,; if NULL, the __qualname_
attribute is set to the same value as its __name___ attribute.

3.3 HUHIIA.
PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. 0] {8 BELAEZCAE Y {44H B 0% eR 88X 2 op .
PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. |n] {81 Eil-4x 1} oK S0 AR B9 109 BB B2 opo
PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. iR 8| FREN 42 op 1) __module__ J&¥, B h— & TR AFRF
FFER, HATRAGE I Python AR BCA IR M HABAE BEXT AR
PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
RG] % systemError HIFRIE -1 .

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

RG] % systemError FHHiRE -1 .

PyObject *PyFunction_GetAnnotations (PyObject *op)
Il 3 bR A 1 op BRI . IR DA —{H T 2) i1 7 sl NULL.

110 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
% 5 PRI op W], annotations WhZE J2:—H F-#L o, Py_None.

RSG5 % systemError SR E] -1 o

8.5.2 EREHZMH

SR PyCFunction [t EedR , WK PyCrunction 45 BRI —FF =0, BRER TIRLEM
8 PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
XA PyTypeobject SEHIIFE Python SLBIT LM . "EFFAX Python R ATT .

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type PyTnstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)

R B —ASFY LGB SR, fune NRAEREATIRIRGR , func SETESL BT A5 IV h B B0 1
PyObject* PyInstanceMethod_Function (PyObject *im)

IR] KEREN LB T im B RO R
PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)

FERAW)PyInstanceMethod Function (), W& TEHREM .

8.5.3 HEMR

DRI ER BN R . IR S WIER — D A2 RSBl REETTE (SR —ARMTr
%) BT
PyTypeObject PyMethod_Type

XAPyTypeobject SLBIAF Python J7iERAL. EAEN types.MethodType [i] Python #2574 TT

int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMet hod_Type). The parameter must not be NULL.
PyObject* PyMethod_New (PyObject *func, PyObject *self')
Return value: New reference. Return a new method object, with func being any callable object and self the instance

the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. 32 |7] JeBE3 715 meth)RR BT .
PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. J2 AN PyMet hod_Function (), W& T E51RAG .
PyObject* PyMethod_Sel€£ (PyObject *meth)
Return value: Borrowed reference. 12 |0] JHkE] 71k meth 152
PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. 72 PyMet hod_Self (), EB& T ARG .

int PyMethod_ClearFreeList ()

R R] PR 2% H 4L

8.5. EXYit¥ 111

The Python/C API, [F) 3.6.12

8.5.4 Cell ¥4

“Cell” XM T LI ZAMER G A&, TR NN RE, — “Cell” XE R TAEMHR(E B
B 5IRRIE R EARAE L 1 o AR B 60 75 (R RE P iR AR A X ANERE A S “Cell” 51H . DiAHZ(E
BF, R “Cell” P& HIEITAS Z FICHERT A S . XAt “Cell” X5 pAE R BALHT 5] FH 752 SRR L
PIFRS s RIS H R R AR 2L N 2E . “Cell” XA A 7 AT BEAS KA H
PyCellObject

C MY cell Y1

PyTypeObject PyCell_Type
SHHE cell PRy (HEUE].

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. [A|{8 cell [EIZ s/ cell,

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 LN

RbDXF 52 CPython SCBLAMRIANTY o AU — B ARG E 2 ek b iy] AT AU
PyCodeObject
FFRER AT BRI G0 C G548 . B B mT IS T

PyTypeObject PyCode_Type
K@ PyTypeobject Sffi, HFIR Python [¥) code AL,

int PyCode_Check (PyObject *co)
MR co jE—~ code X4 NR[H] true.

int PyCode_GetNumFree (PyCodeObject *co)
R[] co H A A REL

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyOb-
Ject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int first-
lineno, PyObject *Inotab)
[— A RS g R AR TR — A AN ROk) — A AU, 3
HPpycCode_NewEmpty (). JHPyCode_New () H 7 PAZEE | MER Y Python LA, K 5 45 i
E LA HA .

112 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
R BA R E 4 RS T SR S X 5. X T exec () B eval () A RAYAREXTS
P | VAP

8.6 HAbXtx

8.6.1 {§X (File) ¥

X4 AP A SCIEATAR 1) Python 2 C APL i/ MISEL, B RKHT C ARifEER Zent /O (FILE*) (4.
F£ Python 3w, SCPERIGAMHTRY 1o B, RBURAESRAE R FRYRPTC b VO _EE SCTILAZE. N
AR ORI LT APLO(ESE C (es, 2 TR sP A A AR s B = AU T) 1o
API,

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)
Create a Python file object from the file descriptor of an already opened file fd. The arguments name, encoding,

errors and newline can be NULL to use the defaults; buffering can be -1 to use the default. name is ignored and kept
for backward compatibility. Return NULL on failure. For a more comprehensive description of the arguments,
please refer to the 10.open () function documentation.

B T Python iHAT HCMZMZ, PFILHENS OS SO MR FHRE G 27 A 5 Fh e (11
IR MR) -

3.2 MRSk W% name JBIE.

int PyObject_AsFileDescriptor (PyObject *p)
F5 p KW SRR IR TR int o W2RXF G2 8%, MR Ml HAR . AR EA, TE 0 R
fileno () Jy¥k (WIRMFAE) 3 ZIr bR M — MRS, BEE R SRR EIR W . BCE S8
TER MR T -1

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. 25y T p.readline ([n]) , XPEREMNE p PEEE—F7. p 7T DAE U
MR AA readline () FFYERAETN SR, QR n 2 0, WITCIRIZATHR DT, #SEER—17. W
Fon KT 0%, MM S PR UR B n AT FTRAR AT —EB5r . FEXPAMEDL T, WSz RiE)
KRR, MR EIZEFRE . HR2, AR /N 0, WITEIEKEE SR —1T, (H2 R
B REE, W5k EOFError,

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
iR obj B ARG p . flags WE— K HFIIRF G Py PRINT_RaW; MIBAE, WHAXE str O
AR repr () o MEHRFRE 0, RGN E] -1 FFERCEE 41515k

int PyFile_WriteString (const char *s, PyObject *p)

HATH s BIEEYIE po FRIIEFIEL O, T5E SRl -1, [Elerise G B SMIRIE] .

8.6. Hihytsk 113

The Python/C API, [F) 3.6.12

8.6.2 Rl iR

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.

PyObject* PyModule_NewObject (PyObject *name)
Return a new module object with the __name___ attribute set to name. The module’ s __name__ , __doc__,
__package_ ,and _ loader__ attributes are filled in (all but _ _name__ are set to None); the caller is
responsible for providinga ___file_ attribute.

3.3 BUCHTIA.
34 fRE%%: _ package_ and___loader__ are setto None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule NewObject (), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’ s namespace; this object
is the same as the __dict___ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’ s __dict__.

PyObject* PyModule_GetNameObject (PyObject *module)
Return module’ s __name___value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

3.3 BUBTIMA.

char* PyModule_GetName (PyObject *module)
Similar to PyModule_ GetNameObject () but return the name encoded to 'ut£-8".

void* PyModule_GetState (PyObject *module)
Return the [state] of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m_size.

PyModuleDef* PyModule_GetDef (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’
t created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return the name of the file from which module was loaded using module’ s __file__ attribute. If this is not
defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise return a reference to a
Unicode object.

3.2 BTN

char* PyModule_GetFilename (PyObject *module)
Similar to PyModule GetFilenameObject () butreturn the filename encoded to [utf-8) .

3.2 AECIEIH: PyModule GetFilename () raises UnicodeEncodeError on unencodable filenames,
use PyModule_ GetFilenameObject () instead.

114 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the re-
sulting module object, or request [multi-phase initialization] by returning the definition struct itself.

PyModuleDef

The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_HEAD_INIT.

char* m_name
Name for the new module.

char* m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR () is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m__size is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

3.5 R HE 44 Prior to version 3.5, this member was always set to NULL, and was defined as:
inquirym_reload

fraverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule GetState () may return NULL), and before
the Py_mod_exec function is executed.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule_GetState () may return NULL), and before the
Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may

8.6.

Hiptg 115

https://www.python.org/dev/peps/pep-3121

The Python/C API, [F) 3.6.12

be called before module state is allocated (PyModule_ GetState () may return NULL), and before the
Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as [single-phase
initialization] , and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Create a new module object, given the definition in def. This behaves like PyModule_CreateZ () with mod-
ule_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Create a new module object, given the definition in def, assuming the API version module_api_version. If that
version does not match the version of the running interpreter, a Runt imeWarning is emitted.

H5(E]: Most uses of this function should be using PyModule Create () instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_ AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request [multi-phase initialization | . Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is created,
and the execution phase, when it is populated. The distinction is similar tothe __new__ () and __init__ () methods
of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection —as with Python modules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState ()), orits contents (such as the module’ s __dict___ orindividual classes created with
PyType_FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDe f instance
with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

PyObject* PyModuleDef_Init (PyModuleDef *def)
Ensures a module definition is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject *, or NULL if an error occurred.
3.5 BCHTNA.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_ Slot

116 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

3.5 BUHTMA.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Create a new module object, given the definition in module and the ModuleSpec spec. This behaves like
PyModule_FromDefAndSpec?2 () with module_api_version set to PYTHON_API_VERSION.

3.5 HUCHT A

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)
Create a new module object, given the definition in module and the ModuleSpec spec, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a Runt imeWarning
is emitted.

8.6. Hth¥tsx 117

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, [F) 3.6.12

#E): Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if
you are sure you need it.

3.5 BUBTIMA.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

3.5 BUHTIMA.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

3.5 OB

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMet hodDe £ documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level [functions]
implemented in C typically receive the module as their first parameter, making them similar to instance methods
on Python classes). This function is called automatically when creating a module from PyModuleDef, using
either PyModule_Create or PyModule_FromDefAndSpec.

3.5 BUHTMA.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’ s initialization
function. This steals a reference to value. Return —1 on error, O on success.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’ s initialization
function. Return —1 on error, 0 on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’ s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

118 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def')
Returns the module object that was created from def for the current interpreter. This method requires that the
module object has been attached to the interpreter state with PyState_AddModule () beforehand. In case the
corresponding module object is not found or has not been attached to the interpreter state yet, it returns NULL.
int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule ().

Only effective on modules created using single-phase initialization.

3.3 BUHTMA.

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state.

3.3 BUBTINA.

8.6.3 i%&{t2E (lterator) ¥

Python $24E TN E AR AL . SB— AR F ok R e, BHMNSCR __getiten () HEMAEETH.
5 ZAME T AT RS AN — sentinel {, 741t BRI I AT R A 4, HFTEIR[A] sentinel {E{IF 45 2%
e
PyTypeObject PySeqIter_Type

pySegTter New () JRIIAER RN LN EIFF RN E KL iter () BWERSEIEA.
int PySeqIter_Check (op)

W op MEBR PySeqIter Type NERIA true,

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. 3 [8]—A~ 5 ¥ HLF 5 X 52— i 19 3% 38 seqo 247 91T R BAES| &
IndexError B}, #HE45H,

PyTypeObject PyCallIter_Type
% PycallTter New () Ml iter () WEBREHINSHILAR B E R R LERNL.

int PyCallIter_Check (0p)
WS op AN Pycalllter Type MR [H true,

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. iR [/l — ik Es . 55— S5 callable W] DA ATAT] PAYE A S50
BN FH Y Python W] FH T4 5 AR FHER M 2R mEAR R A R — AN H o 24 callable 1210145 sentinel
FIERT, BARL L.

8.6. Hihytsk 119

The Python/C API, [F) 3.6.12

8.6.4 {zEnzsMit

‘LT‘H‘

ARF” SEIAR GBI R . ENAAE TR R 7l

PyTypeObject PyProperty_Type

B IAFT IR 42

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)

Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)

Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)

Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)

Return value: New reference.

int PyDescr_IsData (PyObject *descr)

TSRS GE descr A K@M, WER] true; QISR 5, WA false, descr WAZH @4 IRFF X
% HAEIRGE .

PyObject* PyWrapper_New (PyObject *, PyObject *)

Return value: New reference.

8.6.5 YK ¥

PyTypeObject PySlice_Type

DIRAMGHZEAXT R . ©5 Python JRII Y s1ice EMFRIMIXIER .

int PySlice_Check (PyObject *ob)

Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)

Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step)
M slice %t slice $iLH start, stop F1l step &5 |5, KPR length, KT length 1)) 5 K4 244/
FER.
BRI O, HASEFR] -1 FF BN E 8 (BRAEEATH SR None HIGHERSA R BEL, 1F
EAME LT 2R A -1 I HEE— 575) .
PRATREAN T F0] B pR 4K
3.2 i &R 2 1l slice TE SIS 2K AR PySliceObject *,

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step, Py_ssize_t *slicelength)
PySlice GetIndices () B FHEEAC. M slice Xt5 slice $2HU start, stop Fll step K515, RFFHKE
WAy length, F-X5U) 7 B BEQRAFAE slicelength w1, IR 52 A S EHEY) 7 — B0 7 k7
574l

SRR O, IR] -1 I HAN BB R

120

Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

3.2 i AR 2 1l slice TE SIS 2K AR PySliceObject *,

8.6.6 Ellipsis &

PyObject *Py_Ellipsis
Python fJ E11lipsis X4 . X REAHIEMITIE. BOAAGAEATHABRT R —FER 7 EET 4L
‘E5Py_None —HZ BRI 5.

8.6.7 MemoryView %5

—A~memoryview X5 C P HIMI L Kk v igR— A DMRATA HoAd X G —FE4% 1817 Python %42 .
PyObject *PyMemoryView_ FromObject (PyObject *obj)
B GE DX 382 116 52 6 78 memoryview XF 5. QIR obj CHFAT G XSt , I memoryview X4
FEATARE LS, BWE R e HiEny, Wal U@ S Ay BT e Wi/ 5 .
PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
18 mem VE- N2 25 0h X A1 5 —4> memoryview X4 . flags 7] PAE PyBUF_READ 8{# PyBUF_WRITE
Z—.
3.3 BUCHTINA.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
g — 1N EEREE MK LM view) memoryview Xf %, X T f&f B) F W & op X,
PyMemoryView_FromMemory () & E1ERE

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
ME LGP IX 2 TR T 82 Al 7 — 4> memoryview X4 contiguous NAEH: (FF TCJ 8% [F’ ortran order 1),
MR NAFRELERY, W) memoryview X G AR FIRNAFE. AN, 5 ilF H memoryview F5 (5 HifH) bytes Xf
%

int PyMemoryView_Check (PyObject *obj)
AIRXTS obj j& memoryview X542, MR true o H HIA RIFAE memoryview 12,

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
A& 0] 5] memoryview -5 HH Ze it IXFA A BIAS U HE 4. mview 52—~ memoryview SL6; XA
A B EAL, PR/t B AR, 75 DR T i 15 XU o

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if

the memoryview has been created by one of the functions PyMemoryView FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

8.6.8 s5&MMH

Python 3§ “5551 M AEoA—IS R . BARYL, AP EEEIS G HRXTS. 5 —Rlie a5t
5, SR RPRUAT REHAE N — IR R AU

int PyWeakref_Check (ob)
W “ob” @E—AHI HEE — XS, Wk true.

int PyWeakref_CheckRef (ob)
N5 “ob” B—A5IH, WM true,

int PyWeakref_CheckProxy (ob)
R “ob” E— ARG, WRME true.

8.6. Hihytsk 121

The Python/C API, [F) 3.6.12

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)

Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected,; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callback)

Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)

Return value: Borrowed reference. iR [1]555 | FIXT G ref 85 | XIS . WERGS | X SARTFAFAE, WHRME

Py_None,

HRE): ARG I IR G — A % A T % TR WA L A 00 P00 s
SORTRERERNSR,, 75 MARIY BRI 20t SR Py TNCREF ()

PyObject* PyWeakref_GET_OBJECT (PyObject *ref)

Return value: Borrowed reference. 25l PyWeakref GetObject (), {HIEI H— P ABEEIAEGE) %,

8.6.9 X%

A RAL X LR G 27 B2 Y using-capsules.,
3.1 BUETIA.
PyCapsule

XApPyobject B TRANKE —MERMHE, LT EE L Python RISFHERME (DA void* fREHITE
) M C el ban oAt C RIS AER A M . ElHE MR8 — Mo b g i C 15 & R8s
B HANRIE, DUE R DANIR BT EAT. X i ad 1 r BB S ABILAR 375 1) 2h A 2 i sk
R C AP,

PyCapsule_Destructor

XN — T gk I — e s, s LT

typedef void (*PyCapsule_Destructor) (PyObject *);

S PyCapsule._New () F3H PyCapsule_Destructor & [H{E 1415 X o

int PyCapsule_CheckExact (PyObject *p)

WRSHE— A PyCapsule WR[H] True

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

122

Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

R capsule B W AR N — IR @M, W] name 244535 E N modulename . attributename.,
R A HAREAE] Py Capsule_Import () T AL capsule,

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_TImport (const char *name, int no_block)
MM capsule JE 1T A TG0 C X ITEE . name JE2: 1V 448 € BYER E A4 FR, 5 module.
attribute HH—3. PRAFFE capsule H) name W/ 5¢ 4 VL B FAFER o QIR no_block R EAE, WIPA
T R AR ((F Py Import_ImportModuleNoBlock ()). MM no_block “NAR(E, WAL
SRR AR (B Py Import_ImportModule ().

Return the capsule’ s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule GetPointer () for information on how capsule names are compared.)

PeA)iE L, WRPyCapsule Isvalid() iREEAE, WHEMXTiH#S (DA PyCapsule_Get () 3k
FAEATT BRE) R AR ARAIE 23 B2

RN RA R HICRAE AR FRUGR AR, BIRE 0. LA —EA K.

int PyCapsule_SetContext (PyObject *capsule, void *context)

K capsule W) EF SCIREFCH context .
JEEI IR 00 SRS i] JE A I BB — S
int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Y- capsule WERIINTHIZSEA destructor .
IR] 00 SRIGIG R [IR A H B — R .

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

JREIF IR] 00 SRR [l R AL I BB A5

8.6. Hih¥R 123

The Python/C API, [F) 3.6.12

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

SRR] 00 SRS iR [0l AR A BB —

8.6.10 42t
PE i N5 2 Python JiI 3t SIS 2R 28 P BT 4 . T T B ST 5 P A (Y SRR B, T st

i PyGen_New () B{PyGen_NewWithQualName ().

PyGenObject
T A AR AR C Z5H 1
PyTypeObject PyGen_Type
S NARR R R AR 5.
int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL.
int PyGen_CheckExact (PyObject *ob)
Return true if ob’ s type is PyGen_Type; ob must not be NULL.
PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with__name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.11 {hiZ¥ R

3.5 HRHTIA.
R G2 async KBRS B B 80K Y o
PyCoroObject
T MEXTG C k.
PyTypeObject PyCoro_Type
ISRl EROE SOIVAESIERG I 8
int PyCoro_CheckExact (PyObject *ob)
Return true if ob’ s type is PyCoro_Type; ob must not be NULL.
PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name___

and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

124 Chapter 8. EFRIMRE

The Python/C API, [F) 3.6.12

8.6.12 DateTime ¥4

datetime BIHARAL T 4 A0 H WA B AT G 70T FIATART 3K 28 bR B2 B, 6 UFE AR A Y5 b o 6 5 3K S
datetime.h (3 MRS TE Python. h /1), 3 H%2 PyDateTime_IMPORT D4 ¥k &ALl , il
HRAE IR G BR B 5 . L SRR C SEHINIHEE A I A7E L PyDateT imeAPT
GREPNTRS PRI
FKBRG AR
int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_DateTimeType or asubtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_TZInfoType. ob must not be NULL.

i clfete Siba

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datet ime . date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datet ime . datet ime object with the specified year, month, day, hour,

minute, second and microsecond.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.

8.6. Hihytsk 125

The Python/C API, [F) 3.6.12

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)

Il ARGy, [EIIERES.

int PyDateTime_GET_ MONTH (PyDateTime_Date *0)
[l Ay, [FIERd, #1512,

int PyDateTime_GET_DAY (PyDateTime_Date *0)
M H Y, R, #1531,

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o0)
] /g, [EEHE S, 4E 0 2 23,

int PyDateTime_ DATE_GET_MINUTE (PyDateTime_DateTime *0)
Mg, [FIERE, ¢ 0 %) 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
] R, [ElIE#ES, 1€ 0) 59,

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
[E Ry, [EIERE S, 18 0] 999999.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
/ey, [ETE RS, 4 0 3] 23,

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o)
Il s, [FIERESL, 4E 0 %) 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
[D, [FIE#E#, 4 0 %) 59,

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
Ry, ([FIERd, # 0 £ 999999,

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
PRI FHL, M-999999999 F| 999999999 [yt ki,

3.3 BUHTIMA.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *o0)
RIEFEL, MO] 86399 AL

3.3 BUHTIMA.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *o)
AR GAADEL, A O F] 999999 FHEEL

3.3 JBUBTIA.
— B FH SE P DB API (%

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

126 Chapter 8. A#FHMMRE

The Python/C API, [F) 3.6.12

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datet ime . date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp ().

8.6. Hth¥tsx 127

The Python/C API, [F) 3.6.12

128 Chapter 8. RiFHMRE

CHAPTER 9

Initialization, Finalization, and Threads

9.1 Initializing and finalizing the interpreter

void Py_Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName (), Py_SetPythonHome ()
and Py_SetPath (). This initializes the table of loaded modules (sys .modules), and creates the fundamen-
tal modules builtins, _ _main__ and sys. It also initializes the module search path (sys.path). It does
notset sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

#E): On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)
This function works like Py, Tnitialize () if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py_FinalizeEx ()
Undo all initializations made by Py Tnitialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
call to Py_Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py Tnitialize () again first). Normally the return value is 0.
If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During

129

The Python/C API, [F) 3.6.12

a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py FinalizeEx () more than once.

3.6 BUBTINA.

void Py_Finalize ()

This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.2 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding and
error handling to use with standard 1O, with the same meanings as in str.encode ().

It overrides PYTHONIOENCOD ING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on
other settings).

Note that sys . st derr always uses the [backslashreplace | error handler, regardless of this (or any other) setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).

3.4 BT

void Py_SetProgramName (wchar_t *name)

This function should be called before Py Initialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’ s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()

Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()

Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py SetProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefix is ' /usr/local"'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys .prefix. Itis only useful on Unix. See also the next function.

130

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, [F) 3.6.12

wchar_t* Py_GetExecPrefix ()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py _GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)
Set the default module search path. If this function is called before Py Tnitialize (),then Py_GetPath ()
won’ t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, whichis ' : ' on Unix and Mac OS X, ' ; ' on Windows.

This also causes sys.executable to be set only to the raw program name (see Py_SetProgramName ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

9.2. Process-wide parameters 131

The Python/C API, [F) 3.6.12

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the [official] name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin"'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’ smain ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’ t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .path
according to the following algorithm:

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

* Otherwise (that is, if argc is 0 or argv [0] doesn’ t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

#5(E): It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sy s . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sy s . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

3.1.3 HCHTA.

132 Chapter 9. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, [F) 3.6.12

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —TI.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
3.4 iR %% The updatepath value depends on —1.

void Py_ SetPythonHome (wchar_t *home)
Set the default [home] directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’ s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default [home | , that is, the value set by a previous call to Py_ SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

9.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’ s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python
objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example,
when two threads simultaneously increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’ s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

9.3. Thread State and the Global Interpreter Lock 133

The Python/C API, [F) 3.6.12

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

#iEl: Calling system 1/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’ t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z11ib and hashl ib modules release the GIL when
compressing or hashing data.

9.3.2 3k Python gl &Y%k 12

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automat-
ically associated to them and the code showed above is therefore correct. However, when threads are created from C (for
example by a third-party library with its own thread management), they don’ t hold the GIL, nor is there a thread state
structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py _Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally before the

134 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, [F) 3.6.12

fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork () directly rather than through os. fork () (and returning to or
calling into Python) may result in a deadlock by one of Python’ s internal locks being held by a thread that is defunct
after the fork. PyOS_AfterFork () tries to reset the necessary locks, but is not always able to.

9.3.3 S API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’ s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread (tstate). It is not
needed before calling PyEval_SaveThread () or PyEval_RestoreThread ().

This is a no-op when called for a second time.

3.2 Jit ¥4 This function cannot be called before Py_Tnitialize () anymore.

#E): When only the main thread exists, no GIL operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also acquires it.
Before the Python _thread module creates a new thread, knowing that either it has the lock or the lock hasn’ t
been created yet, it calls PyEval_ InitThreads (). When this call returns, it is guaranteed that the lock has
been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_ TInitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

9.3. Thread State and the Global Interpreter Lock 135

The Python/C API, [F) 3.6.12

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’ t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument #state, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork () to ensure that newly created child processes don’ t hold locks
referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release (). In general, other thread-related APIs may be used be-
tween PyGILState_FEnsure () and PyGILState_Release () calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque [handle] to the thread state when PyGILState_FEnsure () was called, and
must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () must save the
handle for its call to PyGIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’ s state will be the same as it was prior to the
corresponding PyGILState_Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

3.4 BT

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

136 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, [F) 3.6.12

Py_BEGIN_ALLOW_THREADS
This macro expandsto { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py END_ALLOW_THREADS macro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note thatitcontains a closing brace; it must
be matched with an earlier Py_ BEGTN_ALLOW_THREADS macro. See above for further discussion of this macro.
It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py _END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread() ;: it is equivalent to
Py _BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

9.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called only
when the global interpreter lock has been created.

PylInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states

9.3. Thread State and the Global Interpreter Lock 137

The Python/C API, [F) 3.6.12

modified; this is normally one, but will be zero if the thread id isn’ t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to state, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when thread support
isn’ t enabled or when threads have not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state —if itisn’ t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when thread support isn’ t
enabled or when threads have not been initialized).

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

32 R & B Hi: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

3.2 4 C.[EJH: This function does not update the current thread state. Please use PyEval_ SaveThread ()
or PyEval_ReleaseThread () instead.

9.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys. stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’ t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’ s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of
this copy; the extension’ s init function is not called. Note that this is different from what happens when an

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, [F) 3.6.12

extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx () and
Py_Initialize ();in that case, the extension’ s initmodule function is called again.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters that haven’
t been explicitly destroyed at that point.

9.4.1 #iRfIEE

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’ t
perfect —for example, using low-level file operations like os.close () they can (accidentally or maliciously) affect
each other’ s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension
manipulates its module’ s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter
into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions,
methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the
wrong (sub-)interpreter’ s dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’ t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.5 RE&EA

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued for
being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’ t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’ t need a current thread state to run, and it doesn’ t need the global interpreter lock.

e fe: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’ t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

9.5. BB 139

The Python/C API, [F) 3.6.12

3.1 BUHTMA.

9.6 SrHTFNERER

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_SetProfile () and PyEval_SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

what HI{E arg Mg X

PyTrace_CALL M EPy None.

PyTrace_EXCEPTION sys.exc_info () RMPFEE L.

PyTrace_LINE BEPy None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL TR R B 5 .

PyTrace_C_EXCEPTION | IEfEVEHBREONE .

PyTrace_C_RETURN EAE R RO 4 .

int PyTrace_CALL
The value of the what parameter to a Pyt racefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number event
is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

140 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, [F) 3.6.12

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing func-
tion does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

PyObject* PyEval_GetCallStats (PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

<
=
c
(0]

Name

PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL_BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP

O 0 Q|| K| W N—O

—_
(e

PCALL_FAST_FUNCTION means no argument tuple needs to be created. PCALL_FASTER_FUNCTION means
that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

This function is only present if Python is compiled with CALL_PROF ILE defined.

9.7 EHKIA 28T HF

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after rstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.7. BRIAIXABEZH 141

The Python/C API, [F) 3.6.12

142 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

ACliEEREIE

10.1 &

{F Python /1, PNAFEHIBE K5 — N0 & Fr Python ST ARSI OFLA HE (heap) . IX/ANFAA HERE BT
NFBIR Python M %% 32 %% (Python memory manager) 13iF. Python NIEEPRESE AR AR A& Fhh &S
TAEE P A R, b=, E). Tl el A7 .

TERIRZ , — B N7 o sl SRV R G NP BRAR S, BRORALA Sk Py SR G Y 25 () R ATl T A
5 Python HH K M8 . TR NAF I FC AR BEAS b, JLARISURE B 20 B e Al — M oz dT, FF AR fioty
SRR R LB R B N B . BN, BRSO A A By SOR R 7 4 H . ool a,
h BB B [A i SR 2 5 25 TR AT . TR IG, Python PYAEE FRERHRF— 28 AR L4 0 AR 8 20T
. (HE RS FAERAA HERTE R Nz AT .

Python i AT HYE B t PR R AT, PR B BCA IR, BIVRE At AT 28 8 B A8 10 e A N AP SR 0P R 9
BE, PRBIX— i+ %, Python X G HAt A G2 o X Y i 23 8] 73 BiC 2t Python P78 BRAS # 5 il 1 AR
SCR§HRS Y Python/C APT eR A THY -

BT R NAERR , BR AR K A Y % E] C E?u?ﬁlg’ftﬂlﬂﬁ BORXT Python X4 HEFTHEME, X 4L
BAlFE: malloc (), calloc (), realloc () fl free (). XEF-SEL C 4MHl#EHI Python P75 HEIH > [B] (1)
BH, 5IR™HEER, ﬁ%ﬁ??fflif%TNﬂﬂ’J%?ﬁ, %Eﬁlﬁﬂﬁﬁ&tﬁaf’ﬁo HA2, FRATT DAL 4 H)
C JEArBiLas >k B) B i B AR N A7, A R BT

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
..Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the string object returned as a result.

143

The Python/C API, [F) 3.6.12

SR, TERZEAEIT, @& T Python HEH /3 FL N AE, AN f5 4 Hi Python INAFE BRERE M. BTN, 4
fERERY R T H C BRRA R KRN, S AE AR . 8 Python M) —AN A &4 B * J@ A1 * Python
WAFE AR KT TRBLH I N AETT R . BT SR B A B U T IRy . SRR M E 0, FIrE A
PP ORAZ ST Python NTFAE BRAS RELL AR X FON A 5 AR RS DUA SEERA) 1. PRI, ARl T
Python PN A7 HILEE AT fE il A BNl AT 2 B, Anbral eI A7 R B B P A . TR, il
RG] - R C FEAMELES , R VO ZZnh K43 L N A7 58 4232 Python PNFF4S BT
L%

P57 5 PYTHONMATLLOC AJ g] SR L& Python FIF i HI 1) INAFJ3 FiL 4 -

R5E7E i PYTHONMALLOCSTATS W] AR SRAERF AN @ F P HT Y pymalloc X5 XIETT El pymalloc 7 7 %
e % WG .

10.2 [RigAFEEDO

PAR BRECEERR T ARG Tids . X Bre & Zan), AaREfFAGIL.

The default raw memory block allocator uses the following functions: malloc (), calloc (), realloc () and
free();callmalloc (1) (orcalloc (1, 1)) when requesting zero bytes.

3.4 BUBTIMA.

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

3.5 OB

void* PyMem_RawRealloc (void *p, size_t n)
K5 p T AR INERE g n AT DABTIH AR/ N S/ IMEC R HE L SRR AE

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)
BEHL p FR 10 N A7 Bk R AR p 2 NULL , 5 B @ A2 Z Bl PyMem _RawMalloc ()
PyMem_RawRealloc () BiPyMem RawCalloc () FriR[E B384, &N, 5ifF PyMem_RawFree (p)
ZHICARMAEELT, KE XM kE.

If p is NULL, no operation is performed.

144 Chapter 10. FEiEREEHE

The Python/C API, [F) 3.6.12

10.3 AHEEO

PATBREAR, D50 ANSIC ApifE, FHHHRE THRF 719470, W T Python M7 FE AR N AT«

By default, these functions use pymalloc memory allocator.

B MR B, WA 2 B A S 4 (GIL)

3.6 Ji s BIAEBRIA R - FiL % /2 pymalloc 17 E RS malloc () «

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

3.5 BUHTA.

void* PyMem_Realloc (void *p, size_t n)
F p FeI NAFERIONREE S n 45 . DABTIHWNAESR I i i MBI, Hh WA RFEAE

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc ()
or PyMem Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
L p P B NS B AE p A& NULL , I BB A0 Z B PyMem _Malloc () \PyMem_Realloc ()
B PyMem_Calloc () FriklpyfeEt. W, SFE PyMem_Free (p) ZHICALHMHIHWHER T, KE
MIAT R R
If p is NULL, no operation is performed.

PARTA [2B 7 (R T k. 7% TYPE W DAFEAT A C 231,

TYPE* PyMem_New (TYPE, size_t n)
SpyMem Malloc () fHF], (HAEL (n * sizeof (TYPE)) FHMINAF. RE—PFEH R TYPEX [
FREr. PAEA S MEM 9w in k.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)

Same as PyMem Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

Xe—A CHABZ, p SR BEHIRIE. 0T p MIRIA(E, PABEGRAE AL PR BRI 2R AT

void PyMem_Del (void *p)
SpyMem Free () F[F]

BEAh, FNTRSRAE T AR 25 T B A Python WA /M FCds, i ADS K L5 i) C APL B%. {H i i
HE, B ENIFARELRIEE Python RAHY —BEHIFRAME, HITEY FEBRBETEA .

10.3. ;AHEEDO 145

The Python/C API, [F) 3.6.12

¢ PyMem_MALLOC (size)

e PyMem_NEW (type, size)

¢ PyMem_ REALLOC (ptr, size)

e PyMem_RESIZE (ptr, type, size)

e PyMem_FREE (ptr)

¢ PyMem_ DEL (ptr)

10.4 MRS EC2R

PATBREER, D588 ANSIC ApifE, FHHHRE THRFFAIIAT R, W T Python M7 FE AL AT«

By default, these functions use pymalloc memory allocator.

&

e TEMEAX SRR, WA & B it 240 (GIL)

void

void

void

void

* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

* PyObject_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

3.5 BUHTMA.

* PyObject_Realloc (void *p, size_t n)
K p AR NFEIRINIEE N n 15 . DASTIH AR N i i/ MEC E, Hoh WA RFFAZE

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

PyObject_Free (void *p)
B p fe M W AE . BRAE p 2 NULL , ® B A2 Z W HPyobject_Malloc ()
PyObject_Realloc () BiPyObject_cCalloc () FriR[EBIFEEF. BN, 8(fF PyObject_Free (p)
ZHIC AP EN T, KE X e k.

If p is NULL, no operation is performed.

146

Chapter 10. EiEiEEE

The Python/C API, [F) 3.6.12

10.5 HENAFSEC2E

3.4 BUHTIA.

PyMemAllocatorEx

MATFR AR B St k. A7 B

15 aX

void *ctx ERNE NS LA P L
T

void* malloc (void *ctx, size_t size) B —AS AT

void* calloc (void *ctx, size_t nelem, size_t SEE—A 1A R O B AR BR

elsize)

void* realloc (void *ctx, void *ptr, size_t A —A~ AR BE #E N

new_size)

void free(void *ctx, void *ptr) FERC— AR

3.5 it ¥ 4#: The PyMemAllocator structure was renamed to PyMemAllocatorExand anew calloc field
was added.

PyMemAllocatorDomain
R AR M2 2 . 1A
PYMEM_DOMAIN_RAW

* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()

PYMEM_DOMAIN_MEM
* PyMem Malloc(),
* PyMem Realloc ()
* PyMem_Calloc ()
* PyMem Free()
PYMEM_DOMAIN_OBJ
PRAL
* PyObject_Malloc()
* PyObject_Realloc ()
* PyObject_Calloc ()
e PyObject_Free ()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
BRI E A AR L -
void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

BB E I AT Bl o

10.5. HEXAHFSE RS 147

The Python/C API, [F) 3.6.12

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.
X PYMEM_DOMATN_RAW I, 5}PCAR LALLM LA g I, AR 2 5 A 5541 .

WAHTR T A R4 T N Z BT), AR Py Mem _SetupDebugHooks () BRETER
JrBias b EH LR R T

void PyMem_SetupDebugHooks (void)
BCEAG I Python P7F/> BCas bR AL H S DRI T
Newly allocated memory is filled with the byte 0xCB, freed memory is filled with the byte 0xDB.
BT
o KX APLIE S, Biln: Xt pyiem Malloc () nrELR Gt XA PyObject_Free () .
o K ZErh GRS ERR G A (S X R -
o WG XL EFRSEA (Zh X) -

o KM 24 8 fpYMEM _DOMAIN OBJ (fll: PyObject_Malloc ()) MIPYMEM _DOMAIN _MEM (Y
PyMem_Malloc ()) 35 Fids R BT GIL CLgk R FF.

TEH AR, TR tracemalloc BRI A PRI E . R tracemalloc IE
TEiBER Python INAFAMAE, JF HINAFHBHBERRT, A& B E

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

3.6 JiHE A X AN R AU AE R AE B T DA K f AR 4R 1 1Y) Python. FE H AR I, TH 8 T PLAE (I
il tracemalloc 3k [al #] N 7% B ¥k 40 W i 07 B . PRI 8 7 BLAE tH 48 A& 24P YMEM_DOMATN_OBJ
M pyMEM_DOMAIN_MEM S pREHR S, &Rl SoiRig .

10.6 pymalloc 4;fi 2

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called [arenas] with a fixed size of 256 KB. It falls back to PyMem RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM _DOMATN_MEM (ex: PyMem_Malloc ())and PYMEM_DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

arena 43I0 S0 FF DA F B8

e Windows [VirtualAlloc () and VirtualFree () ,

* mmap () Ml munmap () , GRATH,
o BN, malloc () fil free() .

10.6.1 BF X pymalloc Arena 4fg2$

3.4 BUHTIMA.

PyObjectArenaAllocator
A arena S} LRI S H (A . XS IA = FE

148 Chapter 10. jDiEge&IE

The Python/C API, [F) 3.6.12

1% 'aX

void *ctx YERNE DB ERC
void* alloc (void *ctx, size_ t size) Ay EE—H size ST X,

void free(void *ctx, size_t size, void *ptr) %%ﬂ?*ﬁHZﬁﬁ

PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)

AR arena 7) [y

PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
W arena 7 iCdy

10.7 55

PATR IR 48 58 AN, 2 B PAGE VO G X aid il 55— e AR M Python M b 73 BiLiY:

PyObject *res;

char *pbuf = (char *) PyMem_Malloc (BUFSIZ); /* for I/O0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString(buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

o7 P T) S 28 o AR 4 A 7] AR

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Del (buf); /* allocated with PyMem New */
return res;

iﬁ FERAEDL EMAR Bl g X Rl s T A SR s BORE R . 58 b, XD aE RN
WA A AT A APLIER , DATE BEAHE & AN [R) 2 Bc i 4 AU 0ol 22 fie ik . DA S AU P A e S ik e, I
—/\r@szmajg fatal RO EIRET T WRPEA [3fE_E3RARAA R 7 Be s -

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-- should be PyMem_ Free() */
free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —-- should be PyMem_Del () */

Bk 7 B LEAL B R B Python i f) J 4 PN A7 B 1K) oK K2 S, Python H %Xt G2 2 il i PyObject_New (),
PyObject_NewVar () fMlPyObject_Del () Fe4 B AREH -

X LEERFAEAT KANAIAE C o SCRISE BB R AL T — P ik

10.7. #5i¥ 149

The Python/C API, [F) 3.6.12

150 Chapter 10. RIEEER

cHAPTER 11

R

AFAIR TR SPGB i i i . BRI

1.1 £ FHEMR

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. FI'C HIZEBRIMILG G| FARWI MG 2 BT S op. IR BIEWIIRALRT S . 40
R type TR S SIGIALIRATI LS, PRI IR I 28 A E N R LT . TR HALF BN 32

A

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. 'E W IHEEFIPyObject_Init () —FE, FHHELWIEAS B R/NITL M
KEFL.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. i [l C 25442551 TYPE 1 Python 25X} % rype 43 Bi—1~31 11 Python X4 .
KA Python XF4ebrsk i I FBOR SRRt XI5 FHHECR —. WAEAELR/NE type Xt
Ltp _basicsize FEIEHIE.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. i J}] C RS54 25FL TYPE 11 Python 2B 42 type 4B —4~3F1 1) Python
X5 o Python X5 3 SC A & LI F BN BRI IR . B BLI ARSI T B T TYPE 54410 type
Mg tp_itemsize FEARLN size FEAME . XX T L AR AL PR FE S E B OOK
?E@Xﬁf‘?%%ﬁiﬂﬂ (o REF BB He A B AH R 04 A2 B b i] DA AR B 8, X8 T
T ECRIRCR

void PyObject_Del (PyObject *op)
Rl Pyobject _New () B PyObject NewVar () SrBCNAFIIN G, X I H HIXT AR type FBUE

151

The Python/C API, [F) 3.6.12

iy tp_dealloc ALPRRRBORIEM o XA e ELLAS op XA 7 BERRAN T AR, PR 73
4 A7 25 8] AN o — A R Python X 42

PyObject _Py_NoneStruct
ARG 2R None —H£# Python X4t ERIPAE] Py_None Z5H, R ERHRIIZXS R

B4
PyModule_Create () 4yt NAFFIQIEY R

1.2 @AY

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’ s representation in memory.
These are represented by the PyOb ject and PyVarOb ject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal [release | build, it contains only the object’ s reference count
and a pointer to the corresponding type object. Nothing is actually declared to be a PyOb ject, but every pointer
to a Python object can be cast to a PyObject *. Access to the members must be done by using the macros
Py_REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))*>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_refcnt)

152 Chapter 11. &SI

The Python/C API, [F) 3.6.12

Py_SIZE (0)
This macro is used to access the ob__size member of a Python object. It expands to:

(((PyVarObject™*) (0))-—>0ob_size)

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C that take keyword arguments: they take three
PyObject * parameters and return one such value. See PyCFunction above for the meaning of the return
value.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

i C Type aX

ml_name char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH VARARGS and METH_KEYWORDS can
be combined. Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the type Py CFunct i on. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () of PyArg_UnpackTuple ().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three parame-
ters: self, args, and a dictionary of all the keyword arguments. The flag must be combined with METH_VARARGS,
and the parameters are typically processed using PyArg ParseTupleAndKeywords ().

1.2, ERYHER 153

The Python/C API, [F) 3.6.12

METH_NOARGS
Methods without parameters don’ t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg_ParseTuple () with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyOb ject * parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named __contains__ () and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

15 Clype | &X

name char * name of the member

type int the type of the member in the C struct

offset | Py_ssize_t | the offset in bytes that the member is located on the type’ s object struct
flags int flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many T__ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

154 Chapter 11. ¥R sclzF

The Python/C API, [F) 3.6.12

Macro name (O]

T _SHORT short

T_INT int

T_LONG R
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T _BYTE char

T _UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the Py TypeObject.tp_getset
slot.
13 CType | &X
24 R char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc char * optional docstring
closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject * parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject * (*getter) (PyObject *, wvoid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with a set
exception on failure.

1.2, ERYHER 155

The Python/C API, [F) 3.6.12

11.3 RBHR

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* () orPyType_* () functions,
but do not offer much that’ s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’ s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objob-
jargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeOb ject can be found in Include/object .h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

(FItakss)

156 Chapter 11. JREI|ZHF

The Python/C API, [F) 3.6.12

(R —H)

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject . _ob_next

PyObject* PyObject . _ob_prev
These fields are only present when the macro Py_ TRACE_REF'S is defined. Their initialization to NULL is taken
care of by the PyObject _HEAD_INIT macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refcnt
This is the type object’ s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for

11.3. FFFIR 157

The Python/C API, [F) 3.6.12

statically allocated type objects, the type’ s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject . ob_type

This is the type’ s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’ s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_ Ready () will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject .ob_size

For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.

This field is not inherited by subtypes.

const char* PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name_
attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module___ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.

This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero t p_ i t ems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the rlengthJ of the object. The value of N is
typically stored in the instance’ s ob_size field. There are exceptions: for example, ints use a negative ob_size
to indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size field in the

158

Chapter 11. Jt& I

The Python/C API, [F) 3.6.12

instance layout doesn’ t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero t p_ i temsize, itis generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’ s responsibility that tp basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call the
type’ s tp_ free function. If the type is not subtypable (doesn’ t have the Py_ TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via t p_ free. The object deallocator should
be the one used to allocate the instance; this is normally PyOb ject_Del () if the instance was allocated using
PyObject_New () orPyObject_VarNew (),or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: asubtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’ s tp_setattrand tp_setattro are both NULL.

11.3. FFFIR 159

The Python/C API, [F) 3.6.12

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.

3.5 f#rin A : Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject . tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>"' from which
both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%s object at $%p> is returned, where %s is replaced by the
type name, and %p by the object’ s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject__Hash ();it must return a value of the type Py_hash_t. The value —1
should not be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return —1.

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash___ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented ().

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’ s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str
An optional pointer to a function that implements the built-in operation str (). (Note that str is a type now,

160 Chapter 11. JREI|ZHF

The Python/C API, [F) 3.6.12

and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work,
and PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str (); it must return a string or a Unicode object. This function
should return a [friendly | string representation of the object, as this is the representation that will be used, among
other things, by the print () function.

When this field is not set, PyObject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr (), which implements the
normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’ s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’ s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature () takes a type and a flags value, #p and f, and checks
whether tp->tp_flags & f isnon-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ ed when a new instance is
created, and DECREF’ ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’ s ob_type gets INCREF’ ed or DECREF’ ed).

11.3. FFFIR 161

The Python/C API, [F) 3.6.12

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a [final] class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

Py_TPFLAGS_READYING
This bit is set while Py Type_ Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in section
12 % K7W § 35535389). This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py _TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

3.4 BUBTIMA.

const char* PyTypeObject . tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc___ attribute on the type and instances of the type.

This field is not inherited by subtypes.

traverseproc PyTypeObject . tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS_HAVE_GC flag bit is set. More information about Python’ s garbage collection scheme can be
found in section 1 * % % A F FHVE IR IR EDIL.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT () on each of the instance’ s members that are Python
objects. For example, this is function 1ocal_traverse () from the _thread extension module:

162

Chapter 11. Jt& I

The Python/C API, [F) 3.6.12

static int
local_traverse (localobject *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return O;

Note that Py_ VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’ s get_referents () function will include it.

Note that Py_ VISIT () requires the visit and arg parameters to Local_traverse () to have these specific
names; don’ tname them just anything.

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS HAVE_GC
flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ c1ear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’ s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’ t immediately obvious, and there’ s rarely a good reason to avoid implementing tp_clear.

Implementations of ¢ p_ c1ear should drop the instance’ s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with
the contained object). If it” s possible for such code to reference self again, it” s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR () macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’ s not necessary to clear contained
objects like Python strings or Python integers, which can’ t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’ s tp_dealloc function to invoke
tp_clear.

11.3. FFFIR 163

The Python/C API, [F) 3.6.12

More information about Python’ s garbage collection scheme can be found in section i % % 5 7 & #5303
=D

This field is inherited by subtypes together with tp_t raverse and the Py TPFLAGS HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op). The first parameter is guaran-
teed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

#i(E): If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and ! =,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with t p__hash: asubtype inherits tp_richcompareand tp_hash
when the subtype’ s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare ():

B XFER
Py_LT | <
Py_LE | <=
Py_EQ | ==
Py_NE | !=
Py_GT | >
Py_GE | >=

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () andthe PyWeakref_* () functions. The instance structure needs to include
a field of type PyOb ject * which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no __slots___ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of thatslot’ s offset.

When a type’ s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’ s offset is stored in the type’ s tp_weaklistoffset.

When a type’ s __slots__ declaration does not contain a slot named __weakref__, the type inherits its

tp_weaklistoffset from its base type.

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

164 Chapter 11. &SI

The Python/C API, [F) 3.6.12

This function has the same signature as PyObject_GetIter ().
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the tp_ i t er function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as PyIter Next ().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject .tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject . tp_members
An optional pointer to a static NULL-terminated array of PyMembe rDe £ structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset
An optional pointer to a static NULL-terminated array of PyGet SetDef structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject .tp_dict
The type’ s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_ Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’ t correspond to overloaded operations (like
add__ ().

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

11.3. FFFIR 165

The Python/C API, [F) 3.6.12

W4 Tt is not safe to use PyDict_SetItem () on or otherwise modify tp_dict with the dictionary
C-APL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a [descriptor get | function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’ s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

Py_ssize_t PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to —4 to indicate that
the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsizeand tp_dictoffset aretaken from the type object, and ob_size
is taken from the instance. The absolute value is taken because ints use the sign of ob_size to store
the sign of the number. (There’ s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement hasno ___slots___ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’
s offset.

When a type defined by a class statement has a ___slots___ declaration, the type inherits its tp_dictoffset
from its base type.

166

Chapter 11. Jt& I

The Python/C API, [F) 3.6.12

(Adding aslotnamed __dict__ tothe __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref___ though.)

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’ s tp_new function has returned an instance of the type. If the t p_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an
instance of a subtype of the original type, the subtype’ s tp_init is called.

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt setto 1 and ob_type set to the type argument. If the type’ s tp_itemsize is non-zero,
the object’ s ob_size field should be initialized to nitems and the length of the allocated memory block should
betp_basicsize + nitems*tp_itemsize,rounded up toamultiple of sizeof (void*) ;otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to Py Type_GenericAlloc (), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject .tp_new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’ t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be

11.3. ERIXHR 167

The Python/C API, [F) 3.6.12

ignored or repeated should be placed in the tp_ init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_ base is NULL or
&PyBaseObject_Type.

destructor PyTypeObiject .tp_free

An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyObject_Free ().

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match Py Type GenericAlloc () and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’ stype’ s tp_flags field, and check the Py TPFLAGS HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distinguish
between statically and dynamically allocated types.)

This field is inherited by subtypes.

PyObject* PyTypeObject .tp_bases

Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject . tp_mro

Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.

This field is not inherited; it is calculated fresh by Py Type_ Ready ().

destructor PyTypeObiject .tp_finalize

An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize (PyObject *)

If tp_finalizeisset, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane
state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

168

Chapter 11. Jt& I

The Python/C API, [F) 3.6.12

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch (&error_type, &error_value, &error_traceback);

VA 4

/* Restore the saved exception. */
PyErr_Restore (error_type, error_value, error_traceback);

For this field to be taken into account (even through inheritance), you must also set the
Py TPFLAGS_HAVE_FINALIZE ﬂags bit.

This field is inherited by subtypes.

3.4 BUHTMA.

hE%:

[Safe object finalization | (PEP 442)
PyObject* PyTypeObject .tp_cache

Unused. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only.
They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject . tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

11.3. FFFIR 169

https://www.python.org/dev/peps/pep-0442

The Python/C API, [F) 3.6.12

11.4 Number Object Structures

PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the # 5 #13L section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;

binaryfunc
binaryfunc
binaryfunc

nb_and;
nb_xor;
nb_or;

unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_inplace_add;
nb_inplace_subtract;
nb_inplace_multiply;
nb_inplace_remainder;

ternaryfunc nb_inplace_power;

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc

nb_inplace_1lshift;
nb_inplace_rshift;
nb_inplace_and;
nb_inplace_xor;
nb_inplace_or;

nb_floor_divide;
nb_true_divide;

binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

#i[E): Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_Not Implemented, if another error occurred they
must return NULL and set an exception.

170

Chapter 11. Jt& I

The Python/C API, [F) 3.6.12

#iE): The nb_reserved field should always be NULL. It was previously called nlb_1ong, and was renamed
in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods .mp_length
This function is used by PyMapping_Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyOb ject_GetItem () and PySequence_GetSlice (), and has the same signa-
ture as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(), PyObject_SetSlice ()
and PyObject_DelSlice (). It has the same signature as PyObject_SetItem (), but vcan also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sq_itemand the sq_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by Py Sequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem/ (), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the

11.5. Mapping Object Structures 171

The Python/C API, [F) 3.6.12

mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment +=, after trying numeric
inplace addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
inplace multiplication via the nb_inplace_multiply slot.

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBuf ferProcs .bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError, set view->o0bj to NULL and
return —1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>ob7j.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

* Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference to
itself.

* Redirect: The buffer request is redirected to the root object of the tree. Here, view—>o0bj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.

All memory pointed to in the Py_buf fer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsetsand internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

172 Chapter 11. &SI

The Python/C API, [F) 3.6.12

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs .bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>obj, since that is done automatically in PyBuffer_ Release ()
(this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

11.8 Async Object Structures

3.5 BUBTINMA.

PyAsyncMethods
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await (PyObject *self)

The returned object must be an iterator, i.e. PyIter_Check () mustreturn 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self)

Must return an awaitable object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

11.8. Async Object Structures 173

The Python/C API, [F) 3.6.12

’Pyobject *am_anext (PyObject *self)

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

11.9 (EXRIEEZTIHBIA IR B

Python XYIRFRS MK S FHCHIE 398 XEGATISR, BINFRNT G T Rt AL L 78
XE% . RBEILEXTRIT A, sl LRI T2 (TSR) (05| N2, A st
SRBEELIR A L

HEAE - ANREMSE, KRB RMNep_flags F B M 0 FPy_TPFLAGS_HAVE_GC F $i¢ it —
Mtp_traverse ACPRRYSEI. WRIZKBRY LG ZR, BFRELHN cp_clear .
Py_TPFLAGS_HAVE_GC
WE T WARE OB QAT A AL ICSR R . S R I, T SCE X X R PR AR S
P SR AL 3 R B AT A S R
1. WAFHPyObject_GC_New () BiPyObject_GC_NewVar () RikEsi 4 5B NAE-
2. WIEA T A AT RE A S AR RSB | I B S , B Pyobject _GC_Track () .
TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
KT ryobject_New() , BT RE T Py_TPFLAGS_HAVE_GC AREMATRMR .
TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
R\ Fryobject_NewvVar () , BT WE T Py_TPFLAGS_HAVE_GC FRZEMIBMITR .
TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)

Resize an object allocated by PyOb ject_NewVar (). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)
X op MBI s BRERAY AR A R o RS RAERE DG ER B AR R R0, B Il ficds
A RETEAEAT IR T URIZAT . TEtp_traverse AEIEIMIFIA T B ARG, A0 MR £, i HTE
FEAT A i eRBOR R

void _PyObject_GC_TRACK (PyObject *op)
PyObject _GC_Track () WJRSEIIRA . EARREWM T B,

3.6 Jit % CL I iX 4> %:4E Python 3.8 g Fo i .
[AIRERY , KRR A A AL
L fE5| B ASRNFBIRSN, BARM Pyobject GC_UnTrack () .
2. WAHEM Pyobject _GC_Del () BEHON R NATF-.
void PyObject_GC_Del (void *op)
RO RINAE, A RGBT PyObject _GC_New () B{PyObject GC_NewVar () 4} FLIFf.
void PyObject_GC_UnTrack (void *op)
MBI EBENERS L EEAETBRER op WL, WEEZ T ALY S EHKE
MPyObject_GC_Track () PAYFIHm [l 2] 8k BR Bx Xt 2 4 & B (tp_dealloc A)AH) M 24
TEtp_traverse FARFTEH AL BUR R B AT S008I eR 4R
void _PyObject_GC_UNTRACK (PyObject *op)
PyObject GC_UnTrack () WM ESEIBIMRA . AEEM T .

3.6 AR CLETH: 53X~ 7E Python 3.8 A% .

174 Chapter 11. &SI

The Python/C API, [F) 3.6.12

tp_traverse MDA N RBIWRETES .

int (*visitproc) (PyObject *object, void *arg)
fetitp_traverse ACFRRYTT M BB REL . object 225 a% P g BRI H)— MRS, HE=ATESX
Ttp traverse ALBERY arg . Python AZ.Cofdi I Z2 A5 1) ¥ e B UIEIAS N A BIRAG I, AFRE
SEFESUIEE I

tp_traverse ACFRLMIE DA T :

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

N Y fifbep_traverse Ab B SCEL, Python £t T —Avry VISIT() K. FHEMMXAKE, ©H
W tp_traverse WIZBEAN44 K visit F arg .
void Py_VISIT (PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

The tp_clear handler must be of the i nquiry type, or NULL if the object is immutable.

int (*inquiry) (PyObject *self’)
EI ARG UG . A A RATEEV A, oI TR B R LG . &%
HREMZ, SRR E GBI AR CREextsI i RIAM Py _DECREF () J7k). 4Bk
WA AR N B2 SAEEERT | T Py, IR SR

11.9. fEXMRAEBRZTHEIALIR B 175

The Python/C API, [F) 3.6.12

176 Chapter 11. ¥R sclzF

CHAPTER 12

API #0 ABI iR A &35

PY_VERSTON_HEX J& Python FURTA S0 HHOHR .

@i, ft [PY _ VERSION _ HEX] #E>4 [0x0304012 , W] DA i 4% DA R 07 s HA N 32 (s e i
LR A B

F o uH (K| &Y

T | mEVRF)

&

1 1-8 PY_MAJOR_VERSION (the 3in3.4.1a2)

2 9-16 PY_MINOR_VERSION (the 4in 3.4.1a2)

3 17-24 PY MICRO_VERSION (the 1in3.4.1a2)

4 25-28 PY_RELEASE_LEVEL (0xA J2 alpha iR, 0xB & beta fiiA, 0xC &7 fi

BEAI H OxF @ EZMA), FEX MBI HaX AN A& alpha Jii4s .

29-32 PY_RELEASE_SERIAL (3.4.1a2 HH 2, &4 0)

I 3.4.1a2 i 16 FEHIRAS /2 0x030401a2
A 3207 2280 & XAE Include/patchlevel.h,

177

https://github.com/python/cpython/tree/3.6/Include/patchlevel.h

The Python/C API, [F) 3.6.12

178 Chapter 12. API 0 ABI [A&

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 4 Python 2.x (TS Python 3.x (R T 5L, AEUSALTRACHS S AU USRI I3 BB R A
DU ZI () AN 2 I
2t03 f EFFEFRUEIE Y, B4 1ib2to3; HHRME—SZ AT X Tools/scripts/2to3. £
2to3-reference.,

abstract base class — 14 3E TR I FFR ABC, @Xfduck-typing A58, BHMAET —Fpe O
X, M2 FHABRIGFA hasattr () B TREMECH RS IR (FlanfiH BRI). ABC5IA
TR, XM EM R 5 A2, HARER: isinstance () fl issubclass () FrAR]; i
I abe FEHSCRY . Python HAFFZL P E) ABC I TSLBEHE45H (7F collections.abe fidkHr) .
BFE (FF numbers) L i (FF io Bithdh) . SAEHRESANEEE (FF importlib.abe bk
H) o ARFTRAE] abe ka3 H 2 ABC.

annotation —pilE KIKEEAAL R . FRIE. RATESIORIMERITRES, BLEN Anpe hint KM .

SR AR AR IS TR AN), (R R AR BRI R BRI AR T £ AR . SN R
__annotations__ [piREMH:A.

2 W variable annotation, function annotation, PEP 484 1 PEP 526, %fitIhEEHH N .
argument —S 8 1EVE I sREOR% 45 funciion (Bimethod) [{E. S8 AWifh:

o KT A TEREOR T T A AR R (BIA0 name=) SCEAE N A STERTI A <+ YT HLH
ME A 28BS, 3 A1 S FELATRXT complex () HYRMHIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s AL E Ade ARTRETSHNSI (CESHOTH T SR ERRIT L AR S AR R aa A
* Wyiterable P TCRGAL A 2B, 3 A1 5 FELA TR g T B S 4

179

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, [F) 3.6.12

complex (3, D5)
complex (* (3, 5))

SRR REL X R AV L. A7 RN B 0 calls —7 . ARABIEYE, (k50T
PSR AR A BHG S O (E 2 B X I oA

3% Wparameter REFRFH , HILFEH SEGESH K5I K PEP 362,

asynchronous context manager — 5720 | F3CABIEAY AR ZE € L __aenter_ () fil_aexit__ () K
WRXS asyne with iBA) P EREE AT R . th PEP 492 5] A,

asynchronous generator —52B 2 2% 1% [BI{H Nasynchronous generator iterator fRREL. B 5 async def
T SRR R BARAARL, ARRZAATET B vield REX A4 —FRIIWTE async for fEHH{H
FE.
WARTEEE 218 A0 A e i, EERLRE O NI AR 24 77 £ R B R % . WRFEIE-RIE
BARE X, W AR AR .

AR RO L6 await FARILH asyne for B asyne with il
asynchronous generator iterator — 53251 & 2515 18ES asynchronous generator BRI B EIINT S

WXt J& T asynchronous iterator, 24§l __anext__ () F{ERAI &R Bl —AN 0l 2R 4 sk AT 74
A S R A U L) R —4> vield ik

f4 yield QUG AL, JCfEH AR IR (IR RATHR vy FA). % 5
R BERE TN anext () BENITFEMEARIKELN, © 2N LRASNT. S0
PEP 492 1 PEP 525,

asynchronous iterable 5225 [KU R 7l ¥£ async for iF A) P g O MR . 220 B W
__aiter_ () F¥ERE—Aasynchronous iterator, {1 PEP 492 5| A,

asynchronous iterator 52 k0% ST __aiter_ () Fl_anext__ () FYEMIXS. __anext__ W
1R[] —A~awaitable X4 . async for SRR EEAARN __anext_ () FIEFTR BT EEREXT 4,
HFHF| K —4 stopAsynclteration . H PEP 492 5] A,

attribute —J@ Pk SCIRE] A RAYME, PTPAMIH RS FRAE L A ARG . B, AR — 35 0 BA
— Mgtk a, WA o.a KEIHE.

awaitable — [50 R BETE await FR P NS . T PARcoroutine B2 B __await_ () R
%%, % PEP 492,

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

binary file - JERI L file object MG S 57 Kt %o —HEHISCAE T RIEA IR ("rbY, Twb!
or 'rb+"') FTHMICH:. sys.stdin.buffer. sys.stdout.buffer DA} io.BytesIOfl gzip.
GzipFile [SLH.

A5 Wiext file T RREMSTES str G SCIERTSR .

bytes-like object = YikRf R 354 F WL H H e S 1 C-contiguous F ¥ 2. XA bytes,
bytearray fl array.array X4, PARIFZ & memoryview X5, TN R AL
PRI BPEEAE P A . XS E ORGSR R SO A MGl i B R T R RS

FLCPRA R] 2R R . XM RAE SR PR R TR R ARG A R
B T44% bytearray PAK bytearray i memoryview. HAMMEER —JbHiRRAT T A W] 2%
G THREEFWERXG]) RFRREBI T4 bytes LAK bytes MR memoryview,

bytecode 3 ¥if}y Python J{CAS 44 1 741, R CPython fi# R o327 Python A2 ¥ I PN CHY . 77
MR X GAFAE - pyc U, SRS R IAT Al — SCPFIP s FE b (AT DA 2505 VR RS HR 2 16 7 19
i) o XA [HPRIE S] BT EMRE T R AT AR AL g i i virmal machine 2t #5{ER N[Python
FEAUML_ BRI A —Ed@ i, A —E BEAEA] Python fiiAS B34S

180 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

The Python/C API, [F) 3.6.12

T HNRATLATE dis BURH)SCR &R .
class 3¢ JSRANEN P E OGN . 285 SGE# L 3 XH%2E M S BIUEA T B T kg 3
class variable -84 i 7RIS P E AR, HF HAURTESMZ G BB (AR AERAY S B 220

coercion 5|2 FUEEHE The implicit conversion of an instance of one type to another during an operation which in-
volves two arguments of the same type. For example, int (3.15) converts the floating point number to the
integer 3, but in 3+4 . 5, each argument is of a different type (one int, one float), and both must be converted to
the same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather
than just 3+4.5.

complex number —52 8¢ X IFE KRR G R, HA A BOTE PR — SR — AN BRI AL AR
MR, (1 B AR) AYSEAER, W TERCAT SN 1, TR S J. Python NE T X4
By scfe, RN TREARIS T 20 g —A 5 52, BN 3+15. WPRTEZE math BEER ARG 15X
WARBRA, WHA cmath, ER MR — DB BAEARE . WRIRBOER A L, ZIgE
LA LA AT AR 17 L

context manager — |- F SC45PIPS 78 with iBaH i, @it e X _ enter_ () Fl __exit_ () FYERE
HIFFFARSIIXS S . 20, PEP 343,

contiguous —¥&: — G UIRIE C i 825l Fortran & i WO\ N2 SR . EYEZirhig C Al Fortran J£25%
M. TE—ZE T, B ok BB AHE NAFh O A AR HES), SRIT AT IR B I R G |7 . TEZ 4
CIESAUA R, Y N AL HES I B fe— 25 | D7 2% H s B de bt . {EUZAE Fortran ZESEA
W — ARG e

coroutine —Jpf Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function —pFEFRZL 1% [B]—coroutine ST REL. PMERETHE T asyne def i{BAEE XL, FF
A REfL P await, async for fll async with &, X2 H PEP 492 5] A

CPython Python ZRFE1EF WIMITESLEL, FE python.org [% .] CPython] —i] F F7E0A i S B Hofth
SEFEIGN Jython BY, IronPython FH X 41l

decorator &gy R FME AT — D REREL, EH M ewrapper EEE AR TRECE . Rl
LA TAdE classmethod () Ml staticmethod ().

PR U RN, DU AR B0 SR S R Se 45 i

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

RS R T8, (B ER A . A SRR PN 1T 2 0 eR B0 SORI 2858 S S0

descriptor —fiiiddy TfTEX T _get_ (),__set_ () o __delete_ () HEMIS., ¥ NRKEMEN
FIRZRES, BRI EIT A B R & . WEET, I ab kIR BBk —
N EYERTSFE a FEFH D EIRATON b XS, (HUR b2 — DR, W8 X AR 7
V. FRRGAZE LS 2 VR Z I BEfR Python 1 348, A @12 EEAFIERO AR, iR,
L BN BE. BRSO LA 5 A .

A KRR TR TEIE T 25 descriptors.,

dictionary — it — AN SCHCACA, o A AT 2 A A WL S AR Y RO (E. B LT T 2 __hash__ ()
eq () HERXNS. AE Perl 5= K4 hash,

181

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, [F) 3.6.12

dictionary view —ZHLEEPE M dict.keys (), dict.values () fil dict.items () 1R BT R PEFR R F L
M. BN TFIE N SHE, XEWE Y FISUER, RGN SR, BT
WRIE S F o EIE RS, Wi 1ist (dictview) . i dict-views,

docstring —SCRYFAFHY MERN2E. pREERIER Z R SE — ks B A5 R (e . EAEACR AT S8
2, ABSPERRER B A ITIESS . R __doc_ @, T En T RHENE,
B X AT T ST A L (O

duck-typing 1 F-RM F5—FgmFE A, EIFAMKEE RIS REM e L2 EHA EMmNE D, meH
RS o sUErE (CRAERGN T, nEREGN T, Al Emen T .) hTumiEE
FHAER E 288, it RAF AR IS vl i el 2 SR AORIR T R PE . 19 2R BLE R type () B
isinstance () g, (HZEH MG FIA0] DA 46 28 & AEeb7e.) MAEESR A hasattr()
K 2 EAFP 4Rf

EAFP KRG HCRIFT A)" WPESCHHE . XA Python & HI AU g B XUk 2 {8 1 JIr 75 19 B sl S8 A7 7E
FEAE MR R A R AR S8 o X PR RIS D KU A s s 2 Kz H try Fll except 4] FHAXTHY
W2 FTELBYL WA, # LT C FiF 2 HAnE S .

expression -3k R, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as i f. Assignments are also statements, not expressions.

extension module —§" JEEIHL DA C 5 C++ Ji 5 1yMik, ffi] Python [¥) C APT & 51 5 4% .0 DA B FACHS E

S

AT H..

f-string f-F4FEp AT A £ B BT AT ER F IS RN AR B RS A B S TR
8% . 2 PEP 498,

file object — LB % X AMEALT) {4 APL A FIZRWIEMIXTSR (A read () B write () XFEAYH
) o ARIEHAED R, SO] DA B SRS SO, W AR R, s TR A
W (FIHAARHER A B . N IX . BT, FiE%%). USRI &t f8l ik,

S b A =R B SO SR SRR =] S f, G — i) S DA SR . BT E
TE fo b, BSOS R TE e A open () PR%L.

file-like object —SCIFSRF G file object {y[F) 3R] .
finder k2% —Fh XA F AR loader IRTE .

M Python 3.3 JZAFFE AR BU I A $k 48 Lk 12 & 45 % BLA sys.meta_path], PAKpath entry
finders fit & sys.path_hooks ffiff].

LTS 0 PEP 302, PEP 420 | PEP 451,

floor division —[] FIUEERT: 1) T 5 A B B BB B IR . 1a) FHCEBREZ B 2 /7 . Bilan, %
ks 11 /7 APITESRE 2, S 2T NI EIERERE 2.75 . FE (-11) // 4
£xRIA -3 IR -2.75 @ Ty AMSEIEE R . W PEP 238

function —pR % 1] DAV H R I EAME R — A5 A . 38 0] DA HAE A2 A S FFFE R B AR AT ot
5. % Wparameter, method F1 function 2575,

function annotation —pR kbR R &4 M 28R Bl {E ¥ annotation
PRV R TR 2042« BIan AR s Z A int SEOF LR E—4> int {H:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

BRI I TR DL function —5,
& & Fvariable annotation F11 PEP 484 % I GE A

182 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python/C API, [F) 3.6.12

future —Fh ORI, RIRRR R GO RS -5 2 BT RE R AN AR B T S R

15%3%@/\ _ future_ BHIFXTEH A AR EORE, AR DA B AT i RO AGE 5 A ST B
BRIA

>>> import __ future_
>>> _ future__ .division
7Feature((2, 2, O, 'alpha', 2)/ (31 OI Or 'alpha'/ O)I 8192)

garbage collection — i S IIC BEHCA P4 8 I A2 (B))i A% . Python @it 5 | T HEICRI— > BEAS A6 I A1
FTAGERG | OGS 0 s R A TR M) o W RABE] gc BRI fl s [i s -

generator —E)R 2T &[0l generator iterator WAL, EEERBGEERLL, ARGETHAE yield &
KA DA =2 — RFE AL for-IEHAE F 8@t next () REE—IKEL.
W R AR AR R, BRI N TR R AR AR B R E . WARFEEERIB S S, EHl
FH A FRDATRE G S o

generator iterator —: g5 5 RES generator IR EIEMINT A .
FAS yield IGHFEEAR, 0S4 HI AV EHATIRS (AFE RS RMERER vy HA]) o 241X £ &
Rk REWEN, BMNBEFACESRSIT (X580 AR T LG 13538 bR A2 AR K

generator expression —[: k25415, An expression that returns an iterator. It looks like a normal expression followed

by a for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function —{Z MU pR . AN [922 S B[] B A 1) 22 A R VT ALY BRI, 8 YIS 2 phy IR BE SRR
R % B PR A~ S B

1525 Wsingle dispaich RiEZF4H . functools.singledispatch () 2/figs A PEP 443,
GIL Z: W global interpreter lock

global interpreter lock 4 JRfi RS B CPython fFREAR IR A —FIBLH, 00 OR A — I 20 U — AR
AT Python byrecode. WALHIE T BCEX GARA (UG dict SFREENEIA) F0IF LRI EERE
AL T CPython SEPL. 43 REARRE SR IN B (AT R 2 LA as ATy (3, HACHY MRk T HE 2 Ak
Has ERHATIE.
A, LR E B S =07 R R AR SRAT VT S S A 55 4 s 45 S A IR GIL
BEAh, FEAT VO AR A2 SR GIL.
QA (ASDRSARL BERBUE I S 8Ulmiy) A hZade” MRS I AR RIS, A S
AEEE B FRAS I DL T OVERE . A s ORI BE)RR B TR K- B Se AR AR B A o, AT B X AAE
Al

hashable —n[Wy Ay — 3% G2 A I i (B A0 SR AE FE AR a6 0 A 268 R BOAE . EREAR O T A (R 2 AA
__hash__ () Jrik) , FFEAARDHAG R AT (ERERA _eqa () 1K) - ARG R
AR RIS A (E FU R 5 2R A M)
AT AR CE AR SRR R T S B A LB, PRy S 2) T N 8 e A
All of Python’ s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not.

Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except with
themselves), and their hash value is derived from their id ().

IDLE Pytl;)&n B IDE, “4ER{IF & 52257 B9 CHEE . /2 Python ARk A 4TIty i 4 g i 2 1 AR
R

183

https://www.python.org/dev/peps/pep-0443

The Python/C API, [F) 3.6.12

immutable — Al BARIEERNR . AN RUTELT . AR, SRR GRG0
RIDPAFE— DA FRIE, W ABTEF NG BN S HE RS A AR 2 ETZAEN, fm
(ST uE B

import path —S ABE1E 2 MU E (856125 8) AR, PRI path based finder KA FAH
fro FEFARS, HAIESIREHAH sys.path, (HXRFERUEATHER B EHREN _path_ J§
P

importing —S A %— ML) Python fURSRE N 3 — MELER F) Python FURS ir i I AL A o
importer —S AZF AR MMBBIRAIIT G B RIE)E T finder X g T loader .

interactive —%¢ 7. Python 1A — S A MEREr, BIR AT DATERRRESR S AT e B ATE A IR IS, SZ BT
AR R . AFAWSEED) python i (WA DATEARAY VT EEALITF UGS B b e A B S B0
A MACH AR SRS A AN L I X A s AR 7 . AR help (x)).

interpreted —f# % Python —ERMFREALIE T, SRR MIFAIET , BIAWIE I T 51 i g%
TR AEAE T AT PP . X R AR JESCE T DA LGB AT S b B s CHL B n] AT SO FRIs AT ARE
VR BA e A S AT SRR, (R AP EIE TR . & Winteractive,

interpreter shutdown —ff#REES P 2415 LR SIS, Python fEREARRFUEA — IR T B BOT &2 B0
HETBCIR, PIAIRCER & S N ARSI 55 . Bl 2 2R R eI 2 o Xl A P E S
e 55 U R A A AT o E S P BEAA TR W] RE B B A R, TR R LB ORI B U
EARTARL (IR B 1A PR BB AL 55 -

FRREAS T 2R IR R __main_ AUHREETIZTTHI AR O 58 kAT -

iterable —n[3E{CX 5 REAS B — iR 0] H & B T X 4. AR KT R0 6 T A A P A2 A (Flan 1ist,
str fil tuple) DR IESETEFSIRMBI dice. <A & DUREX T _ iter () Jriksk2ses
T Sequence & X W __getitem_ () FYEMMTEEBHEXENLR,

AERXTZ T T for MEIRDA K2 HMM TR Z— NP (zip (). map ())o J—AA[ER
MENERNSEAEHWNERE iter () B, BERENZASSEAERL . X FEAREH T XELE AR —
U 7 o« FEAE AT AR S, PR AR B iter O B0E HOAFRER TS . for IBMEN
PR SALBEARSEHAE B8 — MR A iy 24 72 B RAENR I R RAF B AR . S Witerator, sequence
PA K generator

iterator -3 fR3% FIRF/R—IEHRBIRRMINT S . ERIHAERIN _next__ () H¥E (B HAEL N E K
Bonext () FRERENR AP 2438A B NS % StopIteration Ff. FXHHEA
st BRI AR, AR next_ () HEHATHIKT] K StopIteration . £
TAIRA __iter_ () HERRBRFENZERIBIXNILZH Y, FILERIFUEWR S LIS, T
FHAB TN G5B R REB 6. — A BEF BN &2 K ERE P BRI A S . 258w
% (N 1ist) FEARBRR A A iter () REEUETE for IEH 6 A B RS = A — AT B AL
o ARAEPEE BT RS 26 A2 53R A1 7E 2 ji i AC I AR tp R R] — s Rt %, AR
Kkt EEN.

W25 H 4 F typeiter,

key function —tpR % 1 R BRI R AL, 2 ABAS AR [T T HE P BCHEGL A B AT TSR . I3, 1ocale.
strxfrm () A HTA B —AF A DI HE T 29 1 HE 74
Python 147 ¥ 2 T H# o vF 1 4 o6 BOR 45 8 S0 R W HEAL 8040 21 05 =0 K 46 min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg.nlargest () PA K
itertools.groupby (),

S — MR RO 2R 7. BN, str.lower () 7R AMIVEZIS K/ NEHEF 4R 5k,
SERB AT 1anbda Fkx0ORAIE, Hl40 lanbda r: (r[0], r[2]). i&f operator il
T =R B ERY: attrgetter (). itemgetter () flmethodcaller (). HAAE UIHT
—T PASRE B RN) B pR £ s 191

keyword argument — G258 2 Wargument,

184 Appendix A. RiEIEBR

The Python/C API, [F) 3.6.12

lambda — B fliexpression ¥ S 44 NERBR R, b A AETH I IOR(E. Q18 lambda e85 AJA

lambda [parameters]: expression

LBYL B GBRER” MSCHS . XM RS g 5 XUA% SAEUEA T IR) sl 2 1 S O A A i P 4 1F . I
A5 EAFP J7 UG O LG, HAF R KR 1 £ 14

TEZLBEMEET, LBYL T8 “&F” Al “BER R A EFRMES RE . Flan, AN it
key in mapping: return mappinglkey] A REH TR A EAEZ G HAMLKFE N mapping H
T key T H B o KRR IR ETATE AT AR] EAFP Jy Aok v

list %1 Python P& [1)—Fhsequence., EIRZ MHNFE, (BT HAGE F h B m AR5 %, AT
) TG E B R) S 24 BE R O(1).

list comprehension —51#ifi: 55X 4b B — A~ 73 51 (%) O A 508 43 T R IF IR Eéﬁ%ﬁﬂi@lﬁ@*ﬁ%iﬁg‘%o
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] ¥HEK—70
F| 255 JE oS FERB RO N AR (0x.) R, Hid it %/_JZET S B
range (256) A TCRABSPEALHL,

loader —JIERES FTTMBMIPIXT SR . BUAE X4 Lload_module () M. NS EH H—"finder
R, S PEP 302, %FTabstract base class B] 2=, 1mportllb .abc.Loader,

mapping Wi —FP SCRHME B AR IF LI T Mapping B MutableMapping iG55 2 i I fl e I A) 2%
T E, RS H 74335 dict, collections.defaultdict, collections.OrderedDict
PAM collections.Counter,

meta path finder TGRS sys.meta_path R IFR K finder. TR HES Spath entry finders
FEAE RIAHFF A] -

5% importlib.abc.MetaPathFinder T fRICIARTA Hoas T SE I 71k .

metaclass e —F T OIBRRA. JE LUEESY . FMAELRIN L. TuRATHEZ LR =S HOF
GUAAIRAYSE . KHIT IR X B G R T b xS (b BOASKE. Python RYRFHIZ ALAET n AGI
H i SOtk jtjﬁéj\ﬂﬂF'ﬂ(l_Tﬁﬁ%ﬁ/l\I/\, (EECTE S E N IV SR 2 NTTR W 02
ENCsH LB HE, SMARELart. RENROE. RG], SEHAFZAES

T £ 13152 I, metaclasses.

method Jjik FEIENHE LW BREL. WERVE R LB — A @R, 75 2 RBUE IR S A R
F—Aargument (R 4N self). Z: 0L function FMnested scope.

method resolution order —J5 iEMRATIRE 5 V5 FEAT I3 it /2 02 $R A% D2 8 R 2 L B - e R 7 . 1
#E Python 2.3 Jy VAT TR 2.3 IR Python BT T FAH B 141

module fiHt JH:XT%E Python U5 —FhAH 2L AN . S B A ST W44 25 (0], AT & fE 7 Python X 4.
FEHRT @ i importing FRAFR N3] Python Ff,
55 Wpackage.

module spec B — Ny 4 2SR, HAd & H T &SRR XS ARG E. & importlib.
machinery.ModuleSpec HJSEH.

MRO = ILmethod resolution order ,
mutable —w48 FIASXTZ AT AYER id () GRAFREDE G OL T BUBHIUE . 5336 S Wimmutable .

named tuple —E.#45¢4] Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

185

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, [F) 3.6.12

namespace —fir %3] iy 44 2 MR AEUE RN . s S RA 8. &R NER, AR riRE
HSE) (FEHIEZ W) o v 25108 2 B 1E v 44 oh 58 R SR ppsidlefb . 5, pR% builtins. Open'ﬁ
os.open () @4 H W 25 AR IR 4. fin 44 25 0] 0 38 1o BH i A B S BRIRAS R BSOR 35 Bl 3 5
ﬂiﬁﬁﬂﬂﬁ’ﬁf‘@ 4N, random.seed() B itertools.islice(Lﬁ'ﬁ%@?@%Tﬁﬁ“@’ﬁ%
B random 5 itertools FiH - HISLELT .

namespace package —iy #4243 M{L PEP 420 it 5| A —Fp {08 I VE 258 Mpackage , w44 235 A4S A] PATR
Bk IR, HAid T Hregular package KRR, FEAEATRA __init__.py Xff.
FHAIZ Wmodule ,

nested scope —ix £ IR 75— SGEEI NG IS ERIRe 1. B, e — R W K sREmT PAS |
RIE AR & R IR EE I ERA R nglﬂﬁﬁxﬁlﬁﬁﬁ}r&kﬁﬂﬁﬁo JaERAS R L E # A2 PR T i R E
M. BRI, £RARMESIERT2RtA 0. #id nonlocal XTI ARTEAINZIEH
i

new-style lass —HAYs AT F WIELHE AT S0 A0 IR . 759640 Python A, LTSS
3458 Python BT R IEARHE AN _slots_ . HOAME I IEE. _getactribute_ ()|

H TR S

object —X R (LM EARES BMESUE) PAKTE XATh (J5¥E) WIEE. object t 2 {Tfilnew-style class 1) #x
TiZHRAA

package —f, — P A] G & TR B 00 & B0 Python module, MIEAR PG, G2 H __path_ @M
f4 Python i,

Y52 W regular package Fnamespace package.

parameter J6% funciion (SJrvk) 7 SLUREIG A 50K, B HEE BT DB arqument (siAERC2eN;
W, ZA%E). AT

* positional-or-keyword : {7 E B BT, F5E DV DMERNE E A3 8 AW AT DAVE N X 48 F 2 1%
AW, X RBIAWTES AL, HIUTR K foo F1 bar:

def func(foo, bar=None): ...

* positional-only: {LFRAIE, € — HBEHALEE AR SE. Python Hilcf E AR ETE 21
k. (AR NEREA MURMEES (il abs ().

* keyword-only: {{FRKEET:, F5& A~ HABE LT REFAE AN SE. AR FIE S v 7 R
EXWIES P Rt & AT A E TS EETE L2 N AN B IS Z Ji— * ke S, Bl
TATHY kw_onlyl F1 kw_only2:

’def func(arg, *, kw_onlyl, kw_only2): ... ‘

* var-positional:][RI, € W] ABRME f—MERECR AL B SEA T (FEITEHAE 2
CRZNNESHZIG). RIS AR S AR * KE L, Bl FE args:

’def func (*args, **kwargs): ... ‘

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FEOITE MBS C #3205
FLRZIG) . RIS EETEIE S ARG «* e L, Bl Lmr kwargs.

FEZ T VAR 8 € AT e S 4L, AT A S SE T e S 40008 E BRI -

W2 Wargument RIEFZH . SEEESHX BT H)E ILE S, inspect .Parameter 2%, function —
LK PEP 362,

path entry —P8$2 A 11 import path W —A BN E, S8ipath based finder F{ 2 1R 5 A RIRLERE

path entry finder &2 A D AR ES F—0[AN S sys.path_hooks (Bipath entry hook) & 8]) finder
WA GRS S path entry g R

186 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

The Python/C API, [F) 3.6.12

2% importlib.abc.PathEntryFinder DA T D ARSI SLIAI AN ¥

path entry hook —B 4% A 111 — AT X4, FEJNTE QR[5 4R 58 path entry W 00 BEAS 6 11
sys.path_hook 5|3k [0]l—" path entry finder.

path based finder —3& T BARM AR BONR—Fh Lk 12 53835, WHAE—Dimport path H &AL,

path-like object R M R N FK— D UHERFE AN G KA R —DFRBEEN str i
bytes X%, W[PA— LI T os.PathLike MM S . —A3ZHF os.PathLike MHUAIXI S
Al os. fspath () REEEIR N str B bytes REM N/ RLEPKIE; os. fsdecode ()
os.fsencode () A5 I RMPRIKS str o bytes BBIPWLER . x5 2 PEP 519 5| A,

PEP “Python I Y345 . — 1 PEP L —Griki SCRY, JHIf Python 4 RHEFEL, shifiia
A Python Iy BFHFPE B FLHEES SRS . PEP 1A B 0RO S0 A BTSSR R E]
PEP [l it B A HN . WCHERRDCA A BRI I DA B R 5 AT, Python B e 5
SCRAH L. PEP {8 A IEFEAE A D PR IR, T BRI B UL A SO
Z I, PEP 1,

portion —{#i5y H R — iy &4 S WHY A H RN SO (RATREAAI T — zip SCFA) , HAGE UL
PEP 420.

positional argument —\i & 28 £ Wargument .

provisional APT —# 5 API & APT @357 B HERTERME RN) Jo A A MR Z AN B gz 11 . AR
W Tl AN 2 A HRME, (HHBHRC R E, ST RBTEAR O KB A L E B LT
PTG AAN TN (B2 ORERERIZED) . M SO SRR T-E APL B INAZ fi k%
3 1) ™ BBt P R B i B AT RE S X AL
R @ X APT R UL, 0] 5 AR S Sl B eI 587 —] R R i A B
XA RRAE AR B —Fh) IS A il T 5
PR AP AR AR FERF SR WTHBE AN TR0 M KRBT A I . RS DL PEP 411,

provisional package —£[¢l 2 W provisional AP,

Python 3000 Python 3.x %A FEZIIEAR (X2 FAERRAS 3 1 LA RERE LI BTt T il 7)o« A
%ﬁ%gj{j “Py3k”o

Pythonic $55—™ L% 80— B USSR 35 8E0H T Python o 5 e RO XA FIBE &, AN 2 (o AL o 5 v e
AR A S BACRS . BN, Python [I XAR 2 (] £or TRAIIRERAM) — >l AU R i T T
o WZHAE S A AR, AP Python A I 2 W6 — MO T -

for i in range(len(food)):
print (food[i])

TR, Y B 1575 B Pythonic (77 34 /& X FERY:

for piece in food:
print (piece)

qualified name —fRsE HFK —NPAS SR TR, Bom WBTHAY 2 JR VR B e v i LR bR
B0 BT, MHE I PEP 3155, T i Z A RECRIZE, FREA RS XR AR —E

>>> class C:
class D:
def meth (self):
pass
>>> C._ _qualname_
IC’

(Rt

187

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, [F) 3.6.12

(R —H)

>>> C.D.__gualname___

'Cc.D'

>>> C.D.meth._qualname___
'C.D.meth’

295 T 5 AR, % RE S AR AR R IR LSS TR N i AR, s a1 AL
, il email .mime.text:

>>> import email.mime.text
>>> emaill.mime.text. name
'email.mime.text'

reference count —5 | -5 X4 E X R A0TSR . 24— DX a5 TR B mE, B e SR gore
e 51ATTHECT Python AT K il # 2 A T LAY, {H'E SR CPython SEFLH)— R HEICE . sys BBLUE L
T—A~getrefcount () pREL, FEF G2 ATUE B AR mIR X205 | 4L

regular package ¥ MLAL A4 package, BIINELESH—A _init__.py UAFRIHF.
2 Wnamespace package ,

_slots__ —FEGYEA N TR AT B, 18 1 951 5 7 B S 1) JaR 1R A 0 R I RS R S 01 7 R 548 A BRI R
TARGAT, HARZNE AR, St RRBAEDBAROUT RN, BN iRy, 7
HIH A a5 KRS

sequence —J¥:-41] —Fhirerable, TSR _ getitem () JR5R IR A BERS | T E RN T E TR,
HEXL T —MREFHKER __len_ () FiE. WEFHIZKAA 1list, str, tuple fil bytes,
WEER dict BHH _ getitem () Al __len_ (), {HEHANBTME RS, K AEE
RIS F AT B i) immutable ST AEFEHL

collections.abc.Sequence MR HREXN T —TMEEEFEWED, BT _ _getitem_ ()
H__len_ (), WIT count (), index (), __contains__ () fl __reversed__ () . W[PA#EH
register () RAJEM LI FEH OREAL.

single dispatch — i}k —Fhgeneric function 73R, HELBUEEET A SR FBDRIERE) -

slice —YJ 1 % RS T @ sequence —FR X5 Yl (A FAsbricRal@m, & (1 Pl
JIANLAE B TErErs, fltl variable_name[1:3:5]1. 4SS (FR) FRCERNEREH slice Xt
%

special method %55k Jjik —7fih Python [M7k, HIRIFARBPATRE BRAEBIAIHT I SF 45 . X
M5 IER A FRE T AR TR LR . REFATT ¥R SCH 2 DL specialnames .,

statement —ifi4y EA TR (— MUY “H) BYASERLL. —ARIE R AT AR —Dexpression BILANHIAT K
SEFERYEERY, BN if. while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().

text encoding — LGRS H]TF Unicode “FA4F 5 4t -l 715 Hh) G2 -

text file —SCASCHE —FPEEIETEE str W1 file object . 33— SCAS SCAESZ B 235 M) — 4N T 1) 2 1A B3
T H ik Brext encoding . SCASCAFHIBIFAFEASCARIE (Trr 3% 'w') FTHIRSCHE. sys.stdin,
sys.stdout PAM io.StringIO fY3LH,
FWSEbinary file | fRREVS S F 7 K3 2 SR

triple-quoted string —— 5 "53¢ fFh RS =AEEWE1S () sFH515 () WP, BITEDREL
HERES 519t TR A2, B2t ENarirETfFHanNEERE

188 Appendix A. RiEIEBR

The Python/C API, [F) 3.6.12

e ARG S HINE S, H A DABS B AT JO T G HESRAT , (E20 5 SOR A0 R IPRE 5

type R KA YusE—A> Python X4 @ FATAMIE; HAXTRARHRAG —Fh2RA., BHHEXTRMZRAL, 7T ATS
HER __class__ J@¥, sl type (obj) KIRKHL,

type alias YR — ARG R S, B1ETT 2O B IR 4517 E FOPRIRAT .
KRB BRI fa A X 2w . Biln:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

] DA B Ry e

from typing import List, Tuple
Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

Z)L typing fll PEP 484, HAA Xt LI RERY HEAR iAo
type hint RBIPLR annotarion yAE R K@M, eRENTE S Bk oM e E TUYI 282 .

RAERE T RIS, Python ABSKAEHE, (HHAXEFARA M THARIEN, FF A) IDE S8 A
A S,

&R, RIBMER R R B R A typing.get_type_hints () Ry, {HJEHRAS &N
AHTPA,

Z: L typing HI PEP 484, HAA XS I R TEAR A «

universal newlines —Jl I #A7 — PR LSO A2, KA T TR FF S8R B TE bR - Unix (7745
243 "\n', Windows fJZy5E '\r\n"' PASKIHIR Macintosh 255 "\r' . 2L PEP 278 1 PEP 3116 F
bytes.splitlines () JTEHEZ M.

variable annotation bRl XS B82S B M annotation.,
TEVREAS BSR4 AT ek LA

class C:
field: 'annotation'

AR EAREE T O A K AR 0 BINDA R AR B2 int JREURO(E:

count: int = 0

AF AR TEYA A AR L. annassign —7 .
S function annotation, PEP 484 F1 PEP 526, H P B RER A .
virtual environment -WEHSLIRSE — R S B5H0I2 7SR 5t Python J PV JFRF-(E 4k RIS
2 Python 4% LN R 2 ALl — #4270 LA Python 17 IR 7070
HZ I venv,

virtual machine —JE#IBL — & 58 438 & 84 SCHTH AL Python FE 4BUAIL W] 04T 7 15 AL 4 13 4% JUr A=
Hbytecode.

189

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, [F) 3.6.12

Zen of Python —Python Z#ifi 5|t} Python St AYJEIN 5824, A B) T RIS X AET . AR HRAKNE
TR HRASE R A [import thislo

190 Appendix A. RiEIEBR

APPENDIX B

BARIELEFIRA S 14

15 LB S 28 Sphinx (—{# 5(E] Python [EJWA SR 85 1 SRR BERS) M0 reStructured Text 4#57
PR B L A A T o

4l Python [&, iith H A1) %5 1 I SCPRELERHEAR H BT TR . F AR IR A ik, 75 52 reporting-
bugs EUTE, [EVSAHBA A FoAM i Balpy BB A

B
* Fred L. Drake, Jr., J5lf Python SC{ TR AR M RIEE DA R — K EIAHI1ER .
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx 4¢f) Alternative Python Reference w1-#] H IS 2 00 5 .

B.1 Python {898 BRKE

7% A\#RH[E] Python 1& 137 . Python 121 ik X AN Python [EJRA SCAFET MR . Python FT#(EIfY 5 AA RS &
A ERCEREH, @5 R Misc/ACKS ,

TEFAIE] Python A7 (1488 g B B0k A e 07 3 E R (v (ED) S e R g A1 !

191

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

The Python/C API, [F) 3.6.12

192 Appendix B. B iELE(FIBASC 4

apPENDIX C

JE Sh B

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

ffilE): GPL 345 H A ERF Python {£ GPL R k7. 5 GPL [, Jiif Python ¥ niEAR AL 43 B A UG

W

193

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, [F) 3.6.12

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 F PYTHON 3.6.12 §§ PSF o] {ini

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.6.12 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.6.12 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 3.6.12 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.12 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
3.6.12.

4. PSF is making Python 3.6.12 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.6.12 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.12

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.12, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

194 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.6.12, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM # &Il

BEOPEN PYTHON JFE 14] P ER 1 AR

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(FItgkss)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 195

The Python/C API, [F) 3.6.12

(R —H)

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FiF PYTHON 1.6.1) CNRI o] ¥

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(FItakss)

196 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

(R —H)

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FF PYTHON 0.9.0 E 1.2 5 CWI ¥ a]Hpix

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 WU 89T ol 5055
AT 2 Python JATHUIACTA 5 =y BOPHI VT RIBIIT A, WA LR A e FLRIE A K

C.3.1 Mersenne Twister

_random IR E E T http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html F 2511,
5. PRSI se iR (FR):

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(Qi¥i#3)

C.3. #HWrRIRHFaYVF ol 5053 197

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, [F) 3.6.12

(R —H)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EfEx

socket U] getaddrinfo () fl getnameinfo () ML, XLEREIFAASLE WIDE IiH (http://www.
wide.ad.jp/) B ERMIESCAF A

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(Rt

198 Appendix C. FEsh E1i4E

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API, [F) 3.6.12

(R —H)

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that 1ts wuse would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply 1its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. #HWrRIRHFaYVF ol 5053 199

The Python/C API, [F) 3.6.12

C34 RLEEFRS

asynchat and asyncore B & DA FEHH:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie &1

http.cookies FiIRALS AT H:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

200 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

C.3.6 MITERR

trace B S PA T AEH:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode E UUdecode &%l

uu B DA R

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(Rt

C.3. WURIRHFEYIFETiE SIS H

201

The Python/C API, [F) 3.6.12

(R —H)

version is still 5 times faster, though.
- Arguments more compliant with Python standard

C.3.8 XML 2T =iAMA

xmlrpc.client BEHEE DA R ER:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

test_epoll B EHDATFEM:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(Rt

202 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

(R —H)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

select MiH KT kqueue B S DA T AEH:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Pyt hon/pyhash. c contains Marek MajkowskiJ implementation of Dan Bernstein’ s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(Rt

C.3. #HWrRIRHFaYVF ol 5053 203

The Python/C API, [F) 3.6.12

(R —H)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

Python/dtoa.c XML T CiEF 1 dtoa Fil strtod pR%L, TR C 155 WSO FE BUR FAF R E 7440, %
SCFH David M. Gay [4 SCHFIRAE T K, 24T AT http://www.netlib.org/fp/ T #k. 2009 4E 3 H 16 H¥:Z& %
A D 3 S 25 DA BOBUR 1 v s B

/**

The author of this software is David M. Gay.

* % o

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k***‘k*‘k**‘k******‘k*‘k*****‘k*‘k*‘k*‘k*****‘k*‘k************************/

C.3.13 OpenSSL

WERBEAE RG], W) hashlib, posix, ssl, crypt BIER{EJi] OpenSSL e mithfi. Boh, @ T
Python ff) Windows Fil Mac OS X %3¢ /7] fig t4f OpenSSL (45 D, BT AYE ILAL RS i T OpenSSL 4-1]
R 5 DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

(T IUaksE)

204 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

(R —H)

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L S R T S N S N S S N S N S N N S R A e N N N N S N IS e S S N ST N S N S T S S S S N N

Original SSLeay License

(Rt

C.3. WURIRHFEYIFETiE SIS H

205

The Python/C API, [F) 3.6.12

(R —H)

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

EORE T S A S N S S S S S S S S ST S S SN S S S S S S I S S O T T S S N S N S T S SRS N S N S ST S S N S S

206 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

C.3.14 expat

BRIAEBE —-with-system—expat BUE TIHE, 50 pyexpat § AR & expat JHHIFE DA EHY:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

BRAEGE ——with-system-1ibffi U THH, I _ctypes ¥ ARt Libffi JAHE DM T

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 207

The Python/C API, [F) 3.6.12

C.3.16 zlib

R ARG EAR B 21ib BAKIFTFE kN TH 8, W 5 2lib SRR DR 2110 3 &:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

tracemalloc i F M7 =0 LB LT cfuhash i H :

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

(Rt

208 Appendix C. FEsh E1i4E

The Python/C API, [F) 3.6.12

(R —H)

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

BRG] —-with-system-libmpdec MU T, BN _decimal BEHUALRE 1 libmpdec FEfKF5 DAY
.

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. #HWrRIRHFaYVF ol 5053 209

The Python/C API, [F) 3.6.12

210 Appendix C. FEsh B {E

APPENDIX D

=
i
|mit
If

Python F1i&E 26302 -

Copyright © 2001-2020 Python Software Foundation, {58 &+ A,

Copyright © 2000 BeOpen.com {4 i — I HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SRR R A G 2 R At

211

The Python/C API, [F) 3.6.12

212 Appendix D. jfiEEE

3l

EFE
..., 179
2to03,179
>>> 179
__all__ (package variable), 36
_dict__ (module attribute), 114
__doc__ (module attribute), 114
_ file_ (module attribute), 114
_ future_ , 183
__import_

Bz & R, 36
__ loader__ (module attribute), 114
__main___

A4, 9, 129, 138
__name___ (module attribute), 114
__package__ (module attribute), 114
_ slots_ , 188
_frozen (CH# #), 39
_inittab (C# #), 39
_Py_c_diff (C &#X), 79
_Py_c_neg (C #X),79
_Py_c_pow (C #X), 79
_Py_c_prod (C &R, 79
_Py_c_quot (C & R), 79
_Py_c_sum(C #X), 79
_Py_NoneStruct (C 4 %), 152
_PyBytes_Resize (C % R), 82
_PyImport_FindExtension (C $#X), 39
_PyImport_Fini (C 1), 38
_PyImport_Init (C &), 38
_PyObject_GC_TRACK (C % X)), 174
_PyObject_GC_UNTRACK (C H#ZR), 174
_PyObject_New (C HX), 151
_PyObject_NewVar (C % R), 151
_PyTuple_Resize (C HX), 103
_thread

A, 135
it

bytearray, 82

bytes, 80

Capsule, 122
complex number, 79
dictionary, 106
file, 113

floating point, 78
frozenset, 108
function, 110
instancemethod, 111
integer, 75

list, 104

long integer, 75
mapping, 106
memoryview, 121
method, 111

module, 114

None, 75

numeric, 75
sequence, 80

set, 108

tuple, 102

type, 4,73

BREW

exec_prefix, 4

PATH, 9

prefix, 4
PYTHONDUMPREF'S, 157
PYTHONHOME, 9, 10, 133
PYTHONIOENCODING, 130
PYTHONMALLOC, 144, 148
PYTHONMALLOCSTATS, 144
PYTHONPATH, 9, 10

A

abort (), 36

abs
Bz & R, 58

abstract base class —— #Z # %, 179
annotation —-- 4§, 179
argument -- £#, 179

213

The Python/C API, [F) 3.6.12

argv (in module sys), 132 copyright (in module sys), 132
ascii coroutine -- PfE, 181
Bz g =, 55 coroutine function -- A2 &%, 181
asynchronous context manager -- # # |t CPython, 181
T X% %, 180 create_module (C HX), 117
asynchronous generator -- 4 £, 180
asynchronous generator iterator -- =3 D
¥4 A% R, 180 decorator —-- X4f#, 181
asynchronous iterable -- R ¥ W # KX X, gescriptor —— H# %, 181
180 dictionary
asynchronous iterator -- R#H#&RE, 180 M, 106
attribute —-- EM, 180 dictionary -- 54,181
awaitable —— F&fxt4£, 180 dictionary view —— FHHE, 182
divmod
B [Flz &, 58
BDFL, 180 docstring —— XA4FA &, 182
binary file —— Z 34| X, 180 duck-typing -- ¥F %A, 182
buffer interface
(see buffer protocol), 64 E
buffer object EAFP, 182
(see buffer protocol), 64 EOFError (built-in exception), 113
buffer protocol, 64 exc_info () (in module sys), 8
builtins exec_module (C & X)), 117
A, 9,129,138 exec_prefix, 4
bytearray executable (in module sys), 131
ok, 82 exit (), 36
bytecode -- F¥ 7, 180 expression —-- Fik R, 182
bytes extension module —— # & , 182
s 7R AR SR
1 4, 80 F
bytes-like object —-- F¥ Ex%£,180 f-string —— f-Zfi, 182
file
C e, 113
calloc(), 143 file object —-- XfFxt%, 182
Capsule file-like object —-- XHFXXt%, 182
M, 122 finder —-- & #, 182
C-contiguous, 67, 181 float
class —— 2£,181 [Fl# & =, 60
class variable —— %74 &, 181 floating point
classmethod W, 78
Ezg =R, 154 floor division -- @ FEUER %, 182
cleanup functions, 36 Fortran contiguous, 67, 181
close () (in module os), 139 free (), 143
CO_FUTURE_DIVISION (C % %), 17 freeze utility, 39
code object, 112 frozenset
coercion —- & KA %, 181 1, 108
compile function
Bz & =, 37 HrtE, 110
complex number function -- E#, 182
w1, 79 function annotation —- H#AFiE, 182
complex number —— £ #, 181
context manager —— L+ X% 181 G
contiguous, 67

arbage collection -- Hri%[HE Uk, 183
contiguous —— %%z, 181 g g g

214 %5l

The Python/C API, [F) 3.6.12

generator, 183

generator —— 4 &4, 183

generator expression, 183

generator expression —-- 4 @KLK, 183

generator iterator —-- A4 k% E, 183

generic function —-- Z A ¥, 183

GIL, 183

global interpreter lock, 133

global interpreter lock —- 4 B % &4,
183

Fl

hash

[Flz & R, 56, 160
hashable -- ¥ 7%, 183

IDLE, 183
immutable -— R %, 184
import path —-- B AE1Z, 184
importer —— B A#, 184
importing —— ® A, 184
incr_item(), 8,9
inquiry (C A #&), 175
instancemethod

itk 111
int

[El# & K, 60
integer

HtF, 75
interactive
interpreted
interpreter
interpreter
iterable —-
iterator —-

K

key function -- # %%, 184
KeyboardInterrupt (built-in exception), 27
keyword argument -- Xx&F5¥, 184

L

lambda, 185
LBYL, 185
len
[Fl# g =, 57, 61, 62, 105, 107, 109
list
i, 104
list —— %%, 185
list comprehension -- %|xk#HEHER, 185
loader —— Jn##, 185
lock, interpreter, 133
long integer

—— XE,184

—— EEA, 184

lock, 133

shutdown -- FEHEXxH, 184
%R &, 184

#* R &, 184

W, 75

LONG_MAX, 76

M

main (), 130, 132
malloc (), 143
mapping

#11, 106
mapping —-- B4, 185
memoryview

i, 121
meta path finder -- THBELEEKHE, 185
metaclass —— J0&, 185
METH_CLASS ([Fl# %), 154
METH_COEXIST ([l % %), 154
METH_KEYWORDS ([Elz 4), 153
METH_NOARGS ([FlzZ % #0), 153
METH_O ([Fli & $0), 154
METH_STATIC (Fi % #), 154
METH_VARARGS ([Fl# % #0), 153
method

ik, 111
method resolution order -- 7 3 ## W 7,

185

method 7 i, 185
MethodType (in module types), 110, 111
module

search path, 9, 129, 131

ik, 114
module spec —-- kI, 185
module A, 185
modules (in module sys), 36, 129
ModuleType (in module types), 114
MRO, 185
mutable —- ET@E, 185

N

named tuple -- B 454,185
namespace -- & % JH, 186
namespace package -- #%& % [E4, 186
nested scope —-— gﬁéﬁz}ﬂﬁ’ 186
new-style class —— ¥, 186

None

W, 75

numeric

.75
O

object
code, 112
object —— Xt#4,186
OverflowError (built-in exception), 76, 77

e]

215

The Python/C API, [F) 3.6.12

P

package -— 4,186
package variable

all .36
parameter —-- ¥4, 186
PATH, 9

path
module search, 9, 129, 131
path (in module sys), 9, 129, 131

path based finder -- AT BZm &K E, 187

path entry —— B#&EA O, 186

path entry finder -- HB&AAN D& EH, 186

path entry hook —-- BE&FEANHO#4F, 187
path-like object —-- ER&EX%£, 187
PEP, 187

platform (in module sys), 132

portion —— #4187
positional argument -- I & 5%, 187
pow

[z % X, 58,59
prefix, 4
provisional API -- # % API, 187
provisional package -- ¥ FM, 187

Py_AddPendingCall (C &% R), 139
Py_AddPendingCall (), 139
Py_AtExit (C & X), 36
Py_BEGIN_ALLOW_THREADS, 134
Py_BEGIN_ALLOW_THREADS (C E %), 136
Py_BLOCK_THREADS (C E %), 137
Py_buffer (CH), 64

Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer.
Py_buffer
Py_Buildva

buf (C m B #), 64
format (C & B &%), 65
internal (C & B FH %), 66

.itemsize (C & B &%), 65

len (C m% B F#1), 65

ndim (C & B &), 65

obj (C m B H &), 65
readonly (C & B H# %), 65
shape (C &% B % %), 65
strides (C & B %), 65

.suboffsets (C . B & ¥), 66

lue (C & X)), 46

Py_CLEAR (C #HR), 19

Py_Compile
Py_Compile

String (C %R, 15
String (), 17

Py_CompileStringExFlags (C &), 16
Py_CompileStringFlags (C &#X), 16
Py_CompileStringObject (C #X), 16
Py_complex (C# &), 79
Py_DecodeLocale (C %HR), 34
Py_DECREF (C &% X)), 19

Py_DECREF (), 4

Py_Ellipsis (C &%), 121
Py_EncodeLocale (C %HRX), 34

Py_END_ALLOW_THREADS, 134
Py_END_ALLOW_THREADS (C E %), 137
Py_EndInterpreter (C %H2), 139
Py_EnterRecursiveCall (C &R), 29
Py_eval_input (C % #), 16
Py_Exit (C &), 36

Py_False (C % %), 78
Py_FatalError (C $HX), 36
Py_FatalError (), 132
Py_FdIsInteractive (C &R), 33
Py_file_input (C &%), 17
Py_Finalize (C &% R), 130
Py_FinalizeEx (C $HX), 129
Py_FinalizeEx (), 36,129, 138, 139
Py_GetBuildInfo (C #X), 132
Py_GetCompiler (C &), 132
Py_GetCopyright (C % 3), 132
Py_GetExecPrefix (C #X), 130
Py_GetExecPrefix(),9
Py_GetPath (C H#X), 131
Py_GetPath(),9, 130, 131
Py_GetPlatform (C &), 131
Py_GetPrefix (C HX), 130
Py_GetPrefix (),9
Py_GetProgramFullPath (C &#=R), 131
Py_GetProgramFullPath(),9
Py_GetProgramName (C % =), 130
Py_GetPythonHome (C # X)), 133
Py_GetVersion (C $HX), 131
Py_INCREF (C $#R), 19
Py_INCREF (), 4

Py_Initialize (C HX), 129
Py_Initialize(),9, 130, 138
Py_InitializeEx (C HZR), 129
Py_IsInitialized(C #X), 129
Py_IsInitialized(), 10
Py_LeaveRecursiveCall (C &R), 29
Py_Main (C &R), 13
Py_mod_create (C % %), 117
Py_mod_exec (C &%), 117
Py_NewInterpreter (C %H2R), 138
Py_None (C &%), 75
Py_NotImplemented (C & %), 53
Py_PRINT_RAW, 113

Py_REFCNT (C E), 152
Py_ReprEnter (C &#R), 29
Py_ReprLeave (C &), 30
Py_RETURN_FALSE (C E #£), 78
Py_RETURN_NONE (C E %), 75
Py_RETURN_NOTIMPLEMENTED (C E %), 53
Py_RETURN_TRUE (C E £), 78
Py_SetPath (C H#X), 131
Py_SetPath (), 131
Py_SetProgramName (C % :), 130

216

The Python/C API, [F) 3.6.12

Py_SetProgramName (), 9, 129131
Py_SetPythonHome (C & X)), 133
Py_SetStandardStreamEncoding (C &), 130
Py_single_input (C &%), 17
Py_SIZE (C E%), 152
PY_SSIZE_T_MAX, 77
Py_TPFLAGS_BASE_EXC_SUBCLASS ([& 4 #),
162
Py_TPFLAGS_BASETYPE ([FlzZ % %), 161
Py_TPFLAGS_BYTES_SUBCLASS ([Elz %), 162
Py_TPFLAGS_DEFAULT ([EliZ % %), 162
Py_TPFLAGS_DICT_SUBCLASS ([l & #), 162
Py_TPFLAGS_HAVE_FINALIZE ([Fla & #), 162
Py_TPFLAGS_HAVE_GC ([Fi % #), 162
Py_TPFLAGS_HEAPTYPE ([Flz % #0), 161
Py_TPFLAGS_LIST_ SUBCLASS ([l % #), 162
Py_TPFLAGS_LONG_SUBCLASS ([Flz & #), 162
Py_TPFLAGS_READY ([Flz %), 162
Py_TPFLAGS_READYING ([FliZ % %), 162
Py_TPFLAGS_TUPLE_SUBCLASS ([Eli % #), 162
Py_TPFLAGS_TYPE_SUBCLASS ([Flz %), 162
Py_TPFLAGS_UNICODE_SUBCLASS ([Flz % %), 162
Py_tracefunc (C# #), 140
Py_True (C % %), 78
Py_TYPE (C E %), 152
Py_UCS1 (C A #&), 83
Py_UCS2 (C A %), 83
Py_UCS4 (CA #), 83
Py_UNBLOCK_THREADS (C E £), 137
Py_UNICODE (C % #2), 83
Py_UNICODE_IS_HIGH_SURROGATE (C E), 87
Py_UNICODE_IS_LOW_SURROGATE (C E 4£), 87
Py_UNICODE_IS_SURROGATE (C E 4£), 87
Py_UNICODE_ISALNUM (C =), 86
Py_UNICODE_ISALPHA (C %K), 86
Py_UNICODE_ISDECIMAL (C &X), 86
Py_UNICODE_ISDIGIT (C &X), 86
Py_UNICODE_ISLINEBREAK (C #X), 86
Py_UNICODE_ISLOWER (C #=X), 86
Py_UNICODE_ISNUMERIC (C & =), 86
Py_UNICODE_ISPRINTABLE (C &#X,), 86
Py_UNICODE_ISSPACE (C &#X), 86
Py_UNICODE_ISTITLE (C % X)), 86
Py_UNICODE_ISUPPER (C & X)), 86
Py_UNICODE_JOIN_SURROGATES (C E %), 87
Py_UNICODE_TODECIMAL (C &X.), 86
Py_UNICODE_TODIGIT (C X)), 86
Py_UNICODE_TOLOWER (C &X,), 86
Py_UNICODE_TONUMERIC (C %X), 87
Py_UNICODE_TOTITLE (C &%=X), 86
Py_UNICODE_TOUPPER (C &X,), 86
Py_VaBuildvalue (C H#=R), 48
Py_VISIT (C &HX), 175
Py_XDECREF (C &=, 19

Py_XDECREF (), 9

Py_XINCREF (C &=, 19

PyAnySet_Check (C F# X)), 109

PyAnySet_CheckExact (C &#X), 109

PyArg_Parse (C % X)), 45

PyArg_ParseTuple (C % X)), 45

PyArg_ParseTupleAndKeywords (C #X), 45

PyArg_UnpackTuple (C % X)), 45

PyArg_ValidateKeywordArguments (C & X)),
45

PyArg_VaParse (C % R), 45

PyArg_VaParseTupleAndKeywords (C HR), 45

PyASCIIObject (C &), 83

PyAsyncMethods (C A #8), 173

PyAsyncMethods.am_aiter (C i B %), 173

PyAsyncMethods.am_anext (C sk B FH#), 173

PyAsyncMethods.am_await (C m% B FH %), 173

PyBool_Check (C # X)), 78

PyBool_FromLong (C #=,), 78

PyBUF_ANY_CONTIGUOUS (C E %), 67

PyBUF_C_CONTIGUOUS (C E £), 67

PyBUF_CONTIG (C E), 68

PyBUF_CONTIG_RO (C E), 68

PyBUF_F_CONTIGUOUS (C E £), 67

PyBUF_FORMAT (C E £), 66

PyBUF_FULL (C E £), 68

PyBUF_FULL_RO (C E), 68

PyBUF_INDIRECT (C E %), 67

PyBUF_ND (C E £), 67

PyBUF_RECORDS (C E £), 68

PyBUF_RECORDS_RO (C E #£), 68

PyBUF_SIMPLE (C E #£), 67

PyBUF_STRIDED (C E £), 68

PyBUF_STRIDED_RO (C E %), 68

PyBUF_STRIDES (C E £), 67

PyBUF_WRITABLE (C E £), 66

PyBuffer_FillContiguousStrides (C & RX),
70

PyBuffer_FillInfo (C &#=), 70

PyBuffer_IsContiguous (C &X,), 70

PyBuffer_Release (C HR), 69

PyBuffer_SizeFromFormat (C $%H3), 70

PyBuffer_ToContiguous (C % R), 70

PyBufferProcs, 64

PyBufferProcs (C A f%), 172

PyBufferProcs.bf_getbuffer (C m 8 & &),
172

PyBufferProcs.bf_releasebuffer (C & 8 &
#), 173

PyByteArray_ AS_STRING (C %X), 83

PyByteArray_AsString (C &HX), 82

PyByteArray_Check (C %HR), 82

PyByteArray_CheckExact (C HR), 82

PyByteArray_Concat (C #X), 82

e]

217

The Python/C API, [F) 3.6.12

PyByteArray_FromObject (C #X), 82 PyCode_NewEmpty (C % 2R), 112
PyByteArray_ FromStringAndSize (C #=X),82 PyCode_Type (C % #), 112

PyByteArray_ GET_SIZE (C %H3R), 83 PyCodec_BackslashReplaceErrors (C & RX),
PyByteArray_Resize (C HX), 82 51

PyByteArray_Size (C HX), 82 PyCodec_Decode (C &% X)), 50
PyByteArray_Type (C £ %), 82 PyCodec_Decoder (C H# 1), 50
PyByteArrayObject (C % #&), 82 PyCodec_Encode (C % X)), 50
PyBytes_AS_STRING (C HR), 81 PyCodec_Encoder (C %#R), 50
PyBytes_AsString (C #X), 81 PyCodec_IgnoreErrors (C %HR), 51
PyBytes_AsStringAndSize (C %HR), 81 PyCodec_IncrementalDecoder (C % R), 50
PyBytes_Check (C % R), 80 PyCodec_IncrementalEncoder (C HX,), 50
PyBytes_CheckExact (C HX), 80 PyCodec_KnownEncoding (C &), 50
PyBytes_Concat (C %), 82 PyCodec_LookupError (C #X), 51
PyBytes_ConcatAndDel (C % R), 82 PyCodec_NameReplaceErrors (C & X), 51
PyBytes_FromFormat (C #X), 81 PyCodec_Register (C HX), 50
PyBytes_FromFormatV (C H#:), 81 PyCodec_RegisterError (C HR), 51
PyBytes_FromObject (C #X), 81 PyCodec_ReplaceErrors (C HR), 51
PyBytes_FromString (C F#X,), 80 PyCodec_StreamReader (C % R), 50
PyBytes_FromStringAndSize (C % 1), 80 PyCodec_StreamWriter (C %HIR), 50
PyBytes_GET_SIZE (C #X), 81 PyCodec_StrictErrors (C %HR), 51
PyBytes_Size (C HR), 81 PyCodec_XMLCharRefReplaceErrors (C & RX),
PyBytes_Type (C % %), 80 51

PyBytesObject (C#), 80 PyCodeObject (C & #), 112
PyCallable_Check (C H#X), 56 PyCompactUnicodeObject (C A #), 83
PyCallIlter_Check (C #HR), 119 PyCompilerFlags (C# #), 17
PyCallIter_New (C %R), 119 PyComplex_AsCComplex (C &%), 80
PyCallIter_Type (C %), 119 PyComplex_Check (C & 3R), 80

PyCapsule (C % &), 122 PyComplex_CheckExact (C &), 80
PyCapsule_CheckExact (C & 3), 122 PyComplex_FromCComplex (C #X,), 80
PyCapsule_Destructor (C % #8), 122 PyComplex_FromDoubles (C #R,), 80
PyCapsule_GetContext (C HR), 123 PyComplex_ImagAsDouble (C #X), 80
PyCapsule_GetDestructor (C HR), 123 PyComplex_RealAsDouble (C #X), 80
PyCapsule_GetName (C H), 123 PyComplex_Type (C 4 #), 80
PyCapsule_GetPointer (C &%X), 123 PyComplexObject (C A #), 80
PyCapsule_Import (C #X), 123 PyCoro_CheckExact (C % R), 124
PyCapsule_IsValid (C &H2R), 123 PyCoro_New (C % X)), 124

PyCapsule_New (C H#X), 122 PyCoro_Type (C ¥ #), 124
PyCapsule_SetContext (C HX), 123 PyCoroObject (CH #), 124
PyCapsule_SetDestructor (C %R, 123 PyDate_Check (C %R), 125
PyCapsule_SetName (C % R), 123 PyDate_CheckExact (C % R), 125
PyCapsule_SetPointer (C %#R), 123 PyDate_FromDate (C &HR), 125
PyCell_Check (C &R), 112 PyDate_FromTimestamp (C &%), 126
PyCell GET (C HR), 112 PyDateTime_Check (C & X)), 125
PyCell_Get (C H#X), 112 PyDateTime_CheckExact (C HRX), 125
PyCell_New (C X)), 112 PyDateTime_DATE_GET_HOUR (C & X)), 126
PyCell_SET (C #X), 112 PyDateTime_DATE_GET_MICROSECOND (C & X)),
PyCell_Set (C HZR), 112 126

PyCell_Type (C ¥ %), 112 PyDateTime_DATE_GET_MINUTE (C & =), 126
PyCellObject (C % #&), 112 PyDateTime_DATE_GET_SECOND (C &% =X)), 126
PyCFunction (C A #), 153 PyDateTime_DELTA_GET_DAYS (C &% R), 126
PyCFunctionWithKeywords (C % #&), 153 PyDateTime_DELTA_GET_MICROSECONDS (C &
PyCode_Check (C & X)), 112 X)), 126

PyCode_GetNumFree (C %HR), 112 PyDateTime_DELTA_GET_SECONDS (C &%), 126
PyCode_New (C F# X)), 112 PyDateTime_FromDateAndTime (C FH X)), 125

218 %3

The Python/C API, [F) 3.6.12

PyDateTime_FromTimestamp (C FX,), 126
PyDateTime_GET_DAY (C H X)), 126
PyDateTime_GET_MONTH (C & X)), 126
PyDateTime_GET_YEAR (C HX), 126
PyDateTime_TIME_GET_HOUR (C &% X)), 126
PyDateTime_TIME_GET_MICROSECOND (C & i\)
126
PyDateTime_TIME_GET_MINUTE (C & =), 126
PyDateTime_TIME_GET_SECOND (C %X), 126
PyDelta_Check (C &), 125
PyDelta_CheckExact (C HX), 125
PyDelta_FromDSU (C &% R), 125
PyDescr_IsData (C &), 120
PyDescr_NewClassMethod (C X)), 120
PyDescr_NewGetSet (C %), 120
PyDescr_NewMember (C % R), 120
PyDescr_NewMethod (C &%), 120
PyDescr_NewWrapper (C H#X), 120
PyDict_Check (C #X), 106
PyDict_CheckExact (C &%), 106
PyDict_Clear (C &R), 106
PyDict_ClearFreeList (C HX), 108
PyDict_Contains (C &% R), 106
PyDict_Copy (C # X)), 106
PyDict_DelItem (C FHZR), 106
PyDict_DelItemString (C &ZR), 106
PyDict_GetItem (C HX), 106
PyDict_GetItemString (C &), 106

PyDict_GetItemWithError (C &), 106
PyDict_Items (C &HR), 107
PyDict_Keys (C & RX), 107
PyDict_Merge (C &HR), 108
PyDict_MergeFromSeqg2 (C H# X)), 108

PyDict_New (C #X,), 106
PyDict_Next (C &X,), 107
PyDict_SetDefault (C #X), 107
PyDict_SetItem (C %), 106
PyDict_SetItemString (C &), 106
PyDict_Size (C HR), 107
PyDict_Type (C & #), 106
PyDict_Update (C FH=X), 108
PyDict_values (C &#=), 107
PyDictObject (CH #), 106
PyDictProxy_New (C % R), 106
PyErr_BadArgument (C & R), 22
PyErr_BadInternalCall (C #=X), 24
PyErr_CheckSignals (C #3), 27
PyErr_Clear (C % X)), 22
PyErr_Clear(),7,9
PyErr_ExceptionMatches (C &% R), 25
PyErr_ExceptionMatches(),9
PyErr_Fetch (C % R), 25
PyErr_Format (C HR), 22
PyErr_FormatV (C $3R), 22

PyErr_GetExcInfo (C HX), 26
PyErr_GivenExceptionMatches (C &
PyErr_NewException (C #HR), 27
PyErr_NewExceptionWithDoc (C &
PyErr_NoMemory (C #3R), 22
PyErr_NormalizeException (C &
PyErr_Occurred (C HX), 25
PyErr_Occurred(),7
PyErr_Print (C % R), 22
PyErr_PrintEx (C HX), 22
PyErr_ResourceWarning (C &
PyErr_Restore (C HR), 26
PyErr_SetExcFromWindowsErr (C HR), 23
PyErr_SetExcFromWindowsErrWithFilename

(C & X),23
PyErr_SetExcFromWindowsErrWithFilenameObject

(C #K), 23
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C & X)), 23
PyErr_SetExcInfo (C FHX), 26
PyErr_SetFromErrno (C &#R), 23
PyErr_SetFromErrnoWithFilename (C & R),

23
PyErr_SetFromErrnoWithFilenameObject (C

X)), 23
PyErr_SetFromErrnoWithFilenameObjects

(CHRX), 23
PyErr_SetFromWindowsErr (C H#:), 23
PyErr_SetFromWindowsErrWithFilename (C

X)), 23
PyErr_SetImportError (C %HR), 24
PyErr_SetImportErrorSubclass (C &
PyErr_SetInterrupt (C %HX), 27
PyErr_SetNone (C H), 22
PyErr_SetObject (C H#X), 22
PyErr_SetString (C & X)), 22
PyErr_SetString(),7
PyErr_SyntaxLocation (C #X), 24
PyErr_SyntaxLocationEx (C ¥ R), 24
PyErr_SyntaxLocationObject (C &HR), 24
PyErr_WarnEx (C &), 24
PyErr_WarnExplicit (C &R), 25
PyErr_WarnExplicitObject (C &
PyErr_WarnFormat (C % X), 25
PyErr_WriteUnraisable (C &HR), 22
PyEval_AcquireLock (C &#R), 138
PyEval_AcquireThread (C &% X)), 138
PyEval_AcquireThread(), 135
PyEval_EvalCode (C 1), 16
PyEval_EvalCodeEx (C %HR), 16
PyEval_EvalFrame (C F#X), 16
PyEval_EvalFrameEx (C FHX), 16
PyEval_GetBuiltins (C &), 49
PyEval_GetCallStats (C &#X), 141

4 X)), 25
4 X)), 27
4 X)), 26

4 X)), 25

4 X)), 24

4 X), 24

e]

219

The Python/C API, [F) 3.6.12

PyEval_GetFrame (C H# 1), 49
PyEval_GetFuncDesc (C F#X), 49
PyEval_GetFuncName (C X)), 49
PyEval_GetGlobals (C &% R), 49
PyEval_GetLocals (C #X), 49
PyEval_InitThreads (C HX), 135
PyEval_InitThreads (), 129
PyEval_MergeCompilerFlags (C &#R), 16
PyEval_ReInitThreads (C %2), 136
PyEval_ReleaseLock (C #ZR), 138
PyEval_ReleaseThread (C H#X), 138
PyEval_ReleaseThread (), 135
PyEval_RestoreThread (C %#R), 135
PyEval_RestoreThread (), 134, 135
PyEval_SaveThread (C % 2), 135
PyEval_SaveThread(), 134, 135
PyEval_SetProfile (C % R), 140
PyEval_SetTrace (C % 3), 141
PyEval_ThreadsInitialized (C &#X), 135
PyExc_ArithmeticError, 30
PyExc_AssertionError, 30
PyExc_AttributeError, 30
PyExc_BaseException, 30
PyExc_BlockingIOError, 30
PyExc_BrokenPipeError, 30
PyExc_BufferError, 30
PyExc_BytesWarning, 32
PyExc_ChildProcessError, 30
PyExc_ConnectionAbortedError, 30
PyExc_ConnectionError, 30
PyExc_ConnectionRefusedError, 30
PyExc_ConnectionResetError, 30
PyExc_DeprecationWarning, 32
PyExc_EnvironmentError, 31
PyExc_EOFError, 30
PyExc_Exception, 30
PyExc_FileExistsError, 30
PyExc_FileNotFoundError, 30
PyExc_FloatingPointError, 30
PyExc_FutureWarning, 32
PyExc_GeneratorExit, 30
PyExc_ImportError, 30
PyExc_ImportWarning, 32
PyExc_IndentationError, 30
PyExc_IndexError, 30
PyExc_InterruptedError, 30
PyExc_IOError, 31
PyExc_IsADirectoryError, 30
PyExc_KeyboardInterrupt, 30
PyExc_KeyError, 30
PyExc_LookupError, 30
PyExc_MemoryError, 30
PyExc_ModuleNotFoundError, 30
PyExc_NameError, 30

PyExc_NotADirectoryError, 30
PyExc_NotImplementedError, 30
PyExc_OSError, 30
PyExc_OverflowError, 30
PyExc_PendingDeprecationWarning, 32
PyExc_PermissionError, 30
PyExc_ProcessLookupError, 30
PyExc_RecursionError, 30
PyExc_ReferenceError, 30
PyExc_ResourceWarning, 32
PyExc_RuntimeError, 30
PyExc_RuntimeWarning, 32
PyExc_StopAsyncIteration, 30
PyExc_StopIteration, 30
PyExc_SyntaxError, 30
PyExc_SyntaxWarning, 32
PyExc_SystemError, 30
PyExc_SystemExit, 30
PyExc_TabError, 30
PyExc_TimeoutError, 30
PyExc_TypeError, 30
PyExc_UnboundLocalError, 30
PyExc_UnicodeDecodeError, 30
PyExc_UnicodeEncodeError, 30
PyExc_UnicodeError, 30
PyExc_UnicodeTranslateError, 30
PyExc_UnicodeWarning, 32
PyExc_UserWarning, 32
PyExc_ValueError, 30
PyExc_Warning, 32
PyExc_WindowsError, 31
PyExc_ZeroDivisionError, 30
PyException_GetCause (C HR), 28
PyException_GetContext (C HX), 28
PyException_GetTraceback (C FHX), 28
PyException_SetCause (C %HR), 28
PyException_SetContext (C HR), 28
PyException_SetTraceback (C #X), 28
PyFile_ FromFd (C #X,), 113
PyFile_GetLine (C %#X), 113
PyFile_WriteObject (C &#X), 113
PyFile_WriteString (C &#ZR), 113
PyFloat_AS_DOUBLE (C &=,), 78
PyFloat_AsDouble (C &), 78
PyFloat_Check (C $#X), 78
PyFloat_CheckExact (C HR), 78
PyFloat_ClearFreeList (C &#R), 79
PyFloat_FromDouble (C #R), 78
PyFloat_FromString (C %=X), 78
PyFloat_GetInfo (C X)), 78
PyFloat_GetMax (C FHR), 78
PyFloat_GetMin (C % X)), 78
PyFloat_Type (C ¥ %), 78
PyFloatObject (CH £), 78

220

EL]

The Python/C API, [F) 3.6.12

PyFrame_GetLineNumber (C % R), 49
PyFrameObject (CH #), 16
PyFrozenSet_Check (C %HR), 109
PyFrozenSet_CheckExact (C &R), 109
PyFrozenSet_New (C & 2), 109
PyFrozenSet_Type (C 4 %), 108
PyFunction_Check (C %X), 110
PyFunction_GetAnnotations (C %K), 110
PyFunction_GetClosure (C H#RK), 110
PyFunction_GetCode (C HX), 110
PyFunction_GetDefaults (C FHX), 110
PyFunction_GetGlobals (C HR), 110
PyFunction_GetModule (C &%), 110
PyFunction_New (C & X), 110
PyFunction_NewWithQualName (C &), 110
PyFunction_SetAnnotations (C &% R), 110
PyFunction_SetClosure (C H:R), 110
PyFunction_SetDefaults (C #X), 110
PyFunction_Type (C % #), 110
PyFunctionObject (CA #), 110
PyGen_Check (C &% R), 124
PyGen_CheckExact (C &X), 124
PyGen_New (C % R), 124
PyGen_NewWithQualName (C %
PyGen_Type (C % %), 124
PyGenObject (C & #), 124
PyGetSetDef (CH #), 155
PyGILState_Check (C &% X)), 136
PyGILState_Ensure (C & 3R), 136
PyGILState_GetThisThreadState (C &
PyGILState_Release (C HX), 136
PyImport_AddModule (C #3), 37
PyImport_AddModuleObject (C FHX), 37
PyImport_AppendInittab (C #R), 39
PyImport_Cleanup (C #X), 38
PyImport_ExecCodeModule (C &#R), 37
PyImport_ExecCodeModuleEx (C &%), 38
PyImport_ExecCodeModuleObject (C %HR), 38
PyImport_ExecCodeModuleWithPathnames (C
H X)), 38
PyImport_ExtendInittab (C &), 39
PyImport_FrozenModules (C % #), 39
PyImport_GetImporter (C &), 38
PyImport_GetMagicNumber (C H#R), 38
PyImport_GetMagicTag (C &HR), 38
PyImport_GetModuleDict (C &HZR), 38
PyImport_Import (C & X)), 37
PyImport_ImportFrozenModule (C &R), 39
PyImport_ImportFrozenModuleObject (C &
X), 39
PyImport_ImportModule (C &R, 36
PyImport_ImportModuleEx (C &), 36
PyImport_ImportModuleLevel (C), 37

5 X)), 124

4R, 136

PyImport_ImportModuleLevelObject (C &
X)), 36
PyImport_ImportModuleNoBlock (C &
PyImport_ReloadModule (C #H=X), 37
PyIndex_Check (C H#X), 60
PyInstanceMethod_Check (C &R), 111
PyInstanceMethod_Function (C HA), 111
PyInstanceMethod_GET_FUNCTION (C &R), 111
PyInstanceMethod_New (C % R), 111
PyInstanceMethod_Type (C % %), 111
PyInterpreterState (C# #), 135
PyInterpreterState_Clear (C %R), 137
PyInterpreterState_Delete (C H#X), 137
PyInterpreterState_Head (C &#R), 141
PyInterpreterState_New (C H#X), 137
PyInterpreterState_Next (C HR), 141
PyInterpreterState_ThreadHead (C &
PyIter_Check (C HX), 63
PyIter_ Next (C &X), 63
PyList_Append (C & X,), 105
PyList_AsTuple (C % R), 105
PyList_Check (C &), 104
PyList_CheckExact (C %H3), 104
PyList_ClearFreeList (C %#R), 105
PyList_GET_ITEM (C %), 105
PyList_GET_SIZE (C &#X), 105
PyList_GetItem (C FHX), 105
PyList_GetItem(),6
PyList_GetSlice (C &), 105
PyList_Insert (C %#X), 105
PyList_New (C &Z), 104
PyList_Reverse (C % R), 105
PyList_SET_ITEM (C &X), 105
PyList_SetItem (C %), 105
PyList_SetItem(),5
PyList_SetSlice (C &), 105
PyList_Size (C &% R), 104
PyList_Sort (C % X)), 105
PyList_Type (C % %), 104
PyListObject (C &), 104
PyLong_AsDouble (C &), 77
PyLong_AsLong (C % R), 76
PyLong_AsLongAndOverflow (C &
PyLong_AsLongLong (C H#3), 76
PyLong_AsLongLongAndOverflow (C &
PyLong_AsSize_t (C HR), 77
PyLong_AsSsize_t (C HX), 76
PyLong_AsUnsignedLong (C % R), 77
PyLong_AsUnsignedLongLong (C $#3), 77
PyLong_AsUnsignedLongLongMask (C &% R), 77
PyLong_AsUnsignedLongMask (C % R), 77
PyLong_AsVoidPtr (C % R), 77
PyLong_Check (C &% =), 75
PyLong_CheckExact (C % 3R), 75

5 X)), 36

4 X)), 141

4 X)), 76
4 X)), 76

e]

221

The Python/C API, [F) 3.6.12

PyLong_FromDouble (C % 2R), 75
PyLong_FromLong (C &% X)), 75
PyLong_FromLongLong (C & X)), 75
PyLong_FromSize_t (C %3R), 75
PyLong_FromSsize_t (C &% X), 75
PyLong_FromString (C &% R), 75
PyLong_FromUnicode (C #X), 76
PyLong_FromUnicodeObject (C HX), 76
PyLong_FromUnsignedLong (C &R), 75
PyLong_FromUnsignedLongLong (C &% X)), 75
PyLong_FromVoidPtr (C HX), 76
PyLong_Type (C #%), 75
PyLongObiject (C &), 75
PyMapping_Check (C &), 62
PyMapping_DelItem (C #X), 62
PyMapping_DelItemString (C &=R), 63
PyMapping_GetItemString (C HR), 62
PyMapping_HasKey (C #=R), 63
PyMapping_HasKeyString (C &#R), 63
PyMapping_Items (C #X,), 63
PyMapping_Keys (C &% X)), 63
PyMapping_Length (C H# X)), 62
PyMapping_SetItemString (C &HR), 62
PyMapping_Size (C %K), 62
PyMapping_Values (C & X)), 63
PyMappingMethods (C# #), 171
PyMappingMethods.mp_ass_subscript (C X
B HE), 171
PyMappingMethods.mp_length (C & B & %),
171
PyMappingMethods.mp_subscript (C & B &
#), 171
PyMarshal_ReadLastObjectFromFile (C &
K), 40
PyMarshal_ReadLongFromFile (C &R), 40
PyMarshal_ReadObjectFromFile (C &X), 40
PyMarshal_ReadObjectFromString (C & R),
40
PyMarshal_ReadShortFromFile (C &:), 40
PyMarshal_WriteLongToFile (C &% R), 40
PyMarshal_ WriteObjectToFile (C FHX), 40
PyMarshal_WriteObjectToString (C FHX), 40
PyMem_Calloc (C #X), 145
PyMem_Del (C & R), 145
PYMEM_DOMAIN_MEM (C % #%), 147
PYMEM_DOMAIN_OBJ (C 4), 147
PYMEM_DOMAIN_RAW (C % #), 147
PyMem_Free (C H#X), 145
PyMem_GetAllocator (C FHX), 147
PyMem_Malloc (C %#=X), 145
PyMem_New (C % R), 145
PyMem_RawCalloc (C &#R), 144
PyMem_RawFree (C HX), 144
PyMem_RawMalloc (C &% 3R), 144

PyMem_RawRealloc (C %), 144
PyMem_Realloc (C &R, 145
PyMem_Resize (C $HR), 145
PyMem_SetAllocator (C H#X), 147
PyMem_SetupDebugHooks (C F# X)), 148
PyMemAllocatorDomain (C % #&), 147
PyMemAllocatorEx (C & #%), 147
PyMemberDef (C &), 154
PyMemoryView_Check (C #=X), 121
PyMemoryView_FromBuffer (C &HX), 121
PyMemoryView_FromMemory (C H#3), 121
PyMemoryView_FromObject (C & R), 121
PyMemoryView_GET_BASE (C &#X), 121
PyMemoryView_GET_BUFFER (C $%3), 121
PyMemoryView_GetContiguous (C &X), 121
PyMethod_Check (C #=X), 111
PyMethod_ClearFreelList (C %X), 111
PyMethod_Function (C HX), 111
PyMethod_GET_FUNCTION (C & X)), 111
PyMethod_GET_SELF (C %K), 111
PyMethod_New (C & R), 111
PyMethod_Self (C # 1), 111
PyMethod_Type (C $#), 111
PyMethodDef (C & #), 153
PyModule_AddFunctions (C #X), 118
PyModule_AddIntConstant (C HR), 118
PyModule_AddIntMacro (C #=X), 118
PyModule_AddObject (C H#X), 118
PyModule_AddStringConstant (C %H=R), 118
PyModule_AddStringMacro (C %), 118
PyModule_Check (C & X)), 114
PyModule_CheckExact (C % X)), 114
PyModule_Create (C % 3R), 116
PyModule_Create2 (C #X), 116
PyModule_ExecDef (C H#X), 118
PyModule_FromDefAndSpec (C FHX), 117
PyModule_FromDefAndSpec2 (C HX,), 117
PyModule_GetDef (C % R), 114
PyModule_GetDict (C & X)), 114
PyModule_GetFilename (C & X)), 114
PyModule_GetFilenameObject (C %), 114
PyModule_GetName (C F#=R), 114
PyModule_GetNameObject (C H#X), 114
PyModule_GetState (C HR), 114
PyModule_New (C & R), 114
PyModule_NewObject (C HX), 114
PyModule_SetDocString (C #R), 118
PyModule_Type (C % %), 114
PyModuleDef (C & #), 115
PyModuleDef_Init (C %), 116
PyModuleDef_Slot (C# #), 116
PyModuleDef_Slot.slot (C s B &%), 116
PyModuleDef_Slot.value (C & 8 &), 117
PyModuleDef .m_base (C M& B F# %), 115

222

EL]

The Python/C API, [F) 3.6.12

PyModuleDef.m_clear (C rx B S #), 115
PyModuleDef .m_doc (C m B FH %), 115
PyModuleDef .m_free (C & 8 H%), 115
PyModuleDef.m_methods (C & B &), 115
PyModuleDef.m_name (C s 8 FH#), 115
PyModuleDef.m_reload (C m B F# %), 115
PyModuleDef.m_size (C & B H#%¥), 115
PyModuleDef.m_slots (C sk B $#), 115
PyModuleDef .m_traverse (C s B &), 115
PyNumber_Absolute (C HR), 58
PyNumber_Add (C F#X), 58
PyNumber_And (C #X), 59
PyNumber_AsSsize_t (C FHX), 60
PyNumber_Check (C & X), 58
PyNumber_Divmod (C #=X,), 58
PyNumber_Float (C &% 3R), 60
PyNumber_FloorDivide (C &), 58
PyNumber_Index (C % 3), 60
PyNumber_InPlaceAdd (C #X), 59
PyNumber_InPlaceAnd (C X)), 60
PyNumber_InPlaceFloorDivide (C #X), 59
PyNumber_InPlaceLshift (C &#X), 59
PyNumber_InPlaceMatrixMultiply (C & R),
59
PyNumber_InPlaceMultiply (C &X), 59
PyNumber_InPlaceOr (C FHX), 60
PyNumber_InPlacePower (C HR), 59
PyNumber_InPlaceRemainder (C H#3), 59
PyNumber_InPlaceRshift (C #X), 60
PyNumber_InPlaceSubtract (C HX), 59
PyNumber_InPlaceTrueDivide (C &#R), 59
PyNumber_InPlaceXor (C X)), 60
PyNumber_Invert (C H#R), 58
PyNumber_Long (C &%), 60
PyNumber_Lshift (C &R), 59
PyNumber_MatrixMultiply (C &R), 58
PyNumber_Multiply (C &3), 58
PyNumber_Negative (C &% 3R), 58
PyNumber_Or (C % R), 59
PyNumber_Positive (C &HR), 58
PyNumber_Power (C & X)), 58
PyNumber_Remainder (C H=), 58
PyNumber_Rshift (C HR), 59
PyNumber_Subtract (C %HR), 58
PyNumber_ToBase (C #ZR), 60
PyNumber_TrueDivide (C #X), 58
PyNumber_Xor (C &), 59
PyNumberMethods (C &), 170
PyObject (CH #), 152
PyObject_AsCharBuffer (C &HR), 70
PyObject_ASCII (C %#X), 55
PyObject_AsFileDescriptor (C &#=R), 113
PyObject_AsReadBuffer (C HX), 70
PyObject_AsWriteBuffer (C HX), 71

PyObject_Bytes (C HX), 55
PyObject_Call (C #X), 56
PyObject_CallFunction (C &X), 56
PyObject_CallFunctionObjArgs (C #X), 56
PyObject_CallMethod (C & X)), 56
PyObject_CallMethodObjArgs (C &), 56
PyObject_CallObject (C HX), 56
PyObject_Calloc (C &), 146
PyObject_CheckBuffer (C &X), 69
PyObject_CheckReadBuffer (C #X), 70
PyObject_Del (C HX), 151
PyObject_DelAttr (C &#X), 54
PyObject_DelAttrString (C HX), 54
PyObject_DelItem (C &), 57
PyObject_Dir (C H#X), 57
PyObject_Free (C $HR), 146
PyObject_GC_Del (C H#R), 174
PyObject_GC_New (C & X)), 174
PyObject_GC_NewVar (C &#X), 174
PyObject_GC_Resize (C &#X), 174
PyObject_GC_Track (C &R), 174
PyObject_GC_UnTrack (C &), 174
PyObject_GenericGetAttr (C &HR), 54
PyObject_GenericGetDict (C &), 54
PyObject_GenericSetAttr (C HR), 54
PyObject_GenericSetDict (C &), 54
PyObject_GetArenaAllocator (C %HR), 149
PyObject_GetAttr (C &#X), 54
PyObject_GetAttrString (C HX), 54
PyObject_GetBuffer (C &), 69
PyObject_GetItem (C &), 57
PyObject_GetIter (C &X), 57
PyObject_HasAttr (C %HX), 53
PyObject_HasAttrString (C %HX), 53
PyObject_Hash (C & X)), 56
PyObject_HashNotImplemented (C #HR), 56
PyObject_HEAD (C E £), 152
PyObject_HEAD_INIT (C E), 153
PyObject_Init (C #X), 151
PyObject_InitVar (C &), 151
PyObject_IsInstance (C &R), 55
PyObject_IsSubclass (C H#X), 55
PyObject_IsTrue (C &HX), 56
PyObject_Length (C H#R), 57
PyObject_LengthHint (C %R,), 57
PyObject_Malloc (C &R, 146
PyObject_New (C & X)), 151
PyObject_NewVar (C % 3R), 151
PyObject_Not (C &), 57
PyObject._ob_next (C s B &%), 157
PyObject._ob_prev (C 5% B FH¥K), 157
PyObject_Print (C &#X), 53
PyObject_Realloc (C % X)), 146
PyObject_Repr (C % R), 55

e]

223

The Python/C API, [F) 3.6.12

PyObject_RichCompare (C # X)), 54
PyObject_RichCompareBool (C &% X)), 55
PyObject_SetArenaAllocator (C HR), 149
PyObject_SetAttr (C HR), 54
PyObject_SetAttrString (C HR), 54
PyObject_SetItem (C &), 57
PyObject_Size (C HRX), 57
PyObject_Str (C &HX), 55
PyObject_Type (C &HX), 57
PyObject_TypeCheck (C H# X)), 57
PyObject_VAR_HEAD (C E %), 152
PyObjectArenaAllocator (CA #), 148
PyObject.ob_refcnt (C & 8 #%), 157
PyObiject.ob_type (C & B H), 158
PyOS_AfterFork (C % X)), 33
PyOS_CheckStack (C & X)), 33
PyOS_double_to_string (C % R), 49
PyOS_FSPath (C & X)), 33

PyOS_getsig (C & X)), 33
PyOS_InputHook (C % %), 14

PyOS_ReadlineFunctionPointer (C & %), 14

Py0OS_setsig (C ¥ R), 33
PyOS_snprintf (C HR), 48
PyOS_stricmp (C HR), 49
PyOS_string_to_double (C HR), 48
PyOS_strnicmp (C HX), 49
PyOS_vsnprintf (C HX), 48
PyParser_SimpleParseFile (C HX), 15

PyParser_SimpleParseFileFlags (C &HR), 15

PyParser_SimpleParseString (C &#R), 15

PyParser_SimpleParseStringFlags (C & R),

15

PyParser_SimpleParseStringFlagsFilename

(C #HX), 15
PyProperty_Type (C % #), 120
PyRun_AnyFile (C #R), 13
PyRun_AnyFileEx (C HX), 13
PyRun_AnyFileExFlags (C %=R), 13
PyRun_AnyFileFlags (C HR), 13
PyRun_File (C %R), 15
PyRun_FileEx (C H#X), 15
PyRun_FileExFlags (C &3R), 15
PyRun_FileFlags (C &% R), 15
PyRun_InteractiveLoop (C % R), 14
PyRun_InteractiveLoopFlags (C &R), 14
PyRun_InteractiveOne (C % R), 14
PyRun_InteractiveOneFlags (C &% R), 14
PyRun_SimpleFile (C H#X), 14
PyRun_SimpleFileEx (C HX), 14
PyRun_SimpleFileExFlags (C %AR), 14
PyRun_SimpleString (C FHX), 14
PyRun_SimpleStringFlags (C %), 14
PyRun_String (C &R), 15
PyRun_StringFlags (C % 3R), 15

PySeqlter_Check (C HR), 119
PySeqIter_New (C FH=X,), 119
PySeqlter_Type (C &%), 119
PySequence_Check (C #X), 61
PySequence_Concat (C % R), 61
PySequence_Contains (C H#:R), 61
PySequence_Count (C %K), 61
PySequence_DelItem (C HR), 61
PySequence_DelSlice (C #X), 61
PySequence_Fast (C %HR), 62
PySequence_Fast_GET_ITEM (C HX,), 62
PySequence_Fast_GET_SIZE (C HX), 62
PySequence_Fast_ITEMS (C #R), 62
PySequence_GetItem (C FHX), 61
PySequence_GetItem(), 6
PySequence_GetSlice (C %K), 61
PySequence_Index (C %K), 61
PySequence_InPlaceConcat (C #X), 61
PySequence_InPlaceRepeat (C FHX), 61
PySequence_ITEM (C %HR), 62
PySequence_Length (C %), 61
PySequence_List (C % R), 61
PySequence_Repeat (C HR), 61
PySequence_SetItem (C HR), 61
PySequence_SetSlice (C #X), 61
PySequence_Size (C & R), 61
PySequence_Tuple (C H#X), 62
PySequenceMethods (C A #8), 171
PySequenceMethods.sq ass_item (C
), 171

171

-

B &

~

PySequenceMethods.sqg_concat (C & 8 & #),

PySequenceMethods.sq _contains (C m B &

#), 172

PySequenceMethods.sqg_inplace_concat

B %8, 172

PySequenceMethods.sg_inplace_repeat

A R E), 172

(C

(C

PySequenceMethods.sq_item (C m B H¥K), 171

171

171
PySet_Add (C #X), 109
PySet_Check (C &X), 108
PySet_Clear (C & X), 109
PySet_ClearFreelList (C X)), 109
PySet_Contains (C #<), 109
PySet_Discard (C H#X), 109
PySet_GET_SIZE (C %X), 109
PySet_New (C HZR), 109
PySet_Pop (C % R), 109
PySet_Size (C %HX), 109
PySet_Type (C % %), 108

PySequenceMethods.sq _length (C & B & &),

PySequenceMethods.sq _repeat (C & 8 &),

224

EL]

The Python/C API, [F) 3.6.12

PySetObject (C# #), 108 PEP 489,117
PySignal_SetWakeupFd (C % X)), 27 PEP 492,180, 181
PySlice_Check (C #X), 120 PEP 498, 182
PySlice_GetIndices (C <), 120 PEP 5109, 187
PySlice_GetIndicesEx (C &%HZR), 120 PEP 525,180
PySlice_New (C % X)), 120 PEP 526,179, 189
PySlice_Type (C %), 120 PEP 529,91
PyState_AddModule (C &#=R), 119 PEP 3116, 189
PyState_FindModule (C $#ZR), 119 PEP 31109,55,56
PyState_RemoveModule (C %), 119 PEP 3121, 115
PyStructSequence_Desc (C A #), 103 PEP 3147,38
PyStructSequence_Field (CA #), 103 PEP 3151, 3l
PyStructSequence_GET_ITEM (C % X)), 104 PEP 3155, 187
PyStructSequence_GetItem (C FHX), 104 PYTHONDUMPREFS, 157
PyStructSequence_InitType (C HX), 103 PYTHONHOME, 9, 10, 133
PyStructSequence_InitType2 (C HR), 103 Pythonic, 187
PyStructSequence_New (C % X)), 104 PYTHONIOENCODING, 130
PyStructSequence_NewType (C FHX,), 103 PYTHONMALLOC, 144, 148
PyStructSequence_SET_ITEM(C & X)), 104 PYTHONMALLOCSTATS, 144
PyStructSequence_SetItem (C HX), 104 PYTHONPATH, 9, 10
PyStructSequence_UnnamedField(C 4 %), 104 PyThreadState, 133
PySys_AddWarnOption (C %3), 35 PyThreadState (C# #), 135
PySys_AddWarnOptionUnicode (C &), 35 PyThreadState_Clear (C 1), 137
PySys_AddxOption (C =), 35 PyThreadState_Delete (C & X)), 137
PySys_FormatStderr (C HR), 35 PyThreadState_Get (C %), 136
PySys_FormatStdout (C &), 35 PyThreadState_GetDict (C HX), 137
PySys_GetObject (C % R), 35 PyThreadState_New (C H#), 137
PySys_GetXOptions (C &HR), 35 PyThreadState_Next (C HX), 141
PySys_ResetWarnOptions (C %K), 35 PyThreadState_SetAsyncExc (C &#X), 137
PySys_SetArgv (C HX), 132 PyThreadState_Swap (C HR), 136
PySys_SetArgv (), 129 PyTime_Check (C &% R), 125
PySys_SetArgvEx (C & R), 132 PyTime_CheckExact (C &% R), 125
PySys_SetArgvEx (), 9, 129 PyTime_FromTime (C H#:), 125
PySys_SetObject (C #X), 35 PyTrace_C_CALL (C # %), 140
PySys_SetPath (C #X), 35 PyTrace_C_EXCEPTION (C # #), 140
PySys_WriteStderr (C &), 35 PyTrace_C_RETURN (C % #), 140
PySys_WriteStdout (C &X), 35 PyTrace_CALL (C 4 #), 140
Python 3000, 187 PyTrace_EXCEPTION (C & %), 140
Python Enhancement Proposals PyTrace_LINE (C %), 140

PEP 1, 187 PyTrace_RETURN (C % %), 140

PEP 238,17,182 PyTuple_Check (C HX), 102

PEP 278,189 PyTuple_CheckExact (C #ZR), 102

PEP 302,182,185 PyTuple_ClearFreelList (C #X), 103

PEP 343,181 PyTuple_GET_ITEM(C X)), 102

PEP 362,180, 186 PyTuple_GET_SIZE (C #X), 102

PEP 383,91 PyTuple_GetItem (C %HR), 102

PEP 384,11 PyTuple_GetSlice (C #X), 102

PEP 393,83,90 PyTuple_New (C % X,), 102

PEP 411, 187 PyTuple_Pack (C & R), 102

PEP 420, 182, 186, 187 PyTuple_SET_ITEM(C FHX), 103

PEP 442,169 PyTuple_SetItem (C %HR), 102

PEP 443,183 PyTuple_SetItem(),5

PEP 451,117,182 PyTuple_Size (C %K), 102

PEP 484,179, 182, 189 PyTuple_Type (C %), 102

%3 225

The Python/C API, [F) 3.6.12

PyTupleObject (C A #), 102
PyType_Check (C & R), 73
PyType_CheckExact (C % R), 73
PyType_ClearCache (C &%), 73
PyType_FromSpec (C &), 74
PyType_FromSpecWithBases (C &), 74
PyType_GenericAlloc (C HR), 74
PyType_GenericNew (C HX), 74
PyType_GetFlags (C $#X), 73
PyType_GetSlot (C &R, 74
PyType_HasFeature (C 1), 74
PyType_IS_GC (C &#X), 74
PyType_IsSubtype (C HX), 74
PyType_Modified (C &R), 74

PyTypeObject
PyTypeObject
164
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
169

PyTypeObiject. i
.tp_weaklist (C # B &

PyTypeObject

PyTypeObject.

#), 164

.tp_repr (C & B &), 160
.tp_richcompare (C & B &),

.tp_setattr (C A& B %), 159
.tp_setattro (C s B &), 161
.tp_str (C & 8 &%), 160
.tp_subclasses (C m B &),

tp_traverse (C m B HE), 162
#0), 169
tp_weaklistoffset (C & B &

PyTZInfo_Check (C %R, 125
PyTZInfo_CheckExact (C H#X), 125

PyType_Ready (C &HR), 74
PyType_Type (C % #), 73
PyTypeObiject (CH #&), 73

PyUnicode_1BYTE_DATA (C & X)), 84
PyUnicode_1BYTE_KIND (C E %), 84
PyUnicode_2BYTE_DATA (C s X)), 84

PyTypeObject.tp_alloc (C & 8 %), 167 PyUnicode_2BYTE_KIND (C E £), 84
PyTypeObject.tp_allocs (C sk B FH#), 169 PyUnicode_4BYTE_DATA (C %), 84
PyTypeObject.tp_as_buffer (C & B), 161 PyUnicode_4BYTE_KIND (C E £), 84
PyTypeObiject.tp_base (C m B H¥K), 165 PyUnicode_AS_DATA (C &%), 85
PyTypeObiject.tp_bases (C & B FH %), 168 PyUnicode_AS_UNICODE (C % R), 85
PyTypeObject.tp_basicsize (Cmx B H#), 158 PyUnicode_AsASCIIString (C HX), 98
PyTypeObject.tp_cache (C & 8 &%), 169 PyUnicode_AsCharmapString (C &X), 99
PyTypeObiject.tp_call (C m& B FHE), 160 PyUnicode_AsEncodedString (C &#X), 93
PyTypeObiject.tp_clear (C m& B H&), 163 PyUnicode_AsLatiniString (C &X), 98
PyTypeObiject.tp_dealloc (C m B H %), 159 PyUnicode_AsMBCSString (C &%), 100
PyTypeObject.tp_descr_get (Cr B %), 166 PyUnicode_AsRawUnicodeEscapeString (C &
PyTypeObject.tp_descr_set (C mx B HE), 166 X)), 97
PyTypeObiject.tp_dict (C m B &), 165 PyUnicode_AsUCS4 (C &%), 89
PyTypeObject.tp_dictoffset (C m B & #), PyUnicode_AsUCS4Copy (C %K), 89

166 PyUnicode_AsUnicode (C X)), 90
PyTypeObiject.tp_doc (C . B H), 162 PyUnicode_AsUnicodeAndSize (C &), 90
PyTypeObject.tp_finalize (C & B &%), 168 PyUnicode_AsUnicodeCopy (C % X,), 90
PyTypeObject.tp_flags (C & 8 H%), 161 PyUnicode_AsUnicodeEscapeString (C & X)),
PyTypeObiject.tp_free (C m B FHE), 168 97
PyTypeObject.tp_frees (C & B FH &), 169 PyUnicode_AsUTFS8 (C H#X), 94
PyTypeObject.tp_getattr (C m B FH %), 159 PyUnicode_AsUTF8AndSize (C & R), 94
PyTypeObiject.tp_getattro (C 5 B F#), 161 PyUnicode_AsUTF8String (C & R), 94
PyTypeObject.tp_getset (C sk B FH &), 165 PyUnicode_AsUTF16String (C &), 96
PyTypeObiject.tp_hash (C m& B FH£), 160 PyUnicode_AsUTF32String (C &), 95
PyTypeObject.tp_init (C m B H¥K), 167 PyUnicode_AsWideChar (C &% X)), 93
PyTypeObiject.tp_is_gc (C & B H %), 168 PyUnicode_AsWideCharString (C), 93
PyTypeObject.tp_itemsize (C i B H), 158 PyUnicode_Check (C & R), 84
PyTypeObiject.tp_iter (C m B FHE), 164 PyUnicode_CheckExact (C % R), 84
PyTypeObiject.tp_iternext (C & B H), 165 PyUnicode_ClearFreeList (C &#R), 85
PyTypeObject.tp_maxalloc (Cm B &%), 160 PyUnicode_Compare (C #=R), 101
PyTypeObject.tp_members (C & B H¥), 165 PyUnicode_CompareWithASCIIString (C &
PyTypeObiject.tp_methods (C & B FH %), 165 X)), 101
PyTypeObiject.tp_mro (C s B FH#), 168 PyUnicode_Concat (C #X), 100
PyTypeObiject.tp_name (C m B FHE), 158 PyUnicode_Contains (C R), 101
PyTypeObiject.tp_new (C % B FH#), 167 PyUnicode_CopyCharacters (C HX), 89
PyTypeObiject.tp_next (C m B H¥K), 169 PyUnicode_Count (C % X)), 101
PyTypeObiject.tp_print (C & 8 H# %), 159 PyUnicode_DATA (C &% R), 84
226]|

The Python/C API, [F) 3.6.12

PyUnicode_Decode (C #X), 93
PyUnicode_DecodeASCII (C #R), 98
PyUnicode_DecodeCharmap (C #R), 99
PyUnicode_DecodeFSDefault (C &% X)), 92
PyUnicode_DecodeFSDefaultAndSize (C &
xX), 92
PyUnicode_DecodeLatinl (C &%), 98
PyUnicode_DecodeLocale (C % R), 91
PyUnicode_DecodeLocaleAndSize (C &
PyUnicode_DecodeMBCS (C &% R), 100
PyUnicode_DecodeMBCSStateful (C &), 100
PyUnicode_DecodeRawUnicodeEscape (C &
X), 97

4 X)), 91

PyUnicode_DecodeUnicodeEscape (C #R,), 97
PyUnicode_DecodeUTF7 (C &%), 97
PyUnicode_DecodeUTF7Stateful (C %HR), 97
PyUnicode_DecodeUTFS8 (C & X)), 94
PyUnicode_DecodeUTF8Stateful (C %#X), 94
PyUnicode_DecodeUTF16 (C # =), 96
PyUnicode_DecodeUTF16Stateful (C FHX), 96
PyUnicode_DecodeUTF32 (C #X), 95
PyUnicode_DecodeUTF32Stateful (C HR), 95

PyUnicode_Encode (C % =), 94
PyUnicode_EncodeASCII (C H#R), 98
PyUnicode_EncodeCharmap (C &), 99
PyUnicode_EncodeCodePage (C HX,), 100
PyUnicode_EncodeFSDefault (C H#:), 92
PyUnicode_EncodeLatinl (C $%=), 98
PyUnicode_EncodeLocale (C % X)), 91
PyUnicode_EncodeMBCS (C &%), 100
PyUnicode_FEncodeRawUnicodeEscape (C &
KX), 97
PyUnicode_EncodeUnicodeEscape (C &% R), 97
PyUnicode_EncodeUTF7 (C &% R), 97
PyUnicode_EncodeUTFS8 (C %4 R), 94
PyUnicode_EncodeUTF16 (C &), 96
PyUnicode_EncodeUTF32 (C #X), 95
PyUnicode_Fill (C H#=X), 89
PyUnicode_Find (C & 3), 101
PyUnicode_FindChar (C #R), 101
PyUnicode_Format (C % X)), 101
PyUnicode_FromEncodedObject (C &
PyUnicode_FromFormat (C #=X,), 87
PyUnicode_FromFormatV (C % R), 88
PyUnicode_FromKindAndData (C & X)), 87
PyUnicode_FromObject (C &%), 90
PyUnicode_FromString (C &% 3R), 87
PyUnicode_FromString (), 106
PyUnicode_FromStringAndSize (C &
PyUnicode_FromUnicode (C s =), 90
PyUnicode_FromWideChar (C &X), 93
PyUnicode_FSConverter (C #X), 91
PyUnicode_FSDecoder (C X)), 92
PyUnicode_GET_DATA_SIZE (C HX), 85

41X, 88

4 X)), 87

PyUnicode_GET_LENGTH (C &% X)), 84
PyUnicode_GET_SIZE (C &R), 85
PyUnicode_GetLength (C #X), 88
PyUnicode_GetSize (C %), 90
PyUnicode_InternFromString (C #R), 102

PyUnicode_InternInPlace (C H#:), 102
PyUnicode_Join (C &%), 101
PyUnicode_KIND (C &% X)), 84
PyUnicode_MAX_CHAR_VALUE (C # X)), 85

PyUnicode_New (C #X), 87
PyUnicode_READ (C X)), 85
PyUnicode_READ_CHAR (C & X)), 85
PyUnicode_ReadChar (C #R), 89
PyUnicode_READY (C H#ZR), 84
PyUnicode_Replace (C % R), 101
PyUnicode_RichCompare (C &#R), 101
PyUnicode_Split (C &2, 100
PyUnicode_Splitlines (C &% =), 100
PyUnicode_Substring (C #X,), 89
PyUnicode_Tailmatch (C #X), 101
PyUnicode_TransformDecimalToASCII (C &
X), 90
PyUnicode_Translate (C &<X), 99, 100
PyUnicode_TranslateCharmap (C =), 99
PyUnicode_Type (C & %), 84
PyUnicode_WCHAR_KIND (C E %), 84
PyUnicode_WRITE (C & X)), 84
PyUnicode_WriteChar (C % 3), 89
PyUnicodeDecodeError_Create (C #X), 28
PyUnicodeDecodeError_GetEncoding (C &
X), 28
PyUnicodeDecodeError_GetEnd (C #X), 29
PyUnicodeDecodeError_GetObject (C & R),
28
PyUnicodeDecodeError_GetReason (C
29
PyUnicodeDecodeError_GetStart (C HR), 28
PyUnicodeDecodeError_SetEnd (C H#X), 29
PyUnicodeDecodeError_SetReason (C & R),
29
PyUnicodeDecodeError_SetStart (C HR), 29
PyUnicodeEncodeError_Create (C $#X), 28
PyUnicodeEncodeError_GetEncoding (C &
X), 28
PyUnicodeEncodeError_GetEnd (C #X), 29
PyUnicodeEncodeError_GetObject (C & RX),
28
PyUnicodeEncodeError_GetReason (C
29
PyUnicodeEncodeError_GetStart (C HR), 28
PyUnicodeEncodeError_SetEnd (C #X), 29
PyUnicodeEncodeError_SetReason (C & RX),
29
PyUnicodeEncodeError_SetStart (C &

% X)),

% X),

4 X)), 29

e]

227

The Python/C API, [F) 3.6.12

PyUnicodeObject (C & #), 83
PyUnicodeTranslateError_Create (C & X)),

28
PyUnicodeTranslateError_GetEnd (C & R),
29
PyUnicodeTranslateError_GetObject (C &
K), 28
PyUnicodeTranslateError_GetReason (C &
X), 29
PyUnicodeTranslateError_GetStart (C &
X)), 28
PyUnicodeTranslateError_SetEnd (C & R),
29
PyUnicodeTranslateError_SetReason (C &
X), 29
PyUnicodeTranslateError_SetStart (C &
X, 29

PyVarObject (C#), 152
PyVarObject_ HEAD_INIT (C E %), 153
PyVarObject.ob_size (C & B H#), 158
PyWeakref_Check (C #X), 121
PyWeakref_CheckProxy (C %HR), 121
PyWeakref_CheckRef (C & X)), 121
PyWeakref_ GET_OBJECT (C &#X), 122
PyWeakref_GetObject (C &), 122
PyWeakref_NewProxy (C FH=,), 122
PyWeakref_NewRef (C %HX), 121
PyWrapper_New (C % X,), 120

single dispatch -- ¥ 4-Jk, 188
SIZE_MAX, 77
slice -- #]K,188
special method -- %% ¥ i, 188
statement -- &4, 188
staticmethod

Bz &=, 154
stderr (in module sys), 138
stdin

stdout sdterr, 130
stdin (in module sys), 138
stdout

sdterr, stdin, 130
stdout (in module sys), 138
strerror (), 23
string

PyObject_Str (C function), 55
struct sequence, 188
sum_list (),7
sum_sequence (), 7, 8
Sys

H4E, 9,129,138
SystemError (built-in exception), 114

T

text encoding —- X%"%@ 188
text file —-- UK, 188
tp_as_async (C s B &), 159
tp_as_mapping (C & B F), 160

Q tp_as_number (C m B H#), 160
qualified name -- [R& 4 #F, 187 tp_as_sequence (C s 8B FH %), 160
traverseproc (C &), 175

R triple-quoted string -- Z§| 5 F4 &, 188
realloc (), 143 tuple
reference count -- 5| Jf %, 188 E# % R, 62, 105
regular package —-- % #.4, 188 W, 102
repr type

Bz & R, 55, 160 Bz &R, 57

Wk, 4,73

S type —— X7 189
sdterr type alias —- XA G4, 189

stdin stdout, 130 type hint —-- XA IR, 189
search U

path, module, 9, 129, 131
sequence ULONG_MAX, 77

1, 80 universal newlines —- i /JH#4T, 189
sequence —-- /77|, 188
set V

o1, 108 variable annotation -- T EAFE, 189
set_all(),6 Flz g
setswitchinterval () (in module sys), 133 _ _import_ , 36
SIGINT, 27 abs, 58
signal ascii, 55

A, 27 bytes, 55
228 #5|

The Python/C API, [F) 3.6.12

classmethod, 154
compile, 37
divmod, 58
float, 60
hash, 56, 160
int, 60
len, 57, 61, 62, 105, 107, 109
pow, 58, 59
repr, 55, 160
staticmethod, 154
tuple, 62, 105
type, 57

version (in module sys), 131, 132

virtual environment —- E#MIIE, 189

virtual machine —- JE#4, 189
visitproc (CA &), 175

W
A
__main_ ,9,129, 138
_thread, 135
builtins, 9, 129, 138
signal, 27
sys, 9, 129, 138
Z
Zen of Python -- Python i, 190

e]

229

	簡介
	包含文件
	对象、类型和引用计数
	异常
	嵌入式Python
	调试构建

	稳定的应用程序二进制接口
	The Very High Level Layer
	參照計數
	例外處理
	Printing and clearing
	抛出异常
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	递归控制
	标准异常
	标准警告类别

	工具
	作業系統工具
	系統函式
	行程（Process）控制
	匯入模組
	数据 marshal 操作支持
	解析参数并构建值变量
	字串轉換與格式化
	反射
	编解码器注册与支持功能

	抽象物件層
	对象协议
	数字协议
	序列协议
	映射协议
	迭代器协议
	缓冲协议
	旧缓冲协议

	具体的对象层
	基本对象
	数值对象
	序列对象
	容器对象
	函式物件
	其他对象

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	异步通知
	分析和跟踪
	高级调试器支持

	記憶體管理
	總覽
	原始内存接口
	内存接口
	对象分配器
	自定义内存分配器
	pymalloc 分配器
	例子

	对象实现支持
	在堆上分配对象
	通用物件結構
	类型对象
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	使对象类型支持循环垃圾回收

	API 和 ABI 版本管理
	术语对照表
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	版權宣告
	索引

