The Python/C API
(F) 3.6.10rc1

Guido van Rossum
and the Python development team

12 A 18,2019

Python Software Foundation
Email: docs@python.org

Contents

fiisr 3
I O o 4 3
120 g, BARGFISIHTIEL . . o o o 4
L3 Bl . e 7
14 HAIZUPYthOn o e e 9
15 ERHIE . . 10
e i W TR k42 11 11
The Very High Level Layer 13
SIGHE 19
Bilshz AL 21
5.1 Printingand clearing L e e 21
52 B SEE . . e e 22
5.3 ISSUIN@ WATNINGS .« « v v v v e e i e 24
54 Querying the error indicator oL e 25
5.5 SignalHandling L e e e e 27
5.6 Exception Classes o i i e e e e e 27
5.7 Exception ObJects ot i e e e e e e e e e e e e e e e 27
5.8 Unicode Exception Objects v i i v it e e e e e e e e e e 28
5.9 Recursion Control L e e 29
500 FRUESEB . o 30
501 FRUEEREZRT © . 31
TH 33
6.1 AMEEZRGTH . . 33
6.2 ARBEEI . 35
6.3 ATRE (Process) M . . o o . 36
6.4 FEABIAL 36
6.5 Datamarshalling support e e 40
6.6 RIS EOFMIEMEASE . . o . 41
6.7 FEHREIEREAL . . . o 48
6.8 SLHT 49
6.9 UMMRRLEREMHSSERIIAE . .. 50

10

11

12

fm%%ﬂ)%

TP . o e
7.2 BUFTIL . o o o
T3 JFEHIMML . o
T4 BEFIL . .
7.5 GEACESTINL .
7.6 B . .
T IHEML .« o

FLAAR Xt 5)2

8.1 FASKIG . e
82 BUELNIZL . .
83 FHUNIGL .
8.4 ZRBENILE
8.5 BRIUMIME . .
8.6 HABNIZ . .

Initialization, Finalization, and Threads

9.1 Initializing and finalizing the interpretero e
0.2 Process-wide parameters i e
9.3 Thread State and the Global Interpreter Lock
9.4 Sub-interpreter SUpPport L. e e e e e e e e e e
95 BIEHAL . . .
9.6 AHTFIEREE . . o o o
9.7 mOIRER T .

so TR A B
10.1 #AEs

03, == Y

102 JFUHAITFIELL © o o
103 IAEEELT o o
104 PR o o e
10.5 Customize Memory Allocators o e e e e e e e e e e
10.6 The pymalloc allocator o e e e e

10.7 BT o

RIS

TLT FEHE BATERTAL © o
1.2 GEHPIEERE . . o
113 BAIRFG e
11.4 Number Object StrUCtUIES« . ottt e ettt e e e e e e e e e
11.5 Mapping Object Structures o v v i it et e e e e e e e e e e e e
11.6 Sequence Object StruCtUres o o v vt i e e e e e e e e e
11.7 Buffer Object Structures 0 i e e e e e e e e e e e
11.8 Async Object Structures o v i v v e

119 (PR ARB RISo
API il ABI it 455 Bt
N LEES

Y SEalipe s
1 Python SCEFRIERRE™ . . . o o

B
JEE S L
Cl ZEMBIIIE « o o

>
bad
™

53
53
57
60
62
63
64
70

73
73
75
80
105
109
112

127
127
128
131
136
137
138
139

141
141
142
143
144
145
146
147

149
149
150
154
168
169
169
170
171
172

175

177

189
189

191

C2 FRERE PAHA A Python FOZRERAIAE - o o o o o e

C3 WOSGRA ARV T IE 5 i
D JiHEE

#51

The Python/C API, (F) 3.6.10rc1

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, §(EF) 3.6.10rc1

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

Writing an extension module is a relatively well-understood process, where a | cookbook] approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

VFZ APT BRI A B Python sX PR NARREAEIE I BN, KR A Python [1Y I FE 7
WHRERALEE YR, A RS FR Y H i A Python 2 B Je B S RV X &2 15

1.1 BaXH

{71} Python/C API It 2R 4l eR . AU E SCRTd 1 T i AT v A 4 35 2) AR 2 o

’ #include "Python.h"

XEWREC SN REL S <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
Ml <stdlib.h> (WEEFH).

HilE): T Python AT flE £ i X HORETERESE R 10T S SCPERYBUAL FIAS 52 3L, TR I 6 4 (A A
SCHEZ I, 1 4RSS Python. b,

Python.h s SCHY AR Fa] LAAAR (il A 3 AR Sk SCPRRTE SLRRR AN) B A RIS Py 2% _Py. DA _Py
TR PRt Python SCELNERGE IR, ARG g 52 (U o S5A4 R4 PRIAT PR B RS
Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes

the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The Python/C API, §(EF) 3.6.10rc1

BT 45 Python —i 7% . fF Unix |, BV TLPANHD: prefix/include/pythonversion/
M exec_prefix/include/pythonversion/, H W prefix il exec_prefix +& Hi [a] Python [
configure I AE AIXT K ST € X, T version Wk '%d.%d' % sys.version_info[:2]. fE
Windows |, KIFL4T prefix/include, HH prefix g 45 e 4% H .

TSSO, WA H R (MR) #CEIRBT i as it SRR P o 3 R20F5CH R
REARRGM] #include <pythonX.Y/Python.h>; XIFMMREF-EHIFATN, HAprefix T
BIKRALSFHF LM TR A exec_prefix FHEEFGHILIIT.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C",so there is no need to do anything special to use the API from C++.

1.2 g, FBF05| AT

KZ# Python/C API REERE — PN ZNSEPA K — A Pyobject * KRR EME . BRAUE—ANFRE, 48
6] /R — ML Python Xt R AN BEIABIE XA, HTFFERZSEIEN T (BIANRIE. 7500 A2 5 tL
%) Python iE 5 #8< AR RER 7 AL BEFTA Python XF 42581 M EATH — B C AR TR 2R
EHE . JLFFrf Python Xf AR A e e b R4 RSB —A4-Pyobject RAK Bl SARE, H
HPyobject * BEUKFRE AL BT AR . ME—RF1 42 type XF52; BT AT Gk AN RERRERL, FTPA
BATEE RSPy TypeObject W4,

P Python X4t (F & Python B%y) #H —1 type Fl—A> reference count . X4 HIZEAE 2 AT
Xtge (BAnEEg.)Tk e XEREG AL, A types TR) o XFFREAS AR FNAG2EAL, #H —A%
RGN R BT ETZEA; i, X4 (HAY) a FriERXT4)2 Python 51 Af PyList_Check (a) HE.

1.21 S|RHH

The reference count is important because today’ s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’ s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’ s an obvious
problem with objects that reference each other here; for now, the solutionis [don’ tdo that. |)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to increment an
object’ s reference count by one, and Py_ DECREF () to decrement it by one. The Py DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’ s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’ s needed. There’ s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’ s reference count for every local variable that contains a pointer to an object.
In theory, the object’ s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’ t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. &4y

The Python/C API, (F) 3.6.10rc1

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). [Owning a reference
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’ s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3

t, 0, PyLong_FromLong (1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ INCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’ s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

12. &, %EF03| Bt 5

The Python/C API, §(EF) 3.6.10rc1

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’ t have to increment a reference count so you can give a reference away ([have it
be stolen |). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; i++) |
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
t
Py_DECREF (index) ;
;

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyObject_GetItem ()

and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’ t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(),youdon’ town the reference —but if you obtain the same item from
the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

(continues on next page)

6 Chapter 1. &4y

The Python/C API, (F) 3.6.10rc1

(R —H)

total += value;

}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.2.2 2H

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 &

Python F&fy i1 A T LA PR & To BAL BIR B DR e 8 RACPRR S & G R 1, SR JG fe i 2l &
MR, KRN, ERMIRIATHA MRS, FEIR R eI A4 P P RS [l)

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’ s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’ s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions
are always explicitly documented.

1.3. &% 7

The Python/C API, §(EF) 3.6.10rc1

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ---except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’ s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’ s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception —that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’ t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;

(continues on next page)

8 Chapter 1. &4y

The Python/C API, (F) 3.6.10rc1

(R —H)

const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_ Clear() to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.4 # AR Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py_Tnitialize () doesnotsetthe [scriptargument list/(sys .argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (Infact, this particular path is also the [fallback | location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

1.4. #& AR Python 9

The Python/C API, §(EF) 3.6.10rc1

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py _GetPrefix (), Py GetExecPrefix (), and Py_GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to [uninitialize] Python. For instance, the application may want to start over (make another call
to Py_Initialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py IsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.5 A

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by [a debug build | of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

B T AT AT T ROR 2 AL, AT A T B M A -
o BOME ARSI B 53 Bi s -
BN ARSI 2 AT a8 A 2 i o
* Downcasts from wide types to narrow types are checked for loss of information.
s FZWE PR MB IR G LI d . Ji5h, RAEXNRAUE test_c_api () Tiks
A AS R e B A B2 A
B B TS IR AL B TR, AR RGBS T
o INIRJZ IR ERANBS) S AR A 2 R B AT
 Extra checks are added to the memory arena implementation.
o USIMAENE R LA
X HLATREVCA B 2 A MG A

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

A REZEAEE, W25 Python JFAH) Misc/SpecialBuilds. txt .

10 Chapter 1. &4y

CHAPTER 2

TR EH R B2 Fr — i O

&4 I, Python) C APLIFRfiRENUAN I ZE (b . KRB HCA S IR Az, % HAs i APL, I A2 B
BA APTEUMER AP (A28 5 0 2| Je i AR IR) .

RNEME, APTIREERA Y R i HIas I (ABL). JR R 32 2@ 8540 @ EAE , 78k BB Ing 7 Brak
WM F BRI BEAR SR APL, {HAJRESHER ABL, I, 44> Python fUASH T S B B iy etk (EP
e A AT A 32 52 R B2 AR LR, Unix BB RESHEILRH). BL4h, #E Windows I, ¥ EiH 5 4E
FE) pythonXY.dIl #5482, FFEEHH A B S5 pythonXY.dll £z .

M Python3.2 2, B T4~ APLRY T4, PAWIPREER) ABL. WISR{AT L AP (Hhalfrhy “sZFR APTY)
9 AR BTG 25 X “Py_LIMITED_API*, -2 MR REAR 411 R M3 AR P IGRG Bd ok, AEARAT 3.x A
(x>=2) _F A ARSI AN TG 2 B 1

ERLEERT, FEARMIT R Y B E R ABL. 7 2 H] X 25 APL /Y 9 @ 11 B 95 228
Py_LIMITED_APT ik B A {148 35 & %5 1Y &% ik Python iR A< PY_VERSION_HEX {H (fi: Python 3.3
4 0x03030000) (SWAPI o ABI jp A 32) o WRBIHCREE T 0T J54¢ Python JiUAS, {HIGYEFEIHMRAS I
m#E (F R 0555) .

M Python 3.2 JF 41, 52 APL W] B HLAEICTAE PEP 384 . 5 C APLSCHYh, R T32 APL {1y APTIEH
FRiZh “RETZH AP,

11

https://www.python.org/dev/peps/pep-0384

The Python/C API, §(EF) 3.6.10rc1

12 Chapter 2. F2EBIN ARERFZ#H#ED

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’ s main () function
(converted to wchar_t according to the user’ s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

13

The Python/C API, §(EF) 3.6.10rc1

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filenameis NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when Python’
s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is ignored.
Overriding this hook can be used to integrate the interpreter’ s prompt with other event loops, as done in the
Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’ s prompt.
The function is expected to output the string prompt if it’ s not NULL, and then read a line of input from the
provided standard input file, returning the resulting string. For example, The readline module sets this hook to
provide line-editing and tab-completion features.

14 Chapter 3. The Very High Level Layer

The Python/C API, (F) 3.6.10rc1

The result must be a string allocated by PyMem_RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

3.4 R B 4#: The result must be allocated by PyMem_RawMalloc () or PyMem RawRealloc (), instead of
being allocated by PyMem_Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *swr, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

15

The Python/C API, §(EF) 3.6.10rc1

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code cannot
be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 BUHTMA.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Like Py CompileStringObject (), but filename is a byte string decoded from the filesystem encoding (os .
fsdecode ()).

3.2 HTMA.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *kwdefs, PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of a dictionary of global variables, a mapping object of local variables, arrays of arguments, keywords and defaults,
a dictionary of default values for keyword-only arguments and a closure tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_ EvalFrameEx (), for backward com-
patibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

3.4 K B4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

16 Chapter 3. The Very High Level Layer

The Python/C API, (F) 3.6.10rc1

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().
int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as [true division | according to PEP 238.

17

https://www.python.org/dev/peps/pep-0238

The Python/C API, §(EF) 3.6.10rc1

18 Chapter 3. The Very High Level Layer

cHAPTER 4

SR

O
.

AT ZAR RN T HE Python R YT AL

void Py_ INCREF (PyObject *0)
Increment the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’ s type’ s deallocation function (which must
not be NULL) is invoked.

Bl BEOR BT S EUL R Python AU BUAGETA N (HIHINY— Ml __del () JrikAg2EILHIHE
RN NIE) o EIRBERACHD T F WA S, ERI TR RERS [Hi1J517 BT Python
ArJr SR XA AT AL I 4 R AL BRI RAEPy_DECREF () AR 2 BT R. 24 4T
FERFRAS . BT, 503 I IR 0 G 14 AR B2 224 K7 R B3 e R A 5 | P 9 DL 81— A i 2
OB R AR, ARG AN R i Py _DECREF ()

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

2SR LI WA [T R Sl I B AL BRI, B e — M

DA BB %50E T Python Bz TR 8 &k A: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o).
TV MR Py XINCREF () FlPy XDECREF () [{fa A5 H BB AR

19

The Python/C API, §(EF) 3.6.10rc1

PAR B BB A v FE R ORE S B 0 N IR B H: _Py_Dealloc(), _Py_ForgetReference(),
_Py_NewReference () ANAFE Py_RefTotal,

20 Chapter 4. &5t

CHAPTER D

BI5h ez IR

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’ t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’ s type, the exception’ s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’ t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’ t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

#i[E): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the errorisa SystemExit. In

21

The Python/C API, §(EF) 3.6.10rc1

that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sys . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

5.2 il Hw

These functions help you set the current thread’ s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8J .

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the [value]
of the exception.

PyObject* PyExrr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr Format (),buttakinga va_11ist argument rather than a variable
number of arguments.

3.5 BUBTINA.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and

22 Chapter 5. fl5hE 2

The Python/C API, (F) 3.6.10rc1

then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_ CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of type as a third parameter. In the case of OSError exception, this is used to define
the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

3.4 BT

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnolWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()). Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter speci-

fying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-
name?2)
Similar to PyErr_SetExcFromWindowsErrWithFilenameObject (), but accepts a second filename

object. Availability: Windows.
3.4 BUHTMA.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
This is a convenience function to raise ImportError. msg will be set as the exception’ s message string. name
and path, both of which can be NULL, will be set as the ImportError’ srespective name and path attributes.

52. H%&E 23

The Python/C API, §(EF) 3.6.10rc1

3.3 BUHTMA.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exception isa SyntaxError.

3.4 BUHTMA.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (),but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

3.2 OB

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
—1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py._ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 7 /f 22 5 31,

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *msg, PyObject *name, PyObject *path)
Much like PyErr_Set ImportError () but this function allows for specifying a subclass of ImportError
to raise.

3.6 UM

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 BUBTIA.

24 Chapter 5. fl5hE 2

The Python/C API, (F) 3.6.10rc1

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () exceptthat message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

3.2 UHTIMA.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and pass source to
warnings.WarningMessage ().

3.6 BUHTIA.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py DECREF () it.

#iE): Do not compare the return value to a specific exception; use PyErr_ ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

#E]: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

5.4. Querying the error indicator 25

The Python/C API, §(EF) 3.6.10rc1

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’ t understand this, don’ t use this function.
I warned you.)

#(E): This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr Fetch () below can be [unnormalized | , meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

#i[E: This function does not implicitly set the __t raceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

#iF): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or clear
the exception state.

3.3 HUHTIA.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

#i(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 BUHTIA.

26

Chapter 5. ISR

The Python/C API, (F) 3.6.10rc1

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’ s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for STGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_ SetInterrupt ()
This function simulates the effect of a STGINT signal arriving —the next time PyErr_CheckSignals () is
called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

3.5 Ji#E 4%: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_NewException (), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 BUHTMA.

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the exception

5.5. Signal Handling 27

The Python/C API, §(EF) 3.6.10rc1

as a new reference, as accessible from Python through __context__. If there is no context associated, this
returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return the cause (either an exception instance, or None, set by raise ... from .. .) associated with the
exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context__ isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason is a

UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

28 Chapter 5. fl5hE 2

The Python/C API, (F) 3.6.10rc1

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return O on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py _EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Endsa Py_ReprEnter (). Must be called once for each invocation of Py ReprEnter () that returns zero.

5.9. Recursion Control 29

The Python/C API, §(EF) 3.6.10rc1

510 HRERE

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &k Python Z#R [
PyExc_BaseException BaseException (1)
PyExc_Exception Exception ()
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (D
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError @))
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclteration StopAsynclIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError

m ik%—l—\-—g

30

Chapter 5. ISR

The Python/C API, (F) 3.6.10rc1

x1-EEL—H

C &R Python #Z#R [EIfg

PyExc_TimeoutError TimeoutError

PyExc_TypeError TypeError

PyExc_UnboundLocalError UnboundLocalError

PyExc_UnicodeDecodeError UnicodeDecodeError

PyExc_UnicodeEncodeError UnicodeEncodeError

PyExc_UnicodeError UnicodeError

PyExc_UnicodeTranslateError UnicodeTranslateError

PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError
33 it pen yill] A PyExc_BlockingIOQError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,

PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError U PEP 3151.

35 fRFT A PyExc_StopAsyncIteration fil PyExc_RecursionError.
3.6 G PyExc_ModuleNotFoundError

XL R MER 4 PyExc_OSError:

C &R [Efg
PyExc_EnvironmentError
PyExc_IOError

PyExc_WindowsError 3)

3.3 M A XS R4 R Lo PR S 2R AL
[Efi -

(1) X2 HAARE S H A

(2) %5 weakref.ReferenceError [,

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

5.11 FREEE S

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

511, REBE%T 31

https://www.python.org/dev/peps/pep-3151

The Python/C API, §(EF) 3.6.10rc1

C AR Python Z#R [z
PyExc_Warning Warning Q)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

3.2 GHTINA: PyExc_ResourceWarning
(EIfig -
(1) X2 HA bR I R

32 Chapter 5. fl5hE 2

CHAPTER O

ARFE PRI T S S] T RAR S, wdRAT) C AU SETHES -Gl B AR, 7E C P A Python A58, DA
L @R R B S HOT AR C (B4 7 Python HH (B AF4E

6.1 ERZFEIA

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for parh. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

3.6 BUHTIMA.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

33

The Python/C API, §(EF) 3.6.10rc1

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)

Set the signal handler for signal i to be %; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py _DecodeLocale (const char* arg, size_t *size)

char*

Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 ¥F macOS #1 Android I;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions use the ISO-8859-1 encoding.

e the current locale encoding (LC_CTYPE locale).

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size.

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
hz%:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

3.5 BUHTIMA.

Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 ¥E macOS # Android F;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to the index of the invalid character on encoding error, or set to
(size_t) —1 otherwise.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
W%

The PyUnicode_ EncodeFSDefault () and PyUnicode_ EncodelLocale () functions.

3.5 BB

34

Chapter6. TH

The Python/C API, (F) 3.6.10rc1

6.2 ZREAN

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’ s sys module’ s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys .warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted [%s] formats should occur; these should be
limited using [%.<N>s_| where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for [%f] , which can print hundreds of digits for very
large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’ t truncate the message to an arbitrary length.

3.2 UGHTIA.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys.stderr or stderr instead.

3.2 BUHTMA.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions ().

3.2 BUHTMA.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

6.2. ZREHN 35

The Python/C API, §(EF) 3.6.10rc1

3.2 BUHTMA.

6.3 T2 (Process) gl

void Py_FatalError (const char *message)

Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)

Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

3.6 it § 4 Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’ s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 EANEH

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’ s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’ t leave the module in sys.modules.

This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)

This function is a deprecated alias of Py Import_ImportModule ().

3.3 it BE 4#: This function used to fail immediately when the import lock was held by another thread. In Python 3.3
though, the locking scheme switched to per-module locks for most purposes, so this function’ s special behaviour
isn’ t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

36

Chapter6. TH

The Python/C API, (F) 3.6.10rc1

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-

cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
3.3 OB

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a

UTF-8 encoded string instead of a Unicode object.

3.3 R H 58 Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)

Return value: New reference. This is a higher-level interface that calls the current [import hook function | (with an
explicit level of 0, meaning absolute import). It invokes the __import__ () functionfromthe __builtins_
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

This function always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)

Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)

Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’ s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

#E]: This function does not load or import the module; if the module wasn’ t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

3.3 BUHTA.

PyObject* PyImport_AddModule (const char *name)

Return value: Borrowed reference. Similar to Py Import_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’ s intents) state.

The module’ s __spec___and __loader___ will be set, if not set already, with the appropriate values. The
spec’ s loader will be set to the module’ s ___loader__ (if set) and to an instance of SourceFilelLoader
otherwise.

6.4.

ENEH 37

The Python/C API, §(EF) 3.6.10rc1

Themodule’s ___file__attribute will be set to the code object’s co_filename. If applicable, ___cached___
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyTImport_ExecCodeModule (), butthe __file_ attribute of the
module object is set to pathname if it is non-NULL.

Z: L PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Tmport_ExecCodeModuleEx (), butthe __ _cached_ _ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

3.3 BUHTA.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpath-

name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.

3.2 UHTIA.

3.3 R EE 4% Uses imp.source_from_cache () in calculating the source path if only the bytecode path is
provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

3.3 iR A: SRR [EI(E -1

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

3.2 BT

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path___ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’ t yet cached, traverse sys . path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

38 Chapter6. TH

https://www.python.org/dev/peps/pep-3147

The Python/C API, (F) 3.6.10rc1

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char * char *)
For internal use only.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_ImportModule (). (Note the misnomer —this function would reload the module if it
was already imported.)

3.3 OB
3.4 Jju ¥4 The ___file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import . h,is:

struct _frozen {
char *name;
unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.4. EANEH 39

The Python/C API, §(EF) 3.6.10rc1

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings
in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE * opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’
t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

40 Chapter6. TH

The Python/C API, (F) 3.6.10rc1

6.6 BTSHHMBELE

TEBIHAR A CHP R AR A, XL Boe A Y. HERE EAEEGIA extending-index .

X B R B HE AR W BT = 4>, PyvArg ParseTuple (), PyArg ParseTupleAndKeywords (), DA
KpyArg Parse (), EATHS A 14 XA F 4 & 0 K o8 B0 7 19 2 808 0 08 B 3 28 o Z5CHT 6) A
[l TE LR AR AL AR

6.6.1 BEITS

— AR F AR 0 B 2 AR IC. — MRS TR IA 4> Python X4 EilH 27
PFEE RIS SRR R ITTA . B T ARBISL, — ARG S PSS 2 BTGl 0 X 28 e By By
IR SR FERE TRl T, WG 15 A FEAGRE G B O W X A8 BT
Python XfRFEA; Trii's (1 Wi feidng C ALkt (Ieiide) 2.,

FHBNZFEX

X LA 2 SRV RF X G 4% B 2L B N AF S AT 1) o ARV B AER 0] Y unicode 45 5 & 17 IX Y IR 4R
BT -

— By, YRR E—AREHER R X, XSGRk AT AR R Y Python X445 88, - HaX A4~
Getp RIL XA R AE R . RARR E N REAT A NAEZSE] . B TiXEE es, es#, et and et #.
SR, M4—"Py_buffer Z5MPRIE, HAEMZE XS, BT AR & 7R 5 (0 X A~ o X, B
TEPy_BEGIN_ALLOW_THREADS HtH, W DAEA w]AZ B R AR B/ INBS a5 1 55 iy R g XUz . PRI, IR
AW PyBuffer Release () TEMRGEARAR AL LT ECEAEZ AR W ff)

BRAES A, ZrpRERNSPASL LK.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’ s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

WE: pra # FEXWAER (s#, v, F%), RKIESHHZB A E py_ssize_t) ¥EEF Python.h
L2 Bt PY_SSIZE_T_CLEAN ZZ [XAl WA 9w L, KER— Py_ssize_t Python
JCR/NEAMA R — int B, FEARRKN Python AP RF&MAE, HIkE Py _ssize_t MisF3CHF int
A Bif—HE N PY _SSIZE_T_CLEAN X%,

s (str) [const char *] Kf—4> Unicode X G54 il— M8 M FAFEHE I C F55F. —ANREHE I — DN EAFEN
TR, XN FRBRIEE B N TR B . C PR RO SE9R K. Python PR EEAREML S
AR TR RS s, —4> ValueError F# 245 % . Unicode XL @E LA 'utf-8" 4
Mo C 4. WSRHEIREIK, —4> UnicodeError RH#HI K.

) XAFIE R AR Zbytes-like objects, QNSRRI Z ARG EATFALN C 74575, Bl
i os EERAEEGPyUnicode FSConverter () VEN #10J%,

3.5 Wi s 5 DART, 24 Python 4R il F| T AR null % 5i£5]% TypeError .

s* (str or byfes-like object) [Py_buffer] x5 14252 Unicode X 4 32K F A R AN 4 . B i E
FARALY Py_burfer FMIRIE, X RN C FATR AR SRR NUL 795, Unicode Xf4 i i
"ut £-8" il C FAFER

6.6. BITSHHLEETE M

The Python/C API, §(EF) 3.6.10rc1

s# (str, Hiftbytes-like object) [const char *, int or Py_ssize_t] 1 s*, BT ERNEZL WXL, 45817
HEEMAS C AR R, S— 2481 C FAFR RS, B MR EMKE. PR TR & i A/ null
F7. Unicode XJR#PHE LT 'ut £-8" galbibal C FA4FH .

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, Hifthytes-like object or None) [const char *, int] Like s#, but the Python object may also be None, in
which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] X Fk G — DI FEAT RS ZEAL R — 8 1 T4 19 C F5
BFi ERHER Unicode XH4. WL AUR B A HEAR mull 475 HURELA T null 47, 5] %—
4~ valueError JH .

3.5 fRCHEAE: DART, 4515 KB] AR null P45 & 5| % TypeError .

y* (bytes-like object) [Py_buffer] s* A5, A$23Z Unicode %4, N2 Rmar g, dodd2 Eh

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’ t accept Unicode objects, only bytes-like
objects.

S (bytes) [PyBytesObject *] ZK Python Xf R 2 —>bytes KRR, BA MM, WIRAR—
PMFRRBNR AT K TypeError . CAREMURERN]PyObject * KA,

Y (bytearray) [PyByteArrayObject *] ZizK Python X} % @& —A> bytearray FHIX 4, A R M 5
oo WMRAZ—A bytearray RENR LTk TypeError 7FH . CARWWEEFEW HPyobject
HA,

u (str) [Py_UNICODE *] f—~ Python Unicode X} 5544k 18 [n]— A~ PAZS 2 1LY Unicode 4728 i X [48
Efo ARG N—~Py_UNICODE 85145 Btk , #76& T — 48 B SAF7E Unicode ZZnf X145
o TR Py_UNICODE B FAF S B RT 4 R 6T (16 A7k 32 fir). Python FAFHRUAM
RNEEAL R AN null 15,5 WIRAE, 51K —4 ValueError ¥ .

3.5 Wi s DARG, 4 Python “FAFHR ARl 2| TR ARY null f245 5 25| % TypeError .

Deprecated since version 3.3, will be removed in version 4.0: X &2 [H R £t =,y _UNICODE API; i iF #%
ZPyUnicode_AsWideCharString/().

u# (str) [Py_UNICODE *, int] u {72850, FAEmi4> C 285, 25— D855 1—4> Unicode HHRZAFX,
TASREREE. BV null AR
Deprecated since version 3.3, will be removed in version 4.0: X &2 |H R £t :,Py_UNICODE API; i iF #
ZPyUnicode_AsWideCharString/().

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R X Py_UNICODE API; it %
ZPyUnicode_AsWideCharString/().

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R FE X Py_UNICODE API; i iT %
FPyUnicode_AsWideCharString().

U (str) [PyObject ¥] %K Python X5 jg—> Unicode X5, A L ULMAYHA . WA Z—4> Unicode Xf
Z25| Kk TypeError JFH . CARWARESEWNPyobject « KA,

42 Chapter 6. TH

The Python/C API, (F) 3.6.10rc1

w* (W[55 bytes-like object) [Py_buffer] X >3 15 3 32 A1] 52 B AT 525 G A7 D3 LI IR R BT &
fefbfipy_burfer FiMIRIE. ot KT REFFAEIRA MY null T35, 24 Zeof DX 5 i) 1 3 7 2508
HPyBuffer Release (),

es (str) [const char *encoding, char **buffer] s 17255, ‘B¥ 4551 Unicode FRHFEAFHENIX ., B H
ARV A NUL 45 2 g i 5 ds

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg ParseTuple () S Bi—1 RS R/NGMIX, K89 b0 f5 ALt +5 DUE A Geh X HicE:
“buffer 5| X AHr 2 FEHI AAFEE] T E A SHEAEME ST Pyiem_Free () RREIRC LRI
WX,

et (str,bytes or bytearray) [const char *encoding, char **buffer] il es F[F], & T A EHRLE AN
FAFHRSR. MR, BREEANSECR LS A 2RAL.

es# (str) [const char *encoding, char **buffer, int *buffer_length] s# (255, 4T 4Ly Unicode 45
FANTFRZ X, AME es KKK, BEARFEARENE S NUL F4F,
It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char * *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the

encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

A PR

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

TEX PG, *buffer_length RSt B4 o 4 A NUL i8R i) K JEE

et# (str, bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] fil es# [, &%
TAHERSE AR FEIFRNS. Mk, BIREANSECE R IA.

#8¥
b (int) [unsigned char] Ff—/~E17 1) Python B RUEE AL)l — N TCAF5 O AL, fAAEFE— 1> C unsigned
char 258y,

B (int) [unsigned char] §—~ Python #& B340 Bl — M B ARG A i 8T, (FAEFE—1 C unsigned
char R,

h (int) [short int] > Python B AUV i —4> C short int 487,

H (int) [unsigned short int] }f—~ Python 3 ZU%£4k ii—4~ C unsigned short int JTLAFSEREAL, HA
A Y) A

i (int) [int] $f—> Python FERFEA Y —~ C int FEHL,
I (int) [unsigned int] $§—> Python FAUELAL i —4~ C unsigned int JEFFSHEAL, HNA A A

6.6. BITSHHLEETE 43

The Python/C API, §(EF) 3.6.10rc1

1 (int) [long int] > Python ¥ AUH 4k 4 C long int KEEHY,

k (int) [unsigned long] §—> Python ¥R (L i— 1> C unsigned long int JEAFS KB, JEAKA
it AR

L (int) [long long] f—> Python BAULAY I{—4> C long long KRB,

K (int) [unsigned long long] ¥—> Python #&Z%£4k ili—4~> Cunsigned long long LS KKIEAL,
AN AT i 4 TV A

n (int) [Py_ssize_t] §—> Python 3HU%E4k il —/~ C Py_ssize_t Python JuRK/NJEHL,

c (bytes s bytearray KJ¥h 1) [char] Ff—> Python Fi7 KM, f— KK 1 1) bytes B #H
bytearray %2, ALK —1 C char F&H5LH,

3.3 fOES#: Ui bytearray KBRS .

C(str KIEHM D) [int] £F—4> Python F4F, W—PKEN LAY str FRFHXIR, FAM—4 C int $ARE
it

f (float) [float] }§—~ Python 3% S5 —14> C float %A%,
d (float) [double] ¥~ Python 7% S 8444 A4 C double AU TR SEL.
D (complex) [Py_complex] — Python &g B4 Il,— 1 C Py_complex Python &g 425,

HipatxR

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’ s reference count is not increased. The pointer stored is not
NULL.

o! (object) [typeobject, PyObject *] Kf—~ Python Xf RAEA—A> C $84F. Fl 0), (HE2FEMWA C 34
H5— 42 Python AN bk, 55 — AR AFMEXT R85 C A2 & (PyObject * A8 &) bl W2
Python X} JBURN}, &l TypeError 5.

0& (object) [converter, anything] i —> converter BREF—> Python %t G4 # fi— 4~ C 48 &, XFEIHA
SH BN R REL, BN A CAR R HE (R ZRAAY), #44bkh void * AL, converter
PR IR X FER IR FH -

status = converter (object, address);

object* 7% 1555 184 Python 3t %5 B *address Zf5 A\PyArg Parse* () B void* KEISH . kA
(1) status j2 1 RGBT, O FCFEARRI . BFARTING, converter™ J3 251 X —N 77 B &1E
7% *address [N2

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

3.1 Ji ¥ #%: Py_CLEANUP_SUPPORTED ¥/

p (bool) [int] WM& ARIME T NE (— A KB I B L5 R AT) C true/false BEAUE ., Q12K
FRANEE “1¢, BWE “0“. BIEZAEMAYAR Python . 2 I truth ZREUHE £ 5T Python 411 faf il
WENERER.

3.3 HUHTIA.

(items) (tuple) [matching-items] X5 0755& Python [¥ 31, BERKEIE items g HITH AR C 4
IAATKF Y. items Fdg— AL RS TE . 8 kg R TR BE A i E

44 Chapter 6. TH

The Python/C API, (F) 3.6.10rc1

i R B CBRAAEEE TSR LONG_MAX FRiE) ZRIRERT, SR EAT B TIE 24 B JE AR ——4
BT BRSO BIERS 5 S G R AT (SEPs b, C iR 5 S7EE AR 1 BLAt_E 3 i 282
eA—— IR E AT RES KA AR D) o

A AT R b — LA) AT B RFIR IR L . XA REH AR EAERIE 5. BT

| FHITE Python ZH5| K | N S ECER @ ATk Ry . C A8 8 B Al SR EWI b B ——4—
PMAESHAATREN, PyArg ParseTuple () AREVFFIMINAY C AL H (L H) KINA

$ PyArg ParseTupleAndKeywords () only: FEBAYE Python Z:4i4 3% th) R S BN Z 00] X EF S50
T, ARG R ETF SR RS, ST AR | U —EAE S BT .

3.3 BUHTIA.
o A BITHIPIRE AR B B TR T KA N BRI B P B BB (PyArg_ParseTuple () B
BEIRR) “RERE” 5.
i REUEICIPIRERAR A S SR AT R B RAE N B D B RBOA R BRI R .« A1 HIEHER .
FERAEAT] 2 B it Python XfR 5 HIE 45 Rka9 5115 AZLEBENHIT HTE

2 K L8 pR RS RIS b e A AL T4 H il s) A SR s X e IR AT il A G, A
—SufEL, 0 ETE AR R TS R AR, XSS B B X OLT, BATM A ICREC RS
E AR AT

N TN, arg XS IEBCAE 2O HAS AR . Wi, PyArg parse* () s¥LRIA true, X
ZENTRN false H HE K—AE@H R . YPyArg Parse* () BB AR X BT AL 2R M 25 K
I, RS R A DA K JE S A% s B el A) AE B AS g B

APl

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
ST — BRI 24, KB SEAS BB F AN R AL B . IR IE] true; KRR] false
I H5 1 ZAMH I 575

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
MpyArg_ParseTuple () M, SRIMIEHEZ A va_list BRSO A i RIS L.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

3.6 WU 5 VN T positional-only parameters 1 32 3

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words(], va_list vargs)
MPyarg parseTupleandieywords () R, JRTTE BER—A va_list 2SR A2 P S KR Y

int PyArg_ValidateKeywordArguments (PyObject *)
R M Y KB SRR AR . XA BRECA N T PyArg ParseTupleAndKeywords () A
PR, J5# C &N XAk A .
3.2 JRHTIA.

int PyArg_Parse (PyObject *args, const char *format, ...)
BRECH T R AT “IHZRALY R S H R X U Bl) METH_OLDARGS SHEHT 7 kM
Python 3 WS IR . IXRAERE A TR ARSI S @ pT, I+ HAE R EMPRES Ty RZ B e piigek, 2
ANEHTZEW . B8R BT ocd, SRmn] 5e R XA~ B rgidkee i i

6.6. BITSHHLEETE 45

The Python/C API, §(EF) 3.6.10rc1

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

— AT 7 E SRR R LA SRR . SRR RS L R B %
TR E T kB W METH_VARARGS . W SBR S TCHI AR IA args TR BAE N B il —
ASEERICAL . JCALR R AL 2 A2 min I HANEIE max; min 71 max Al REAATH . ONK S Hn e
B REL, B NSRRI PyObject « RAVERIIIEE EATRHBIRIEN args BIH; E
PR EL S RG] . ATE args BRI AT S BN BRI & 58 AT IR 1L . BR B0 S iR 1]
true F HANR args A2 ol ol 00 & 55 B TR IR] false; A1RKIN T 251 K —1P R

KRR B R B, BUA _weakref i BIAHUTI R LT | A IR TR :

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

}

return result;

}

EAME TP PyArg UnpackTuple () 5B T PyArg ParseTuple():

’PyArg_ParseTuple(args, "O[O:ref", &object, &callback)

6.6.2 BIETE

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () #A—HAE I, HAYEREAMMTRS A ECES R RICA
Aol RS R R SS, BRE None; MR B AEG—MEIT, BRI g
TCRIR BT —XE 5. I 5 (s A 4 Al ARl &R [l — SR/ 0 303 1 gocdl

Y N AFGAE X B A S RO UM 38 R M BT bt 0 s Al s# AR BoT, &3 TR B
. EHEZRMAENSEH XXM EEARA S HPy _Buildvalue () BN RS H., A,
R AT malloc () H HAFELM NS L 845 Py_Buildvalue (), WRIFISHEA TTE
FEPy _BuildValue () IREIBEM free ()

TE R, G 5 i RIE AT, B35S O WA RA% IR 2R [Python X467 ;
TS 0 NItk C AL i (ER4R) sl

TREBIINES S, WIEAT, B oM SAER A AT T S P2 (B AT, Wst). Xn]
PABEAR A (A% A A A LA S Py AT B

s (str or None) [char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"' encoding.
If the C string pointer is NULL, None is used.

s# (str or None) [char *, int] Convert a C string and its length to a Python st r object using 'ut£-8"' en-
coding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [char *] This converts a C string to a Python bytes object. If the C string pointer is NULL, None
is returned.

46

Chapter6. TH

The Python/C API, (F) 3.6.10rc1

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (str or None) [char *] FI “s“—%.
z# (str or None) [char *, int] F “s#“—FF,

u (str) [wchar_t *] Convert anull-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data to a Python
Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [wchar_t *, int] Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode
object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [char *] FI “s“—kf,

U# (str or None) [char *, int] I “s#“—FF.

i (int) [int] Ff—4> C int BEAELAY F{ Python BRI 5L,

b (int) [char] §—4> C char “FAFAEL (LAY Python FEAIXF R

h (int) [short int] #f—> C short int SFR&AUHEAL i Python BEAUN 4

1 (int) [long int] $—4 C long int KEEAELAY A Python BEHIN 4,

B (int) [unsigned char] ¥/~ Cunsigned char L5 F5FAHAL I Python B AUN 42 .
H (int) [unsigned short int] ¥—{> C unsigned long JLAFS 4R AL A Python #E NI 4 ,
I (int) [unsigned int] }f—/> C unsigned long JLAFS 4R RIELAY il Python XA 4 ,

k (int) [unsigned long] ¥—/ C unsigned long JLf5K BRI AL B Python 3 AU 42
L (int) [long long] 5 4 C Long long K KHETHE{LA Python B4 .

K (int) [unsigned long long] ¥—> C unsigned long long JLfF 5K KIEREE(L L Python B}
%

n (int) [Py_ssize_t] ¥—14> CPy_ssize_t J5HI%E4k A Python #&7Y

c (bytes KA 1) [char] Ff—4> C int BEAU R FAFFE LN Python bytes KN 1 IFIX L.
C(str KD D) [int] Kf—4> C int BAARRYFAFEN Python str KN 1 IFRFHRXTS .

d (float) [double] K~ C double WU AT s AU ALk Python 77 ;S AR AR .

£ (£loat) [float] Kf—/> C float HURGREIF ML A Python 7 SR IUAF .

D (£ #0) [Py_complex *] f—4> C Py_complex KA RN Python 247

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’ t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] F1 “O“fH A .

N (object) [PyObject *] 71 “O“#[l, AR1EFHAHIMA RAYTI AL Ll I8 S8 ER x5
oyt g) B R IR SE A

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) asits argument and should return a [new
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Fi—A~ C 42 & 74§54 i Python JCZH I CRFpAH R 1 e R AR
[items] (list) [MRMICEK] K4 C A E 7550 K Python 51| I LRHFH [¥ T R A &

6.6. BITSHHLEETE 47

The Python/C API, §(EF) 3.6.10rc1

{items} (dict) [HIRIITH] KA CASHFHFAR AL Python 7l &—XFHELER) C AL N —
ATCEBAT A, 7B TR

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Mpy_Buildvalue () fld, SRIMEHEZ—A va_list B SHOMAZ 0 AL BRI S8

6.7 FREMEX L

7 ET el ORI B AL T A A

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
FRIEAS AT formar MUESNSEL, AL size 7358 sor o 320 Unix T 01 snprintf (2) .

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
P X FRF R formar FNAS &S HH)FR va , ANteh it size FA5 2] str o 52 W Unix F M} 50
vsnprintf (2) .

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

FLRERFIRER str[*size-1] FEAR BB IR L2 '\O" o BAIMNAEG AR size FH45 (RFEL5REM '\0") F|FEFFH.
PR B ER ST/ str = NULL,size > O #l format !'= NULL.,

If the platform doesn’ t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

B I (rv) 4595 20 bR O X e A 2
* M0 <= rv < size, HBFAHSINNEH v DNFRFREA st ORISR sor vl 1 1\ 0" F77)

* Yrv >= size , HFHHBREEWIFBBITEEWH ov + 1 FAENPIX. FEXFELT,
str¥[*size-1] B "\0"' .

* Hrv < 0, KRELERFRYFN . TEEXFEFLT, str¥[*size-1] FEALZ "\0" , {E2 str B HARTR
IIARBE Lo FERIT DR BT REF 5 .
PATR BRI B 5 1 5 PR T R Y A R BRI
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
FEFAFE s B4y double 2RA, RIGINT| % Python S5 . Hs2 77 H3 BYAE A% B T4 Python
float () WIERBHEZHFRBRNES, BT s UAA RIS RS . FAn UM T 214 13 X
1

If endptr is NULL, convert the whole string. Raise ValueError and return -1 .0 if the string is not a valid
representation of a floating-point number.

U5 endptr R NULL , AT RS HUREHF AR IFAF *endpt - BB A 55— AR BEHE 0744
WERFAF R RGBSR R A R RE T, K+ endptr WE NI FAFRIF L, 51K
ValueError %%, FHikH -1.0 .

WIR s FR—DNKKMAREEEFE— R B0RE (LU, "le500" ¥EF L 16 L7
) RFUER overflow_exception & NULL ik 0] Py_HUGE_VAL (HiEX4MIAS) HHAKET
S . FEHAN 7T, overflow_exception MZFE [—> Python EX4; 5]k FHEH &R -1.0
o TERXPAMEL T, &'E *endptr 7 MEIREZ JFHH— T4

WERAERE I 10 e AR AR AT A A R (EC AN — DA R BB R) |, BT 24 1Y) Python 4 3 HR [l
-1.0,

48 Chapter6. TH

The Python/C API, (F) 3.6.10rc1

3.1 BUHTMA.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
e double val —AME format_code, precision Fl1 flags W) 545 ER

e XA AN T Z—, re, "E', £, 'FY, "g", G B Tt R e 4R AR L
0. 'r' BAHRE TARMEREL repr () #45K,
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed to-
gether:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

* Py_DTSF_ALT means to apply [alternate] formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

3.1 BUETIA.

int PyOS_stricmp (const char *s/, const char *s2)
FRARARS KNG . ZEEILFS stremp () B TAERXAME, R T RN,

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)

TAHRARD KNG . ZRBILFS strnemp O LA AME, 2B TN,

6.8 5

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. 3% [F] 4 HIFRA T P9 B R A F L, QiR S /1A WUEAE AT, WHRE
LFRR SRR .

PyObject* PyEval_GetLocals ()

Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’ s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)

WA frame 4 FIIEAERATHIATS
const char* PyEval_GetFuncName (PyObject *func)

MR func ZeR%. KBELBIXTGE, WHAREIERAFR, HMERE func B4 FR.
const char* PyEval_GetFuncDesc (PyObject *func)

HAE func B BLR B|F A FAFE o IR ME TS R HCR 49 [0, | constructor | , | instance | 1 object
YpPyEval_GetFuncName () BIZERZER:, 4552 func FIFHIAR.

6.8. R 49

The Python/C API, §(EF) 3.6.10rc1

6.9 mAFEDREMSZIRThEE

int PyCodec_Register (PyObject *search_function)

TSR AR A4 2R R KL
TERRIER, He2ilik encodings &, WERMASEM, WHREHA LT R RESNRNEE L

int PyCodec_KnownEncoding (const char *encoding)
PG L5 5E encoding (A2 D AR 15 CAFEMR] 1 5 0, BERKBLE BRI «

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
2 T G i et FE AR 2 i) AP

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)

17 B G fir i g B A RS APL,

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec &1k API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Getan IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
NS EW encoding FEL— StreamWriter] K%L,

6.9.2 FiF Unicode 4i5EiRAMIBIZFRYE M= API

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and

50 Chapter6. TH

The Python/C API, (F) 3.6.10rc1

their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
back must either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.

JET R [E] “0% | TGO [a] 1%

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for [strict] will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
Replace the unicode encode error with \N{ . . . } escapes.

3.5 JUHTA.

6.9. JRARILSEEMEXISThEE o1

The Python/C API, §(EF) 3.6.10rc1

52 Chapter6. TH

CHAPTER /

MRMEE

AF PRI Python XIRACH,, Fib HRM, LA Z RIS R (Flan, Prafuadesy, Sy
FIRR) . MR GRBIEATE I, 1474 —4 Python 54 .

XL R R AN AT B TR IE WAL AT B 0, In— B Ry List_New () A, (HH ARG H 3%
AWK E 2l “NULL“fA{E.

7.1 HRMY

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

53

The Python/C API, §(EF) 3.6.10rc1

Note that exceptions which occur while calling _ getattr__ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’ s tp_getattro slot. It looks for a
descriptor in the dictionary of classes in the object’ s MRO as well as an attribute in the object’ s __dict___
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’ t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’ s tp_setattroslot. It
looks for a data descriptor in the dictionary of classes in the object’ s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’ s
__dict__ (if present). On success, O is returned, otherwise an At t ributeError is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
A generic implementation for the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

3.3 BUHTMA.

int PyObject_GenericSetDict (PyObject *o, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

3.3 BUHTMA.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of ol and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=

54 Chapter 7. #i&¥4B

The Python/C API, (F) 3.6.10rc1

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

#i(E): If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

3.4 Wi B4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

PyObject* PyObject_ASCII (PyObject *o)
As PyObject_Repr (), compute a string representation of object o, but escape the non-ASCII characters in
the string returned by PyObject_Repr () with \x, \u or \U escapes. This generates a string similar to that
returned by PyObject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and, therefore, by the print () function.

3.4 W ¥4 This function now includes a debug assertion to help ensure that it does not silently discard an active
exception.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is
equivalent to the Python expression bytes (o), when o is not an integer. Unlike bytes (o), a TypeError is
raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1, &N 55

https://www.python.org/dev/peps/pep-3119

The Python/C API, §(EF) 3.6.10rc1

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must
not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression callable_object (*args, **kw).

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args.
If no arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL on failure.
This is the equivalent of the Python expression callable_object (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue () style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is
the equivalent of the Python expression callable (*args). Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs () is a faster alternative.

3.4 i H 5 The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *o, const char *method, const char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on fail-
ure. This is the equivalent of the Python expression o .method (args) . Note that if you only pass PyObject
*args, PyObject_CallMethodObjArgs () is a faster alternative.

3.4 R T4 The types of method and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyOb ject * arguments. The arguments are provided
as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

3.2 R #4584 The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

56 Chapter 7. #i&¥4B

https://www.python.org/dev/peps/pep-3119

The Python/C API, (F) 3.6.10rc1

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type (o).
This function increments the reference count of the return value. There’ s really no reason to use this function
instead of the common expression o—>ob_type, which returns a pointer of type PyTypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *0)
Return the length of object 0. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using

__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).
3.4 FCHTINA.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del ol[key].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for

the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.2 il

int PyNumber_Check (PyObject *0)
WX R o FEAEF R, RIFTE 1, BNREER. XN 28 R

7.2. ¥l 57

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o02.

PyObject* PyNumber MatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python
expression o1 @ o02.

3.5 BUHTMA.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of ol divided by 02, or NULL on failure. This is equivalent to the
[classic | division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is [approximate | because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, o02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *o0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o02.

58 Chapter 7. #i&¥4B

The Python/C API, (F) 3.6.10rc1

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> 02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise and | of 0l and 02 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise exclusive or] of 0l by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ 02.

PyObject* PyNumber_Ox (PyObject *o0l, PyObject *02)
Return value: New reference. Returns the [bitwise or | of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += o02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 —-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement o1 *= 02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement 01 @= o02.

3.5 BUHTIMA.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is [approximate | because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing ol by 02, or NULL on failure. The operation is

Q

done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 **= 02 when 03 is Py_None, or
an in-place variant of pow (01, 02, o3) otherwise. If 03 is to be ignored, pass Py_None in its place (passing
NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by o2 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 >>= 02.

7.2. ¥l 59

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise and] of ol and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise exclusive or] of o] by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 ~= o2.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the [bitwise or | of ol and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
IR AR n RS DA base BB FAFR G AR . XA base ZHLAUZ 2, 8, 10 B3 16 o X T4k
2, 8, B016, R FAFERRE AN EEERRH 10, T00", or "0x' . HI n AE Python HHEE
Bine 258 goeilid PyNumber Index () YRGBT,

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)

AR 0 2 — MR MRERL, R[] o Fedfeii—A> Py_ssize_t (R RILE R MR RN, &[0
-1 5 R

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or

OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T MAX for a positive integer.

int PyIndex_Check (PyObject *0)
W2R 02— DREIHEL (f7A nb_index {i7 EIFA tp_as_number LA FH) WLR[E 1, AWGR[E 0 . X
A EREC 2 A R

7.3 R

int PySequence_Check (PyObject *0)
WX R BT, sRBGRIE] 1, HERE 0. EHERTR NHEA __getitem_ () J¥ERY Python
iR 1, BRAFENTR dict TR, PUNTE—MFIL T TOEm e BRI SCR AL, ILRBLE U 2l
A7

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *o)
SR RS *o* G, RN [A] “-1%. 4124 Python [“len(0)“ ikt

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

60 Chapter 7. #ZR¥ERE

The Python/C API, (F) 3.6.10rc1

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Sixt g v IR o FO5E i B ITH . KM 31K FHIER ~1; RIINHER 0. BT Python i)
oli] = v. MERE T2UEX v 5.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
RIS 0 95 i ‘5o . RIGIR M| -1. JXAH24 T Python if41) del of[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *p)
RTINS v IREL 755 o (N i B 2 Y) o 3XAH2Y4 T Python iFA] o [11:12] = v,

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_ti2)
MERFPSIRS G 0 BIM il B i2 B Y1 . RIS W] -1, A4 T Python ifif] del o[il:i2].

Py_ssize t PySequence_Count (PyObject *o, PyObject *value)

R[] value 78 o W ILAIREL, BIIREIETS o [key] == value MIBEMIECE . RIGEHRE -1, XA
F Python #iE; 0. count (value),

int PySequence_Contains (PyObject *o, PyObject *value)
W& o A value. QIR o MR T value, WHRM] 1, FIMIE 00 HASES, &) -1, XAH
24 Python FiAx value in o.

Py_ssize_t PySequence_Index (P}Objecz *o0, PyObject *value)
RG] *i*, Hd o] == value. BEER}, IR A —1. #H24F Python 1} “o.index(value)“FEih =K.

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *0)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as a list, unless it is already a tuple or list, in which
case oisreturned. Use PySequence_Fast_GET_TITEM () toaccess the members of the result. Returns NULL
on failure. If the object is not a sequence or iterable, raises TypeError with m as the message text.

3. B3Il 61

The Python/C API, §(EF) 3.6.10rc1

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. ~ Return the ith element of o, assuming that o was returned by
PySequence_Fast (), ois not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast () and
o is not NULL.

THTERL, ARSI FAEEA N, FHT o HC AT BE S FOR E (7 items 4. DAL, AUHE R B JodA S B0 R SO
il SRR PR B

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

7.4 BREH Y

%N PyObject_GetItem()., PyObject_SetItem() 5PyObject_DelItem(),

int PyMapping_Check (PyObject *0)
Return 1 if the object provides mapping protocol or supports slicing, and 0 otherwise. Note that it returns 1 for
Python classes witha ___getitem__ () method since in general case it is impossible to determine what the type
of keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Returns the number of keys in object o on success, and —1 on failure. This is equivalent to the Python expression
len (o).

PyObject* PyMapping_ GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Map the string key to the value v in object 0. Returns —1 on failure. This is the equivalent of the Python statement
olkey] = v.Seealso PyObject_SetItem().

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o [key]. Thisis an alias of PyObject_Delltem().

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for the string key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and O otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method will get suppressed. To get error
reporting use PyObject_GetItem () instead.

62 Chapter 7. #i&¥4B

The Python/C API, (F) 3.6.10rc1

int PyMapping_HasKeyString (PyObject *o, const char *key)
Return 1 if the mapping object has the key key and O otherwise. This is equivalent to the Python expression key
in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping GetItemString () instead.

PyObject* PyMapping_Keys (PyObject *0)

Return value: New reference. On success, return a list or tuple of the keys in object 0. On failure, return NULL.
PyObject* PyMapping_Values (PyObject *o)

Return value: New reference. On success, return a list or tuple of the values in object 0. On failure, return NULL.
PyObject* PyMapping_Items (PyObject *0)

Return value: New reference. On success, return a list or tuple of the items in object o, where each item is a tuple

containing a key-value pair. On failure, return NULL.

7.5 EER W

AR DI BR AL
int PyIter_Check (PyObject *0)
iR [0] true , UERIFR o SFFEACARMLAYIE .
PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

FRERBERME —A—DEER, C AU NA%E R,

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next (iterator)) <
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
}

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

}

7.5. XMW 63

The Python/C API, §(EF) 3.6.10rc1

7.6 &y

£ Python W RJ i Jif — 28060 R A0 50 I J2 N A B SRR 2 0 YT . ST G A 3% N EL Y bytes Al
bytearray PAK—2Ul array.array AR R, 5 =Ty WA RES R THRHRRY H AT E SCENTH
SR, BN T R AL BEA B AT 45

EARX SRR P)R —ARECA B CITE L, EEATRA] BRI A7 Zenh X SRR ICIRARFAE . FER LN
U, A EREEYIIR G X o R

Python PAZZ i 33 BTEATE C 29 FARHLXFERIZIRE . It HE A J5 T
o FEAPFIX O, SRR AR A ‘XD, ATFATFERNRZZWRER . %%
W HEARE B AEBuffer Object Structures —5 ¥ ;

o FEHRE M, AU EN TR 1 R R a2 8 i fe st (Blan— A mEniEs) .
—SEfR X R B GN bytes Fl bytearray £ A FA B A ENRIRIZZ M X . WA RE2 A HAb
Jsts G array .array BATFIICE 0 DU T,
S h DX T 28 B 09— AN T2 SO 1) write () 7k ARfara] DA H o — 250 745 i B XF 5] DA
BN AR write () JyE RS TE AR R B R EBAR, HARR) 7L, G readinto () TRESHN
BHE AR G20 DXz ARG n] DA B PR A VP B R 266 150 5 B S22 b IX) e 4
MT R O PRHSRE TS, A PR ORI~ B BXT R

s NS EORI M PyObject _GetBuffer () X

e call PyArg_ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

TEXWFE SR, YA FHEESEh XA PyBuffer Release () . MRMEMERI, TTHESSHL
IR, (5 G 5 AR -

7.6.1 ZRXLEH

Geuh X GhAE (w0 oy SRR “buffers”) XFTF1F “HEHI B M 75— R ATJT4 Python F2/7 RAERA M. €
AR AFIVEZE S DL R AL GEEATS I N AFBREIRE), AT AR S HURAE AT &30 24 JT 47 Python 27
o WAFATDAR C 9 R I — KA F B, n] DURAEL S B 1 R G0 2 B T B s s N A Bk
o AT A RAL BB AL N AR A S A AL B -

5 Python fERELS AT R ZHBHRFE BN, Zrh XA ZPyobject FREFT &R A C 451 XM EA]
AT DA AT B B AN A . 4 TRE G oh DN iz B AR IE, W AR AN A AL RS .
ARXUMMHmEHFFHNROEEUY, HSHEZ PR3 24248, BRREPRENE, S
RlPyObject_GetBuffer ().

Py_buffer

void *buf
F6 1)t G X 7 BeAd) 2 s g5 T AR n 48 EE . X T DA S5 R IS 2 W PR N A7 B A AT A o
fian, M7 st rides {HR] 48] NAFRIIER R .

XtFcontiguous | &P¥E’ B, (EHIE I NAFHRAF k.

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer Release (). The field is the equivalent of the return value of any
standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.

64 Chapter 7. #i&¥4B

The Python/C API, (F) 3.6.10rc1

Py_ssize_t 1len
product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_SIMPLE
or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but i tems i ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the con-
sumer can use itemsize to navigate the buffer.

If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu £ points to a single
item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... * shape[ndim-1] * itemsize MUST beequal to Ien.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

7.6. iy 65

The Python/C API, §(EF) 3.6.10rc1

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void ¥*internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |] d to any of the flags in the next section. Since PyBUF_STMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be | d to any of the flags except PyBUF_ S IMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

66 Chapter 7. #ZR¥ERE

The Python/C API, (F) 3.6.10rc1

LES Bk | 58 | TRBE
PyBUF_INDIRECT = & IES P
PyBUF_STRIDES e ol NULL
PyBUF_ND I NULL | NULL
PyBUF_SIMPLE NULL | NULL | NULL

ELEMEER

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

LS B | 58 | FWBE | conlg
PyBUF_C_CONTIGUOUS | & NULL C
PyBUF_F_CONTIGUOUS | R NULL | F
PyBUF_ANY CONTIGUOUS = = NULL Czk F
PyBUF_ND = NULL | NULL C

compound requests
All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () todetermine contiguity.

7.6. ZEHihiY 67

The Python/C API, §(EF) 3.6.10rc1

K K | B | FIRBE contig | A | #&X
PyBUF_FULL = | IR MG | U 0 i=}
PyBUF_FULL_RO | WARFERI | U 150 [&2
PyBUF_RECORDS = | NULL U 0 =
PyBUF_RECORDS_RO =R NULL U 1o | 2
PyBUF_STRIDED | e NULL U 0 NULL
PyBUF_STRIDED_RO =R NULL U 15{0 [NULL
PyBUF_CONTIG & | NULL | NULL C 0 NULL
PyBUF_CONTIG_RO & | NULL | NULL C 150 | NULL

7.6.3 EZ%4H

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both

shape and strides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] *
strides[n-1] item = * ((typeof (item) *)ptr);

As noted above, bu £ can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

(continues on next page)

68 Chapter 7. #ZR¥ERE

The Python/C API, (F) 3.6.10rc1

(R —H)

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shapel[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+titemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. Insuboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.6.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’ t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>obj to NULL and return - 1.

On success, fill in view, set view—>ob3j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

7.6. iy 69

The Python/C API, §(EF) 3.6.10rc1

void PyBuffer_ Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (constchar *)
Return the implied i temsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ') or Fortran-style (order is ' F ') contiguous or
either one (order is 'A"). Return 0 otherwise. This function always succeeds.

int PyBuffer_ ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' (for C-style or Fortran-
style ordering). O is returned on success, —1 on error.

This function fails if len != src->len.

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
Fill the strides array with byte-strides of a contiguous (C-style if orderis ' C' or Fortran-style if order is 'F ') array

of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,

int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to readonly.

buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporter and return O. Otherwise, raise
PyExc_BufferError, set view—>o0b]j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 1B Al

3.0 Hﬁféﬁﬂ%-

PR%UE Python 2w “IHZEnh " APT 4Ly 7E Python 3 i, BUMMME AL, HIXLL R A1)
?Mi"ﬂﬂ/\@%ﬁﬁ 2x (AN . ENTRUNER 200 Vsl ARA RS, (BB A e Tt I 1] %
FRAEXT BIr gk T I A A= i JET I o

Wi, #WEEARFEfPyobject_GetBuffer () (BE G PyArg ParseTuple () BREUGEMHEH v* B w* #4 X,
) KRR G, FAEZ P A P PRI A PyBuffer_Release ().

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
L@*Aj‘ﬁﬁ VERET A AR SN 185 . obf SR R B P AF eop e O . B
R[]0, Ff buffer ek NAFHIIEFF K buffer_len 1% Ry vp XA FE « B AR] -1 FFi& ¥ —1> TypeError,

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
A [l — A 1) A S AL R R) L B AL AR 5L . oby SRS BT BEGE g 11 I paR (o]
0, FF buffer 5 WNAEHUIEFERE buffer_len PR IX K. AR IRE] -1 HE— TypeError.

int PyObject_CheckReadBuffer (PyObject *0)
AR o SCRFERBCAT g o LR [E] 10 AGRIE 0, BRI R 2 AT .

70 Chapter 7. #i&¥4B

The Python/C API, (F) 3.6.10rc1

Note that this function tries to get and release a buffer, and exceptions which occur while calling correspoding
functions will get suppressed. To get error reporting use PyOb ject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

AR Bl A)]G N AP R B . oby MR BC AT S5 1 . WIS [O, Ff buffer B
AL FHAF buffer_len B Zerh XA Z . IR 9] -1 H¥ B —4> TypeError.

7.7. |BZ Y 4

The Python/C API, §(EF) 3.6.10rc1

72 Chapter 7. SR¥i14E

CHAPTER 8

BEFRXRE

A I BRI BURR 2 TR 28 Python X 4 388, IR BB SAL A EADEAR B — N s R EM
Python & FH2IE]— X%, (HAHE T B4 BA IEMAERL, WM e a8 88 B, Baxt
SRAERNTH, EHHPyDict_Check (), ARIEAYLEMIZET Python X5 IERIM) “ Kt

#x .. While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 BEAMR

AATHHIA Python ZERXH G A —SLHIXNFR 5 None.

8.1.1 HEMKR

PyTypeObject
XA C Z544 1 T4 built-in 2878
PyObject* PyType_Type
X2JE T type X4 type object, EFE Python 2T type s [HIXI 4L
int PyType_Check (PyObject *0)
?H%Xﬁ% 0 —NRASG, WIRAAR TARMERAN R LRSLH], REE. 7EHE AL TR
.
int PyType_CheckExact (PyObject *o)
WERM LR 0 @—PMRAXS G, (A RIRHESAR R TR, IRIEH. EHEFTA L TIREE.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

73

The Python/C API, §(EF) 3.6.10rc1

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not part
of the limited API.

3.2 BCHTNA.
3.4 Jft ¥4 The return type is now unsigned long rather than 1ong.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’ s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the t p_new slot of a type object. Create a new instance using
the type’ s tp_allocslot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’ s base class. Return O on success, or return —1 and sets an
exception on error.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Creates and returns a heap type object from the spec. In addition to that, the created heap type contains all types
contained by the bases tuple as base types. This allows the caller to reference other heap types as base types.

3.3 JHTNA.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.

3.4 BT

8.1.2 None Y&

WYER, None fJPyTypeObject A& HA%FE Python / C API /A FF. fF None @M, WX EARR (#8
CHiH ==) SteisT. mTHEAEMER, %A PyNone_Check () HREL.

74 Chapter 8. E#HMRE

The Python/C API, (F) 3.6.10rc1

PyObject* Py_None
Python None Xf4, FIRELZ(H, X MRREAHE. EREGTIHITE—FEALERAE (T HABXT 4 .

Py_RETURN_NONE
IERAL R H C BN Py_None & [H] (HELZUL, 30 None W5 | HTTHEOF R E.)

8.2 F{EM®R

8.2.1 BRI
Jiv A BGPTSR NI R BB G0

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.

PyLongObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of Py TypeOb ject represents the Python integer type. This is the same object as int in the Python
layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_tv)
Return a new PyLongObject object froma C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_t v)
Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongOb ject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros

8.2. HEMR 75

The Python/C API, §(EF) 3.6.10rc1

in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Convert a sequence of Unicode digits in the string « to a Python integer value. The Unicode string is first encoded to
a byte string using PyUnicode_EncodeDecimal () and then converted using PyLong_ FromString().

3.3 BT

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved from
the resulting value using PyLong_AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1long representation of obj. If obj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongOb ject.

If the value of 0bj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long long PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__ () method (if present) to convertittoa PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__ () method (if present) to convertittoa PyLongObject.

If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or —1,
respectively, and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

3.2 BUHTMA.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.

76 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t)—1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Returna Cunsigned long long representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.
3.1 R T4 : A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__ () method (if present) to convert it to a PyLongObject.

If the value of 0bj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
Return a C unsigned long long representation of obj. If 0bj is not an instance of PyLongOb ject, first
callits __int__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY_ULLONG_MAX + 1.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2.2 TmMtF
Python A3 IR (EE A E M BE RN TR . HAF Py_False fll Py_True PIM/R(E. L, EHEAYEIHE
FIMER D BEAE TR (. g, TR

int PyBool_Check (PyObject *0)
IR 0 2 PyBool_Type KA, NJiR[E true,

8.2. HEMR 77

The Python/C API, §(EF) 3.6.10rc1

PyObject* Py_False
Python [) “False“ %4t ZA LA ENAZRHEMNT T EGE B R —HE A .

PyObject* Py_True
Python [“True“Xf 4. ZXREA AT 5. B NIZZHEH S| TG Z—HE .

Py _RETURN_FALSE
MEEEGRE Py_False W, FEHMERTIHTEL.

Py_RETURN_TRUE
MEREGR] Py_True B, FFEIMERT AL

PyObject* PyBool_FromLong (long v)
Return value: New reference. 134 v ISEFR(E, 1REl—4> Py_True 8{F Py_False HIH5| -

8.2.3 ZE:& (Floating Point) #{¥

PyFloatObject
XA CE A pyobject BTHEAMK 1 Python FF il 4.
PyTypeObject PyFloat_Type
RXRMNET CFMpyTypeobject HUF Python ¥ RSB, FE Python JZTHIFZEAL f1loat 2 [H]
— X4
int PyFloat_Check (PyObject *p)
Y ZHe—A C KAlpyFloatobject Bt C KA PyFloatobject K TRAMS, RI[IIH.,

int PyFloat_CheckExact (PyObject *p)
Dby SEoe—A C KB pyFrloatobject (HAE C RKMpyFloatObject FARAUNF, &I,

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatOb ject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
B — A3 pyfloar WEASH) C A double. IR float A Jjg —A> Python ¥ i fix 4, (A2 W&
__float__ () Jrik, RIS E LI, 5 pyfloar Feife sli— 7 s RN XA J7 VAR 1]
-1.0, AW IZEH C ¥ PyErr_Occurred () KtriiR,
double PyFloat_AS_DOUBLE (PyObject *pyfloat)
iR [1]—A~ pyfloat W) C double Foi, (HECAHHHRALE .
PyObject* PyFloat_GetInfo (void)
R] —A> structseq L1, H AL EAT K float BRSEE . S/ MERIERERIEE . Bk float .h iy
N A
NHLEROE
double PyFloat_GetMax ()
3 [5 R AT R A B i3 DBL_MAX 2}y C double .
double PyFloat_GetMin ()
1R 5] e/ VAT R IH— AR IE V7 S8 DBL_MIN “fj C double ,
int PyFloat_ClearFreeList ()

ERERE IR € ClIE AT PN 9 GRS B4 @

78 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

8.24 EH MR

M C APLE, Python WY HOu G2 i AN [l 13 7» S8 . — A2 AE Python R /7 1) Python ¥4, 73 ShY
MR IEEEEY) C 45H1k . APTHRAE T s Bk M AR .

RREHW C &k

s BE R R 2 XM R R SO YA R T R R K, #Riefeid “(H” AR5 RS . Bt
i T4 APL

Py_complex
XX Python RO ST C IR . 4 K3 A BRA SO0 5% 14 R 5GHT X 28 A 24544
AN ABCE i E, e bl A -

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

R Z R,] C FBpy_complex FIR.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
REAN S E W 2E,) C2RAPy complex IR,

Py_complex _Py_c_neg (Py_complex complex)
RS2 H complex {7, I CRAPy_complex FiR,

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
REIPA LR, B C K Rpy complex F£m.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
R B A ZENT, B C 2Bpy_complex FIR.

W divisor “H%5, XD 1EIRFIEHIKE errno 24 EDOM,

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
R[] num 1 exp R, H CHBPy complex Fn,

W5 num F2s H exp N2 IESEEL, XN VEIR B ZEH K E errno A EDOM,

REHE Python 35

PyComplexObject
XA~ CRAMpyobject W FIRAUMA L1 Python HEHRR .

PyTypeObject PyComplex_Type
XA T Py Typeobject K Python 4R 5Ll . £ Python 2RI AL complex J& [—4>
PO -3

int PyComplex_Check (PyObject *p)
WREMAL R R —4 C KR PyComplexObject B & C RKABMPyComplexObject K TR, &M
H

E

int PyComplex_CheckExact (PyObject *p)
WAREBRHSHGR—1 CEAlpyComplexObject (HAE C KR PyComplexObject FHRAL, k|
H.

8.2. HEMR 79

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. 1R C 258iPy complex WEAE K— 11 Python & 5064 .

PyObject* PyComplex_FromDoubles (double real double imag)
Return value: New reference. 1.4 real 1 imag 12 [B|—~#H) C 2B pycomplexObject K4,

double PyComplex_ RealAsDouble (PyObject *op)
PA C 22 double &M op f5EHR.

double PyComplex__ ImagAsDouble (PyObject *op)

PA C 2% double iR 1] op [EHR
Py_complex PyComplex_AsCComplex (PyObject *op)
R E op 1 C2KBPy complex {H.

AR op 4@ —A> Python NS, HEH—1 _complex_ () Fik, EXMIESELMEA,
op FEH A Python B HUOM 5 . R, BRI -1, Oﬁfjﬂ%ﬁ({ﬁ

3 FIIMR

FeBXE R — B A E T — B g I A5 /4 Python i 5 A 45 E RN P AR 42

8.3.1 bytes ¥

MR TAEESEAN N IE S PO R, X LR A5 K TypeError,

PyBytesObject
XFhPyobject PFRAFEIR—> Python FATXIR.

PyTypeObject PyBytes_Type
PyTypeObject HSEHIZE—A Python FH72A, 7 Python ZHI'E Y bytes @MFEIHIXR .

int PyBytes_Check (PyObject *0)
MR R 0 RF IR REF RN TR SLHBI, WRIE true.

int PyBytes_CheckExact (PyObject *0)
WAL 0 BT INR, (AR TR TRARSLH], IR M true,

PyObject* PyBytes_FromString (const char *v)
Return a new bytes object with a copy of the string v as value on success, and NULL on failure. The parameter v
must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return a new bytes object with a copy of the string v as value and length len on success, and NULL on failure. If v
is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Take a C print £ () -style format string and a variable number of arguments, calculate the size of the resulting
Python bytes object and return a bytes object with the values formatted into it. The variable arguments must be C
types and must correspond exactly to the format characters in the format string. The following format characters
are allowed:

80 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

%5 RiE A LF% FAF -

sc int —AFN, R A CilE R

%d int Exactly equivalent to printf ("$d").

$u unsigned int Exactly equivalent to printf ("$u").

%1d KA Exactly equivalent to printf ("$1d").

$1lu unsigned long | Exactly equivalent to printf ("$1u").

%zd Py_ssize_t Exactly equivalent to printf ("$zd").

$zu size_t Exactly equivalent to printf ("$zu").

%1 int Exactly equivalent to printf ("$i").

$x int Exactly equivalent to printf ("$x").

%s char* A null-terminated C character array.

9 void* The hex representation of a C pointer. Mostly equivalent to print £ ("%p")
except that it is guaranteed to start with the literal Ox regardless of what the
platform’ s printf yields.

TeER R B PR 2 FECRAR T AT R AR A WA R B B4R R, - EFIA Z RS
PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
YpyBytes_FromFormat () 52&ME, BT EHEWNINSE.

PyObject* PyBytes_FromObject (PyObject *0)
IR 1] AT FIR LG AL *o*.,
Py_ssize_t PyBytes_Size (PyObject *0)
R E ARG *o* PR

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Macro form of PyBytes_Size () but without error checking.

char* PyBytes_AsString (PyObject *o0)
Return a pointer to the contents of 0. The pointer refers to the internal buffer of o, which consists of 1en (o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
Macro form of PyBytes_AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object obj through the output variables buffer and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It mustnot be deallocated. If obj is not a bytes object at
all, PyBytes_AsStringAndSize () returns —1 and raises TypeError.

3.5 it B 4#: Previously, TypeError was raised when embedded null bytes were encountered in the bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *byfes containing the contents of newpart appended to bytes; the caller will own the
new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old

3. FIINR 81

The Python/C API, §(EF) 3.6.10rc1

reference to bytes will still be discarded and the value of *bytes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *byfes containing the contents of newpart appended to bytes. This version decrements
the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though itis [immutable | . Only use this to build up a brand new bytes object;
don’ t use this if the bytes may already be known in other parts of the code. It is an error to call this function
if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it
may be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *byfes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 FHHAMR

PyByteArrayObject
XAPyobject W TRBFER—4> Python FHr 45 .

PyTypeObject PyByteArray_Type
Python bytearray 2881 /R NPy TypeObject WSEH; X5 Python 2T bytearray sefH[EIIXTE

KEEE

M}

int PyByteArray_Check (PyObject *o)

BXFR 02— DT RN RN Hg— A A AR TR RSB, R
int PyByteArray_CheckExact (PyObject *0)

IR 0 R—ANFWHANER, HAR—AF AR RIS, REH.

Ef= APl H%

PyObject* PyByteArray_FromObject (PyObject *0)
MRIFAEAT LI T 2% o KR RS o, 3R Bl— DT T8 5

PyObject* PyByteArray_ FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
BT AR a 7 b IFIR Il — A SR AT 7 4
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.
char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
K bytearray [INFRGer X R/ NJEEE Ny len .

82 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

M

XEETARGE A TE DA IUERE , AT A RS .
char* PyByteArray_AS_STRING (PyObject *bytearray)
C pKipyByteArray AsString() WZERZAR,

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
C ¥ (PyByteArray Size () WZERA .

8.3.3 Unicode ¥+ BiiR &
Unicode Y&

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, unicode objects can internally be in two states depending
on how they were created:

« [‘canonical | unicode objects are all objects created by a non-deprecated unicode API. They use the most efficient
representation allowed by the implementation.

e [legacy] unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_ READY () on them before calling any other APL

Unicode 3 #Y

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

3.3 OB

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

3.3 Jit # 4% In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected a
[narrow] or [wide] Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’ t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

3.3 BUHTMA.

8.3. FFIIMZR 83

https://www.python.org/dev/peps/pep-0393

The Python/C API, §(EF) 3.6.10rc1

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *0)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the [canonical] representation. This is required before using any of the access
macros described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

3.3 BUHTMA.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the [canonical | repre-
sentation (not checked).

3.3 BUBTINA.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* pyUnicode_2BYTE_DATA (PyObject *o)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *o)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_ KIND () to select the right macro. Make sure PyUnicode READY () has been called before
accessing this.

3.3 BUHTIMA.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

3.3 BUBTINA.

int PyUnicode_KIND (PyObject *0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the [canonical] representation (not checked).

3.3 BUBTIMA.

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw unicode buffer. o has to be a Unicode object in the [canonical | representation
(not checked).

3.3 BUBTINA.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

The Python/C API, (F) 3.6.10rc1

3.3 BUHTMA.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

3.3 BUHTA.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object 0, which must be in the [canonical | representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

3.3 BUBTINA.

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
[canonical | representation. This is always an approximation but more efficient than iterating over the string.

3.3 BUBTIA.

int PyUnicode_ClearFreeList ()
THERERNR . R W PR 2% H 4L

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET _LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

3.3 W B &#: This macro is now inefficient — because in many cases the Py UNICODE representation does not
exist and needs to be created — and can fail (return NULL with an exception set). Try to port the code to use the
new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

Unicode &4

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

8.3. FIIFtg 85

The Python/C API, §(EF) 3.6.10rc1

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py _UNICODE_ISTITLE (Py_ UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a digit character.

int Py_UNICODE_ISNUMERIC (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py _UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether c/ is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as [Other] or [Separator | , excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ch converted to lower case.

3.3 fiftf& EL[F)] : This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

3.3 Jii & CLEJH: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

3.3 fiftf% C.[EJA: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT (Py UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return —1 .0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

86 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py _UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC0O0 <= ch <= 0xDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Create a new Unicode object. maxchar should be the true maximum code point to be placed in the string. As an
approximation, it can be rounded up to the nearest value in the sequence 127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.

3.3 BUBTIMA.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Create a new Unicode object with the given kind (possible values are PyUnicode_1BYTE_KINDetc., asreturned
by PyUnicode KIND ()). The buffer must point to an array of size units of 1, 2 or 4 bytes per character, as
given by the kind.

3.3 BUHTMA.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Create a Unicode object from the char buffer u. The bytes will be interpreted as being UTF-8 encoded. The buffer
is copied into the new object. If the buffer is not NULL, the return value might be a shared object, i.e. modification
of the data is not allowed.

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Take a C printf () -style format string and a variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into it. The variable arguments must be C types
and must correspond exactly to the format characters in the format ASCII-encoded string. The following format
characters are allowed:

8.3. FRIINigR 87

The Python/C API, §(EF) 3.6.10rc1

%% RiE A LF% FAE

sc int AT, B0 i iR

%d int Exactly equivalent to printf ("$d").

$u unsigned int Exactly equivalent to printf ("$u").

%1d KA Exactly equivalent to printf ("$1d").

11 R Exactly equivalent to print £ ("$1i").

%$1lu unsigned long Exactly equivalent to printf ("$1u").

$11d long long Exactly equivalent to print £ ("$11d").

$111i long long Exactly equivalent to printf ("$11i")

$1lu unsigned long long | Exactly equivalent to printf ("$11u")

%zd Py_ssize_t Exactly equivalent to printf ("%$zd")

$z1 Py_ssize_t Exactly equivalent to printf ("$zi")

%zu size_t Exactly equivalent to printf ("$zu")

$i int Exactly equivalent to printf ("$i").

%X int Exactly equivalent to printf ("$x").

%s char* A null-terminated C character array.

%p void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the literal Ox
regardless of what the platform’ s printf yields.

SA PyObject* ascii () PHHMEEE.

$U PyObject* A unicode object.

SV PyObject*, char * | A unicode object (which may be NULL) and a null-terminated C character
array as a second parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

#(E): The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for "$A",
"$U", "$S", "$R" and "$V" (if the PyObject* argument is not NULL).

3.2 i H 4 Support for "$11d" and "$11u" added.
3.3 fR s 5 Support for "$11", "$11i" and "$zi" added.

3.4 Jjx ¥4 Support width and precision formatter for "$s™", "$A", "$U", "$V", "$S", "S$R" added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)

Identical to PyUnicode_FromFormat () except that it takes exactly two arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)

Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ ing the returned objects.

88

Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

3.3 HUHTIA.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t fto_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

3.3 BUHTMA.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.

Return the number of written character, or return —1 and raise an exception on error.

3.3 HUGHTIA.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

3.3 BUBTINA.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode_READ_CHAR ().

3.3 OB

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return a substring of sz, from character index start (included) to character index end (excluded). Negative indices
are not supported.

3.3 UM

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string « into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of). buffer is returned on
success.

3.3 BUBTIA.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

3.3 BUBTINA.

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.

8.3. FIIFtg 89

https://www.python.org/dev/peps/pep-0393

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’ s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’ s internal Py_ UNTCODE buffer, or NULL on error. This will
create the Py_ UNTCODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Create a Unicode object by replacing all decimal digits in Py_ UNICODE buffer of the given size by ASCII digits
0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py UNICODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py_ UNTICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

3.3 BUHTIMA.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free the
buffer). Note that the resulting Py UNICODE * string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.

3.2 UGBTI
Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

90 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Decode a string from the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The decoder uses "strict™ error handler if errors is NULL. str must
end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

4
The Py_DecodeLocale () function.

3.3 BUBTINA.

3.6.5 Jift 5 % The function now also uses the current locale encoding for the surrogateescape error handler.
Previously, Py_DecodeLocale () was used for the surrogateescape, and the current locale encoding was
used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Similar to PyUnicode_DecodelLocaleAndSize (), but compute the string length using strlen ().

3.3 HUHTIA.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Encode a Unicode object to the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is NULL. Return
abytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

hz%:
The Py_EncodeLocale () function.

3.3 HUHTIA.

3.6.5 Jji ¥ 4#: The function now also uses the current locale encoding for the surrogateescape error handler.
Previously, Py_EncodeLocale () wasused for the surrogateescape, and the current locale encoding was
used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "0O&" converter should be used,
passing PyUnicode_FSConverter () as the conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects — obtained directly or through the os.PathLike interface —
to bytes using PyUnicode_EncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

3.1 BHTIA.
3.6 W 5 B path-like object ,

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_ FSDecoder () as the conversion function:

8.3. FFIIMZR 91

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, §(EF) 3.6.10rc1

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects — obtained either directly or indirectly through the os .PathLike
interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result
must be a PyUnicodeObject * which must be released when it is no longer used.

3.2 OB A
3.6 RS 5k R —path-like object .

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-

not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().
hs%:

The Py_DecodeLocale () function.
3.6 Jilt i #k: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Decode a null-terminated string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
3.6 iRE%%: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting
bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncodingisinitialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

hz%:
The Py_EncodeLocale () function.
3.2 BUBTIA.

3.6 it 4#: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing —1
as the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

92 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size
is not NULL, write the number of wide characters (excluding the trailing null termination character) into *size.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_Free () to free it) on success. On error, returns
NULL, *size is undefined and raises a MemoryError. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions.

3.2 BT

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system
calls should use PyUnicode_FSConverter () for encoding file names. This wuses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is [strict] (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNTCODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

8.3. FIIFtg 93

The Python/C API, §(EF) 3.6.10rc1

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

3.3 BUHTIA.

char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

3.3 BUBTINA.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py _UNICODE
API; please migrate to using PyUnicode AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_AsEncodedString ().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to [strict | .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

The Python/C API, (F) 3.6.10rc1

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTF32 (). If consumed is not NULL,

PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API,; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to [strict | .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == —-1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.

If byteorder is NULL, the codec starts in native order mode.

8.3. FIIFtg 95

The Python/C API, §(EF) 3.6.10rc1

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is [strict] . Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in 5. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_ UNTCODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTICODE API; please
migrate to using PyUnicode_AsUTF16String () or PyUnicode_ AsEncodedString ().

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete

UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,
int base64 WhiteSpace, const char *errors)
Encode the Py_ UNTCODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL

if an exception was raised by the codec.

If base64SetO is nonzero, [Set O] (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python [utf -7
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTICODE API; please
migrate to using PyUnicode AsEncodedString().

96 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

Unicode-Escape Codecs

These are the [Unicode Escapej codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the [Raw Unicode Escape] codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsLatinlString () or PyUnicode_ AsEncodedString().

8.3. FFIIMZR 97

The Python/C API, §(EF) 3.6.10rc1

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsASCIIString () or PyUnicode_AsEncodedString().

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Un-
mapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None, OxFFFE
or '\ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is [strict | . Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as [undefined mapping | and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString ().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

98 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors) .)
Return value: New reference. Translate a Py_ UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTCODE API,; please
migrate to using PyUnicode_Translate (). or generic codec based API

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed is not NULL,

PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is [strict] . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Encode the Unicode object using the specified code page and return a Python bytes object. Return NULL if an
exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

3.3 BUHTIMA.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode AsMBCSString (), PyUnicode_ EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

8.3. FFIIMZR 99

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] atthe given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start : end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

3.3 BT

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_ Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively. It
is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

100 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_FEQ, Py_NE, Py_LT,and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
A combination of PyUnicode FromString () and PyUnicode_InternInPlace (), returning either a
new unicode string object that has been interned, or a new ([‘owned |) reference to an earlier interned string object
with the same value.

8.3.4 jt# (Tuple) ¥if¥

PyTupleObject
XAPyobject I FRAMAFK—4 Python FTCHNR
PyTypeObject PyTuple_Type
PyTypeObject HSLHIFE— Python JLA KM, X5 Python ZTH Y tuple @M FIAYXIR .
int PyTuple_Check (PyObject *p)
W2 p Je— IR BCE STH R TR LB, R [FAE
int PyTuple_CheckExact (PyObject *p)
Wk p @—AIedN G, AR — A FRERY B, R] A
PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.
PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized

to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_BuildvValue (" (OO)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)

Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and sets an IndexError exception.

8.3. FIINtgR 101

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it as a new tuple.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return O on success.

H5(E]: This function [steals] a reference to o.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem/(),butdoes no error checking, and should only be used to fill in brand new tuples.

##%[E): This function [steals] a reference to o.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList ()
RSN R W TR 2% H 4L

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStructSequence_NewType (PyStructSequence_Desc *desc)
Create a new struct sequence type from the data in desc, described below. Instances of the resulting type can be
created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

3.4 BT

PyStructSequence_Desc
5 RIS 7 51 R B TfE B

i C Type aX
name char * SR SR B A4 TR
doc char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

102 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject*. The index in the fields array of the PyStructSequence_Desc determines which field
of the struct sequence is described.

i | C =34

Type
name| char | name for the field or NULL to end the list of named fields, set to PyStructSe-
* quence_UnnamedField to leave unnamed

doc | char | field docstring or NULL to omit

*

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStruct Sequence_New (PyTypeObject *type)
Creates an instance of fype, which must have been created with Py St ruct Sequence_NewType ().

PyObject* PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Return the object at position pos in the struct sequence pointed to by p. No bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Macro equivalent of Py St ruct Sequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Sets the field at index pos of the struct sequence p to value o. Like PyTuple_ SET ITEM (), this should only be
used to fill in brand new instances.

f#5[E): This function [steals] a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of Py St ruct Sequence_SetItem().

H5E): This function [steals] a reference to o.

8.3.6 List (&%1) ¥

PyListObject
XA C LA Pyobject HTHAMAFK—1 Python FHXI R .
PyTypeObject PyList_Type
XN @ T PyTypeobject R Python 5| FREAL LB, 7E Python JZHEIFIZKAL 1ist & [F—AXf
%o
int PyList_Check (PyObject *p)
R p R— IR G 2 —DHIRER T RBLGI, R,
int PyList_CheckExact (PyObject *p)
4 poae— RN G, (BRI ERIAN T IAULHIN, RIH.
PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

8.3. FIIMR 103

The Python/C API, §(EF) 3.6.10rc1

iE: 2 len KT ZHF, #IR A5 R4 G0 H g NULL. R BLAR RN BE R 2RI C B
B pysequence_SetItem() WS API 5{E H C Ak PyList_SetItem () YA W H & E N E
SRS Python AR A FFiX X4

Py_ssize_t PyList_Size (PyObject *list)

AR 0] list HAFXFGRRIE; XEFETAEIIRM RPN Len (1ist) o

Py_ssize_t PyList_GET_SIZE (PyObject *list)
FMAN C Py List_Size () , &AM,

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position
must be positive, indexing from the end of the list is not supported. If index is out of bounds, return NULL and set
an IndexError exception.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. 72U C BREPyList_GetItem() , ARG,

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or —1 on failure.

flE: phekgisy “fikE” — X iem B EFE—ADXFIR PP AL E O EAKH G,

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *o)
AN R B B R A Py List _Set Ttem (). X H JN TR D Z BiA WA A B T
T

il %k ME” AR iem WEIH, H5PyList_setitem () REMRE F& EFXMEATH
B st HIGIUN ;AL list 09 @ S0 EROAEAS | HETR Dt ez -

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
K555 B item $HAFN I list K515 index Z FIALE . WERBHFFIRE 05 QSR I NGR B -1 ik
BN, YT list.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
FEXFR item PRINENFN R list A . DR BEIPFFIRE] 05 AR WR W] -1 H R E— . MY

T list.append(item).

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Negative indices, as when slicing
from Python, are not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to 1ist [low:high] =

itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return O
on success, —1 on failure. Negative indices, as when slicing from Python, are not supported.

int PyList_Sort (Py Objecl *[ist)

Xt list A% H AT ISR . BRIE] 0, JRIKFR o XHEMT List.sort ().
int PyList_Reverse (PyObject *list)
Xt list HEIAE H AT IEUCRS . R [E] 0, R IKIFR o XFHEMT list.reverse (),

104 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. 320l —AFiBITCEHX S, HA S list BINE; ST tuple (list) .

int PyList_ClearFreelist ()

HERGIRR . IR [PR 2% H 2.
3.3 OB

8.4 FERMR

8.4.1 FHYH

PyDictObject
pyobject T HFEHZE—MH Python F M {F.

PyTypeObject PyDict_Type
PyTypeObject BEHIfLFE—H Python “FHAIFE, IHEEL Python Jg i) dict [El[al—{E¥{+.

int PyDict_Check (PyObject *p)
Fi p e B P B) 5 B AR B 51 1) [B true.

int PyDict_CheckExact (PyObject *p)
% p I HEEAR R F I R E), Rl Rl true.

PyObject* PyDict_New ()
Return value: New reference. [|fE—{RIH7 (1) 25 7ML, B URE [l {8 NULL.

PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. i [9] types .MappingProxyType X4, Tl fT Bi8efT b mme .
T TS AR IS AR Bh ASR R AL A 7

void PyDict_Clear (PyObject *p)
T 25 A H T A SRR

int PyDict_Contains (PyObject *p, PyObject *key)
WiE key)RR AETEF M p o AR key PEC b p B9FE—I0, WHRE] 1, ABIGRE 0 . &[] -1 EIR
Bfo X% AT Python ik key in p.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. 3R [0l-5 p 138 FH [B (E X 1O 3T 74

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
i key VM58 value TEAFIL p o key Wil Rhashable 5 TRAZ, & TypeError B4 . WIh
iBIE] 0 9 %mﬁi&@ -1 o

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyUnicode_FromString (key). Return O on success or —1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
I key MHBRF UL p Y25 H o key MU TFIIGAYIY; WERAZ, WHLH TypeError Fif. M
RME 0, KM RE -1 .

int PyDict_DelItemString (PyObject *p, const char *key)
TR H p P E P AT key OB H o IR O, SRIGIFR[E] -1,

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

8.4. BAMR 105

The Python/C API, §(EF) 3.6.10rc1

i EE MR, W _hash__ (O M _eq () HEFHEWREE A H. %K

HPyDict_GetItemWithError () 3RB4ERIRE .

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Variant of PyDict_GetItem () that does not suppress exceptions. Return NULL with an exception set if an
exception occurred. Return NULL without an exception set if the key wasn’ t present.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem (), but key is specified as a char*,
rather than a PyObject *.

TR, VAN _hash__0) . _eq_ O HIEREIE— TR QI A R &
Wb . BT PyDict_GetTtemWithError () RFR4EIRIR .

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *default)
Return value: Borrowed reference. iX it Python JZJH[{] dict .setdefault () —FkE. NS4 key 77E, B
RPIFEF I p BADO Y (E . WRSENTAAE , B defaultobj — i1 AT 1R 0] defaultobj o X~ ER%L
HAHE key WA REL—IK, A @FEE R AE AR 301 RE .
3.4 OB A

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. 1% [A|—AN0 & M frg Ui Py ListObject,

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. 30—~ &L FT G 4 (keys) i PyListObject,

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. iR [A|— A0 FirG {H (values) [PyListObject,

Py_ssize_t PyDict_Size (PyObject *p)
RE I EH AL, ST p T 1en (p) .

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyOb ject *
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned
through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

fian

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

}

T p AN RZAE I P) A A . AR T, SRR (R A, (BAURT RIS A K
AEA . Bl

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) A

(continues on next page)

106 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

(R —H)

return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (0) ;

}

int PyDict_Merge (PyObject *a, PyObject *b, int override)
XFBRIFIXIR b ATIEA, RSB E] P ao b ATDAR— AT, SR SR pyMapping Keys ()
MpyObject_GetItem() WXtGe. AR override JyEAL, WHNRAE b 4R EIMIFEIRI SN a T EATAER
FHR SRR e, A5 WANSRAE a PSR R B) U2 R I B X . 24 ik o] 0 B8 2451 %
SRR M -1,

int PyDict_Update (PyObject *a, PyObject *b)
X5 C /i) pyDict_Merge(a, b, 1) —FE, HZE{F Python H 1) a.update (b), 2T
TryDict_Update () TEHEASHA [keys] JEYERA £ IR 25 AN W75 . 24 BT i
RME] O B 5] K R IR A -1,

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
K seq2 I EAEN TEH A TF)T M ao seq2 AU EA S 2 1 IAVEBEEDR A ST R A PR AR
MAFAEESE R SENT, WI2R override EE W i 5 i BER SENE Y o 24 BRI R 0] O B 45| K S B IR vl
—1. “HriY Python AT (RIEERRAL) -

def PyDict_MergeFromSeq2 (a, seqg2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()

EREA . R I R 2% H 4.
3.3 HUETIA.

8.4.2 REWMR

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (), PyNumber_ InPlaceOr (), and
PyNumber_InPlaceXor ()).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

8.4. BE}IIR 107

The Python/C API, §(EF) 3.6.10rc1

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype.

int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype.

int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-
able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, O if not found, and —1 if an error is encountered. Unlike the Python ___contains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple SetItem () it can be used
to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success or —1 on
failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise
a SystemError if set is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, O if not found (no action taken), and —1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python

108 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if sef is not an instance of set or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)
1 25 P -) i A B E 0
int PySet_ClearFreeList ()

TR, IR M BRI 2% H 4.
3.3 OB

8.5 EINMIfF

8.5.1 X (Function) ¥t

i A 2/ Python bR ST A AR ET]
PyFunctionObject

T R0 C g5k 1A
PyTypeObject PyFunction_Type
X ZE—APyTypeObject SLAIF3R/R Python pREZEAL ., BEAEN types.FunctionType [1] Python
F R ATT
int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. &[0 5 ACHX 4 code FIRIPFTREN G o globals W /F&— 73, L pRELA]
AT A B
The function’ s docstring and name are retrieved from the code object. __module__ is retrieved from globals. The

argument defaults, annotations and closure are set to NULL. __qualname__is set to the same value as the function’
S name.

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New (), but also allows setting the function object’ s
__qualname___ attribute. qualname should be a unicode object or NULL,; if NULL, the __qualname_
attribute is set to the same value as its __name___ attribute.

3.3 BT INA.
PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. 0] {8 BELAEZCAE Y {-4H B 0% eR 81 2 op .
PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. 5] {81 Eil-4x 1} oK S0 BUAH B9 10 BB B2 opo
PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. & W BRI 4 op W) __module__ Jg1%:, BH — L8 TRERA TRV T
FFER, (HATPAE AT Python AR i Ak [o] HAAE BEXT 42

8.5. EXYit¥ 109

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

RG] % SystemError F#HiRH -1 .
PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.
int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

KIME5| % systemError R E -1 .

PyObject *PyFunction_GetAnnotations (PyObject *op)
[bR =S 1 op BRI . WG AT DA —{H T 5) 1) 7 5 NULL .

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
5 E BRI op BIHEE), annotations WJE & —{HF LB Py_None.

RIHIG| % systemError H IR -1 .

8.5.2 EREHZMH

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunct ion to a class object. It
replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of Py TypeObject represents the Python instance method type. It is not exposed to Python pro-
grams.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type Py InstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)
Return a new instance method object, with func being any callable object func is the function that will be called
when the instance method is called.

PyObject* PyInstanceMethod_Function (PyObject *im)
Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Macro version of PyInstanceMethod_Function () which avoids error checking.

8.5.3 HEMR

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of PyTypeOb ject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *o0)
Return true if o is a method object (has type PyMet hod_Type). The parameter must not be NULL.

110 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the instance
the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_ Function () which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self () which avoids error checking.

int PyMethod_ClearFreeList ()

EREI . R I R 2% H &

8.5.4 Cell ¥3t%

“Cell” XTRM T LB ML MEEG AL & 0 TR AL R, —A> “Cell” XG0 T E 1Y
BUHE; TR A RE A HE SR A Joy B0 AL B0 35 [AR P 2272 B A R SN T IR “Cell” 51 15T AE
B, R “Cell” L E (AT Z FITH TR A o SXFPXT “Cell” XGRS I 5| 7 2SR5 A i
MRS DA 2 B3 ARRBALX L 7. “Cell” X RAEHAI T n] BEA KA] o
PyCellObject

C G510 cell Y1+

PyTypeObject PyCell_Type
S cell Y14 HAE].

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. [A]{# cell [EIZH 1) cell,
PyObject* PyCell_GET (PyObject *cell)

Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 LR
RAGXF5)¢ CPython SLBLHRGANTT o 3 MU — B R0 B & b iy T AT AU o

8.5. EXYit¥ 111

The Python/C API, §(EF) 3.6.10rc1

PyCodeObject
T RA DA S G2/ C G54 . LS B B nT Bl Bk

PyTypeObject PyCode_Type
X E—~PyTypeobject Siffi, HFIR Python [¥) code AL,

int PyCode_Check (PyObject *co)
MR co &— code XN [H] true,

int PyCode_GetNumFree (PyCodeObject *co)
R[] co H A B

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyOb-
Ject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int first-
lineno, PyObject *Inotab)
[— A AR X g 2R AR TR — A A ROk B — A A, 3
M pyCode_NewEmpty (). WHPyCode_New () B #7I ASRE 2 MEM 1Y Python BUAS, PR < 15 i
(1E LA HEA .
PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)

R EAHEE A4 R —ATS S RIXR . X T exec () B eval () AERBIIAIIRTSR
== 2VSIbR

8.6 HihXtxR
8.6.1 =R (File) ¥k

XL APLIE A SO X) Python 2 C APT i/ MITEL, EId KT C hriE Y ZEnh VO (FILE*) 3(HF.
f£ Python 3 w1, SCPERIRLETRTIY 1o Bk, XBIRAESRAE RFMRPICE 0 VO FESCTILANZE. T
R PR ECZ XX LT APL I (ESE C fedds, T2 THRERR P PR R s R =7 AU T M) 1o
API,

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)
Create a Python file object from the file descriptor of an already opened file fd. The arguments name, encoding,

errors and newline can be NULL to use the defaults; buffering can be -1 to use the default. name is ignored and kept
for backward compatibility. Return NULL on failure. For a more comprehensive description of the arguments,
please refer to the 10.open () function documentation.

e 11T Python WLELA ECLHYLENIR, PUKFE NS O YUOCHHIBAFRI or2 ™t A R (4
SR 2 SN -

3.2 i S W& name JBTE.
int PyObject_AsFileDescriptor (PyObject *p)

R p REKWSCAHR IR GRIR 0 int o QI2RXS Rog B8, WHR WU HAE. QRS , WE X5
fileno () ¥k (WERAFAE) 3 E AL LRI —ANREEL, BN SO R SHEDR] . P&
TR [A] -1,

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. %54t T p.readline ([n]) , XANEEBMXTER p FEEE—F7. p v] DA SO
MREHA readline () FFYERAEMDNSE . Gk nog 0, WICBZATH KR, #SER—17. W
Hon KT 0%, MM PO n AT AT DGR TI—3R5r . FEXPIAMEOL T, QRSB E)

112 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

PP, WRERZS AR (B2, 5 n NF 0, WTCIe KBTS B AT, (E AT B
FIACRE, M5|% EOFError,

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
FFRTG: obj BASAEXT S p o flags ME— 3R HFRG 2 Py_PRINT_RAW; QIR E, MEHAXEE str ()
MAZ repr () o MEIRFRME] 0, RWHRHR] -1, FFECEE 241 B15.

int PyFile_WriteString (const char *s, PyObject *p)

HATH s BIREYIE po FRINEFIEL O, T SR I -1, (Bl A Bl SMRE .

8.6.2 EilMirEH

PyTypeObject PyModule_Type
This instance of PyTypeOb ject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_ Type.

PyObject* PyModule_NewObject (PyObject *name)
Return a new module object with the __name___ attribute set to name. The module’ s __name__,__doc__,
_ _package_ ,and _ loader__ attributes are filled in (all but _ _name___ are set to None); the caller is
responsible for providinga __file_ attribute.

3.3 HUHTIA.
3.4 R %k _ package_ and __loader_ are setto None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule NewObject (), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’ s namespace; this object
is the same as the __dict___ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’ s __dict__.

PyObject* PyModule_GetNameObject (PyObject *module)
Return module’ s __name___value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

3.3 HUHTIA.

char* PyModule_GetName (PyObject *module)
Similar to PyModule_GetNameObject () but return the name encoded to 'ut£-8"'.

void* PyModule_GetState (PyObject *module)
Return the [state] of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m _size.

PyModuleDef* PyModule_GetDef£ (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’
t created from a definition.

8.6. Hihytsk 113

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return the name of the file from which module was loaded using module’ s __file___ attribute. If this is not
defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise return a reference to a
Unicode object.

3.2 UBTIMA.

char* PyModule_GetFilename (PyObject *module)
Similar to PyModule GetFilenameObject () but return the filename encoded to [utf-8) .

32 BT PyModule GetFilename () raises UnicodeEncodeError on unencodable filenames,
use PyModule_ GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_Create (), and return the re-
sulting module object, or request [multi-phase initialization] by returning the definition struct itself.

PyModuleDef
The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_ HEAD_INIT.

char* m_name
Name for the new module.

char* m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR () is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s1ize is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

3.5 Jfix B 5 Prior to version 3.5, this member was always set to NULL, and was defined as:

inquirym_reload

114 Chapter 8. EFRIMRE

https://www.python.org/dev/peps/pep-3121

The Python/C API, (F) 3.6.10rc1

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule_GetState () may return NULL), and before
the Py_mod_exec function is executed.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule GetState () may return NULL), and before the
Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule GetState () may return NULL), and before the
Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as [single-phase
initialization] , and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Create a new module object, given the definition in def. This behaves like PyModule_CreateZ () with mod-
ule_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Create a new module object, given the definition in def, assuming the API version module_api_version. If that
version does not match the version of the running interpreter, a Runt imeWarning is emitted.

H5(E]: Most uses of this function should be using PyModule Create () instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_ AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request [multi-phase initialization] . Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is created,
and the execution phase, when it is populated. The distinction is similar tothe __new___ () and __init__ () methods
of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection — as with Python modules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState ()), orits contents (such as the module’ s ___dict___ orindividual classes created with
PyType_FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDe f instance
with non-empty m_sIots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

8.6. Hihytsk 115

The Python/C API, §(EF) 3.6.10rc1

PyObject* PyModuleDef_Init (PyModuleDef *def)

Ensures a module definition is a properly initialized Python object that correctly reports its type and reference count.
Returns def cast to PyObject*, or NULL if an error occurred.

3.5 BUBTIA.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_ Slot

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

3.5 BUBTIA.

The m_slots array must be terminated by a slot with id 0.

The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py _mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

116

Chapter 8. EFRIMRE

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, (F) 3.6.10rc1

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Create a new module object, given the definition in module and the ModuleSpec spec. This behaves like
PyModule_FromDefAndSpec?2 () with module_api_version set to PYTHON_API_VERSION.

3.5 BUBTINA.

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)
Create a new module object, given the definition in module and the ModuleSpec spec, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a Runt imeWarning
is emitted.

#5(F): Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if
you are sure you need it.

3.5 UHTMA.

int PyModule_ExecDef (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

3.5 HUHTIA.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

3.5 HUHT A

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDe £ documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level [functions |
implemented in C typically receive the module as their first parameter, making them similar to instance methods
on Python classes). This function is called automatically when creating a module from PyModuleDef, using
either PyModule_Create or PyModule_FromDefAndSpec.

3.5 BUBTINA.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’ s initialization
function. This steals a reference to value. Return —1 on error, 0 on success.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’ s initialization
function. Return —1 on error, O on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’ s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

8.6. Hihytsk 117

The Python/C API, §(EF) 3.6.10rc1

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def)
Returns the module object that was created from def for the current interpreter. This method requires that the
module object has been attached to the interpreter state with PyState AddModule () beforehand. In case the
corresponding module object is not found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_ FindModule ().

Only effective on modules created using single-phase initialization.

3.3 BUBTINA.

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state.

3.3 HUHTIA.

8.6.3 ik {t2E (lterator) ik

Python $2 (it T W~ id HI AR TR . H— D RFHENAS, BN __getitem () HIEMAERITFS.
S5 AN AT XA sentinel (i, iy /741 Hp i BT W R TR 58, HAEIR] sentinel {1 45 5 1%
e
PyTypeObject PySeqIter_Type

pySegIter New () IRIGEAERA GBS GAINE P I KB N EREL iter O RRSHIL.

int PySeqIter_Check (0p)
Wk op AN pySeqiter Type MR true,
PyObject* PySeqIter_New (PyObject *seq)

Return value: New reference. & [0] —A~ 5 & #7565 — A2 i FH 925 ACER seq. 24)7 50T R #RA1ES] &
IndexError B}, ERLEH.

PyTypeObject PyCallIter_Type
HigEPyCalllter New () fll iter () WERERISHOL AR B H)E A RRRT R LTS

int PyCallIter_Check (op)
WM op RFLHPycalllter Type Wk [H true,

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. &[] — i EACES . SB5— S8 callable W] DA AFAR 0] DAXE IR B S 50001
9 Python WA 52 4R AR BRI P R AT H o 24 callable R84 T sentinel
AR, AR L.

118 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

8.6.4 {zEnzsMit

“HOARTEY RAAN R R X G . BV TRA R,
PyTypeObject PyProperty_Type
N IR R AR 42
PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)
WERFERFTRI SR deser R BAREYE, WA true; QERAGIA T, WIRE false. descr AU IAFEXT
25 WA

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference.

8.6.5 YK ¥

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as s11ice in the Python layer.

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and —1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case —1 is returned with an exception set).

You probably do not want to use this function.
3.2 Jit ¥ %8 The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

8.6. Hihytsk 119

The Python/C API, §(EF) 3.6.10rc1

3.2 it % The parameter type for the slice parameter was PyS1iceObject * before.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

8.6.7 MemoryView %5

—A~memoryview X5 C P HIMI L Kk v igR— A DMRATA HoAd X G —FE4% 1817 Python %42 .
PyObject *PyMemoryView_ FromObject (PyObject *obj)
B GE DX 382 116 52 6 78 memoryview XF 5. QIR obj CHFAT G XSt , I memoryview X4
FEATARE LS, BWE R e HiEny, Wal U@ S Ay BT e Wi/ 5 .
PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
18 mem VE- N2 25 0h X A1 5 —4> memoryview X4 . flags 7] PAE PyBUF_READ 8{# PyBUF_WRITE
Z—.
3.3 BUCHTINA.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
g — 1N EEREE MK LM view) memoryview Xf %, X T f&f B) F W & op X,
PyMemoryView_FromMemory () & E1ERE

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
ME LGP IX 2 TR T 82 Al 7 — 4> memoryview X4 contiguous NAEH: (FF TCJ 8% [F’ ortran order 1),
WRNFEE LR, W memoryview XTRFE0 FUG . 500, S5 H memoryview £ [B bytes X
%

int PyMemoryView_Check (PyObject *obj)
AIRXTS obj j& memoryview X542, MR true o H HIA RIFAE memoryview 12,

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
A& 0] 5] memoryview -5 HH Ze it IXFA A BIAS U HE 4. mview 52—~ memoryview SL6; XA
A B EAL, PR/t B AR, 75 DR T i 15 XU o

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if

the memoryview has been created by one of the functions PyMemoryView FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

8.6.8 s5&MMH

Python 3§ “5551 M AEoA—IS R . BARYL, AP EEEIS G HRXTS. 5 —Rlie a5t
5, SR RPRUAT REHAE N — IR R AU

int PyWeakref_Check (ob)
W “ob” @E—AHI HEE — XS, Wk true.

int PyWeakref_CheckRef (ob)
N5 “ob” B—A5IH, WM true,

int PyWeakref_CheckProxy (ob)
R “ob” E— ARG, WRME true.

120 Chapter 8. A#FHMMRE

The Python/C API, (F) 3.6.10rc1

PyObject* PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected,; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

PyObject* PyWeakref_GetObject (PyObject *ref)
Return value: Borrowed reference. iR [1]555 | FIXT G ref 85 | XIS . WERGS | X SARTFAFAE, WHRME

Py_None,

HRE): ARG I IR G — A % A T % TR WA L A 00 P00 s
SORTRERERNSR,, 75 MARIY BRI 20t SR Py TNCREF ()

PyObject* PyWeakref_GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. 25l PyWeakref GetObject (), {HIEI H— P ABEEIAEGE) %,

8.6.9 X%

A RN IXLEXT G B 2 {5 B 75 2 7Y using-capsules..
3.1 BB

PyCapsule
XAPyobject B TRAUERE —MER(H, HTF2dlid Python ALFHERME (VA void fREHHIE
X)) M C P B as Hofl C RIIEAEREA M. Bd@w TR — b & L) C i F s
B HANRIE, DUE R DANIR BT EAT. X i ad 1 r BB S ABILAR 375 1) 2h A 2 i sk
i C APIL,

PyCapsule_Destructor

XN — T gk I — e s, s LT

typedef void (*PyCapsule_Destructor) (PyObject *);

S PyCapsule._New () F3H PyCapsule_Destructor & [H{E 1415 X o

int PyCapsule_CheckExact (PyObject *p)
AR SHIE— A PyCapsule R[] True

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

8.6. Hihytsk 121

The Python/C API, §(EF) 3.6.10rc1

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_ Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as inmodule.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using Py Import_ImportModuleNoBlock ()). If
no_block is false, import the module conventionally (using Py ITmport_ImportModule ()).

Return the capsule’ s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return O otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

122 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 42t
PE i N5 2 Python JiI 3t SIS 2R 28 P BT 4 . T T B ST 5 P A (Y SRR B, T st

i PyGen_New () B{PyGen_NewWithQualName ().

PyGenObject

T A AR AR C Z5H 1
PyTypeObject PyGen_Type
S NARR R R AR 5.
int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’ s type is PyGen_Type; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with__name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.11 {hiZ¥ R

3.5 BUBTIA.
HMERRIE T async KB R4 R BOR 1R .

PyCoroObject
MTF IR G C S5tk

PyTypeObject PyCoro_Type
SRR GO Y RA 4

int PyCoro_CheckExact (PyObject *ob)
Return true if ob’ s type is PyCoro_Type; ob must not be NULL.

PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name___
and __qualname___ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.12 DateTime ¥4

datetime FEHLHRAL T4 Hh H A R Xt 5. A AT X L pR 50 2 BT, S AUAEAR A JRAD o A0 5 Sk S
datetime.h (EER I RASTE Python. h #), I H7Z PyDateTime_IMPORT WAZ#E AL IR A , 18
HRANE AT IR PR — 8B4« XA E LR MR C 25 IR EA— 18548 i PyDateTimeAPT
Bl N 2R

8.6. Hih¥R 123

The Python/C API, §(EF) 3.6.10rc1

e

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType orasubtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

TR S

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datetime . date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datetime .datet ime object with the specified year, month, day, hour,

minute, second and microsecond.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)

W ARGy, [EIERE S

124 Chapter 8. EFRIMRE

The Python/C API, (F) 3.6.10rc1

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
[l H 4y, s, /13 12,

int PyDateTime_GET_DAY (PyDateTime_Date *0)

Wl H Y, FIEssE, /1% 31,

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o)
Il /N, [FIIERE L, ¢ 0 %) 23,

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)
Wl {54, (FIIE#E%, 4 0) 59,

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
] D, [ElIE#ES, 1€ 0 %) 59,

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
M E Ry, [EIERE S, 7€ 0] 999999.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
/N, [FIIEHE S, 4 0 3] 23,

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o)
Il 54, [FIEHREHL, 4E 0 %) 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *o)
D, [FIERH, 4 0 %) 59,

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
RS, [FIEREd, # 0 £ 999999,

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
PRI FHL, M-999999999 F| 999999999 fryHk ki,

3.3 U

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *o)
RIEFEL, M0 3] 86399 AL

3.3 BUHTIA.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *o)
AR GAADEL, A O F] 999999 FHEEL

3.3 BUHTMA.
Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime . date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp ().

8.6. Hth¥tsx 125

The Python/C API, §(EF) 3.6.10rc1

126 Chapter 8. RiFHMRE

CHAPTER 9

Initialization, Finalization, and Threads

9.1 Initializing and finalizing the interpreter

void Py_Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName (), Py_SetPythonHome ()
and Py_SetPath (). This initializes the table of loaded modules (sys .modules), and creates the fundamen-
tal modules builtins, _ _main__ and sys. It also initializes the module search path (sys.path). It does
notset sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

#E): On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)
This function works like Py, Tnitialize () if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py_FinalizeEx ()
Undo all initializations made by Py Tnitialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
call to Py_Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py Tnitialize () again first). Normally the return value is 0.
If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During

127

The Python/C API, §(EF) 3.6.10rc1

a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py FinalizeEx () more than once.

3.6 BUBTINA.

void Py_Finalize ()

This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.2 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding and
error handling to use with standard 1O, with the same meanings as in str.encode ().

It overrides PYTHONIOENCOD ING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on
other settings).

Note that sys . st derr always uses the [backslashreplace | error handler, regardless of this (or any other) setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).

3.4 BT

void Py_SetProgramName (wchar_t *name)

This function should be called before Py Initialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’ s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()

Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()

Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py SetProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefix is ' /usr/local"'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys .prefix. Itis only useful on Unix. See also the next function.

128

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, (F) 3.6.10rc1

wchar_t* Py_GetExecPrefix ()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py _GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)
Set the default module search path. If this function is called before Py Tnitialize (),then Py_GetPath ()
won’ t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, whichis ' : ' on Unix and Mac OS X, ' ; ' on Windows.

This also causes sys.executable to be set only to the raw program name (see Py_SetProgramName ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

9.2. Process-wide parameters 129

The Python/C API, §(EF) 3.6.10rc1

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the [official] name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin"'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’ smain ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’ t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .path
according to the following algorithm:

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

* Otherwise (that is, if argc is 0 or argv [0] doesn’ t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

#5(E): It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sy s . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sy s . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

3.1.3 HCHTA.

130 Chapter 9. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, (F) 3.6.10rc1

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —TI.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
3.4 iR %% The updatepath value depends on —1.

void Py_ SetPythonHome (wchar_t *home)
Set the default [home] directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’ s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default [home | , that is, the value set by a previous call to Py_ SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

9.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’ s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python
objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example,
when two threads simultaneously increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’ s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

9.3. Thread State and the Global Interpreter Lock 131

The Python/C API, §(EF) 3.6.10rc1

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

#iEl: Calling system 1/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’ t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z11ib and hashl ib modules release the GIL when
compressing or hashing data.

9.3.2 3k Python gl &Y%k 12

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automat-
ically associated to them and the code showed above is therefore correct. However, when threads are created from C (for
example by a third-party library with its own thread management), they don’ t hold the GIL, nor is there a thread state
structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py _Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally before the

132 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, (F) 3.6.10rc1

fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork () directly rather than through os. fork () (and returning to or
calling into Python) may result in a deadlock by one of Python’ s internal locks being held by a thread that is defunct
after the fork. PyOS_AfterFork () tries to reset the necessary locks, but is not always able to.

9.3.3 S API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’ s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread (tstate). It is not
needed before calling PyEval_SaveThread () or PyEval_RestoreThread ().

This is a no-op when called for a second time.

3.2 Jit ¥4 This function cannot be called before Py_Tnitialize () anymore.

#E): When only the main thread exists, no GIL operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also acquires it.
Before the Python _thread module creates a new thread, knowing that either it has the lock or the lock hasn’ t
been created yet, it calls PyEval_ InitThreads (). When this call returns, it is guaranteed that the lock has
been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_ TInitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

9.3. Thread State and the Global Interpreter Lock 133

The Python/C API, §(EF) 3.6.10rc1

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’ t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument #state, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork () to ensure that newly created child processes don’ t hold locks
referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release (). In general, other thread-related APIs may be used be-
tween PyGILState_FEnsure () and PyGILState_Release () calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque [handle] to the thread state when PyGILState_FEnsure () was called, and
must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () must save the
handle for its call to PyGIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’ s state will be the same as it was prior to the
corresponding PyGILState_Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

3.4 BT

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

134 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, (F) 3.6.10rc1

Py_BEGIN_ALLOW_THREADS
This macro expandsto { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py END_ALLOW_THREADS macro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note thatitcontains a closing brace; it must
be matched with an earlier Py_ BEGTN_ALLOW_THREADS macro. See above for further discussion of this macro.
It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py _END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread() ;: it is equivalent to
Py _BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

9.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called only
when the global interpreter lock has been created.

PylInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states

9.3. Thread State and the Global Interpreter Lock 135

The Python/C API, §(EF) 3.6.10rc1

modified; this is normally one, but will be zero if the thread id isn’ t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to state, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when thread support
isn’ t enabled or when threads have not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state —if itisn’ t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when thread support isn’ t
enabled or when threads have not been initialized).

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

32 R & B Hi: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

3.2 4 C.[EJH: This function does not update the current thread state. Please use PyEval_ SaveThread ()
or PyEval_ReleaseThread () instead.

9.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys. stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’ t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’ s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of
this copy; the extension’ s init function is not called. Note that this is different from what happens when an

136 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, (F) 3.6.10rc1

extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx () and
Py_Initialize ();in that case, the extension’ s initmodule function is called again.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_FinalizeEx () will destroy all sub-interpreters that haven’
t been explicitly destroyed at that point.

9.4.1 #iRfIEE

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’ t
perfect —for example, using low-level file operations like os.close () they can (accidentally or maliciously) affect
each other’ s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension
manipulates its module’ s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter
into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions,
methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the
wrong (sub-)interpreter’ s dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’ t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.5 RE&EA

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued for
being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’ t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’ t need a current thread state to run, and it doesn’ t need the global interpreter lock.

e fe: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’ t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

9.5. BB 137

The Python/C API, §(EF) 3.6.10rc1

3.1 BUHTMA.

9.6 SrHTFNERER

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_SetProfile () and PyEval_SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

what HI{E arg Mg X

PyTrace_CALL M EPy None.

PyTrace_EXCEPTION sys.exc_info () RMPFEE L.

PyTrace_LINE BEPy None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL TR R B 5 .

PyTrace_C_EXCEPTION | IEfEVEHBREONE .

PyTrace_C_RETURN EAE R RO 4 .

int PyTrace_CALL
The value of the what parameter to a Pyt racefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number event
is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, (F) 3.6.10rc1

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing func-
tion does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

PyObject* PyEval_GetCallStats (PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

<
=
c
(0]

Name

PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL_BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP

O 0 Q|| K| W N—O

—_
(e

PCALL_FAST_FUNCTION means no argument tuple needs to be created. PCALL_FASTER_FUNCTION means
that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

This function is only present if Python is compiled with CALL_PROF ILE defined.

9.7 EHKIA 28T HF

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after rstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.7. BRIAIXABEZH 139

The Python/C API, §(EF) 3.6.10rc1

140 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

ACliEEREIE

10.1 &

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);

(continues on next page)

141

The Python/C API, §(EF) 3.6.10rc1

(R —H)

free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/0 buffer escapes completely the Python memory manager.

hs%:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

10.2 RigAFEO

PAF R EUER B T RG0S . XS BUR S 2, AFRERAGIL.

The default raw memory block allocator uses the following functions: malloc (), calloc (), realloc () and
free ();callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

3.4 BT

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

3.5 JRHTA.

void* PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem_RawCalloc ().

142 Chapter 10. RIEEER

The Python/C API, (F) 3.6.10rc1

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_RawRealloc () or PyMem RawCalloc(). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

10.3 AE#EO

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

By default, these functions use pymalloc memory allocator.

#%Mie: The GIL must be held when using these functions.

3.6 jfit ¥ %8 The default allocator is now pymalloc instead of system malloc ().

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

3.5 HUCHT A

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If pis NULL, the call is equivalent to PyMem_Malloc (n) ;else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc (),
PyMem_Realloc () or PyMem_ Calloc (). Otherwise, or if PyMem_Free (p) has been called before, un-
defined behavior occurs.

If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

10.3. ;AHEEDO 143

The Python/C API, §(EF) 3.6.10rc1

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)
YpyMem_Free ()]

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

¢ PyMem_MALLOC (size)

e PyMem_NEW (type, size)

e PyMem_REALLOC (ptr, size)

* PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

¢ PyMem_DEL (ptr)

10.4 HWH N HEC2E

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

By default, these functions use pymalloc memory allocator.

#xfie: The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

3.5 BUHTMA.

void* PyObject_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

144 Chapter 10. FEiEREEHE

The Python/C API, (F) 3.6.10rc1

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc (), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

10.5 Customize Memory Allocators

3.4 BUGHTIMA.

PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has four fields:

1 aX
void *ctx user context passed as first argument
void* malloc(void *ctx, allocate a memory block

size_t size)

void* calloc(void *ctx, size_t nelem, size_t | allocateamemory block initialized with
elsize) ZEros
void* realloc (void *ctx, void *ptr, size_t allocate or resize a memory block

new_size)
void free(void *ctx,

void *ptr)

REC A AT

3.5 it ¥ 4#: The PyMemAllocator structure was renamed to PyMemAllocatorExand anew calloc field
was added.

PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:
PYMEM_DOMAIN_RAW

* PyMem RawMalloc ()

* PyMem RawRealloc ()

* PyMem RawCalloc ()

* PyMem RawFree ()
PYMEM_DOMAIN_MEM

* PyMem Malloc(),

* PyMem Realloc ()

e PyMem_Calloc /()

* PyMem Free()

10.5. Customize Memory Allocators

145

The Python/C API, §(EF) 3.6.10rc1

PYMEM_DOMAIN_OBJ
* PyObject_Malloc ()
* PyObject_Realloc ()
* PyObject_Calloc()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks (void)
Setup hooks to detect bugs in the Python memory allocator functions.

Newly allocated memory is filled with the byte 0xCB, freed memory is filled with the byte 0xDB.

Runtime checks:
e Detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem_Malloc ()
¢ Detect write before the start of the buffer (buffer underflow)
¢ Detect write after the end of the buffer (buffer overflow)

e Check that the GIL is held when allocator functions of PYMEM DOMAIN_OBJ (ex:
PyObject_Malloc ())and PYMEM DOMAIN_MEM (ex: PyMem Malloc ()) domains are called

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allo-
cated. The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory
block was traced.

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

3.6 J{ 5 5: This function now also works on Python compiled in release mode. On error, the debug hooks now
use tracemalloc to get the traceback where a memory block was allocated. The debug hooks now also check
if the GIL is held when functions of PYMEM DOMAIN_OBJ and PYMEM _DOMAIN_MEM domains are called.

10.6 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called [arenas] with a fixed size of 256 KB. It falls back to PyMem_RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM _DOMATN_MEM (ex: PyMem _Malloc ())and PYMEM _DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:

146 Chapter 10. RIEEER

The Python/C API, (F) 3.6.10rc1

e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,

e malloc () and free () otherwise.

10.6.1 Customize pymalloc Arena Allocator

3.4 BT

PyObjectArenalAllocator
Structure used to describe an arena allocator. The structure has three fields:

1, aX

void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void *ptr) free an arena

PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenalAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.7 55

Here is the example from section 42 5, rewritten so that the I/O buffer is allocated from the Python heap by using the
first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem_ Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I1/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

10.7. #5i¥ 147

The Python/C API, §(EF) 3.6.10rc1

char *bufl = PyMem_New (char, BUFSIZ);

char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-- should be PyMem_Free() */
free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —- should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

148

Chapter 10.

ilEicEE

cHAPTER 11

R

AFAIR TR SPGB i i i . BRI

1.1 £ FHEMR

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. FI'C HIZEBRIMILG G| FARWI MG 2 BT S op. IR BIEWIIRALRT S . 40
R type TR S SIGIALIRATI LS, PRI IR I 28 A E N R LT . TR HALF BN 32

A

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. 'E W IHEEFIPyObject_Init () —FE, FHHELWIEAS B R/NITL M
KEFL.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. i [l C 25442551 TYPE 1 Python 25X} % rype 43 Bi—1~31 11 Python X4 .
KA Python XF4ebrsk i I FBOR SRRt XI5 FHHECR —. WAEAELR/NE type Xt
Ltp _basicsize FEIEHIE.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. i J}] C RS54 25FL TYPE 11 Python 2B 42 type 4B —4~3F1 1) Python
X5 o Python X5 3 SC A & LI F BN BRI IR . B BLI ARSI T B T TYPE 54410 type
Mg tp_itemsize FEARLN size FEAME . XX T L AR AL PR FE S E B OOK
?E@Xﬁf‘?%%ﬁiﬂﬂ (o REF BB He A B AH R 04 A2 B b i] DA AR B 8, X8 T
T ECRIRCR

void PyObject_Del (PyObject *op)
Rl Pyobject _New () B PyObject NewVar () SrBCNAFIIN G, X I H HIXT AR type FBUE

149

The Python/C API, §(EF) 3.6.10rc1

iy tp_dealloc ALPRRRBORIEM o XA e ELLAS op XA 7 BERRAN T AR, PR 73
4 A7 25 8] AN o — A R Python X 42

PyObject _Py_NoneStruct
ARG 2R None —H£# Python X4t ERIPAE] Py_None Z5H, R ERHRIIZXS R

B4
PyModule_Create () 4yt NAFFIQIEY R

1.2 @AY

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’ s representation in memory.
These are represented by the PyOb ject and PyVarOb ject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal [release | build, it contains only the object’ s reference count
and a pointer to the corresponding type object. Nothing is actually declared to be a PyOb ject, but every pointer
to a Python object can be cast to a PyObject *. Access to the members must be done by using the macros
Py_REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

’(((PyObject*)(o))*>ob_type)

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

’(((PyObject*)(o))7>ob_refcnt)

150 Chapter 11. JREI|ZHF

The Python/C API, (F) 3.6.10rc1

Py_SIZE (0)
This macro is used to access the ob__size member of a Python object. It expands to:

(((PyVarObject™*) (0))-—>0ob_size)

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C that take keyword arguments: they take three
PyObject * parameters and return one such value. See PyCFunction above for the meaning of the return
value.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

i C Type aX

ml_name char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH VARARGS and METH_KEYWORDS can
be combined. Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the type Py CFunct i on. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () of PyArg_UnpackTuple ().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three parame-
ters: self, args, and a dictionary of all the keyword arguments. The flag must be combined with METH_VARARGS,
and the parameters are typically processed using PyArg ParseTupleAndKeywords ().

11.2. EAYHEE 151

The Python/C API, §(EF) 3.6.10rc1

METH_NOARGS
Methods without parameters don’ t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg_ParseTuple () with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyOb ject * parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named __contains__ () and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

15 Clype | &X

name char * name of the member

type int the type of the member in the C struct

offset | Py_ssize_t | the offset in bytes that the member is located on the type’ s object struct
flags int flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many T__ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

152 Chapter 11. ¥R sclzF

The Python/C API, (F) 3.6.10rc1

Macro name (O]

T _SHORT short

T_INT int

T_LONG R
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T _BYTE char

T _UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the Py TypeObject.tp_getset
slot.
13 CType | &X
24 R char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc char * optional docstring
closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject * parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject * (*getter) (PyObject *, wvoid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with a set
exception on failure.

1.2, ERYHER 153

The Python/C API, §(EF) 3.6.10rc1

11.3 RBHR

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* () orPyType_* () functions,
but do not offer much that’ s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’ s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, objob-
jargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for Py TypeOb ject can be found in Include/object .h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

(continues on next page)

154 Chapter 11. &SI

The Python/C API, (F) 3.6.10rc1

(R —H)

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject . _ob_next

PyObject* PyObject . _ob_prev
These fields are only present when the macro Py_ TRACE_REF'S is defined. Their initialization to NULL is taken
care of by the PyObject _HEAD_INIT macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refcnt
This is the type object’ s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for

11.3. FFFIR 155

The Python/C API, §(EF) 3.6.10rc1

statically allocated type objects, the type’ s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* PyObject . ob_type

This is the type’ s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’ s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_ Ready () will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t PyVarObject .ob_size

For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.

This field is not inherited by subtypes.

const char* PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name_
attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module___ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.

This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero t p_ i t ems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the rlengthJ of the object. The value of N is
typically stored in the instance’ s ob_size field. There are exceptions: for example, ints use a negative ob_size
to indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size field in the

156

Chapter 11. Jt& I

The Python/C API, (F) 3.6.10rc1

instance layout doesn’ t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero t p_ i temsize, itis generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’ s responsibility that tp basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

destructor PyTypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call the
type’ s tp_ free function. If the type is not subtypable (doesn’ t have the Py_ TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via t p_ free. The object deallocator should
be the one used to allocate the instance; this is normally PyOb ject_Del () if the instance was allocated using
PyObject_New () orPyObject_VarNew (),or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New () or PyObject_GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: asubtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’ s tp_setattrand tp_setattro are both NULL.

11.3. FFFIR 157

The Python/C API, §(EF) 3.6.10rc1

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.

3.5 f#rin A : Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject . tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>"' from which
both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%s object at $%p> is returned, where %s is replaced by the
type name, and %p by the object’ s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject__Hash ();it must return a value of the type Py_hash_t. The value —1
should not be returned as a normal return value; when an error occurs during the computation of the hash value,
the function should set an exception and return —1.

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash___ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented ().

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’ s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str
An optional pointer to a function that implements the built-in operation str (). (Note that str is a type now,

158 Chapter 11. JREI|ZHF

The Python/C API, (F) 3.6.10rc1

and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work,
and PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str (); it must return a string or a Unicode object. This function
should return a [friendly | string representation of the object, as this is the representation that will be used, among
other things, by the print () function.

When this field is not set, PyObject_Repr () is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr (), which implements the
normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’ s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’ s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature () takes a type and a flags value, #p and f, and checks
whether tp->tp_flags & f isnon-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ ed when a new instance is
created, and DECREF’ ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’ s ob_type gets INCREF’ ed or DECREF’ ed).

11.3. FFFIR 159

The Python/C API, §(EF) 3.6.10rc1

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a [final] class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

Py_TPFLAGS_READYING
This bit is set while Py Type_ Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in section
12 % K7W § 35535389). This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py _TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

3.4 BUBTIMA.

const char* PyTypeObject . tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc___ attribute on the type and instances of the type.

This field is not inherited by subtypes.

traverseproc PyTypeObject . tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS_HAVE_GC flag bit is set. More information about Python’ s garbage collection scheme can be
found in section 1 * % % A F FHVE IR IR EDIL.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT () on each of the instance’ s members that are Python
objects. For example, this is function 1ocal_traverse () from the _thread extension module:

160

Chapter 11. Jt& I

The Python/C API, (F) 3.6.10rc1

static int
local_traverse (localobject *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return O;

Note that Py_ VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’ s get_referents () function will include it.

Note that Py_ VISIT () requires the visit and arg parameters to Local_traverse () to have these specific
names; don’ tname them just anything.

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS HAVE_GC
flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ c1ear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’ s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’ t immediately obvious, and there’ s rarely a good reason to avoid implementing tp_clear.

Implementations of ¢ p_ c1ear should drop the instance’ s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with
the contained object). If it” s possible for such code to reference self again, it” s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR () macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’ s not necessary to clear contained
objects like Python strings or Python integers, which can’ t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’ s tp_dealloc function to invoke
tp_clear.

11.3. FFFIR 161

The Python/C API, §(EF) 3.6.10rc1

More information about Python’ s garbage collection scheme can be found in section i % % 5 7 & #5303
=D

This field is inherited by subtypes together with tp_t raverse and the Py TPFLAGS HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op). The first parameter is guaran-
teed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

#i(E): If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and ! =,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with t p__hash: asubtype inherits tp_richcompareand tp_hash
when the subtype’ s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare ():

B XFER
Py_LT | <
Py_LE | <=
Py_EQ | ==
Py_NE | !=
Py_GT | >
Py_GE | >=

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () andthe PyWeakref_* () functions. The instance structure needs to include
a field of type PyOb ject * which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no __slots___ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of thatslot’ s offset.

When a type’ s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’ s offset is stored in the type’ s tp_weaklistoffset.

When a type’ s __slots__ declaration does not contain a slot named __weakref__, the type inherits its

tp_weaklistoffset from its base type.

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

162 Chapter 11. &SI

The Python/C API, (F) 3.6.10rc1

This function has the same signature as PyObject_GetIter ().
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the tp_ i t er function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as PyIter Next ().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject .tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject . tp_members
An optional pointer to a static NULL-terminated array of PyMembe rDe £ structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset
An optional pointer to a static NULL-terminated array of PyGet SetDef structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject .tp_dict
The type’ s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_ Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’ t correspond to overloaded operations (like
add__ ().

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

11.3. FFFIR 163

The Python/C API, §(EF) 3.6.10rc1

W4 Tt is not safe to use PyDict_SetItem () on or otherwise modify tp_dict with the dictionary
C-APL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a [descriptor get | function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’ s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

Py_ssize_t PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to —4 to indicate that
the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsizeand tp_dictoffset aretaken from the type object, and ob_size
is taken from the instance. The absolute value is taken because ints use the sign of ob_size to store
the sign of the number. (There’ s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement hasno ___slots___ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’
s offset.

When a type defined by a class statement has a ___slots___ declaration, the type inherits its tp_dictoffset
from its base type.

164

Chapter 11. Jt& I

The Python/C API, (F) 3.6.10rc1

(Adding aslotnamed __dict__ tothe __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref___ though.)

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’ s tp_new function has returned an instance of the type. If the t p_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an
instance of a subtype of the original type, the subtype’ s tp_init is called.

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt setto 1 and ob_type set to the type argument. If the type’ s tp_itemsize is non-zero,
the object’ s ob_size field should be initialized to nitems and the length of the allocated memory block should
betp_basicsize + nitems*tp_itemsize,rounded up toamultiple of sizeof (void*) ;otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to Py Type_GenericAlloc (), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject .tp_new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’ t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be

11.3. LUK 165

The Python/C API, §(EF) 3.6.10rc1

ignored or repeated should be placed in the tp_ init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_ base is NULL or
&PyBaseObject_Type.

destructor PyTypeObiject .tp_free

An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyObject_Free ().

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match Py Type GenericAlloc () and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’ stype’ s tp_flags field, and check the Py TPFLAGS HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distinguish
between statically and dynamically allocated types.)

This field is inherited by subtypes.

PyObject* PyTypeObject .tp_bases

Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject . tp_mro

Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.

This field is not inherited; it is calculated fresh by Py Type_ Ready ().

destructor PyTypeObiject .tp_finalize

An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize (PyObject *)

If tp_finalizeisset, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane
state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

166

Chapter 11. Jt& I

The Python/C API, (F) 3.6.10rc1

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch (&error_type, &error_value, &error_traceback);

VA 4

/* Restore the saved exception. */
PyErr_Restore (error_type, error_value, error_traceback);

For this field to be taken into account (even through inheritance), you must also set the
Py TPFLAGS_HAVE_FINALIZE ﬂags bit.

This field is inherited by subtypes.

3.4 BUHTMA.

hE%:

[Safe object finalization | (PEP 442)
PyObject* PyTypeObject .tp_cache

Unused. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use only.
They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject . tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

11.3. FFFIR 167

https://www.python.org/dev/peps/pep-0442

The Python/C API, §(EF) 3.6.10rc1

11.4 Number Object Structures

PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the # 5 #13L section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;

binaryfunc
binaryfunc
binaryfunc

nb_and;
nb_xor;
nb_or;

unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_inplace_add;
nb_inplace_subtract;
nb_inplace_multiply;
nb_inplace_remainder;

ternaryfunc nb_inplace_power;

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc

nb_inplace_1lshift;
nb_inplace_rshift;
nb_inplace_and;
nb_inplace_xor;
nb_inplace_or;

nb_floor_divide;
nb_true_divide;

binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

#i[E): Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_Not Implemented, if another error occurred they
must return NULL and set an exception.

168

Chapter 11. Jt& I

The Python/C API, (F) 3.6.10rc1

#iE): The nb_reserved field should always be NULL. It was previously called nlb_1ong, and was renamed
in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods .mp_length
This function is used by PyMapping_Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyOb ject_GetItem () and PySequence_GetSlice (), and has the same signa-
ture as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(), PyObject_SetSlice ()
and PyObject_DelSlice (). It has the same signature as PyObject_SetItem (), but vcan also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sq_itemand the sq_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by Py Sequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem/ (), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the

11.5. Mapping Object Structures 169

The Python/C API, §(EF) 3.6.10rc1

mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment +=, after trying numeric
inplace addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
inplace multiplication via the nb_inplace_multiply slot.

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBuf ferProcs .bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError, set view->o0bj to NULL and
return —1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>ob7j.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

* Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference to
itself.

* Redirect: The buffer request is redirected to the root object of the tree. Here, view—>o0bj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.

All memory pointed to in the Py_buf fer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsetsand internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

170 Chapter 11. &SI

The Python/C API, (F) 3.6.10rc1

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs .bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>obj, since that is done automatically in PyBuffer_ Release ()
(this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

11.8 Async Object Structures

3.5 BUBTINMA.

PyAsyncMethods
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await (PyObject *self)

The returned object must be an iterator, i.e. PyIter_Check () mustreturn 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self)

Must return an awaitable object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

11.8. Async Object Structures 171

The Python/C API, §(EF) 3.6.10rc1

’Pyobject *am_anext (PyObject *self)

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

11.9 (EXRIEEZTIHBIA IR B

Python XYIRFRS MK S FHCHIE 398 XEGATISR, BINFRNT G T Rt AL L 78
XE% . RBEILEXTRIT A, sl LRI T2 (TSR) (05| N2, A st
SRBEELIR A L

HEAE - ANREMSE, KRB RMNep_flags F B M 0 FPy_TPFLAGS_HAVE_GC F $i¢ it —
Mtp_traverse ACPRRYSEI. WRIZKBRY LG ZR, BFRELHN cp_clear .
Py_TPFLAGS_HAVE_GC
WE T WARE OB QAT A AL ICSR R . S R I, T SCE X X R PR AR S
P SR AL 3 R B AT A S R
1. WAFHPyObject_GC_New () BiPyObject_GC_NewVar () RikEsi 4 5B NAE-
2. WIEA T A AT RE A S AR RSB | I B S , B Pyobject _GC_Track () .
TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
KT ryobject_New() , BT RE T Py_TPFLAGS_HAVE_GC AREMATRMR .
TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
R\ Fryobject_NewvVar () , BT WE T Py_TPFLAGS_HAVE_GC FRZEMIBMITR .
TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)

Resize an object allocated by PyOb ject_NewVar (). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)
X op MBI s BRERAY AR A R o RS RAERE DG ER B AR R R0, B Il ficds
A RETEAEAT IR T URIZAT . TEtp_traverse AEIEIMIFIA T B ARG, A0 MR £, i HTE
FEAT A i eRBOR R

void _PyObject_GC_TRACK (PyObject *op)
PyObject _GC_Track () WJRSEIIRA . EARREWM T B,

3.6 Jit % CL I iX 4> %:4E Python 3.8 g Fo i .
[AIRERY , KRR A A AL
L fE5| B ASRNFBIRSN, BARM Pyobject GC_UnTrack () .
2. WAHEM Pyobject _GC_Del () BEHON R NATF-.
void PyObject_GC_Del (void *op)
RO RINAE, A RGBT PyObject _GC_New () B{PyObject GC_NewVar () 4} FLIFf.
void PyObject_GC_UnTrack (void *op)
MBI EBENERS L EEAETBRER op WL, WEEZ T ALY S EHKE
MPyObject_GC_Track () PAYFIHm [l 2] 8k BR Bx Xt 2 4 & B (tp_dealloc A)AH) M 24
TEtp_traverse FARFTEH AL BUR R B AT S008I eR 4R
void _PyObject_GC_UNTRACK (PyObject *op)
PyObject GC_UnTrack () WM ESEIBIMRA . AEEM T .

3.6 AR CLETH: 53X~ 7E Python 3.8 A% .

172 Chapter 11. &SI

The Python/C API, (F) 3.6.10rc1

tp_traverse MDA N RBIWRETES .

int (*visitproc) (PyObject *object, void *arg)
fethitp b raverse MIMH VI EAIIRTL. object RA I PETRARITH— 3%, 5= MYBRHY
Ttp traverse ALBERY arg . Python AZ.Cofdi I Z2 A5 1) ¥ e B UIEIAS N A BIRAG I, AFRE
EATSE I R

tp_traverse ACFRLMIE DA T :

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.

The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

N Y fifbep_traverse Ab B SCEL, Python £t T —Avry VISIT() K. FHEMMXAKE, ©H
W tp_traverse WIZBEAN44 K visit F arg .

void Py_VISIT (PyObject *0)
If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

The tp_clear handler must be of the i nquiry type, or NULL if the object is immutable.

int (*inquiry) (PyObject *self’)
EI ARG UG . A A RATEEV A, oI TR B R LG . &%
HREMZ, SRR E GBI AR CREextsI i RIAM Py _DECREF () J7k). 4Bk
WA AR N B2 SAEEERT | T Py, IR SR

11.9. fEXMRAEBRZTHEIALIR B 173

The Python/C API, §(EF) 3.6.10rc1

174 Chapter 11. ¥R sclzF

CHAPTER 12

API #0 ABI iR A &35

PY_VERSTON_HEX J& Python FURTA S0 HHOHR .

@i, ft [PY _ VERSION _ HEX] #E>4 [0x0304012 , W] DA i 4% DA R 07 s HA N 32 (s e i
LR A B

F o uH (K| &Y

T | mEVRF)

&

1 1-8 PY_MAJOR_VERSION (the 3in3.4.1a2)

2 9-16 PY_MINOR_VERSION (the 4in 3.4.1a2)

3 17-24 PY MICRO_VERSION (the 1in3.4.1a2)

4 25-28 PY_RELEASE_LEVEL (0xA J2 alpha iR, 0xB & beta fiiA, 0xC &7 fi

BEAI H OxF @ EZMA), FEX MBI HaX AN A& alpha Jii4s .

29-32 PY_RELEASE_SERIAL (3.4.1a2 HH 2, &4 0)

I 3.4.1a2 i 16 FEHIRAS /2 0x030401a2
A 3207 2280 & XAE Include/patchlevel.h,

175

https://github.com/python/cpython/tree/3.6/Include/patchlevel.h

The Python/C API, §(EF) 3.6.10rc1

176 Chapter 12. API 0 ABI [A&

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 4 Python 2.x (TS Python 3.x (R T 5L, AEUSALTRACHS S AU USRI I3 BB R A
DU ZI () AN 2 I
2t03 f EFFEFRUEIE Y, B4 1ib2to3; HHRME—SZ AT X Tools/scripts/2to3. £
2to3-reference.,

abstract base class — IR IR G EEFFR ABC, @Xfduck-typing BAb7E, AL T —FhE LR O
X, M2 FHABRIGFA hasattr () B TREMECHE RS IR (FlanfHE BRI). ABC5IA
TR, XM EM R 5 A2, HARER: isinstance () fl issubclass () FrAR]; i
I abe FEHSCRY . Python HAFFZL P E) ABC I TSLBEHE45H (7F collections.abe fidkHr) .
BFE (FF numbers) L i (FF io Bithdh) . SAEHRESANEEE (FF importlib.abe bk
H) o ARFTRAE] abe ka3 H 2 ABC.

annotation — A7l KECEIIEAARE . REM:. RETESSUR MHEIARE, BEENE Npe hint Al .

SR AR AR IS TR AN D), (HA R AR B AR B AR £ AR . SN R
__annotations__ fFiREMH:A.

2 W variable annotation., function annotation, PEP 484 1 PEP 526, %fitIhEEH NH .
argument — 5 YU REBHE 45 function (B{method) W{H. S0 HWiFh:

o KT A TEREOR T T A AR R (BIA0 name=) SCEAE N A STERTI A <+ YT HLH
ME A 28BS, 3 A1 S FELATRXT complex () HYRMHIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s AL E Ade ARTRETSHNSI (CESHOTH T SR ERRIT L AR S AR R aa A
* Wyiterable P TCRGAL A 2B, 3 A1 5 FELA TR g T B S 4

177

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, §(EF) 3.6.10rc1

complex (3, D5)
complex (* (3, 5))

SRR REL X R AV L. A7 RN B 0 calls —7 . ARABIEYE, (k50T
PSR AR A BHG S O (E 2 B X I oA

3% Wparameter REFRFH , HILFEH SEGESH K5I K PEP 362,

asynchronous context manager — 525 |1 FSCEPIZS AT £ WL E X _ _aenter_ () Ml __aexit_ ()
FEFRXT asyne with @A) P RFHREEFTEE S, B PEP 492 5] A,

asynchronous generator — 52524 R %S IR [BI{E Nasynchronous generator iterator WA . B-5M] async def
T SRR R BARAARL, ARRZAATET B vield REX A4 —FRIIWTE async for fEHH{H
HME.
WARTEEE 218 A0 A e i, EERLRE O NI AR 24 77 £ R B R % . WRFEIE-RIE
BARE X, W AR AR .

SRR LA avait FAREK asyne for M async with .
asynchronous generator iterator — 535 /L R 25608 asynchronous generator FRB BTN .

WXt J& T asynchronous iterator, 24§l __anext__ () F{ERAI &R Bl —AN 0l 2R 4 sk AT 74
A S R A U L) R —4> vield ik

f4 yield QUG AL, JCfEH AR IR (IR RATHR vy FA). % 5
R BERE TN anext () BENITFEMEARIKELN, © 2N LRASNT. S0
PEP 492 1 PEP 525,

asynchronous iterable — 525 [%A% 7 £ async for EHA R M A M X L. LAESTE W
__aiter_ () F¥ERE—A asynchronous iterator, {1 PEP 492 5| A,

asynchronous iterator — S2B k03 SLHL T __aiter_ () Ffl __anext_ () HYEMNS. __anext_ Wb
R 8] —A~awaitable %45 async for LI RAARN __anext () FEFTIR IR S5 R
%, HIHF| K —1 StopAsyncIteration F#. H1 PEP 492 5] A,

attribute - JEPE SCECE]—XTRAME, ATRAGE S 3kl ARG . flan, R 5R o BA
— Mgtk a, WATLAR o.a REIHE.

awaitable — WZEfER St GEAE await FIRK BN S . A PAZcoroutine {2 B __await__ () FERY
4. % PEP 492,

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

binary file — “_JERI S file object RENG TS F 7 K xt f. THEHISCHARI G AR DA HIEEEL ("rb, "wb!
or 'rb+"') FTHMICH:. sys.stdin.buffer, sys.stdout.buffer DA} io.BytesIOfil gzip.
GzipFile [SLH.

A5 Wiext file T fRREMSTES str RGISCIERTSR .

bytes-like object — ¥ ViR S Fp4 o #4330 I HLRE T th C-contiguous e HIXT ¢, XA HHIFA bytes.,
bytearray fll array.array X5, PARFZEE nemoryview X5, FHRIMRUIEL F
BERIBAEARAE PR X SR AR g . ORAT A R SCPR DA Bl i e AR A

FLCPRA R] 2R R . XM RAE SR PR R TR R ARG A R
B T44% bytearray PAK bytearray i memoryview. HAMMEER —JbHiRRAT T A W] 2%
G THREEFWERXG]) RFRREBI T4 bytes LAK bytes MR memoryview,

bytecode — “y1ify Python YUY &4 74785, I CPython iR & o/ Python ¢ Y AL . 7
LR EAFAE cpyc S, SRS AT [A)— SO R EpR - (AT DA G 25-K5 U B0 4 150 7
Tl o XA [P S] B ERYE 7 R A AL B virtual machine 2 b 3§ N [A Python
FEAL R T A&l , A -—ERETEA] Python A EARZ .

178 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

The Python/C API, (F) 3.6.10rc1

FATHFE A F 2 1] DATE dis B SCRY R A .
class - & I RANE P E SO SRR . 20 SGE B AL S M HZ IS SR - T B E I i 8 s
class variable — Q338 & 7E2 g LAYAE &, I HAURFE R B Z S B0 (A 27 20 LB 850

coercion — ST The implicit conversion of an instance of one type to another during an operation which
involves two arguments of the same type. For example, int (3.15) converts the floating point number to the
integer 3, but in 3+4 . 5, each argument is of a different type (one int, one float), and both must be converted to
the same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather
than just 3+4.5.

complex number — 528 WHIE SRS R, Hoo B BT EEER A N — A SR — A A REAR
MR, (1 B AR) AYSEAER, W TERCAT SN 1, TR S J. Python NE T X4
By scfe, RN TREARIS T 20 g —A 5 52, BN 3+15. WPRTEZE math BEER ARG 15X
WARBRA, WHA cmath, ER MR — DB BAEARE . WRIRBOER A L, ZIgE
LA LA AT AR 17 L

context manager — |+ F3C8FHIZS AF with 50, @idE XN _ _enter_ () fl _exit_ () FEFRE
HHFEDRESHIN G . 2L PEP 343,

contiguous — #4; —NFh AR IS C i 45 Fortran i 8l S0 N R LT . BYELErh)& C Al Fortran 1447
K. TE—4EB T, BT 25 H U PE NAE TR b A SR HES Y, R B IFUR s RS 0y . FEL 4k
C-IEZ gy, M A HES B e — A2 5 5 R 25 H I B bl . {2 7F Fortran JEZ25 40
W RS — ARG Hebk.

coroutine — P Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function — PHpREREEL IR W] — 1 coroutine ST EREL. THAERET T asyne def {BARE X, FF
A REfL P await, async for fll async with e, X2 H PEP 492 5] A

CPython Python ZRFE1EF WIMITESLEL, FE python.org [% .] CPython] —i] F F7E0A i S B Hofth
SEFEIGN Jython BY, IronPython FH X 41l

decorator — $EHigy R MIMECH 7 — AR %L, WHE B ewrapper EETEAKIATREUE e . R AMRRH
LA TAdE classmethod () Ml staticmethod ().

PR U RN, DU AR B0 SR S R Se 45 i

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

RS R T8, (B ER A . A SRR PN 1T 2 0 eR B0 SORI 2858 S S0

descriptor — filiih gy TME LT __get_ (), _set_ () B __delete_ () FIEMIXNSR. Y—1KEMH
HTERERET, B RERR ET S ST R A IR A & . EEE IR, O a.b RIREL. WE S
— N EVERTSTE a (R FHAPERATN b XIS, B b 2R, WS X R iR
. PRI R SR &2 BV 2 I PR Python (1) 65 RN VP2 SRR ELAE , 035K %K.
FE. B EhE. B EARST RG] &%,
B FERRFF FER A 7T 2 descriptors.

dictionary — ‘72t — /N SEECKEA, HoH BT B BAR L S B AR B BB, BRI DARATE M A __hash__ ()
eq () HERXNS., AE Perl 5= K4 hash,

179

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, §(EF) 3.6.10rc1

dictionary view — “‘FHLFE] M dict.keys (), dict.values () fll dict.items () IR EIRINTEYEFR UL
ME. ERETFREEN - ISHE, XEREYFHUARR, RSN A BRI
PR o BUE R4 26, AT list (dictview) . &I dict-views.

docstring — SCRYFAFHY (o098, BRBCEH 2 955 — A RaA U BU 47 5 P . EAEAUHE AT &
B, (Hu R R B A RBERIRAY __doc__ @M. mTErITFRIBHNA,
PR IR GAT S A LT (o

duck-typing — W1 8% f5—Fhgn e g, B AMRKEE AR RAORG ST AAIEMWED, MEH
PO A s s (“BRRGN T, MERREGEN T, Bagemet.”) hTmiEe
Fm AR E 2R, Bt AT A P i 2 AR ORI T R G . B9 FRALRG M type () B
isinstance () f. ((HEFEM BT DAGE A 40 28 & fE kb s,) MIfEES R hasattr ()
K M BE EAFP S o

EAFP “KJFHORIF AT S Y " B3 SCHEE . XAl Python 3 HIACHS 4 5 XUk 2 B8 i s 1) S8 BB AP AE
FAEABE SR AR R o X P T PR A R RO R R s] try Ml except 4], T HAXHY
MR PTELBYL XA%, LT C 452 HAliE = .

expression — FKiA R, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all

return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as i f. Assignments are also statements, not expressions.

extension module — " JEELHe DL C 50 C++ i S5 HUHIEL, (1] Python iy C AP SR 515 F Bl A K P AU E

AT H..

f-string — f- 7 A £ 5P BISRIOEAT R FIEEE RN AT B AS SRS R S TR
8% . 2 PEP 498,

file object — SCPRXF G X AN ML) SCIF APT DA T2 BT S (A read () B write () IXFERYTT
5) o MRIEHAUET SRR, SO R AT DAL P BLSCREESCHF, XA f, SR NI SR
AR (PIANbRHER A/ . AR X BT IS) . U R WP ST 23 2 80A.

SEPR A =R B SO G B G =2) SO, Goh =R S DARSOR . BT E X
TE fo b, BSOS R TE e A open () PR%L.

file-like object — LN 4R file object W [R) SLiF] .
finder - # 4Ry —Fh 2 AR T AR loader XI5 .

M Python 3.3 JZAFE AR BU I A $k 48 Lk 12 & 45 % BLE sys.meta_path], PAKpath entry
finders fit & sys.path_hooks ffiff].

LTS 0 PEP 302, PEP 420 | PEP 451,

floor division — [i] FEURERRIE) N & A B S BN BE R YR . I FEURBE BB // - B,
Fib 11 /7 A WITELRRE 2, S ZMHRRIF SN EIERRERE 2.75 . HE (-11) //
4 &) -3 Ak -2.75 @ TR ASRI4EE . WL PEP 238

function — % 1T DA [& 3R R AME) — 415 A) . i8] PATA HAZ AT B EZ AN 520 HE R B ST
Wil « 5 Wparameter, method F1 function Z&75,

function annotation — FErbATE B4R BEE0E 2 5iR IBHE R annotation
PRV R TR 2042« BIan AR s Z A int SEOF LR E—4> int {H:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

BRI I TR DL function —5,
& & Fvariable annotation F11 PEP 484 % I GE A

180 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python/C API, (F) 3.6.10rc1

future —Fh ORI, RIRRR R GO RS -5 2 BT RE R AN AR B T S R

15%3%@/\ _ future_ BHIFXTEH A AR EORE, AR DA B AT i RO AGE 5 A ST B
BRIA

>>> import __ future_
>>> _ future__ .division
7Feature((2, 2, O, 'alpha', 2)/ (31 OI Or 'alpha'/ O)I 8192)

garbage collection — J S W TGS T4 1 FH (%) N A7 2S (B A R o Python S a5 | FTHE0RT— A RS A AN
FTAGERG | OGS 0 s SR A TR M) o W RABE] gc BBk fil s [i s -

generator — LAY &[0l generator iterator WIRKEL. BRERMBGEEREL, AFAETHOY yield &
KA DA =2 — R AL for-IEHAE I 8@t next () REE—IKEL.
W ZARE AR R, BRI N TR R AR AR B R E . AR FEEERIBAAE S, EHl
FH A PR DATRE Gy S

generator iterator — ZE RS IEICES generator PRELPTOIEEMIRT A .
FAS yield IGHFEEAR, 0S4 HI AV EHATIRS (AFE RS RMERER vy HA]) o 241X £ &
Rk REWEN, BMNBEFACESRSIT (X580 AR T LG 13538 bR A2 AR K

generator expression — /|2)% 2%k, An expression that returns an iterator. It looks like a normal expression followed

by a for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function — {Z MR Sy A []) 228 S B[] B4 1) 221 BRSOV AL BOR) eR 8 R T IR 2 ph IR EE SR
R 7 1% ik R A~ S B

5155 Wsingle dispaich RiEZF4H . functools.singledispatch () 2/figsA N PEP 443,
GIL Z: W global interpreter lock

global interpreter lock — 2 R RESS 8 CPyrhon fEREAS IR B —FPHLE], BRI —B 20 308 — AN e
PWFT Python bytecode ., BEHLHITEIT B EXT G (36 dict SFEENERE) 43I &R RS
£fdifb T CPython SCHl. AR INBI M MREAS S AL T (8, HAAM N2 HidE T2 AL
RS DRI .

g, BEBEhRE Bl =05 I R TR AT T 4 BT 55 00 P 4 w0 A IR GIL
BEAh, FEAT VO AR A2 SR GIL.
QA (CAERSALEE R BUE I S8) A 2™ MRS 55 I MR, PRI 44
A AL AR DU T B PERE . 3845 SO MR Rl M BE A 18 i 3 B DA AR AR %, AT B A DA 4
o

hashable — nfWy Ay — > X 5 14 0 Ay fEL A0 R AE FC AR A Jo 0 N 4R A8 REBOPR Ol Tee A (EFREAA
__hash__ () Jrik) , IFATLARILAX AT (ERERA _eqa 0 Jik) o AIGAXIR L
I RAT AR G A (L LRSS R A A]

TG A PSR SRRSO SR AR B A B, PR Ak S B A A P Bt e A fE

All of Python’ s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except with
themselves), and their hash value is derived from their id ().

IDLE Pytl;)&n B IDE, “LERiIF Kk 52257 B9 RS . /2 Python ARk K 4TIty i B4 g A 2 1 AR
R

181

https://www.python.org/dev/peps/pep-0443

The Python/C API, §(EF) 3.6.10rc1

immutable — Anf A HAREERNR . AR GEFNT . FAAHAICA. AR R RS .
RIDBAFE— DA FRIE, WD AETEFN . BN S FE RS A AR 2 ETZAEN, fm
(S L EuE B

import path — AR hZME (s 258) HARIIIER, SR pah based finder JRAH A
Hbr. FEFAR, BAEIIZEFERE sys.path, (HXRHPEABLATHER A LHRMH __path__
JE .

importing — A 4— ML) Python fURSHE N I3 —AMELBR) Python (RS BIr (s I YL 72 o
importer — A %R AR MBI G O REEJET finder X & T loader .

interactive — 33 1 Python 5 5 — a2 B MERERS, BIAR AT DAYEMFRESR P2 R A7 5 i A B AL eIk =, A7 Bk
THERHRER . REATSHHED) python a3 (WA AEARIGTTHEALITF 46 3% B b g B AH .3 B
) o A I AR SR I B H RN L i s X Rb o XS AR . (GG help (x)).

interpreted — f %! Python —ZFPRREALIE S, S RHmIFAIET, BAMWE M XAH TF 1%
PREARIAEAE T A BB . X R I5 S T AL a1 T I AN 5 S = B i o] PAT SO st T AR
BUEFET BA AR BUE S BRI AR, B AR PR TS g . S Winteractive,

interpreter shutdown — fFREGS P 241 2R I, Python fERE G- UE A — MR AT B BOT E LR
AETECIR, PIAIRCR % F S N ARSI S5 . Bl 2 2R R eI 2 o Xl A P E S
e 55 U R A A AT o E S P BEAA TR W] RE B B A R, TR R LB ORI B U
EARTARL (IR B 1A PR BB AL 55 -

FRREAS T 2R IR R __main_ AUHREETIZTTHI AR O 58 kAT -

iterable — n[EACA R BEAS B — ik | Ho A DL R 5. R aEAC T R B O 45 B e A 2T (D 1ist.
str Ml tuple) PARIESCIEFHZRAIGIAN dict. AT % PARGEX T __iter_ () HiEEELEH
T Sequence 15 XY __getitem_ () HYERMTE H & XEXT4.

AERXTZ T T for MEIRDA K2 HMM TR Z— NP (zip (). map ())o J—AA[ER
MENERNSEAEHWNERE iter () B, BERENZASSEAERL . X FEAREH T XELE AR —
U 7 o« FEAE AT AR S, PR AR B iter O B0E HOAFRER TS . for IBMEN
PR SALBEARSEHAE B8 — MR A iy 24 72 B RAENR I R RAF B AR . S Witerator, sequence
PA K generator

iterator — KUY FRFR —ER RS . ERFEAERIN _next__ () H¥E (B HALL N E K
Bonext () FRERENR PRI 248%A BRSNS % StopIteration i, FXHHEL
st BRI C AR, AR next_ () HEHATHIRT] K StopIteration . £
TAIRA __iter_ () HERRBRFENZERIBXNILH Y, FILERIFUEWR S LIS, AT
FHAB T BTGB KRBT G . — A BEF BN & 2 K ER P B RIS . 25T
% (N 1ist) FEARBRR A A iter () BREEUETE for IH 6 A B RS = A — AT B AL
o ARAEPEE BT RS 26 A2 53R [P 7E 2 ji i AC AR tp R R] — s R &, AR
Kkt EEN.

W25 H A F typeiter,

key function — H#EpR % T R EEUPRRE IR £, 2 RERS IR [0 T HEF SR CLAO R W A 4. BTN, 1ocale.
strxfrm () A HTA B —AF A DKIHE T 29 1 HE 4
Python w5 1 2 T H & Ao F 8 s ORI U R HEAL 84 41 7 K. HAP 36 min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg.nlargest () PA K
itertools.groupby (),

S —MERBCE 2R 7. BN, str.lower () 7R AMIVEZBS K/ NEHEF 4R AL 5k,
SERB AT 1anbda Fkx0ORAIE, HI40 lanbda r: (r[0], r[2]). i&H operator il
T =R B ERE: attrgetter (). itemgetter () flmethodcaller (). & AE WIHT
—T PASRE B RN) B pR £ s 191

keyword argument — 3P E S Wargument ,

182 Appendix A. RiEIEBR

The Python/C API, (F) 3.6.10rc1

lambda — B fliexpression ¥ S 44 NERBR R, b A AETH I IOR(E. Q18 lambda e85 AJA

lambda [parameters]: expression

LBYL B GBRER” MSCHS . XM RS g 5 XUA% SAEUEA T IR) sl 2 1 S O A A i P 4 1F . I
A5 EAFP J7 UG O LG, HAF R KR 1 £ 14

L2 LB Y, LBYL S8 “AF/” M “BRER” Z R EAF Mg R . B, AR it
key in mapping: return mappinglkey] A REH TR A EAEZ G HAMLKFE N mapping H
T key T i X) AT JE B 681 EAFP 5 R g

list — 514 Python N B) —Fhsequence. BIRAAHNZR, (HHEIUT HABEF h RO m A%, V)
[TCZ IR S A% R O(1) .

list comprehension — FI#Hl: X AL B — AN 7 91 v i) Bir A3 80K 43 JC IR Eé*%ﬂ%%ﬁ’ﬂ*ﬁ%?%%‘%o
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] ¥HEK—70
) 255 5 [A R F oS 2R AR BOR B AR (Ox.) B FIFR. o i ?/UXET [, 2R A g
range (256) HHIFTAITTRA AT

loader — JIERZY ATTMMEMBIRT G . BUHIE L4 load_module () BTk, MEAHE T B —1finder
R, S PEP 302, %FTabstract base class B] 2=, 1mportllb .abc.Loader,

mapping — WL —FP SCRHME BB ARSI T Mapping 8 MutableMapping g3 BT e ik m 2%
T E, RS H 74335 dict, collections.defaultdict, collections.OrderedDict
PAM collections.Counter,

meta path finder — JLEEEERIRES sys.meta_path WY R TR R finder. ToIEARE TR 4% Spath entry finders
FEAE RIAHFF A] -

5% importlib.abc.MetaPathFinder T fRICIARTA Hoas T SE I 71k .

metaclass — 0 —FPHTAIELRAIE. B LAFERL . REMAELN L., TR AFTEZ LR =13
QI B2 . JCEBA3 T8 1) X S 0 A 5 AP S Rl — N BRI S B Python {45532 ALAET 1T AR
@EEXE o KRBT H PAGEATFT XA TH, (HY4TFEB IR, T nT$EHbsm K m O HEr) ik 7
ﬂla%ﬁﬁﬁﬂ%ﬂ%)@ PRI H A BSR4t R a0 at . Sl i, DA AT 24555 .

E%ﬁﬁﬁm metaclasses .

method Jjik FEIENHE LW BREL. WERVE R LB — A @R, 75 2 RBUE IR S A R
F—Aargument (R 4N self). Z: 0L function FMnested scope.

method resolution order — Jj iLfRBTIIT 5 ¥ AEHT I T S 70 2 4% N A HE R AL P Y e)5 Y . 16
¥ Python 2.3 7 PEMTIN Y T AEE 2.3 BGEE Python fAT#5T FIAH 6 B 16 S

module it JH:XT%E Python AU —Fh RN, AR A ML 44 25 8], A4 34L& Python X 4.
FEHRT @ i importing FRAFR N3] Python Ff,
55 Wpackage.

module spec — RS — A~y 4 S), KPS T BB A X T A B, 2 importlib.
machinery.ModuleSpec HJSEH.

MRO Z: iLmethod resolution order ,
mutable — W[/ FASKFRATATER: id () PRFREE RO T BUEHIE. 531§ S Wimmutable.,

named tuple — B. #7041 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

183

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, §(EF) 3.6.10rc1

namespace — iy 4450 32 ARSI A EA R, £RANER, SaNZR P RiREm
HSE) (FEHIEZ W) o A 25108 2 B 1E v 44 oh 58 R S Fppsidlefb . 5, pR% builtins. Open'ﬁ
os.open () A[@IT 4 H 2 25 AR IR 4. fir 44 25 18] 38 1o BH A A B S BRIRAS R BSOR 35 B 3 5
ﬂiﬁﬁﬂﬂﬁ’ﬁf‘@ B4, random.seed() B itertools.islice(Lﬁ'ﬁ%@?@%Tﬁﬁ“@’ﬁ%
B random 5 itertools FiH - HISEELT .

namespace package — @y #4544 PEP 420 i 5| A —M e AIVE T Wpackage, fiv 8 25 A0 0] DA%
Bk IR, HAid T Hregular package KRR, FEAEATRA __init__.py Xff.
FHAIZ Wmodule ,

nested scope — iR E1EHIN 76— SGEREIN G HAS RGeS . Blan, FE5— @@IZV‘]EXE’JL@ITU\?IW
RIS . TR IS A A A nglﬂﬁﬁxﬁlﬁﬁﬁ}r&kﬁﬂﬁxﬁl JaERAS R L E # A2 PR T i R E
M. BRI, RS WER T2 R4 a0, #id nonlocal %%ﬁ?ﬁfﬁﬁg/\ﬁl‘gﬁfﬂﬂ
i

new-style class — FrJ XFT H 5 9 T A 502 19388 X IHPRIE - 7E5- 580 Python fitAcH, HA# =
FAEE 1] Python By 58 RyGHEHE, Bilan __slots__ . #iiR%F. FefEE M. __getattribute_ ().

KBS TS

object — X% LATHAIRGS (BMESE) PAKRTIE AT () W5k, object L2 T lnew-style class [
HIERERY .

package — {4 —FP] & T BB IS ML & P) Python module, MR Lk, H/2HWHA __path_ &
P Python L,

Y52 W regular package Fnamespace package.

parameter - 65 funciion (8irvk) i XRHIGA 0K, EHSE AT AR argument (siAERCLEN;
W, A4S, HTAEE:

* positional-or-keyword : {7 E B BT, F5E DV DMERNE E A3 8 AW AT DAVE N X 48 F 2 1%
AW, X RBIAWTES AL, HIUTR K foo F1 bar:

def func(foo, bar=None): ...

* positional-only: {LFRAIE, € — HBEHALEE AR SE. Python Hilcf E AR ETE 21
k. (AR NEREA MURMEES (il abs ().
* keyword-only: {{[RICHET, F5E A HAEEEL R THEANSE. (URIKE TS il oE KL

E XIS IR PG A A B S WA N AN B S ZH—A * kE X, BT
T kw_onlyl F1 kw_only2:

’def func(arg, *, kw_onlyl, kw_only2): ... ‘

* var-positional:][RI, € W] ABRME f—MERECR AL B SEA T (FEITEHAE 2
CRZNNESHZIG). RIS AR S AR * KE L, Bl FE args:

’def func (*args, **kwargs): ... ‘

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FEOITE MBS C #3205
FLRZIG) . RIS EETEIE S ARG «* e L, Bl Lmr kwargs.

FEZ T VAR 8 € AT e S 4L, AT A S SE T e S 40008 E BRI -

W2 Wargument RIEFZH . SEEESHX BT H)E ILE S, inspect .Parameter 2%, function —
LK PEP 362,

path entry — Y882 A 01 import path WP —ANEEI B, SWipath based finder Fl A4 E T A AL

path entry finder — J&E A HEERDS F—0[TH XL sys . path_hooks (Blipath entry hook) & [8] i) finder
WA GRS S path entry g R

184 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

The Python/C API, (F) 3.6.10rc1

2% importlib.abc.PathEntryFinder DA T D ARSI SLIAI AN ¥

path entry hook — B4R A IV —Fh T XS 48, FERNIE AUART & 4R 4RF RE parh entry Y REHR 5 DL T REAS L1
H sys.path_hook #|FEiR [Bl—~path entry finder .

path based finder — 3¢ F¥EIRM AR EY ZRIANA—FhTsb 2 &35, RIFE—Aimport path A FARERL

path-like object — BIEHMN R L E DU RGE ARG . BB R0 AR FEREAEA str 83
bytes X%, [PA— LI T os.PathLike MM E . —A3ZHF os.PathLike MHYAIXI S
Al os. fspath () HREEEIR N str B bytes KRB M RGEPKIE; os. fsdecode ()
os.fsencode () A5 I RMALRIKS str o bytes BBIPWLER . x4 2 PEP 519 5| A,

PEP “Python I Y345 . — 1 PEP L —Griki SCRY, JHIf Python 4 RHEFEL, shifiia
A Python Iy BFHFPE B FLHEES SRS . PEP 1A B 0RO S0 A BTSSR R E]
PEP [l it B A HN . WCHERRDCA A BRI I DA B R 5 AT, Python B e 5
SCRAH L. PEP {8 A IEFEAE A D PR IR, T BRI B UL A SO
Z I, PEP 1,

portion — {5y F R — A~ 24 2 AL A H SR NSRS & (AT REAA T — A zip SCIFY) , HLHAE UL
PEP 420.

positional argument — {ii & %5 S Wlargument.

provisional APT - #[Z API & APL 2545 A B HEBRTEARME PRI 0] 5 A M ARIEZ S . I i 101 . B
SRR TEHE A TA EARUCE, (HHBH RO €, BT BETER O A E 1w A B Ol
TGRS E R (BRI D). SO A S ST — (FE APLBUINAZ Bk
% S I E EL R A B K IS A R] B XA
R @ X APTRUL, 0] 5 AR S Sl B eI 587 —] A R i A B
XA RRAE AR B —Fh) IS A e T 6
PR AP AR AR FERF SR WTHBE AN TR0 M KRBT B B . RS L PEP 411,

provisional package — # 5, Z: [provisional AP,

Python 3000 Python 3.x %A FEZIIEAR (X2 FAERRAS 3 1 LA RERE LI BTt T il 7)o« A
%ﬁ%gj{j “Py3k”o

Pythonic $55—™ L% 80— B USSR 35 8E0H T Python o 5 e RO XA FIBE &, AN 2 (o AL o 5 v e
AR A S BACRS . BN, Python [I XAR 2 (] £or TRAIIRERAM) — >l AU R i T T
o WZHAE S A AR, AP Python A I 2 W6 — MO T -

for i in range(len(food)):
print (food[i])

TR, Y B 1575 B Pythonic (77 34 /& X FERY:

for piece in food:
print (piece)

qualified name — g /¥ — NPASUS BRI A PR, R ISR Y 2 JR VPR E AR R b o LR B
B0 BT, MHE I PEP 3155, T i Z A RECRIZE, FREA RS X R AR —E

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname_
IC’

(continues on next page)

185

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, §(EF) 3.6.10rc1

(R —H)

>>> C.D.__gualname___

'Cc.D'

>>> C.D.meth._qualname___
'C.D.meth’

295 T 5 AR, % RE S AR AR R IR LSS TR N i AR, s a1 AL
, il email .mime.text:

>>> import email.mime.text
>>> emaill.mime.text. name
'email.mime.text'

reference count — 5[JIIiH4 SR E XTS5 HREEE . 24— DX RI5 | TR BN, B4 B v TR oRE
e 51ATHECT Python fAHE K il # 2 AT LAY, {H'E SR CPython SEPLH)— N K HEICE . sys BBLUE X
T—A~getrefcount () pREL, FEF G2 ATUE B AR mIR X205 | 4L

regular package - AL ZG A package, BIMEEEH—A __init__.py CARYHR.
5% Wnamespace package.

_slots__ —FEGYEA N TR AT B, 18 1 951 5 7 B S 1) JaR 1R A 0 R I RS R S 01 7 R 548 A BRI R
TARGAT, HARZNE AR, St RRBAEDBAROUT RN, BN iRy, 7
HIH A a5 KRS

sequence — Ji41 —Fhiterable, 'S _ getitem () HRFR R A AR [T RAUR G R TTIA),
HEXL T —MREFHKER __len_ () FiE. WEFHIZKAA 1list, str, tuple fil bytes,
WEER dict BHH _ getitem () Al __len_ (), {HEHANBTME RS, K AEE
RIS F AT B i) immutable ST AEFEHL

collections.abc.Sequence MR HREXN T —TMEEEFEWED, BT _ _getitem_ ()
H__len_ (), WIT count (), index (), __contains__ () fl __reversed__ () . W[PA#EH
register () RAJEM LI FEH OREAL.

single dispatch — Jis3Jk —Fhgeneric function 73IRIEA, HSELHUE BT A SR FERDRIEREH) -

slice — Y)Y 305 HALS THEE sequence H)—FB5r A4 . YIR 2 A Mnbmic R BIER, 7 11 P4l
JIANLAE B TEIErT, fltl variable_name[1:3:5]1. 4SS (FR) FRCERNEREH slice Xt
%

special method — $§5% Jj ik —7#fith Python I MR %, HIRXFAS B PATH E RAE BN I 255 . X
M5 AR A FRE T AU TR LR . REFATT ¥R SCH 2 DL specialnames .,

statement — i54) 150 2B (— MU W) AN, —SiEA T DA — A expression B %
SEFERYEERY, BN if. while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().

text encoding — SCASRY JI T Unicode 47 R 25 i A 737 R A i 985 o

text file — LA —FhRENS IS str X5 file object . B HE— > SCAS SO SE bR 1 1) —A T8 1) 47 B9 B
T H ik Brext encoding . SCASCAFMIBIFAFEASCARIE (Ter 3 'w') FTHIRSCHE. sys. stdin,
sys.stdout PAM io.StringIO fY3LH,

FWSEbinary file | fRREVS S F 7 K3 2 SR

triple-quoted string — 5 '3 fFih AW =AESEWGS () 88515 () /5. BITEDREL
HERES 519t TR A2, B2t ENarirETfFHanNEERE

186 Appendix A. RiEIEBR

The Python/C API, (F) 3.6.10rc1

e ARG S HINE S, H A DABS B AT JO T G HESRAT , (E20 5 SOR A0 R IPRE 5

type — J3% KA i —> Python X4 J& TAHAMIE; B MXEREEA A, EHEX IR, ATA
ViRER __class__ J@E, sididid type (obj) SEIRHL

type alias — 28R % —RAAG [S, Q)7 2R B R BRI R E BARRAT .
KRB BRI fa A X 2w . Biln:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

AT DA A R AT s

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

Z:)l typing Fl PEP 484, HAA7xh I RER A4 -
type hint — RBIPLR annotation 28 E . KJEME. BB S B0k IE 2 BU R 262,

RAERE T RIS, Python ABSKAEHE, (HHAXEHARA M THARIEN , FF A) IDE S8 H
A S,

&R, RIBMER R R B R A typing.get_type_hints () Ry, {HJEHRAS &N
AHTPA,

Z), typing fil PEP 484 g st I IhfERY 404 .

universal newlines — i i1 7 — A2 CAS IR AY /7, B PAT P A7 S8R IR A T4 bR . Unix H4745
WAE "\n'. Windows FJZ%E '\r\n"' PAKIHMK Macintosh {25 '\r'. =, PEP 278 1 PEP 3116
Flbytes.splitlines () [fE¥ £ HELH.

variable annotation — A8 HubiiE XA & 52K g ¥ annotation
TEAREAR S @ MR, 20 T PR A LA

class C:
field: 'annotation'

AR EAREE T O A K AR 0 BINDA R AR B2 int JREURO(E:

count: int = 0

A AR TRYA N TEAE fRRE I annassign —7
m%ﬁMMMWWWMmPHWMﬂPUW%,A*ﬁ%m EEEREEAIETI iU

virtual environment — JEAUBRSE — 5 R YRR B RIB T T ERSRE, feiF Python Ji RIS I 7 A 22 4 Al
TH4k Python 73 R ADIIA T HE 3 [l — R 58 Eizt7i HAt Python W AR FFHIATH .«

HZ venv,

virtual machine — JEHIPL — & 58 &8 S B 2 LAY AL. Python 8L ML v] $0 47 7 1 18 4 13 44 BT A= B
Hbytecode.

187

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, §(EF) 3.6.10rc1

Zen of Python — Python 24 51k Python JHHA BN S5, 4 DY TR 5 MRS . A JLR I
AI{E HBES R [import this .

188 Appendix A. RiEIEBR

APPENDIX B

BARIELEFIRA S 14

15 LB S 28 Sphinx (—{# 5(E] Python [EJWA SR 85 1 SRR BERS) M0 reStructured Text 4#57
PR B L A A T o

4l Python [&, iith H A1) %5 1 I SCPRELERHEAR H BT TR . F AR IR A ik, 75 52 reporting-
bugs EUTE, [EVSAHBA A FoAM i Balpy BB A

B
* Fred L. Drake, Jr., J5lf Python SC{ TR AR M RIEE DA R — K EIAHI1ER .
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx 4¢f) Alternative Python Reference w1-#] H IS 2 00 5 .

B.1 Python {898 BRKE

7% A\#RH[E] Python 1& 137 . Python 121 ik X AN Python [EJRA SCAFET MR . Python FT#(EIfY 5 AA RS &
A ERCEREH, @5 R Misc/ACKS ,

TEFAIE] Python A7 1458 3 B Bk A 4 7 15 (R i (E] S — Jalt i iR g A1 !

189

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

The Python/C API, §(EF) 3.6.10rc1

190 Appendix B. B iELE(FIBASC 4

apPENDIX C

JE Sh B

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

ffilE): GPL 345 H A ERF Python {£ GPL R k7. 5 GPL [, Jiif Python ¥ niEAR AL 43 B A UG

W

191

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, §(EF) 3.6.10rc1

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 iF PYTHON 3.6.10rc1 &Y PSF o] HpiY

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.6.10rcl software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 3.6.10rcl alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice.
—of

copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.6.10rcl alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.10rcl or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.6.10rcl.

4. PSF is making Python 3.6.10rcl available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.

—0OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.

—THE
USE OF PYTHON 3.6.10rcl WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.10rcl

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.10rcl, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

192 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.6.10rcl, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM #F &l

BEOPEN PYTHON JF5 /8] Pl & 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(continues on next page)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 193

The Python/C API, §(EF) 3.6.10rc1

(R —H)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g CNRI ¥#F o] il

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(continues on next page)

194 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

(R —H)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FF PYTHON 0.9.0 E 1.2 5 CWI ¥ a]H#piY

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 WM fFa9F ok S5
A2 Python JATHU SIS =y BOPH VAT RIS oL, i R A S FLRIE A K

C.3.1 Mersenne Twister

_random RS BT http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html F 28 113,
. ARG R (FFE):

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

(continues on next page)

C.3. #HWrRIRHFaYVF ol 5053 195

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, §(EF) 3.6.10rc1

(R —H)

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EfEx

socket il getaddrinfo () il getnameinfo () pRER, XLEpREECISHE WIDE i H (http://www.

wide.ad.jp/) B ERAMIRSCAF

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND

(continues on next page)

196 Appendix C. FEsh E1i4E

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API, (F) 3.6.10rc1

(R —H)

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-—
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C34 REEEFRS

asynchat and asyncore #EHHE AT A HH:

C.3. WURIRHFEYIFETiE SIS H

197

The Python/C API, §(EF) 3.6.10rc1

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie &1

http.cookies B E DL T ERH:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 MITERR

trace BHALE DA I

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

(continues on next page)

198 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

(R —H)

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode 5 UUdecode F#

uu AEHAL S PATR A A

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. #HWrRIRHFaYVF ol 5053 199

The Python/C API, §(EF) 3.6.10rc1

C.3.8 XML 2T iAMA

xmlrpc.client FBHEE DA R ER:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

test_epoll B FHLATFEM:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

200 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

C.3.10 Select kqueue

select Ml XF kqueue B AL S DA R AEH:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Pyt hon/pyhash. c contains Marek Majkowski] implementation of Dan Bernstein’ s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. #HWrRIRHFaYVF ol 5053 201

The Python/C API, §(EF) 3.6.10rc1

C.3.12 strtod and dtoa

Python/dtoa.c XML T CiEF R dtoa Fl strtod pR%L, TR C 155 WSO FE BURFAF R A 7440, %
A Hy David M. Gay Fi 7] 4 SCHFIRAE T 2K, 24T AT A http://www.netlib.org/fp/ F#k. 2009 4E 3 H 16 H&3|
) 2 SO 75 DA BRURCRR 1 1T s B

/**

The author of this software is David M. Gay.

* % o

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

E

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.13 OpenSSL

WMRBAERG WA, W hashlib, posix, ssl, crypt BH(H] OpenSSL FE 42 &thfE. Moh, WHT
Python [#) Windows F1 Mac OS X “Z-%¢#2)7 1] BBt % OpenSSL FER#E U1, BT PAZE AL 51 H T OpenSSL /1]
TR HE DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

L O S T

(continues on next page)

202 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

(R —H)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L I S S T A SR R N N R S SN S N S T S T S S N S T S .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
*

included with this distribution is covered by the same copyright terms

(continues on next page)

C.3. WURIRHFEYIFETiE SIS H

203

The Python/C API, §(EF) 3.6.10rc1

(R —H)

except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L I I R A S N S S SN S SN SRS N S T SN S SN S N S S S S S S S e N S N S S N R

C.3.14 expat

BRI ——with-system-expat FLE T, I pyexpat § ARG M5 expat JRIHE DAL E R

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

(continues on next page)

204 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

(R —H)

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

BRAEBE —-with-system-1ibffi FUE THHE, I _ctypes § AR 65 Libfi JHATHE DM R

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

AR ARG EAR PR 21ib BAKIFTFE kN THE, W a5 2lib SR8 DR 2110 3 E:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

(continues on next page)

C.3. #HWrRIRHFaYVF ol 5053 205

The Python/C API, §(EF) 3.6.10rc1

(R —H)

including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

tracemalloc {§i [l MG FZE M S B E T cfuhash 3 H :

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

206 Appendix C. FEsh E1i4E

The Python/C API, (F) 3.6.10rc1

C.3.18 libmpdec

BRG] —-with-system-libmpdec MU TH#, BN _decimal BRI libmpdec FEfFE DAY

JEip

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. WURIRHFEYIFETiE SIS H

207

The Python/C API, §(EF) 3.6.10rc1

208 Appendix C. FEsh E1i4E

APPENDIX D

=
i
|mit
If

Python Hlig 25302 -

A © 2001-2019 Python Software Foundation, {58 g Al .

Copyright © 2000 BeOpen.com {4 i — Y HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SRR R A G 2 R At

209

The Python/C API, §(EF) 3.6.10rc1

210 Appendix D. jfiEEE

3l

Non-alphabetical

..., 177

2to3,177

>>> 177

__all__ (package variable), 36
__dict__ (module attribute), 113
__doc___ (module attribute), 113

_ file_ (module attribute), 113, 114

_ future_ , 181
_ import_

_ loader__ (module attribute), 113
_ _main_

M4, 9,127,136
__name___ (module attribute), 113
__ package__ (module attribute), 113
__slots__, 186
_frozen (CH #), 39
_inittab (C A #), 39
_Py_c_diff (C &#X), 79
_Py_c_neg (C #X), 79
_Py_c_pow (C & X), 79
_Py_c_prod (C &#=R), 79
_Py_c_quot (C &), 79
_Py_c_sum(C #X), 79
_Py_NoneStruct (C &%), 150
_PyBytes_Resize (C HX), 82
_PyImport_FindExtension (C #X), 39
_PyImport_Fini (C $#=X), 38
_PyImport_Init (C HX), 38
_PyObject_GC_TRACK (C % X)), 172
_PyObject_GC_UNTRACK (C H# X)), 172
_PyObject_New (C & X), 149
_PyObject_NewVar (C % 3R), 149
_PyTuple_Resize (C % X)), 102
_thread

A, 133
ks

bytearray, 82

bytes, 80

Capsule, 121
complex number, 79
dictionary, 105
file, 112

floating point, 78
frozenset, 107
function, 109
instancemethod, 110
integer, 75

list, 103

long integer, 75
mapping, 105
memoryview, 120
method, 110

module, 113

None, 74

numeric, 75
sequence, 80

set, 107

tuple, 101

type, 4,73

BREW

exec_prefix, 4

PATH, 9

prefix, 4
PYTHONDUMPREF'S, 155
PYTHONHOME, 9, 10, 131
PYTHONIOENCODING, 128
PYTHONMALLOC, 142, 146
PYTHONMALLOCSTATS, 142
PYTHONPATH, 9, 10

A
abort (), 36
abs

Bz & R, 58

abstract base class —— £ # %, 177
annotation —-- 4§, 177
argument -- £#, 177

211

The Python/C API, §(EF) 3.6.10rc1

argv (in module sys), 130
ascii

E#® =, 55

asynchronous context manager -- =+ ¥ L

TXEHE, 178

asynchronous generator -- %4 k&, 178
asynchronous generator iterator -- =3

PR ABE NS, 178

asynchronous iterable —- & % 7 #% R 3 £,

178

asynchronous iterator -- R#F#&RE, 178

attribute —- &M, 178
awaitable -- T4 £, 178

B

BDFL, 178
binary file —— 34| CUH, 178
buffer interface
(see buffer protocol), 63
buffer object
(see buffer protocol), 63
buffer protocol, 63
builtins
M4, 9,127,136
bytearray
1, 82
bytecode -- F¥ 7,178
bytes
[& =, 55
#1 . 80
bytes—-like object —-- F¥WEx%,178

C

calloc (), 141
Capsule

i, 121
C-contiguous, 67, 179
class —— 2,179
class variable —— %% &,179
classmethod

[El & R, 152
cleanup functions, 36
close () (in module os), 137
CO_FUTURE_DIVISTION (C &), 17
code object, 111
coercion —- HEH|EA H#, 179
compile

Bz & =, 37
complex number

i, 79
complex number —— £ #, 179
context manager —- T X&IEHE, 179
contiguous, 67
contiguous —- # %, 179

copyright (in module sys), 130

coroutine -- Hh4E, 179

coroutine function -- WEEHK, 179
CPython, 179

create_module (C H#X), 116

D
decorator —— ¥EME, 179
descriptor —-- #H®E, 179
dictionary

M1, 105
dictionary -- FH#,179

dictionary view —-- FHAHIE, 180
divmod

[Ez & =, 58
docstring —-— i%?ﬁ%JSO
duck-typing —-- #F KA 180

E

EAFP, 180

EOFError (built-in exception), 112
exc_info () (in module sys), 8
exec_module (C % X)), 116
exec_prefix, 4

executable (in module sys), 129

exit (), 36

expression -- Fik R, 180
extension module —-- ¥ EH, 180

F
file
W, 112
file object —- X#X£,180
file-like object —- XfFExt£, 180
finder —— & # £, 180
float
Bz & =X, 60
floating point
HtF, 78
floor division —- [§ B, 180
Fortran contiguous, 67,179
free (), 141
freeze utility, 39
frozenset
i1k, 107
f-string —— f-F4 &, 180
function
1, 109
function -- %, 180
function annotation -- E#AriE, 180

G

garbage collection —-- 3%k [E g, 181

212

The Python/C API, £(F] 3.6.10rc1

generator, 181

generator —— 4 k4, 181

generator expression, 181

generator expression —-- 4 KKK RA, 181

generator iterator —- 4 K #E#% K%, 181

generic function -- Z A ¥, 181

GIL, 181

global interpreter lock, 131

global interpreter lock —- 4 B % &4,
181

F{

hash

[El# % R, 56, 158
hashable —-- T, 181

IDLE, 181
immutable —-- A%, 182
import path -- B AE1Z, 182
importer —— H A, 182
importing —— § A, 182
incr_item(), 8,9
inquiry (C A #&), 173
instancemethod

HitE, 110
int

[El# & K, 60
integer

HtF, 75
interactive
interpreted
interpreter
interpreter
iterable —-
iterator —-

K

key function -- %%, 182
KeyboardInterrupt (built-in exception), 27
keyword argument -- X#FHEH, 182

L

lambda, 183
LBYL, 183
len
[Fl# & =, 57, 60, 62, 104, 106, 108
list
i1, 103
list —— %%, 183
list comprehension -- %|xk#HEH R, 183
loader —— jJu# #, 183
lock, interpreter, 131
long integer

-— X F,182

—— fEEA, 182

lock, 131

shutdown -- FBEHXxH, 182
%R A&, 182

#* R &, 182

W, 75

LONG_MAX, 76

M

main (), 128, 130
malloc (), 141
mapping

W, 105
mapping —-- B4, 183
memoryview

i, 120
meta path finder —- THAELEHKE, 183
metaclass -- T2k, 183
METH_CLASS ([Fl# %), 152
METH_COEXIST ([Flz& % %), 152
METH_KEYWORDS ([Elzk 4 #0), 151
METH_NOARGS ([FlzZ % #0), 151
METH_O ([Fli & #0), 152
METH_STATIC ([Fa % #), 152
METH_VARARGS ([FliZ % £0), 151
method

i, 110
method resolution order -- 7 3 ## W 7,

183

method 7 i, 183
MethodType (in module types), 109, 110
module

search path, 9, 127, 129

i, 113
module spec —-- EkIA, 183
module Ak, 183
modules (in module sys), 36, 127
ModuleType (in module types), 113
MRO, 183
mutable —- ET@E, 183

N

named tuple -- E 454,183
namespace -- & % JH, 184
namespace package -- #% % [E 4, 184
nested scope —-— ﬁ@ﬁlﬁ}ﬂﬁ’ 184
new-style class —— ¥z, 184

None

o, 74

numeric

.75
O

object
code, 111
object —— Xt#4,184
OverflowError (built-in exception), 76, 77

e]

213

The Python/C API, §(EF) 3.6.10rc1

P

package -— 4,184
package variable

all .36
parameter -- ¥%, 184
PATH, 9

path
module search, 9, 127, 129
path (in module sys), 9, 127, 129

path based finder —-- AT BEmE&KE, 185

path entry -- B#FAH, 184

path entry finder —- BAAN D FEHE, 184

path entry hook -- BE&FEANB#F, 185
path-like object —- ERAZEX%£, 185
PEP, 185

platform (in module sys), 130

portion —--— # 4, 185
positional argument —-— L& %, 185
pow

[z & =X, 58, 59
prefix, 4
provisional API -- # % API, 185
provisional package -- # FM, 185

Py_AddPendingCall (C &%), 137
Py_AddPendingCall (), 137
Py_AtExit (C HX), 36
Py_BEGIN_ALLOW_THREADS, 132
Py_BEGIN_ALLOW_THREADS (C E %), 134
Py_BLOCK_THREADS (C E %), 135
Py_buffer (CH), 64
Py_buffer.buf (C & B &%), 64
Py_buffer.format (C & B &), 65
Py_buffer.internal (C m B F¥), 66
Py_buffer.itemsize (C m% B % ¥), 65
Py_buffer.len (C & B H¥), 65
Py_buffer.ndim (C & B &), 65
Py_buffer.obj (C & 8 &), 64
Py_buffer.readonly (C m B s ¥), 65
Py_buffer.shape (C & B &), 65
Py_buffer.strides (C m 8 & #), 65
Py_buffer.suboffsets (C & B & #), 65
Py_Buildvalue (C H#X), 46

Py_CLEAR (C #X), 19
Py_CompileString (C &), 15
Py_CompileString(), 17
Py_CompileStringExFlags (C &X), 16
Py_CompileStringFlags (C HR), 16
Py_CompileStringObject (C #X), 16
Py_complex (C# #), 79
Py_DecodeLocale (C %HR), 34
Py_DECREF (C % X)), 19

Py_DECREF (), 4

Py_Ellipsis (C &%), 120
Py_EncodeLocale (C %HRX), 34

Py_END_ALLOW_THREADS, 132
Py_END_ALLOW_THREADS (C E %), 135
Py_EndInterpreter (C $HR), 137
Py_EnterRecursiveCall (C #X), 29
Py_eval_input (C &%), 16
Py_Exit (C HR), 36

Py_False (C % %), 77
Py_FatalError (C $HX), 36
Py_FatalError (), 130
Py_FdIsInteractive (C %HR), 33
Py_file_input (C &%), 17
Py_Finalize (C % R), 128
Py_FinalizeEx (C HR), 127
Py_FinalizeEx (), 36,127,136, 137
Py_GetBuildInfo (C &X), 130
Py_GetCompiler (C &), 130
Py_GetCopyright (C H2), 130
Py_GetExecPrefix (C HX), 128
Py_GetExecPrefix(),9
Py_GetPath (C &), 129
Py_GetPath(),9, 128, 129
Py_GetPlatform (C FHR), 129
Py_GetPrefix (C %HX), 128
Py_GetPrefix (),9
Py_GetProgramFullPath (C &X), 129
Py_GetProgramFullPath(),9
Py_GetProgramName (C H#:), 128
Py_GetPythonHome (C % X)), 131
Py_GetVersion (C %X), 129
Py_INCREF (C %#X), 19

Py_INCREF (), 4

Py_Initialize (C#HR), 127
Py_Initialize(),9, 128,136
Py_InitializeEx (C #HX), 127
Py_IsInitialized (C &X), 127
Py_IsInitialized(), 10
Py_LeaveRecursiveCall (C %K), 29
Py_Main (C % 3), 13
Py_mod_create (C %), 116
Py_mod_exec (C %), 116
Py_NewInterpreter (C #HR), 136
Py_None (C ¥ %), 74
Py_NotImplemented (C & %), 53
Py_PRINT_RAW, 113

Py_REFCNT (C E #£), 150
Py_ReprEnter (C % X)), 29
Py_ReprLeave (C #X,), 29
Py_RETURN_FALSE (C E %), 78
Py_RETURN_NONE (C E %), 75
Py_RETURN_NOTIMPLEMENTED (C E %), 53
Py_RETURN_TRUE (C E £), 78
Py_SetPath (C &#R), 129
Py_SetPath (), 129
Py_SetProgramName (C H#:), 128

214

The Python/C API, (F) 3.6.10rc1

Py_SetProgramName (), 9, 127129
Py_SetPythonHome (C & X)), 131
Py_SetStandardStreamEncoding (C &%), 128
Py_single_input (C &%), 17
Py_SIZE (C E#%), 150
PY_SSIZE_T_MAX, 76
Py_TPFLAGS_BASE_EXC_SUBCLASS ([& 4 #),
160
Py_TPFLAGS_BASETYPE ([FzZ % #), 159
Py_TPFLAGS_BYTES_SUBCLASS ([Elz# %), 160
Py_TPFLAGS_DEFAULT ([EliE % #), 160
Py_TPFLAGS_DICT_SUBCLASS ([Flz& % %), 160
Py_TPFLAGS_HAVE_FINALIZE ([FlZ % %), 160
Py_TPFLAGS_HAVE_GC (Bl % %), 160
Py_TPFLAGS_HEAPTYPE ([Fla % #0), 159
Py_TPFLAGS_LIST_ SUBCLASS ([Hli % %), 160
Py_TPFLAGS_LONG_SUBCLASS ([Flz % %), 160
Py_TPFLAGS_READY ([FliZ % %), 160
Py_TPFLAGS_READYING ([EliZ % %), 160
Py_TPFLAGS_TUPLE_SUBCLASS (i % #), 160
Py_TPFLAGS_TYPE_SUBCLASS ([Flz %), 160
Py_TPFLAGS_UNICODE_SUBCLASS ([Flz £ %), 160
Py_tracefunc (C % #&), 138
Py_True (C ¥ #),78
Py_TYPE (C E %), 150
Py_UCS1 (C A #&), 83
Py_UCS2 (C A %), 83
Py_UCS4 (CA #), 83
Py_UNBLOCK_THREADS (C E £), 135
Py_UNICODE (C % #2), 83
Py_UNICODE_IS_HIGH_SURROGATE (C E £), 86
Py_UNICODE_IS_LOW_SURROGATE (C E 4£), 87
Py_UNICODE_IS_SURROGATE (C E 4£), 86
Py_UNICODE_ISALNUM (C =), 86
Py_UNICODE_ISALPHA (C %K), 86
Py_UNICODE_ISDECIMAL (C &X), 86
Py_UNICODE_ISDIGIT (C % X)), 86
Py_UNICODE_ISLINEBREAK (C #X), 86
Py_UNICODE_ISLOWER (C &% X), 85
Py_UNICODE_ISNUMERIC (C & =), 86
Py_UNICODE_ISPRINTABLE (C &#X,), 86
Py_UNICODE_ISSPACE (C % X)), 85
Py_UNICODE_ISTITLE (C % X)), 86
Py_UNICODE_ISUPPER (C #X), 85
Py_UNICODE_JOIN_SURROGATES (C E %), 87
Py_UNICODE_TODECIMAL (C &X.), 86
Py_UNICODE_TODIGIT (C X)), 86
Py_UNICODE_TOLOWER (C &X,), 86
Py_UNICODE_TONUMERIC (C & X)), 86
Py_UNICODE_TOTITLE (C &%=X), 86
Py_UNICODE_TOUPPER (C &X,), 86
Py_VaBuildvalue (C #X), 48
Py_VISIT (C &HX), 173
Py_XDECREF (C &=, 19

Py_XDECREF (), 9
Py_XINCREF (C &=, 19
PyAnySet_Check (C #X), 108
PyAnySet_CheckExact (C #X), 108
PyArg_Parse (C % X)), 45
PyArg_ParseTuple (C % X)), 45
PyArg_ParseTupleAndKeywords (C #X), 45
PyArg_UnpackTuple (C % X)), 45
PyArg_ValidateKeywordArguments (C & X)),
45
PyArg_VaParse (C % R), 45
PyArg_VaParseTupleAndKeywords (C HR), 45
PyASCIIObject (C &), 83
PyAsyncMethods (C# #), 171
PyAsyncMethods.am_aiter (C A& B &%), 171
PyAsyncMethods.am_anext (C m B FH %), 171
PyAsyncMethods.am_await (C m% B %), 171
PyBool_Check (C % X)), 77
PyBool_FromLong (C #=,), 78
PyBUF_ANY_CONTIGUOUS (C E %), 67
PyBUF_C_CONTIGUOUS (C E £), 67
PyBUF_CONTIG (C E), 68
PyBUF_CONTIG_RO (C E), 68
PyBUF_F_CONTIGUOUS (C E £), 67
PyBUF_FORMAT (C E £), 66
PyBUF_FULL (C E £), 68
PyBUF_FULL_RO (C E), 68
PyBUF_INDIRECT (C E %), 67
PyBUF_ND (C E £), 67
PyBUF_RECORDS (C E £), 68
PyBUF_RECORDS_RO (C E #£), 68
PyBUF_SIMPLE (C E #£), 67
PyBUF_STRIDED (C E £), 68
PyBUF_STRIDED_RO (C E %), 68
PyBUF_STRIDES (C E £), 67
PyBUF_WRITABLE (C E £), 66
PyBuffer_FillContiguousStrides (C & RX),
70
PyBuffer_FillInfo (C &#=), 70
PyBuffer_IsContiguous (C &X,), 70
PyBuffer_Release (C HR), 69
PyBuffer_SizeFromFormat (C $%H3), 70
PyBuffer_ToContiguous (C % R), 70
PyBufferProcs, 64
PyBufferProcs (C A f&), 170
PyBufferProcs.bf_getbuffer (C m 8 & &),
170
PyBufferProcs.bf_releasebuffer (C & 8 &
), 171
PyByteArray_ AS_STRING (C %X), 83
PyByteArray_AsString (C &HX), 82
PyByteArray_Check (C %HR), 82
PyByteArray_CheckExact (C HR), 82
PyByteArray_Concat (C #X), 82

e]

215

The Python/C API, §(EF) 3.6.10rc1

PyByteArray_FromObject (C #X), 82 PyCode_NewEmpty (C % 2R), 112
PyByteArray_ FromStringAndSize (C #=X),82 PyCode_Type (C % #), 112

PyByteArray_ GET_SIZE (C %H3R), 83 PyCodec_BackslashReplaceErrors (C & RX),
PyByteArray_Resize (C HX), 82 51

PyByteArray_Size (C HX), 82 PyCodec_Decode (C &% X)), 50
PyByteArray_Type (C £ %), 82 PyCodec_Decoder (C H# 1), 50
PyByteArrayObject (C % #&), 82 PyCodec_Encode (C % X)), 50
PyBytes_AS_STRING (C HR), 81 PyCodec_Encoder (C %#R), 50
PyBytes_AsString (C #X), 81 PyCodec_IgnoreErrors (C %HR), 51
PyBytes_AsStringAndSize (C %HR), 81 PyCodec_IncrementalDecoder (C % R), 50
PyBytes_Check (C % R), 80 PyCodec_IncrementalEncoder (C HX,), 50
PyBytes_CheckExact (C HX), 80 PyCodec_KnownEncoding (C &), 50
PyBytes_Concat (C % X), 81 PyCodec_LookupError (C #X), 51
PyBytes_ConcatAndDel (C % R), 82 PyCodec_NameReplaceErrors (C & X), 51
PyBytes_FromFormat (C #=X,), 80 PyCodec_Register (C HX), 50
PyBytes_FromFormatV (C H#:), 81 PyCodec_RegisterError (C HR), 50
PyBytes_FromObject (C #X), 81 PyCodec_ReplaceErrors (C HR), 51
PyBytes_FromString (C F#X,), 80 PyCodec_StreamReader (C % R), 50
PyBytes_FromStringAndSize (C % 1), 80 PyCodec_StreamWriter (C %HIR), 50
PyBytes_GET_SIZE (C #X), 81 PyCodec_StrictErrors (C %HR), 51
PyBytes_Size (C HR), 81 PyCodec_XMLCharRefReplaceErrors (C & RX),
PyBytes_Type (C % %), 80 51

PyBytesObject (C#), 80 PyCodeObject (C & #), 111
PyCallable_Check (C H#X), 56 PyCompactUnicodeObject (C A #), 83
PyCallIlter_Check (C #HR), 118 PyCompilerFlags (C# #), 17
PyCallIter_New (C %HX), 118 PyComplex_AsCComplex (C &%), 80
PyCallIter_Type (C % %), 118 PyComplex_Check (C % R), 79

PyCapsule (C & #&), 121 PyComplex_CheckExact (C %), 79
PyCapsule_CheckExact (C &#R), 121 PyComplex_FromCComplex (C &% R), 79
PyCapsule_Destructor (C#), 121 PyComplex_FromDoubles (C #R,), 80
PyCapsule_GetContext (C %HR), 122 PyComplex_ImagAsDouble (C #X), 80
PyCapsule_GetDestructor (C &HR), 122 PyComplex_RealAsDouble (C #X), 80
PyCapsule_GetName (C &% R), 122 PyComplex_Type (C & #), 79
PyCapsule_GetPointer (C HR), 122 PyComplexObject (C A #), 79
PyCapsule_Import (C &#X), 122 PyCoro_CheckExact (C % 2), 123
PyCapsule_IsValid (C &#R), 122 PyCoro_New (C &% X)), 123

PyCapsule_New (C H# X)), 121 PyCoro_Type (C & ¥), 123
PyCapsule_SetContext (C #R), 122 PyCoroObject (C# £), 123
PyCapsule_SetDestructor (C H:R), 122 PyDate_Check (C % X)), 124
PyCapsule_SetName (C % R), 122 PyDate_CheckExact (C % 3), 124
PyCapsule_SetPointer (C %HR), 122 PyDate_FromDate (C & X)), 124
PyCell_Check (C &HR), 111 PyDate_FromTimestamp (C $HR), 125
PyCell GET (C &R, 111 PyDateTime_Check (C &#X), 124
PyCell_Get (C HX), 111 PyDateTime_CheckExact (C H:), 124
PyCell_New (C % X)), 11 PyDateTime_DATE_GET_HOUR (C X)), 125
PyCell_SET (C #X), 111 PyDateTime_DATE_GET_MICROSECOND (C & X)),
PyCell_Set (C HR), 111 125

PyCell_Type (C ¥ %), 111 PyDateTime_DATE_GET_MINUTE (C &), 125
PyCellObject (CH &), 111 PyDateTime_DATE_GET_SECOND (C #X), 125
PyCFunction (C A #), 151 PyDateTime_DELTA_GET_DAYS (C H#R), 125
PyCFunctionWithKeywords (C % #&), 151 PyDateTime_DELTA_GET_MICROSECONDS (C &
PyCode_Check (C & X)), 112 X)), 125

PyCode_GetNumFree (C %HR), 112 PyDateTime_DELTA_GET_SECONDS (C &%), 125
PyCode_New (C F# X)), 112 PyDateTime_FromDateAndTime (C & X), 124

216 %3

The Python/C API, (F) 3.6.10rc1

PyDateTime_FromTimestamp (C &X), 125
PyDateTime_GET_DAY (C HR), 125
PyDateTime_GET_MONTH (C % X)), 124
PyDateTime_GET_YEAR (C HX), 124
PyDateTime TIME_GET_HOUR (C &% X)), 125
PyDateTime_TIME_GET_MICROSECOND (C & i\)
125
PyDateTime_TIME_GET_MINUTE (C #R), 125
PyDateTime_ TIME_GET_SECOND (C X)), 125
PyDelta_Check (C H#X), 124
PyDelta_CheckExact (C &), 124
PyDelta_FromDSU (C % R), 124
PyDescr_IsData (C &), 119
PyDescr_NewClassMethod (C & R), 119
PyDescr_NewGetSet (C %HR), 119
PyDescr_NewMember (C &%), 119
PyDescr_NewMethod (C % R), 119
PyDescr_NewWrapper (C HR), 119
PyDict_Check (C &X,), 105
PyDict_CheckExact (C &%), 105
PyDict_Clear (C &R), 105
PyDict_ClearFreeList (C HX), 107
PyDict_Contains (C & R), 105
PyDict_Copy (C % X,), 105
PyDict_DelItem (C & =), 105
PyDict_DelItemString (C &#R), 105
PyDict_GetItem (C HX), 105
PyDict_GetItemString (C &), 106

PyDict_GetItemWithError (C &), 106
PyDict_Items (C &HR), 106
PyDict_Keys (C & R), 106
PyDict_Merge (C &HR), 107
PyDict_MergeFromSeqg2 (C H X)), 107

PyDict_New (C F# X)), 105
PyDict_Next (C &=, 106
PyDict_SetDefault (C HR), 106
PyDict_SetItem (C HR), 105
PyDict_SetItemString (C &), 105
PyDict_Size (C &), 106
PyDict_Type (C % #), 105
PyDict_Update (C FH =), 107
PyDict_vValues (C % X)), 106
PyDictObject (C & #), 105
PyDictProxy_New (C HR), 105
PyErr_BadArgument (C & R), 22
PyErr_BadInternalCall (C #=X), 24
PyErr_CheckSignals (C #3), 27
PyErr_Clear (C % X)), 21
PyErr_Clear(),7,9
PyErr_ExceptionMatches (C HX), 25
PyErr_ExceptionMatches(),9
PyErr_Fetch (C % R), 25
PyErr_Format (C HR), 22
PyErr_FormatV (C $3R), 22

PyErr_GetExcInfo (C HX), 26
PyErr_GivenExceptionMatches (C &
PyErr_NewException (C #HR), 27
PyErr_NewExceptionWithDoc (C &
PyErr_NoMemory (C #3R), 22
PyErr_NormalizeException (C &
PyErr_Occurred (C HX), 25
PyErr_Occurred(),7
PyErr_Print (C % R), 22
PyErr_PrintEx (C H#X), 21
PyErr_ResourceWarning (C &
PyErr_Restore (C H:R), 25
PyErr_SetExcFromWindowsErr (C HR), 23
PyErr_SetExcFromWindowsErrWithFilename

(C & X),23
PyErr_SetExcFromWindowsErrWithFilenameObject

(C #K), 23
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C & X)), 23
PyErr_SetExcInfo (C FHX), 26
PyErr_SetFromErrno (C HXR), 22
PyErr_SetFromErrnoWithFilename (C & R),

23
PyErr_SetFromErrnoWithFilenameObject (C

X)), 23
PyErr_SetFromErrnoWithFilenameObjects

(CHRX), 23
PyErr_SetFromWindowsErr (C H#:), 23
PyErr_SetFromWindowsErrWithFilename (C

X)), 23
PyErr_SetImportError (C &HR), 23
PyErr_SetImportErrorSubclass (C &
PyErr_SetInterrupt (C %HX), 27
PyErr_SetNone (C H), 22
PyErr_SetObject (C H#X), 22
PyErr_SetString (C & X)), 22
PyErr_SetString(),7
PyErr_SyntaxLocation (C #X), 24
PyErr_SyntaxLocationEx (C ¥ R), 24
PyErr_SyntaxLocationObject (C &HR), 24
PyErr_WarnEx (C &), 24
PyErr_WarnExplicit (C HX), 24
PyErr_WarnExplicitObject (C &
PyErr_WarnFormat (C % X), 25
PyErr_WriteUnraisable (C &HR), 22
PyEval_AcquireLock (C #=R), 136
PyEval_AcquireThread (C %R), 136
PyEval_AcquireThread(), 133
PyEval_EvalCode (C 1), 16
PyEval_EvalCodeEx (C %HR), 16
PyEval_EvalFrame (C F#X), 16
PyEval_EvalFrameEx (C FHX), 16
PyEval_GetBuiltins (C &), 49
PyEval_GetCallStats (C &#X), 139

4 X)), 25
4 X)), 27
4 X)), 26

4 X)), 25

4 X)), 24

4 X), 24

e]

217

The Python/C API, §(EF) 3.6.10rc1

PyEval_GetFrame (C H# 1), 49
PyEval_GetFuncDesc (C F#X), 49
PyEval_GetFuncName (C X)), 49
PyEval_GetGlobals (C &% R), 49
PyEval_GetLocals (C #X), 49
PyEval_InitThreads (C $#X), 133
PyEval_InitThreads (), 127
PyEval_MergeCompilerFlags (C &#R), 16
PyEval_ReInitThreads (C % 3), 134
PyEval_ReleaseLock (C #Z), 136
PyEval_ReleaseThread (C H#X), 136
PyEval_ReleaseThread (), 133
PyEval_RestoreThread (C %#R), 133
PyEval_RestoreThread (), 132, 133
PyEval_SaveThread (C &% 2), 133
PyEval_SaveThread(), 132, 133
PyEval_SetProfile (C HR), 138
PyEval_SetTrace (C % X)), 139
PyEval_ThreadsInitialized (C %3), 133
PyExc_ArithmeticError, 30
PyExc_AssertionError, 30
PyExc_AttributeError, 30
PyExc_BaseException, 30
PyExc_BlockingIOError, 30
PyExc_BrokenPipeError, 30
PyExc_BufferError, 30
PyExc_BytesWarning, 31
PyExc_ChildProcessError, 30
PyExc_ConnectionAbortedError, 30
PyExc_ConnectionError, 30
PyExc_ConnectionRefusedError, 30
PyExc_ConnectionResetError, 30
PyExc_DeprecationWarning, 31
PyExc_EnvironmentError, 31
PyExc_EOFError, 30
PyExc_Exception, 30
PyExc_FileExistsError, 30
PyExc_FileNotFoundError, 30
PyExc_FloatingPointError, 30
PyExc_FutureWarning, 31
PyExc_GeneratorExit, 30
PyExc_ImportError, 30
PyExc_ImportWarning, 31
PyExc_IndentationError, 30
PyExc_IndexError, 30
PyExc_InterruptedError, 30
PyExc_IOError, 31
PyExc_IsADirectoryError, 30
PyExc_KeyboardInterrupt, 30
PyExc_KeyError, 30
PyExc_LookupError, 30
PyExc_MemoryError, 30
PyExc_ModuleNotFoundError, 30
PyExc_NameError, 30

PyExc_NotADirectoryError, 30
PyExc_NotImplementedError, 30
PyExc_OSError, 30
PyExc_OverflowError, 30
PyExc_PendingDeprecationWarning, 31
PyExc_PermissionError, 30
PyExc_ProcessLookupError, 30
PyExc_RecursionError, 30
PyExc_ReferenceError, 30
PyExc_ResourceWarning, 31
PyExc_RuntimeError, 30
PyExc_RuntimeWarning, 31
PyExc_StopAsyncIteration, 30
PyExc_StopIteration, 30
PyExc_SyntaxError, 30
PyExc_SyntaxWarning, 31
PyExc_SystemError, 30
PyExc_SystemExit, 30
PyExc_TabError, 30
PyExc_TimeoutError, 30
PyExc_TypeError, 30
PyExc_UnboundLocalError, 30
PyExc_UnicodeDecodeError, 30
PyExc_UnicodeEncodeError, 30
PyExc_UnicodeError, 30
PyExc_UnicodeTranslateError, 30
PyExc_UnicodeWarning, 31
PyExc_UserWarning, 31
PyExc_ValueError, 30
PyExc_Warning, 31
PyExc_WindowsError, 31
PyExc_ZeroDivisionError, 30
PyException_GetCause (C HR), 28
PyException_GetContext (C HX), 27
PyException_GetTraceback (C FHX), 27
PyException_SetCause (C %HR), 28
PyException_SetContext (C HR), 28
PyException_SetTraceback (C #X), 27
PyFile_ FromFd (C &#X,), 112
PyFile_GetLine (C %X), 112
PyFile_WriteObject (C &#X), 113
PyFile_WriteString (C &#ZR), 113
PyFloat_AS_DOUBLE (C &=,), 78
PyFloat_AsDouble (C &), 78
PyFloat_Check (C $#X), 78
PyFloat_CheckExact (C HR), 78
PyFloat_ClearFreelList (C H#X), 78
PyFloat_FromDouble (C #R), 78
PyFloat_FromString (C %=X), 78
PyFloat_GetInfo (C X)), 78
PyFloat_GetMax (C FHR), 78
PyFloat_GetMin (C % X)), 78
PyFloat_Type (C ¥ %), 78
PyFloatObject (CH £), 78

218

EL]

The Python/C API, (F) 3.6.10rc1

PyFrame_GetLineNumber (C % R), 49
PyFrameObject (CH #), 16
PyFrozenSet_Check (C %HR), 108
PyFrozenSet_CheckExact (C &X), 108
PyFrozenSet_New (C HX,), 108
PyFrozenSet_Type (C 4 %), 108
PyFunction_Check (C %=X), 109
PyFunction_GetAnnotations (C %K), 110
PyFunction_GetClosure (C H#RK), 110
PyFunction_GetCode (C H#X,), 109
PyFunction_GetDefaults (C FHX), 109
PyFunction_GetGlobals (C H:), 109
PyFunction_GetModule (C % R), 109
PyFunction_New (C & X), 109
PyFunction_NewWithQualName (C &), 109
PyFunction_SetAnnotations (C &% R), 110
PyFunction_SetClosure (C H:R), 110
PyFunction_SetDefaults (C #X), 110
PyFunction_Type (C % #), 109
PyFunctionObject (CA #), 109
PyGen_Check (C &% R), 123
PyGen_CheckExact (C FHX), 123
PyGen_New (C % R), 123
PyGen_NewWithQualName (C %
PyGen_Type (C % %), 123
PyGenObject (C & &), 123
PyGetSetDef (CH #), 153
PyGILState_Check (C & X)), 134
PyGILState_Ensure (C &% R), 134
PyGILState_GetThisThreadState (C &
PyGILState_Release (C HX), 134
PyImport_AddModule (C #3), 37
PyImport_AddModuleObject (C FHX), 37
PyImport_AppendInittab (C #R), 39
PyImport_Cleanup (C #X), 38
PyImport_ExecCodeModule (C &#R), 37
PyImport_ExecCodeModuleEx (C &%), 38
PyImport_ExecCodeModuleObject (C %HR), 38
PyImport_ExecCodeModuleWithPathnames (C
H X)), 38
PyImport_ExtendInittab (C &), 39
PyImport_FrozenModules (C % #), 39
PyImport_GetImporter (C &), 38
PyImport_GetMagicNumber (C H#R), 38
PyImport_GetMagicTag (C &HR), 38
PyImport_GetModuleDict (C &HZR), 38
PyImport_Import (C & X)), 37
PyImport_ImportFrozenModule (C &R), 39
PyImport_ImportFrozenModuleObject (C &
X), 39
PyImport_ImportModule (C &R, 36
PyImport_ImportModuleEx (C &), 36
PyImport_ImportModuleLevel (C), 37

H R, 123

HR), 134

PyImport_ImportModuleLevelObject (C &
X)), 36
PyImport_ImportModuleNoBlock (C &
PyImport_ReloadModule (C #H=X), 37
PyIndex_Check (C H#X), 60
PyInstanceMethod_Check (C &), 110
PyInstanceMethod_Function (C % 3R), 110
PyInstanceMethod_GET_FUNCTION(C%R), 110
PyInstanceMethod_New (C % R), 110
PyInstanceMethod_Type (C ¥ %), 110
PyInterpreterState (C# #), 133
PyInterpreterState_Clear (C %R), 135
PyInterpreterState_Delete (C % R), 135
PyInterpreterState_Head (C &#R), 139
PyInterpreterState_New (C H#X), 135
PyInterpreterState_Next (C &HR), 139
PyInterpreterState_ThreadHead (C &
PyIter_Check (C HX), 63
PyIter_ Next (C &X), 63
PyList_Append (C & X)), 104
PyList_AsTuple (C &X), 104
PyList_Check (C &%X), 103
PyList_CheckExact (C &#=X), 103
PyList_ClearFreeList (C %#R), 105
PyList_GET_ITEM (C $#ZX), 104
PyList_GET_SIZE (C HX), 104
PyList_GetItem (C &), 104
PyList_GetItem(),6
PyList_GetSlice (C HR), 104
PyList_Insert (C FHX), 104
PyList_New (C &X,), 103
PyList_Reverse (C % X)), 104
PyList_SET_ITEM (C & X)), 104
PyList_SetItem (C %#X), 104
PyList_SetItem(),5
PyList_SetSlice (C HRX), 104
PyList_Size (C &% R), 104
PyList_Sort (C %X), 104
PyList_Type (C % %), 103
PyListObject (C A #), 103
PyLong_AsDouble (C &), 77
PyLong_AsLong (C % R), 76
PyLong_AsLongAndOverflow (C &
PyLong_AsLongLong (C H#3), 76
PyLong_AsLongLongAndOverflow (C &
PyLong_AsSize_t (C HR), 77
PyLong_AsSsize_t (C HX), 76
PyLong_AsUnsignedLong (C % R), 77
PyLong_AsUnsignedLongLong (C $#3), 77
PyLong_AsUnsignedLongLongMask (C #%R), 77
PyLong_AsUnsignedLongMask (C % R), 77
PyLong_AsVoidPtr (C #X), 77
PyLong_Check (C # X)), 75
PyLong_CheckExact (C % 3R), 75

5 X)), 36

5 X.), 139

4 X)), 76
4 X)), 76

e]

219

The Python/C API, §(EF) 3.6.10rc1

PyLong_FromDouble (C % 2R), 75
PyLong_FromLong (C &% X)), 75
PyLong_FromLongLong (C & X)), 75
PyLong_FromSize_t (C &R), 75
PyLong_FromSsize_t (C &HR), 75
PyLong_FromString (C &% R), 75
PyLong_FromUnicode (C #X), 76
PyLong_FromUnicodeObject (C % X)), 76
PyLong_FromUnsignedLong (C #R), 75
PyLong_FromUnsignedLongLong (C &% X), 75
PyLong_FromVoidPtr (C HX), 76
PyLong_Type (C & &), 75
PyLongObject (C & #), 75
PyMapping_Check (C & X)), 62
PyMapping_DelItem (C #R), 62
PyMapping_DelItemString (C & ZR), 62
PyMapping_GetItemString (C &HR), 62
PyMapping_HasKey (C #X), 62
PyMapping_HasKeyString (C X)), 62
PyMapping_Items (C & X)), 63
PyMapping_Keys (C &% X)), 63
PyMapping_Length (C #X), 62
PyMapping_SetItemString (C &), 62
PyMapping_Size (C H#X), 62
PyMapping_Values (C % R), 63
PyMappingMethods (C # #), 169
PyMappingMethods.mp_ass_subscript (C X
B R %), 169
PyMappingMethods.mp_length (C & B & $),

169
PyMappingMethods.mp_subscript (C s B &
#0), 169
PyMarshal_ReadLastObjectFromFile (C &
X)), 40

PyMarshal_ReadLongFromFile (C &R), 40

PyMarshal_ReadObjectFromFile (C &X), 40

PyMarshal_ReadObjectFromString (C & R),
40

PyMarshal_ReadShortFromFile (C &:), 40

PyMarshal_WriteLongToFile (C &% R), 40

PyMarshal_ WriteObjectToFile (C FHX), 40

PyMarshal_WriteObjectToString (C FHX), 40

PyMem_Calloc (C #=X), 143

PyMem_Del (C &% R), 144

PYMEM_DOMAIN_MEM (C % £), 145

PYMEM_DOMAIN_OBJ (C % #), 145

PYMEM_DOMAIN_RAW (C % #), 145

PyMem_Free (C H#X), 143

PyMem_GetAllocator (C %=X), 146

PyMem_Malloc (C %=X), 143

PyMem_New (C % R), 143

PyMem_RawCalloc (C &#R), 142

PyMem_RawFree (C HX), 143

PyMem_RawMalloc (C &% R), 142

PyMem_RawRealloc (C & X), 142
PyMem_Realloc (C & X,), 143
PyMem_Resize (C &#R), 144
PyMem_SetAllocator (C H#X), 146
PyMem_SetupDebugHooks (C &), 146
PyMemAllocatorDomain (C % #&), 145
PyMemAllocatorEx (C A %), 145
PyMemberDef (C A #8), 152
PyMemoryView_Check (C #=,), 120
PyMemoryView_FromBuffer (C &), 120
PyMemoryView_FromMemory (C #=), 120
PyMemoryView_FromObject (C H#=), 120
PyMemoryView_GET_BASE (C & X)), 120
PyMemoryView_GET_BUFFER (C %R), 120
PyMemoryView_GetContiguous (C &X), 120
PyMethod_Check (C &), 110
PyMethod_ClearFreelList (C %X), 111
PyMethod_Function (C HX), 111
PyMethod_GET_FUNCTION (C & X)), 111
PyMethod_GET_SELF (C %K), 111
PyMethod_New (C & R), 111
PyMethod_Self (C # 1), 111
PyMethod_Type (C % #), 110
PyMethodDef (C % #), 151
PyModule_AddFunctions (C $#X), 117
PyModule_AddIntConstant (C HR), 117
PyModule_AddIntMacro (C #=X), 117
PyModule_AddObject (C HX), 117
PyModule_AddStringConstant (C &%), 117
PyModule_AddStringMacro (C F#X), 117
PyModule_Check (C #X), 113
PyModule_CheckExact (C H#X), 113
PyModule_Create (C), 115
PyModule_Create2 (C HR), 115
PyModule_ExecDef (C H#X), 117
PyModule_FromDefAndSpec (C % X)), 116
PyModule_FromDefAndSpec2 (C HX,), 117
PyModule_GetDef (C H#), 113
PyModule_GetDict (C HX), 113
PyModule_GetFilename (C & X)), 114
PyModule_GetFilenameObject (C &HR), 113
PyModule_GetName (C #=X), 113
PyModule_GetNameObject (C #X), 113
PyModule_GetState (C H:R), 113
PyModule_New (C % R), 113
PyModule_NewObject (C & X)), 113
PyModule_SetDocString (C #HR), 117
PyModule_Type (C &%), 113
PyModuleDef (C &), 114
PyModuleDef_Init (C HX), 115
PyModuleDef_Slot (C# #), 116
PyModuleDef_Slot.slot (C s B &%), 116
PyModuleDef_Slot.value (C & B &), 116
PyModuleDef.m_base (C 5 B H %), 114

220

EL]

The Python/C API, (F) 3.6.10rc1

PyModuleDef.m_clear (C rx B S #), 115
PyModuleDef .m_doc (C m B &), 114
PyModuleDef .m_free (C & 8 H%), 115
PyModuleDef.m_methods (C s B &), 114
PyModuleDef.m_name (C &% B FH#), 114
PyModuleDef.m_reload (C m B %), 114
PyModuleDef.m_size (C & B FH$), 114
PyModuleDef.m_slots (C . B H#), 114
PyModuleDef .m_traverse (C s B H#), 114
PyNumber_Absolute (C HR), 58
PyNumber_Add (C F#X), 57
PyNumber_And (C #X), 59
PyNumber_AsSsize_t (C FHX), 60
PyNumber_Check (C & X), 57
PyNumber_Divmod (C #=X,), 58
PyNumber_Float (C &% 3R), 60
PyNumber_FloorDivide (C &), 58
PyNumber_Index (C % 3), 60
PyNumber_InPlaceAdd (C #X), 59
PyNumber_InPlaceAnd (C #X), 59
PyNumber_InPlaceFloorDivide (C #X), 59
PyNumber_InPlaceLshift (C &#X), 59
PyNumber_InPlaceMatrixMultiply (C & R),
59
PyNumber_InPlaceMultiply (C &X), 59
PyNumber_InPlaceOr (C FHX), 60
PyNumber_InPlacePower (C HR), 59
PyNumber_InPlaceRemainder (C H#3), 59
PyNumber_InPlaceRshift (C & R), 59
PyNumber_InPlaceSubtract (C HX), 59
PyNumber_InPlaceTrueDivide (C &#R), 59
PyNumber_InPlaceXor (C X)), 60
PyNumber_Invert (C H#R), 58
PyNumber_Long (C &%), 60
PyNumber_Lshift (C $#=X), 58
PyNumber_MatrixMultiply (C &R), 58
PyNumber_Multiply (C &3), 58
PyNumber_Negative (C &% 3R), 58
PyNumber_Or (C % R), 59
PyNumber_Positive (C &HR), 58
PyNumber_Power (C & X)), 58
PyNumber_Remainder (C H=), 58
PyNumber_Rshift (C H#R), 58
PyNumber_Subtract (C %HR), 58
PyNumber_ToBase (C #ZR), 60
PyNumber_TrueDivide (C #X), 58
PyNumber_Xor (C &), 59
PyNumberMethods (C & #), 168
PyObject (C® #), 150
PyObject_AsCharBuffer (C &HR), 70
PyObject_ASCII (C %#X), 55
PyObject_AsFileDescriptor (C & X), 112
PyObject_AsReadBuffer (C HX), 70
PyObject_AsWriteBuffer (C HX), 71

PyObject_Bytes (C HX), 55
PyObject_Call (C #X), 56
PyObject_CallFunction (C &X), 56
PyObject_CallFunctionObjArgs (C #X), 56
PyObject_CallMethod (C & X)), 56
PyObject_CallMethodObjArgs (C &), 56
PyObject_CallObject (C HX), 56
PyObject_Calloc (C &), 144
PyObject_CheckBuffer (C &X), 69
PyObject_CheckReadBuffer (C #X), 70
PyObject_Del (C %K), 149
PyObject_DelAttr (C &#X), 54
PyObject_DelAttrString (C HX), 54
PyObject_DelItem (C &), 57
PyObject_Dir (C H#X), 57
PyObject_Free (C HR), 145
PyObject_GC_Del (C &#X), 172
PyObject_GC_New (C & X)), 172
PyObject_GC_NewVar (C &X), 172
PyObject_GC_Resize (C #X), 172
PyObject_GC_Track (C HR), 172
PyObject_GC_UnTrack (C HR), 172
PyObject_GenericGetAttr (C &HR), 54
PyObject_GenericGetDict (C &), 54
PyObject_GenericSetAttr (C HR), 54
PyObject_GenericSetDict (C &), 54
PyObject_GetArenaAllocator (C %HR), 147
PyObject_GetAttr (C &#X), 54
PyObject_GetAttrString (C HX), 54
PyObject_GetBuffer (C &), 69
PyObject_GetItem (C &), 57
PyObject_GetIter (C &X), 57
PyObject_HasAttr (C %HX), 53
PyObject_HasAttrString (C %HX), 53
PyObject_Hash (C & X)), 56
PyObject_HashNotImplemented (C #HR), 56
PyObject_HEAD (C E £), 150
PyObject_HEAD_INIT (C E #£), 151
PyObject_Init (C &#=X), 149
PyObject_InitVar (C &), 149
PyObject_IsInstance (C &R), 55
PyObject_IsSubclass (C H#X), 55
PyObject_IsTrue (C &HX), 56
PyObject_Length (C H#R), 57
PyObject_LengthHint (C %R,), 57
PyObject_Malloc (C FHR), 144
PyObject_New (C & X)), 149
PyObject_NewVar (C # =), 149
PyObject_Not (C &), 57
PyObject._ob_next (C m 8 &), 155
PyObject._ob_prev (C 5 B FH), 155
PyObject_Print (C &#X), 53
PyObject_Realloc (C % X)), 144
PyObject_Repr (C % R), 55

e]

221

The Python/C API, §(EF) 3.6.10rc1

PyObject_RichCompare (C # X)), 54
PyObject_RichCompareBool (C #X,), 55
PyObject_SetArenaAllocator (C &HR), 147
PyObject_SetAttr (C #X), 54
PyObject_SetAttrString (C &), 54
PyObject_SetItem (C H#X), 57
PyObject_Size (C #=R), 57
PyObject_Str (C #HX), 55
PyObject_Type (C &#X), 57
PyObject_TypeCheck (C H# X)), 57
PyObject_VAR_HEAD (C E #£), 150
PyObjectArenaAllocator (CA #), 147
PyObject.ob_refent (C & & F %), 155
PyObject .ob_type (C & B FH#), 156
PyOS_AfterFork (C #X), 33
PyOS_CheckStack (C & X)), 33
PyOS_double_to_string (C % R), 49
PyOS_FSPath (C % X)), 33

PyOS_getsig (C & X)), 33
PyOS_InputHook (C &), 14

PyOS_ReadlineFunctionPointer (C & %), 14

Py0OS_setsig (C ¥ R), 33
PyOS_snprintf (C HR), 48
PyOS_stricmp (C HR), 49
PyOS_string_to_double (C HR), 48
PyOS_strnicmp (C HX), 49
PyOS_vsnprintf (C HX), 48
PyParser_SimpleParseFile (C HX), 15

PyParser_SimpleParseFileFlags (C &HR), 15

PyParser_SimpleParseString (C &#R), 15

PyParser_SimpleParseStringFlags (C & R),

15

PyParser_SimpleParseStringFlagsFilename

(C #HX), 15
PyProperty_Type (C % #), 119
PyRun_AnyFile (C #R), 13
PyRun_AnyFileEx (C HX), 13
PyRun_AnyFileExFlags (C %=R), 13
PyRun_AnyFileFlags (C HR), 13
PyRun_File (C %R), 15
PyRun_FileEx (C H#X), 15
PyRun_FileExFlags (C &3R), 15
PyRun_FileFlags (C &% R), 15
PyRun_InteractiveLoop (C % R), 14
PyRun_InteractiveLoopFlags (C &R), 14
PyRun_InteractiveOne (C % R), 14
PyRun_InteractiveOneFlags (C &% R), 14
PyRun_SimpleFile (C H#X), 14
PyRun_SimpleFileEx (C HX), 14
PyRun_SimpleFileExFlags (C &% R), 14
PyRun_SimpleString (C HR), 14
PyRun_SimpleStringFlags (C %), 14
PyRun_String (C &R), 15
PyRun_StringFlags (C % 3R), 15

PySeqlter_Check (C HR), 118
PySeqIter_New (C FH=X), 118
PySeqlter_Type (C &%), 118
PySequence_Check (C #X), 60
PySequence_Concat (C &% 3R), 60
PySequence_Contains (C H#:R), 61
PySequence_Count (C %K), 61
PySequence_DelItem (C HR), 61
PySequence_DelSlice (C #X), 61
PySequence_Fast (C & R), 61
PySequence_Fast_GET_ITEM (C HX,), 62
PySequence_Fast_GET_SIZE (C %K), 61
PySequence_Fast_ITEMS (C #R), 62
PySequence_GetItem (C FHX), 61
PySequence_GetItem(), 6
PySequence_GetSlice (C %K), 61
PySequence_Index (C %K), 61
PySequence_InPlaceConcat (C #X), 61
PySequence_InPlaceRepeat (C FHX), 61
PySequence_ITEM (C %HR), 62
PySequence_Length (C % R), 60
PySequence_List (C % R), 61
PySequence_Repeat (C H), 60
PySequence_SetItem (C HR), 61
PySequence_SetSlice (C #X), 61
PySequence_Size (C %HR), 60
PySequence_Tuple (C HX), 61
PySequenceMethods (C A &), 169
PySequenceMethods.sq ass_item (C
#0), 169

169

-

B &

~

PySequenceMethods.sqg_concat (C & 8 & #),

PySequenceMethods.sq _contains (C m B &

#), 170

PySequenceMethods.sqg_inplace_concat

B % E), 170

PySequenceMethods.sg_inplace_repeat

B B #), 170

(C

(C

PySequenceMethods.sq_item (C % B H), 169

169

169
PySet_Add (C #X), 108
PySet_Check (C &X), 108
PySet_Clear (C & X), 109
PySet_ClearFreelList (C X)), 109
PySet_Contains (C #<), 108
PySet_Discard (C H#<X), 108
PySet_GET_SIZE (C %X), 108
PySet_New (C &H3R), 108
PySet_Pop (C % R), 109
PySet_Size (C &HX), 108
PySet_Type (C & $), 107

PySequenceMethods.sq _length (C & B & &),

PySequenceMethods.sq _repeat (C & 8 &),

222

EL]

The Python/C API, (F) 3.6.10rc1

PySetObject (C & #), 107
PySignal_SetWakeupFd (C & X)), 27
PySlice_Check (C &%), 119
PySlice_GetIndices (C &%), 119
PySlice_GetIndicesEx (C &%R), 119
PySlice_New (C H#:), 119
PySlice_Type (C % %), 119
PyState_AddModule (C #X), 118
PyState_FindModule (C $#ZR), 118
PyState_RemoveModule (C #X), 118
PyStructSequence_Desc (C A #), 102
PyStructSequence_Field (CA #), 103
PyStructSequence_GET_ITEM(C &#X), 103
PyStructSequence_GetItem (C F#=), 103
PyStructSequence_InitType (C HX), 102
PyStructSequence_InitType2 (C H#X), 102
PyStructSequence_New (C F# X)), 103
PyStructSequence_NewType (C HR), 102
PyStructSequence_SET_ITEM (C %R), 103
PyStructSequence_SetItem (C FHX), 103
PyStructSequence_UnnamedField (C %), 103
PySys_AddWarnOption (C %3), 35
PySys_AddWarnOptionUnicode (C % R), 35
PySys_AddXOption (C #X), 35
PySys_FormatStderr (C & X)), 35
PySys_FormatStdout (C #X), 35
PySys_GetObject (C HR), 35
PySys_GetXOptions (C % R), 35
PySys_ResetWarnOptions (C #HX), 35
PySys_SetArgv (C R), 130
PySys_SetArgv (), 127
PySys_SetArgvEx (C %HX), 130
PySys_SetArgvEx (),9, 127
PySys_SetObject (C HX), 35
PySys_SetPath (C #X), 35
PySys_WriteStderr (C H3R), 35
PySys_WriteStdout (C #X), 35
Python 3000, 185
Python Enhancement Proposals

PEP 1,185

PEP 238,17, 180

PEP 278, 187

PEP 302, 180, 183

PEP 343,179

PEP 362,178, 184

PEP 383,91

PEP 384,11

PEP 393,83, 89

PEP 411,185

PEP 420, 180, 184, 185

PEP 442,167

PEP 443,181

PEP 451,116,180

PEP 484,177,180, 187

PEP 489,116

PEP 492,178,179

PEP 498,180

PEP 519,185

PEP 525,178

PEP 526,177,187

PEP 529,91

PEP 3116, 187

PEP 3119,55,56

PEP 3121,114

PEP 3147, 38

PEP 3151, 31

PEP 3155, 185
PYTHONDUMPREF'S, 155
PYTHONHOME, 9, 10, 131
Pythonic, 185
PYTHONIOENCODING, 128
PYTHONMALLOC, 142, 146
PYTHONMALLOCSTATS, 142
PYTHONPATH, 9, 10
PyThreadState, 131
PyThreadState (C# #), 133
PyThreadState_Clear (C H:RX), 135
PyThreadState_Delete (C $#R), 135
PyThreadState_Get (C #R), 134
PyThreadState_GetDict (C &), 135
PyThreadState_New (C H#:), 135
PyThreadState_Next (C #X), 139
PyThreadState_SetAsyncExc (C % 3), 135
PyThreadState_Swap (C HR), 134
PyTime_Check (C &#R), 124
PyTime_CheckExact (C % ZR), 124
PyTime_FromTime (C % 3R), 124
PyTrace_C_CALL (C ¥ #), 138
PyTrace_C_EXCEPTION (C % #), 138
PyTrace_C_RETURN (C % %), 138
PyTrace_CALL (C %), 138
PyTrace_EXCEPTION (C ¥ %), 138
PyTrace_LINE (C % #), 138
PyTrace_RETURN (C 4), 138
PyTuple_Check (C HX), 101
PyTuple_CheckExact (C HX), 101
PyTuple_ClearFreelList (C H#X), 102
PyTuple_GET_ITEM (C &), 101
PyTuple_GET_SIZE (C #X), 101
PyTuple_GetItem (C H=), 101
PyTuple_GetSlice (C %), 102
PyTuple_New (C #X), 101
PyTuple_Pack (C HZR), 101
PyTuple_SET_ITEM (C F#X), 102
PyTuple_SetItem (C FHL), 102
PyTuple_SetItem(),5
PyTuple_Size (C &R), 101
PyTuple_Type (C &%), 101

e]

223

The Python/C API, §(EF) 3.6.10rc1

PyTupleObject (CH #), 101
PyType_Check (C & R), 73
PyType_CheckExact (C % R), 73
PyType_ClearCache (C &%), 73
PyType_FromSpec (C &), 74
PyType_FromSpecWithBases (C &), 74
PyType_GenericAlloc (C HR), 74
PyType_GenericNew (C HX), 74
PyType_GetFlags (C $#X), 73
PyType_GetSlot (C &R, 74
PyType_HasFeature (C 1), 74
PyType_IS_GC (C &#X), 74
PyType_IsSubtype (C HX), 74

PyTypeObject
PyTypeObject
162
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
167
PyTypeObject
PyTypeObject
PyTypeObject
), 162

.tp_traverse (C & 8 &
.tp_weaklist (C & B &
.tp_weaklistoffset (C s B &

.tp_repr (C i B &%), 158
.tp_richcompare (C & B &),

.tp_setattr (C & B H¥K), 157
.tp_setattro (C m B &), 159
.tp_str (Cr B &), 158
.tp_subclasses (C m B &),

#), 160
#), 167

PyTZInfo_Check (C %R), 124

PyType_Modified (C &R), 74
PyType_Ready (C % X)), 74
PyType_Type (C #¥), 73
PyTypeObiject (CH #&), 73

PyTZInfo_CheckExact (C #X), 124
PyUnicode_1BYTE_DATA (C X)), 84
PyUnicode_1BYTE_KIND (C E %), 84
PyUnicode_2BYTE_DATA (C s X)), 84

PyTypeObject.tp_alloc (C & B FH%), 165 PyUnicode_2BYTE_KIND (C E £), 84
PyTypeObject.tp_allocs (C s B &), 167 PyUnicode_4BYTE_DATA (C %), 84
PyTypeObiject.tp_as_buffer (C & B H), 159 PyUnicode_4BYTE_KIND (C E %), 84
PyTypeObject.tp_base (C m B H¥K), 163 PyUnicode_AS_DATA (C &%), 85
PyTypeObiject.tp_bases (C & 8 H# %), 166 PyUnicode_AS_UNICODE (C & R), 85
PyTypeObiject.tp_basicsize (C B k#), 156 PyUnicode_AsASCIIString (C FHX), 98
PyTypeObject.tp_cache (C & 8 &%), 167 PyUnicode_AsCharmapString (C X)), 98
PyTypeObiject.tp_call (C m B FHE), 158 PyUnicode_AsEncodedString (C #X), 93
PyTypeObiject.tp_clear (C & B H¥K), 161 PyUnicode_AsLatiniString (C &X), 97
PyTypeObiject.tp_dealloc (C & B FH %), 157 PyUnicode_AsMBCSString (C &), 99
PyTypeObject.tp_descr_get (C a8 %), 164 PyUnicode_AsRawUnicodeEscapeString (C &
PyTypeObject.tp_descr_set (C s B &%), 164 X)), 97
PyTypeObiject.tp_dict (C m B &), 163 PyUnicode_AsUCS4 (C &%), 89
PyTypeObject.tp_dictoffset (C m B & #), PyUnicode_AsUCS4Copy (C %K), 89

164 PyUnicode_AsUnicode (C X)), 90
PyTypeObiject.tp_doc (C rx & H#), 160 PyUnicode_AsUnicodeAndSize (C &), 90
PyTypeObject.tp_finalize (C & B &%), 166 PyUnicode_AsUnicodeCopy (C % X,), 90
PyTypeObject.tp_flags (C & 8 %), 159 PyUnicode_AsUnicodeEscapeString (C & X)),
PyTypeObiject.tp_free (C m B FHE), 166 97
PyTypeObiject.tp_frees (C m& B H&K), 167 PyUnicode_AsUTFS8 (C H#X), 94
PyTypeObiject.tp_getattr (C & B FHE), 157 PyUnicode_AsUTF8AndSize (C &#R), 94
PyTypeObiject.tp_getattro (C s B H &), 159 PyUnicode_AsUTF8String (C & R), 94
PyTypeObject.tp_getset (C sk B FH &), 163 PyUnicode_AsUTF16String (C &), 96
PyTypeObiject.tp_hash (C m B FHE), 158 PyUnicode_AsUTF32String (C &), 95
PyTypeObject.tp_init (C m B &), 165 PyUnicode_AsWideChar (C % R), 92
PyTypeObiject.tp_is_gc (C & 8 H#%), 166 PyUnicode_AsWideCharString (C), 93
PyTypeObiject.tp_itemsize (C rx B &), 156 PyUnicode_Check (C & R), 84
PyTypeObiject.tp_iter (C m B FH %), 162 PyUnicode_CheckExact (C % R), 84
PyTypeObiject.tp_iternext (C s B H), 163 PyUnicode_ClearFreeList (C &#R), 85
PyTypeObiject.tp_maxalloc (Cm B &%), 167 PyUnicode_Compare (C &#=), 100
PyTypeObject.tp_members (C & B H¥), 163 PyUnicode_CompareWithASCIIString (C &
PyTypeObiject.tp_methods (C & B F# %), 163 X)), 100
PyTypeObiject.tp_mro (C s B H#), 166 PyUnicode_Concat (C #X), 99
PyTypeObiject.tp_name (C m B FHE), 156 PyUnicode_Contains (C R), 101
PyTypeObiject.tp_new (C s B H#), 165 PyUnicode_CopyCharacters (C HX), 89
PyTypeObiject.tp_next (C m B H¥K), 167 PyUnicode_Count (C &% 2), 100
PyTypeObiject.tp_print (C & 8 H#%), 157 PyUnicode_DATA (C &% R), 84
224 3|

The Python/C API, (F) 3.6.10rc1

PyUnicode_Decode (C #X), 93
PyUnicode_DecodeASCII (C #R), 98
PyUnicode_DecodeCharmap (C &), 98
PyUnicode_DecodeFSDefault (C &% X)), 92
PyUnicode_DecodeFSDefaultAndSize (C &
xX), 92
PyUnicode_DecodeLatinl (C %)), 97
PyUnicode_DecodeLocale (C % R), 91
PyUnicode_DecodeLocaleAndSize (C &
PyUnicode_DecodeMBCS (C &% R), 99
PyUnicode_DecodeMBCSStateful (C HX,), 99
PyUnicode_DecodeRawUnicodeEscape (C &

X, 97

5 X)), 90

PyUnicode_DecodeUnicodeEscape (C #R,), 97
PyUnicode_DecodeUTF7 (C &% R), 96
PyUnicode_DecodeUTF7Stateful (C & X), 96
PyUnicode_DecodeUTFS8 (C & X)), 94
PyUnicode_DecodeUTF8Stateful (C %#X), 94
PyUnicode_DecodeUTF16 (C H#X), 95
PyUnicode_DecodeUTF16Stateful (C FHX), 96
PyUnicode_DecodeUTF32 (C &), 94
PyUnicode_DecodeUTF32Stateful (C HR), 95

PyUnicode_Encode (C %K), 93
PyUnicode_EncodeASCII (C H#R), 98
PyUnicode_EncodeCharmap (C &), 98
PyUnicode_EncodeCodePage (C H#X,), 99
PyUnicode_EncodeFSDefault (C H#:), 92
PyUnicode_EncodeLatinl (C %), 97
PyUnicode_EncodeLocale (C % X)), 91
PyUnicode_EncodeMBCS (C %), 99
PyUnicode_FEncodeRawUnicodeEscape (C &
KX), 97
PyUnicode_EncodeUnicodeEscape (C &% R), 97
PyUnicode_EncodeUTF7 (C &), 96
PyUnicode_EncodeUTFS8 (C %4 R), 94
PyUnicode_EncodeUTF16 (C &), 96
PyUnicode_EncodeUTF32 (C #X), 95
PyUnicode_Fill (C H#=X), 89
PyUnicode_Find (C & X)), 100
PyUnicode_FindChar (C #<,), 100
PyUnicode_Format (C % X)), 101
PyUnicode_FromEncodedObject (C &
PyUnicode_FromFormat (C #=X,), 87
PyUnicode_FromFormatV (C % R), 88
PyUnicode_FromKindAndData (C & X)), 87
PyUnicode_FromObject (C &%), 90
PyUnicode_FromString (C &% 3R), 87
PyUnicode_FromString(), 105
PyUnicode_FromStringAndSize (C &
PyUnicode_FromUnicode (C &), 89
PyUnicode_FromWideChar (C &% 3), 92
PyUnicode_FSConverter (C #X), 91
PyUnicode_FSDecoder (C % X)), 91
PyUnicode_GET_DATA_SIZE (C HX), 85

41X, 88

4 X)), 87

PyUnicode_GET_LENGTH (C &% X)), 84
PyUnicode_GET_SIZE (C &R), 85
PyUnicode_GetLength (C #X), 88
PyUnicode_GetSize (C %), 90
PyUnicode_InternFromString (C &#R), 101

PyUnicode_InternInPlace (C 1), 101
PyUnicode_Join (C &), 100
PyUnicode_KIND (C &% X)), 84
PyUnicode_MAX_CHAR_VALUE (C # X)), 85

PyUnicode_New (C #X), 87
PyUnicode_READ (C X)), 85
PyUnicode_READ_CHAR (C & X)), 85
PyUnicode_ReadChar (C #R), 89
PyUnicode_READY (C H#ZR), 84
PyUnicode_Replace (C &% =), 100

PyUnicode_RichCompare (C &R), 100
PyUnicode_Split (C H#:), 99
PyUnicode_Splitlines (C &% =), 100

PyUnicode_Substring (C #X,), 89
PyUnicode_Tailmatch (C X)), 100
PyUnicode_TransformDecimalToASCII (C &
X), 90
PyUnicode_Translate (C &<X), 98, 100
PyUnicode_TranslateCharmap (C =), 99
PyUnicode_Type (C & %), 84
PyUnicode_WCHAR_KIND (C E %), 84
PyUnicode_WRITE (C & X)), 84
PyUnicode_WriteChar (C % 3), 89
PyUnicodeDecodeError_Create (C #X), 28
PyUnicodeDecodeError_GetEncoding (C &
X), 28
PyUnicodeDecodeError_GetEnd (C H#X), 28
PyUnicodeDecodeError_GetObject (C & R),
28
PyUnicodeDecodeError_GetReason (C
29
PyUnicodeDecodeError_GetStart (C HR), 28
PyUnicodeDecodeError_SetEnd (C H#X), 29
PyUnicodeDecodeError_SetReason (C & R),
29
PyUnicodeDecodeError_SetStart (C HR), 28
PyUnicodeEncodeError_Create (C $#X), 28
PyUnicodeEncodeError_GetEncoding (C &
X), 28
PyUnicodeEncodeError_GetEnd (C #X), 28
PyUnicodeEncodeError_GetObject (C & RX),
28
PyUnicodeEncodeError_GetReason (C
29
PyUnicodeEncodeError_GetStart (C HR), 28
PyUnicodeEncodeError_SetEnd (C #X), 29
PyUnicodeEncodeError_SetReason (C & RX),
29
PyUnicodeEncodeError_SetStart (C &

% X)),

% X),

4 X)), 28

e]

225

The Python/C API, §(EF) 3.6.10rc1

PyUnicodeObject (C & #), 83
PyUnicodeTranslateError_Create (C & X)),

28
PyUnicodeTranslateError_GetEnd (C & R),
28
PyUnicodeTranslateError_GetObject (C &
K), 28
PyUnicodeTranslateError_GetReason (C &
X), 29
PyUnicodeTranslateError_GetStart (C &
X)), 28
PyUnicodeTranslateError_SetEnd (C & R),
29
PyUnicodeTranslateError_SetReason (C &
X), 29
PyUnicodeTranslateError_SetStart (C &
K), 28

PyVarObject (C A #8), 150
PyVarObject_HEAD_INIT (C E %), 151
PyVarObject.ob_size (C mx B H#), 156
PyWeakref_Check (C &R), 120
PyWeakref_CheckProxy (C &), 120
PyWeakref_CheckRef (C %K), 120
PyWeakref_ GET_OBJECT (C & X)), 121
PyWeakref_GetObject (C &#X), 121
PyWeakref_NewProxy (C FHX), 121
PyWeakref_NewRef (C &), 120
PyWrapper_New (C % R), 119

single dispatch -- ¥4k, 186
SIZE_MAX, 77
slice -- ¥ K, 186
special method -- #%F &, 186
statement -- &4y, 186
staticmethod
Bz &K, 152
stderr (in module sys), 136
stdin
stdout sdterr, 128
stdin (in module sys), 136
stdout
sdterr, stdin, 128
stdout (in module sys), 136
strerror (), 22
string
PyObject_Str (C function), 55
struct sequence, 186
sum_list (),7
sum_sequence (), 7, 8
Sys
4,9, 127,136
SystemError (built-in exception), 113, 114

T

text encoding —- X%"?ﬁ@ 186
text file —-- UK, 186
tp_as_async (C mx B %), 157
tp_as_mapping (C & B H %), 158

Q tp_as_number (C &% B FH %), 158
qualified name —-- [RE 4, 185 tp_as_sequence (C & 8B FH#), 158
traverseproc (C &), 173

R triple-quoted string —-- ZEB|&F {5 &, 186
realloc (), 141 tuple
reference count —-- 5| Jf %, 186 E# % R, 61, 105
regular package —-- ¥ # 4, 186 W, 101
repr type

Bz & R, 55, 158 Bl & K, 57

Wk, 4,73

S type —— XA 187
sdterr type alias —- XA G4, 187

stdin stdout, 128 type hint —-- XA RR, 187
search U

path, module, 9, 127, 129
sequence ULONG_MAX, 77

1 , 80 universal newlines —- i JH#4T, 187
sequence —-- /%%, 186
set V

M1, 107 variable annotation -- ZEHriE, 187
set_all(),6 Flz g
setswitchinterval () (in module sys), 131 _ _import_ , 36
SIGINT, 27 abs, 58
signal ascii, 55

A, 27 bytes, 55
226 #5|

The Python/C API, (F) 3.6.10rc1

classmethod, 152
compile, 37
divmod, 58
float, 60
hash, 56, 158
int, 60
len, 57, 60, 62, 104, 106, 108
pow, 58, 59
repr, 55, 158
staticmethod, 152
tuple, 61, 105
type, 57

version (in module sys), 129, 130

virtual environment —-- E#IIF, 187

virtual machine —- &AL, 187
visitproc (CA), 173

W
M4
__main_ ,9,127,136
_thread, 133
builtins, 9, 127, 136
signal, 27
sys, 9, 127, 136
Z
Zen of Python —— Python z##, 188

e]

227

	簡介
	包含文件
	对象、类型和引用计数
	异常
	嵌入式Python
	调试构建

	稳定的应用程序二进制接口
	The Very High Level Layer
	參照計數
	例外處理
	Printing and clearing
	抛出异常
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	标准异常
	标准警告类别

	工具
	作業系統工具
	系統函式
	行程（Process）控制
	匯入模組
	Data marshalling support
	解析参数并构建值变量
	字串轉換與格式化
	反射
	编解码器注册与支持功能

	抽象物件層
	对象协议
	数字协议
	序列协议
	映射协议
	迭代器协议
	缓冲协议
	旧缓冲协议

	具体的对象层
	基本对象
	数值对象
	序列对象
	容器对象
	函式物件
	其他对象

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	异步通知
	分析和跟踪
	高级调试器支持

	記憶體管理
	總覽
	原始内存接口
	内存接口
	对象分配器
	Customize Memory Allocators
	The pymalloc allocator
	例子

	对象实现支持
	在堆上分配对象
	通用物件結構
	类型对象
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	使对象类型支持循环垃圾回收

	API 和 ABI 版本管理
	术语对照表
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	版權宣告
	索引

