Extending and Embedding Python
[F) 3.6.10rc1

Guido van Rossum
and the Python development team

12 A 18,2019

Python Software Foundation
Email: docs@python.org

Contents

1 s =5 T.H 3
2 A= TG 5
21 PACE CH+IEFEPython o e e 5
22 EENPEEIL R 22
23 ENPREEA: BRI ., 46
24 KB CICH P o o 55
2.5 FE Windows FEIFE CHI CH P . o o o e 57
3 e R ARk A CPython &4 7} 61
30 FEHE App [EHRA PYthon oo e 61
A RiERIEER 67
B Bidis s Se 79
B.1 Python SCIFHIERRE . . . o o o e 79
C s Bz hE 81
C.l RIS o o e e 81
C.2 FEHEk A A0 A Python USSR FIZAE o o o o 82
C3 AT UE S NS . . o 85
D ik 99
%9l 101

Extending and Embedding Python, £[F] 3.6.10rc1

ASCRHA T C 5 C++ G B AR A HT AR Y B Python f#EREAR I TN RE. X LEBEHAALA] PARE
SCBrE ek %L, b m] PAsE SCBT IR I RO T7 3k SO fIA T A Python AFRE SR A E 55—
REFh, AR G S . U5, RN TR aEey iy, DMEEI AshSH (ZEztrims)
HENERES T, WSR2 B R G SR LR A3

A SRR B A A7 ¢ Python HEAKIH . A X ZiEF HAEIEX NS, 121 tutorial-index . reference-index
gyt T IEIE T € L. library-index £ 5 BUA AR LAY, s ECRIBIEL (P& AT Python 45) [SCRY,
fE S BA) Z Y G .

KT A Python/C API AN 4T, 155 RIMALIY) c-api-index .

Contents 1

Extending and Embedding Python, ([3.6.10rc1

2 Contents

CHAPTER 1

HEHFHNE=ATH

PG EE T I CPython JUAS) — i 4R BEAY QI Y FA T R 5 =J7 TH, 1 Cython | cffi |
SWIG Al Numba ${t 1 5 fi BN BAZ ZR) 7 ¥4k 4 Python G113 C 71 C ++ 7 j&.

b4

Python Packaging User Guide: Binary Extensions “Python Packaging User Guide ” ANH 55 T JLANAT 4L 3k 75
PRI AT TR, B3HE T a8 e E . AT & F U A .

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/en/latest/extensions/

Extending and Embedding Python, ([3.6.10rc1

4 Chapter 1. #FME=HITH

CHAPTER 2

MERE=ATIEREIZY R

AN B X — AR AR TR 2 =07 THATIIR RO T8 C Ml C ++ 9. B FRA T XL TR,
AR BAREIE A T C 3Rk

2.1) C g C++ #E3t Python

WRAREH C, WIHTE) Python P BRI AR T B, PR PFEASEE A Python BLIEMAEE, nIPAIE LT extension
modules FSEH: SEEUHI N BEXT S8 8 C I FERER RS A

N TSR, Python APT (W JHARIF Aefidi 1) 5 LT —RINKE. ZAAHE, FILATI Python jZ4 7 £
L RER %o Python) APT W] PASEIEAE—A> C JCHFHFIH "Python. b SKICPERAM .

PR 4 S 07 R S AR H AR GEBL R R SN2

f#[E): The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ct ypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

211 —NEBEBF

EFRATEIE— AN R spam (Monty Python ¥ 22 I 3 R 4 -+-) H HARZAEEXT Y. C R system ()
1) Python £ 1 o XA BRI — DA null 25 B FATAR S BT IR o] — AL, FRAT17 BT AFE Python H LA
W77 3R A B R

>>> import spam
>>> status = spam.system("ls —-1")

!B 1 B AAERRIERIE os BT, ik BUYE AN BT ELAEA 6

https://cffi.readthedocs.org

Extending and Embedding Python, ([3.6.10rc1

B E#—A spammodule.c 3CfF. (4 L, AR —AHERM spam, WX SEHER C M
spammodule. c; AR MERS TR, Ll spammi £y, MIXAMEHE) SCAFRAT A M spammify . c.)

The first line of our file can be:

#include <Python.h>

X2 A Python APL (BISRAREN, ARATATEIX HLAS AR H AR FUBALE BB .

f#iE): BT Python W RE Sy a2 L — LU REFEHL L R G0 1 56 W Amifl Sk SO RO TIAR BILA 5 3L, R e 6 5 A ol i e
L2 H, R L RPeAE Python . h,

Fr PR LA S8R E L H % Python.h W, FHIAHIZ Py 5L PY , [THBLEE 0@ AE i A ESL SCHF
Mo KT I, PAKAH T ik Python eSS) 2, "Python.h" WALE T/ EARMELSCIF: <stdio.h>
, <string.h>, <errno.h>, fl <stdlib.h> . WERFH KK SR RS EAFE, B2 HEZF
BK¥{malloc () , free() flrealloc() .

TNHEEIN C BREENY R, M spam. system (string) WEMURIEE, GRATMESEZRITEN):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PyLong_FromLong(sts);

}

HANBEEMFESEG RO GO, PR "1s -1") BB 8 C R SE. C RS Z2HWA
ZH, WE /TS self Flargs .

XLRE PREL, self ZRHRTBBSR ;R TRF GBI 15 535

args ZH e 17—~ Python [tuple X RAYIEEE, Hb WS S8. f4 tple TR — MRS XS
e 4= ¥ 2 Python X R—EAEFA TR C bR B0 o 1 E TR 2 50F5 Hofe 45y C . Python APT H i e L
PyArg_ParseTuple () S ASHRMIR A CH. EHUABMR AT H Bl E 7 2N S HE B K
FAEBCRARRER) C AR BRI RFRY S LR .

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 XFHRHNFE

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the [associated
value] of the exception (the second argument to raise). A third variable contains the stack traceback in case the error
originated in Python code. These three variables are the C equivalents of the result in Python of sys.exc_info ()
(see the section on module sy s in the Python Library Reference). It is important to know about them to understand how
errors are passed around.

6 Chapter 2. FERE=HTANRYE

Extending and Embedding Python, £[F] 3.6.10rc1

Python AP H g LT — S8R BOR IR ELX S8 e

B ¥ JH 9 2 PyErr_setString (). M MR 7 H M R M C ﬁ% AR — 2R
PyExc ZeroDivisionError XK E X A%, C FAF IS lﬁ%""ﬁ@, B, FH ¥ —~ Python &

FEERR GAFRE R T ORI

=G AR REGE PyErr_SetFromErrno () , (UEZ—PRENE, REHAEEAEERE R errno
W, il R R GA /& PyErr_SetObject () @/‘Wi/\ﬁ%ﬁ AR SR RS IR . VRN TREAE
H Py_INCREF () ﬂéiﬁuf?@éﬂﬁmnﬁ&m%éﬁm%ﬁ%IH%Ifrﬁz

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’ t need to call PyErr_Occurred () to
see whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions —one has already been called by g. f’ s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on —the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’ s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(FERLEF DL, B SRS R e PyEre_* () BRECA IR A AR, I HAEX 2L i
Je] AR o (ERH IR — RO, e AN B #T B2 R RIEN(E B R REHRIES
Hh ol s PR i 2 K)

AL Z W bl — SR RO L T i B R, R AP AGE A R PyErr_Clear () IR H R .
Cﬁﬁ%f”i‘lﬁﬂﬂ PyErr_Clear () WMME—IHOL 2R E T?“.ﬁh’%ﬁm%é"ﬁ@ﬁ%&ﬁﬁ%ﬁ%%ﬂﬂEEBELI‘IETZ
(T RE R 2 M i, ﬁ%fﬁi‘%?&ﬁtﬂ‘?&) .

R KM malloc () P8 M HN—F4. malloc () (8 realloc ()) A ELIZE H & 2200 H H

PyErr_NoMemory () HiR [P iRMKHER. FTAXT S 018 EE (Fli PyLong_FromLong ()) B&AXAM T,
FIEPAX AN R AU T B malloc () ARG,

WEERM R, BRT PyArg_ParseTuple () SFEERYHISL, 1R[] B AR A 14 R H5CHE 1R A2 1k (] 15 {5l
LRI, MPA -1 FoRKMe, nfF] Unix RGEHR—F.

B, MARR AN RS s g B Y R B IR GEAC AR E S0 B X4 /T Py_XDECREF () 5
Py_DECREF (UEJH%).

EEEG WA 75 58 AW TR E 4. Ur A M &R Python 53 FR A XTI 0 fii /5 B C XF 4, fil
i PyExc_ZeroDivisionError, YRAIPAEFEME A EAT. 245K, VRA 24 W8 M e 8 57— A Zfi A
PyExc_TypeError RFE/R— A TLERFT T G KM 1%]l PyExc_IOError). WIRSHY|FH
i, PyArg_ParseTuple () HREGHETE X5 K PyExc_TypeError, WIRARAE —NSEAELAAL THEE
R 2 N s 2T frﬁ”/@/ﬁ\ﬁﬂ,«#, WS H#H PyExc_ValueError,

PRUALAT AR R AR i SN ME— B o . 75 SR SCPR AR A N sx e, e

static PyObject *SpamError;

and initialize it in your module’ s initialization function (PyInit_spam ()) with an exception object (leaving out the
error checking for now):

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

(continues on next page)

2.1. L) C & C++ #E 3 Python 7

Extending and Embedding Python, ([3.6.10rc1

(R —H)

SpamError = PyErr_NewException ("spam.error", NULL, NULL);
Py_INCREF (SpamError);

PyModule_AddObject (m, "error", SpamError);

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

[REE A2 QIR RAT T spamError (— A5 XA TR N T B LBk i, 75 0] spamError
Wa I 2 O B A

—21HE PyMODINIT_FUNC 1EN R EGR [231 1) F ¥
spam.error FiF Al AYEY A H b Il , it PyErr_SetString () EREUMMA, WT:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PyLong_FromLong (sts);

21.3 EEHIF
[B BT A0, AR %R A

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

T—ANEAE] UNIX R system (), RSB SEOENIA M PyAarg_ParseTuple () Bl

sts = system(command) ;

AW spam. system () PRELLATRE] sts BIMEAEN Python X4 . Xl i i] %L PyLong_FromLong ()
P 3058

’return PyLong_FromLong (sts) ;

FEXAEOLT , SRl — AR, (X ARG &AE Python L) .

8 Chapter 2. FERE=HTANRYE

Extending and Embedding Python, £[F] 3.6.10rc1

WARAR C BRBQE A A HREHE GRIE] void RED, MAZERE None o (fRA]PA] Py_RETUN_NONE
FERGER):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means [error] in most contexts, as we have seen.

2.1.4 ERFGERNIIGCERL

KT R spam_system () WA Python R A o HEER W]y ul PAYE Python i, H2E5E5E L—0r
¥£%¢ ['method table |,

static PyMethodDef SpamMethods[] = {

{"system , spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

HEFE=ASH (METH_VARARGS) , XMREfgE S BH C A%, W 3¥E(H4f METH_VARARGS
METH_VARARGS | METH_KEYWORDS ., {H 0 fAZE{fif] PyArg_ParseTuple () MIGEIHE &,

TR B ph 6l) METH_VARARGS , pR #f £ %% fF Python f% 3k tple # X 1) 2 %, H & & 1)
PyArg_ParseTuple () #47H#NT.

METH_KEYWORDS {H 3% L4758, XMIEMN T C mArETEEZE =/ PyObject * %%, £RF
WZ%r, ffifl PyArg_ParseTupleAndKeywords () RfEHTH S4K.

AT IRRALITRIIE LTSI -

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per—interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods
bi

SRR AT 3B 2 PR S AL R IR AL R . D BR AL R B BT 644 0 PyInit_name () , A name j&
*%ﬁ%ﬂﬁ%%, W i%E SChAE static, HARRHSCAEH:

PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModule_Create (&spammodule) ;

}

¥ PyMODINIT_FUNC =0 T pR&/E N PyObject * aR[EIZRAL, mEEMTF-& 0088, PARSS C++
AR extern "C" .

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with

2.1. L) C & C++ #E 3 Python 9

Extending and Embedding Python, ([3.6.10rc1

a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys.modules.

2k A Python i}, PyInit_spam () EREASHEHNEA, FRAEIE PyImport_Inittab FH . B
HEWIia sz, i PyImport_AppendInittab () , FEERIRE BT A

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodeLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}

/* Add a built—-in module, before Py_Initialize */
PyImport_AppendInittab ("spam", PyInit_spam);

/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */

PyImport_ImportModule ("spam");

PyMem_RawFree (program) ;
return 0O;

filEl: M sys.modules HERSLIA R T A C GBS —AUAE R 2 RRESE G fork () M
exec ()) RFE— LY AL B ARG GR . T RAHLEE AT DAYERT R 0 N R KR A A I 4 HH i

22 e TR A B SE A0 9] T4 25 7E Python YRS Modules/xxmodule . c Wi, X EEICPER] DAFRAE/RAGIE
AR, oiE >, A modulator.py U & FEYRND & 4Tk, Windows 235, $2AL T —/ M BAY GUIL, HI%
P IR S BR BR BRI 5, IF BT PAAE A RO . I ASYE Tools/modulator/ H 5% . #r7& README DA
TREHE,

i) AEFRATY spam filF, xxmodule T % i n4s 1L (Python3.5 JFHA5IA), PyInit_spam &R
[i]—~> PyModuleDef £5#4 {4, SR 5 Q12 HUE] T ANLE] . 4017555 PEP 489 [Z K Bivlihfk.

2.1.5 ZmiFfnsdis

TEVRBEME AR BT S Y R Z B, VRIETE EMH g T Python RGORAmIFMEER: . WIRAVRMEH shZm
B, P T R ERE RGBS IMERMLE 8 25 B S S gty B S (i C/C++ R
A7), PAKAE Windows [4RiR iR BEIIME S (12 Windows -F & %iF C 4= C++ 7 & FET)o

WERARA G BhAS N, S A HUR A VR Python MERERSI) —7) , Wl e ie Bl A, I

10 Chapter 2. RERE=FTHREEYT R

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, £[F] 3.6.10rc1

B . Szt Unix BRI, AFEILRE S (spammodule . ¢ Bl ML 4R IRIS 24T

W Modules/ HER, BII—478| Modules/Setup.local FHGBIRE LA

spam spammodule.o

|

SRIGTETIUE H SRiZAT make SR HHTHE BHRRERS . ARt W] DAYE Modules/ F HR(EH make, {HIEROAHIJEH

Makefile XM, AJ5ie1T [make

Makefile] 4. (MRERIBIL setup FHRFFEIXAEEAE.)

R TR BB B, X LS T A I AR B SO L, 28 S

’spam spammodule.o -1X11

2.1.6 7£ C hifF Python F#§

WE4 Mk, B STk Python W] C %, HSLSGEARMWARA M, B2 C ¥+ Python p&
Beo XAE MR R P ICHA M o AR —A CE ORI, A2 S B A E L -

Sizj2, Python MRREEE LR (ERIREY , FH-4atnifE Python sRBFR ML THRiER: 11 . GX HLg A FPRA AT

Python FAEHHIAH A T2, HIEA4HIITIAZ% Python/pythonmain. c i —c A,)

¥ 1] Python pRER W E, 155G Python #7244 1% Python BB S, WiZH M ek B (HH b 1) SR SEHL.
M XA RS, 4R AR PR A Python pRECN SR BGHEET, IEEUR I (Py_INCREF () SRIEMSGIHITEL,

YRR RWBAT2KFR . 2840017, AR RO RERBLEE L — 70

static PyObject *my_callback
static PyObject *
{

PyObject *result
PyObject *temp;

= NULL;

if (PyArg_ParseTuple (args,

if

return NULL;
}
Py_XINCREF (temp) ;
Py_XDECREF (my_callback)
my_callback = temp;

Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

}

my_set_callback (PyObject *dummy,

/* Boilerplate to return

= NULL;

PyObject *args)

"O:set_callback", &temp)) |

(!'PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError,

"parameter must be callable");

/* Add a reference to new callback */
; /* Dispose of previous callback */
/* Remember new callback */

"None" */

XA bR K06 0 H] METH_VARARGS AR i WM B MERERS, X FEAL e 77 ik R Ao b 1L B 3¢ BT &

1l

PyArg_ParseTuple () BEUMHSEM STRAER Ik 3 4a) 54

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe

in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section 7|

At

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass

2.1. L) C & C++ #E 3 Python

11

Extending and Embedding Python, ([3.6.10rc1

in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () & [Python Xf % #§ 4, X o & Python & %t 1 & A fH.
PyObject_CallObject () @& —PXHESH [FIHIHETICX] R FlTFHHrcde el T3
¥ F, H HAE PyObject_CallObject () ZJG3LEI#if] T Py_DECREF ()

PyEval_CallObject () WIREIMEGZ B B WAR—DHEMXIE; WaR2CAXS, HEN 5]
Hﬂf(r%ﬁlo 9)?%%%%?‘&?5%%%@&%)%”&%% PR EXTXAMER Py_DECREF () , B4R HLTEY A
7 (Rl) AR,

Before you do this, however, it is important to check that the return value isn’ t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result) ;

M BRI R R, PRk BRI SRS PyEval_CallObject () o FERUUIGIL T SHUIFE
H1 Python FR /P4 A, JEId 3 1 FRA% 2 BIH B BN 5 o X R AR BRI B B i . 73 h— LU {2
W RE— R CADR L SR, RIRTERA AR Py_Buildvalue () eREHIE tuple, 280001, JREHE
B — AR AT DA A A

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

VT Py_DECREF (arglist) FrfEAb B, TERRIGAZ Bl SR EEEE 2RI,
Py_Buildvalue () A B M NN B 5%,

DRV R BT IE TR B R, A RS EAA PyOobject_Call () , REZIFFASHM S BRTESE. A
andn g, FAIMEH Py_Buildvalue () SRHESM.

PyObject *dict;

dict = Py_Buildvalue("{s:1}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);

(continues on next page)

12 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

21.7 BT RERKHSH

% PyArg_ParseTuple () WA :

’int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

A arg AR — P ICHRXR . A Python f£64y C sAUN SRR format A2 —MHEXTAF
H, 1A 2% Python C/APT I} i) arg-parsing. FIRSECRAS AL BRHAE, FEUB G FAFER XTI .

R PyArg_ParseTuple () &AL FE %) Python ZH0CRAL, AITJLIER ML A C AR Eribhl, iR
XH AT, WRESTENARREILE AR, /M.

FERATA] 1 2 B2 0360 Python X R 5 H2 f5 ka9 515 AZLEBENTH5 T
—LEIR BT

#define PY_SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, J;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple (args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "11ls", &k, &1, &s); /% Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

(continues on next page)

2.1. L) C & C++ #E 3 Python 13

Extending and Embedding Python, ([3.6.10rc1

(R —H)

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple (args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple(args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

2.1.8 A RAMBXBF SR

K% PyArg_ParseTupleAndKeywords () mBEILITF:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

fi(El: B R TCATE S T SR TR AR, ANTE kwlist IR BT SHR 8 TypeError 7,

AR BT R B SR) T, 1135 2 Geoff Philbrick (philbrick @hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

char *state = "a stiff";

char *action = "voom";

char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

(continues on next page)

14 Chapter 2. RERE=FTHREEYT R

mailto:philbrick@hks.com

Extending and Embedding Python, £[F] 3.6.10rc1

#EHE—1)
printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;
t

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
,1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{

return PyModule_Create (&keywdargmodule) ;
}

2.1.9 WEERIE

XA RS PyArg_ParseTuple () RAH{L, FEHANT :

’PyObject *Py_BuildValue (const char *format, ...);

R MR FFFE, 5 PyArg_ParseTuple () MlA], (HRS AR AL Bpg ik 585 G A 27 s 2L,
T). FRZR Al —A> Python X4 iE & T3k [0 C BRI i 45 Python LAY

—/~5 PyArg_ParseTuple () MIARZE, J&IH] RERE 2 2EKIR o] —>I04l (Python ZA LR M B2 AE N
TR edl), Hn T 45 HAt Python pREIPAZ AL, Py_Buildvalue () FAERAEMICY, LT
ARG AR I A SOCHL, A RAR 7 By 2 MR 0] None |, — PSRN E LR MHZ S HATXTR -
AR ER AR HI A AN 0 (e, s s —oeRIedl, FHEAERTAF R BT .

B A, A2 Python {HER):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123

Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello"'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue ("ss", "hello", "world") ('hello', 'world')
Py_Buildvalue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'

(continues on next page)

2.1. L) C & C++ #E 3 Python 15

Extending and Embedding Python, ([3.6.10rc1

(R —H)

Py_BuildValue (")

o" (

Py_BuildvValue (" (i)" 123) (123,)
Py_Buildvalue (" (11)", 123, 456) (123, 456)
Py_Buildvalue (" (i,1)", 123, 456) (123, 4506)
nyBuildValue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 4506) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)™",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 06))

2.1.10 SIRAHE

1E CIC++ 15 F Ay B ATTEh &S/ BRI BN heap 4 NAF. 76 C B, il % malloc () Ml free ()
HK5EIo TE Cr+ HIZHEAE new Tl delete SRS IIAE

A malloc () 4ECHI NAEER, B E N free () AR E| W] H AAFb I TE & . MHH free () HIBHL
R EE, WR—ANWFEIET free () WS SENAME, XRNAERTFERBIRCEEHMEH . Xy
P AR TR RN free () TRAG, FAM-DHEEFER VI, WIFRMEH malloc () & H
EH N FHOP . XYM #r4a4t. ST RPIGRILAOEIE , core dump, FEIRZES, MABHIARTTSE.

AR EE A R AR TE— S8 RN DU R AU AR L. FEan— DR T INAFLAS , BT 28358, ARG R
WAL BUAE *EEXTL&WE’W‘EAIT BSR4, AR A R BGR 0] T, AR

IR RTRE N AT, A SR MO AR o XA AR, — ELF LA, R (R EE AR I F]
%&%@ﬁ%ﬁﬁﬂﬁéﬁﬁfiﬁﬁ ffﬁﬂﬁ%ﬂmlﬁﬂk%@ﬁtﬁﬁ}ﬁﬂﬁﬂﬁ, JIr LAt (SO i A 7 B S8 3t
PRI A AR . NI, A B A, d I AR MLV S R R di MU R 2R

Python jfiid malloc () Al free () EE KA NAF D FCAVRENL, [FIRRTE 200 N AF it AN B PR 5. it
W7 iR 51 R T a, HEPRELRE MR BRI — T Rd , VH AR I T X 55) A M e 42
S, S5 HITECH 0 I, RN REEBAFERNE LT, MEr AR T .

F—AIE R B F IR e, CEIN GV BB REE MR SR ks, TR) Aah] ARG M
e HENBERIA AR PR TR free O o i —MEAURECEH SN, AT
HAME) . hiiext C, A iR H S SR Cs w5 RO AR B g S8 (L # malloc ()
free () MACZFH, XMZ CARMEHRRAD. WIFVEH —Ra MBI A SR mRs, (EAE
HIFATLZ 55—k T A

Python i JIAGER 51 TR L, WAt TORBRIEIN &S, JH ARSI S | IPRRR . X (A5 I To 5 1Ho U AL 2 e)
AR TORERG U, 5 VPRI — 3 . SIRTAINEN G (TREE) B95 11 TAL, FriA
DEER P AR XTS5 | T RCE A 2 00 SR AT T RCE TSR e T 5 DR FR R BIXT&R , sE WA ER
FRGIUHBIXTER, WRIA S TRERASMY S T .

EERERIN A5 1] ARG I B3R A ERH ol . ge BLBRERME T IR g (collect () W%D , M H AT AYEIZ
P PCE SRS . DA R SR AT L, BOAR SR, tn] DAYEMEINAE T, 7E Unix ¥ 5 (12
$ Mac OS X) i i} --without-cycle-gc &% configure WA, AURIEAGMEPEN, g Bkt
AR T

Python s3] A4

HWi{~% Py_INCREF (x) il Py_DECREF (Liﬂ%lﬁﬁﬁéﬁﬂwm Py_DECREF () 75| 4%
ik O HPREHON 52 o ﬁTi{% HA AE%F]H% free RRP=SiiPuptE 3SRy %Bﬁ@ﬁﬁ%ﬂéﬂ%ﬂ%o MY
XA H B A, ARG RS AN %*ﬂxﬁ%é@ o4t

KA AUKIE : i | Py_INCREF (x) fl Py_DECREF (x) ? FATE LI A&, #a A 3164
— R4 /J\Tu\sﬂﬂﬁ#/\él)ﬂ?%/\ﬂ% ~’*XT%B’J%‘IJ%#§&¢X%7%%@'I%EI’J%IE SIARINEE

16 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

HIATV A Py_DECREF () , 75| AR EN . 5IHIIA XA AL . A =FIpdk i E/a 15|
Ji: g, f7fi&. JEJH Py_DECREF () . micbE—MAIG] S S BN

EFDA A5 — XSRS . A5B9S AR R% I Py_DECREF () o fif HIZF 00 IR BERF A 0 Gk
PO A) o AEHHA A B G (A5 5 | A U1, 58 Ak e
AR T 5 R L AR AR e T OB AR AR EACRD YT T, BB UL, Sl i AR TC 5 1H0 A A S 1 DX
Wro & MRS U — SRR IE AR AU _ BRI T RES eI A H AL B R R .

T AZE AT, @A Py _INCREF () o XAXPICE LA B AIA F PR . X [l @1 3—>5
AN, 4T oe ErAa H 5L (?‘ﬁlﬂ’]i‘ﬂiﬁ%ﬁw MBS, R BRI E IR .

HEAN

BN RG I EE I — BN, R 1 A% dR E P KRS 2B S5

K Z Bl BOR 8 — A X5 w5 #% SIHWA XR. @E, A &X %0 mE, Bl
PyLong_FromLong () fl Py_BuildValue () , &fFEHIH X RGEICE. BEEXRAREIEH T,
@M)?J%HI%%T%N%E‘J%E%IJ%O —ANSLf 2 PyLong_FromLongO e T ARATIERN AT, 0 PR [E]
E A7 H s H

W7 — PR RPREF LR, WL X R, flil PyObject_GetAttrString() . iX
B AW, — LR K% M B2 6 51 PyTuple_GetItem() , PyList_GetItem() ,
PyDict_GetItem() , PyDict_GetItemString () FBERIMMITH. 7K. FIHEMEHBS]IH.

PR%L Py Import_AddModule () W&gREUEMMGIH, WA T BB R EAIERXI S XA R h— 4
HIG XS ELE sys .modules HL,

YRGB XTRE R AR B, T R B S A . R R, Wi Py_INCREF () 3k
AR ST A . XA A EZERFISM: PyTuple_SetItem() fl PyList_SetItem() . X4t
@;ﬁ&zﬁéx%jjém%lﬁ%aé/% WhH &R (R PyDict_SetItem() MHEFBASELRZIIH LR, 1]
21 IEEr])

YA~ C £k Python WA, 2 MIH & RSEERGIH . WHEWANZTIH, FreAMER 5]
P A=A A AT DAPRIE 2 eREIGR (] . HEEUAE 5 | 7R ZAEREUL e, i e A v 5 R, i
F Py_INCREF () .

Python P I A C eREGR [RSG5 | L AZ20A 195 | 1 — 418 & RPN s B e i 45 8 3

fERSEY K
AVEER T, ARG HAERRICE, HAR SRR, Xl R R n R, IRl e
TG E AL EX AT

AT BN RN py_DECREF () 8BS, THE AL I3IRIH 3 F1%m G
. AR

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0); /* BUG! */

PARE] SR —ABUHRREAIESN : WA &R AET DL,
SRR HHECE DA L BATH, SRR ST DAL S SRR TR, A T AR A 5 T«

2.1. L) C & C++ #E 3 Python 17

Extending and Embedding Python, ([3.6.10rc1

ARBTG5 1ist (0], RJEEH 1ist (1] HE 0, HIGFTEMERAMEIH. FEELER
e, HEIAE.

FATREE TR PyList_SetItem() . FIEIWAETIH THIARG, oA 5 1 o), st
AL B IFR A G 1. PR IFOR A LB 12 P RIS, AR RE LT __del () ik,
TR XA LB TGS 1, B2 EEEESTET __del () ik,

WSR2 Python By, __del_ () HFERPAPATIER Python A%, 27 AIHETE bug () B item JE1EG|HIE,
. RIS FAEHE] bug () &8 __del_ () HFYEFVTR, BT APAT—MEAPRSEEL del 1ist[0]
SRR B G — MR I5I H, i ERENAE, WIS item TR,

BRI, HARANE T BRI, A5 T IREHE NG TR IR RCA B e U -

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;
PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0);
Py_DECREF (item) ;
}

RO EERYE . —NMHCAH) Python A5 17X A~ bug HYAEF, 1 —LL AAESE T KA E)7E C k4t b
BTN A _del () HIESKMK.

XA AR 28— Rb D15 FH 05 | 0 SRR AS Fb . 8%, Python fRRESS L 22 AN AR okt Ay 1 1%
7, WANEAERPURYFE Python B4 25 6] . {H AT PAfl F %% Py_BEGIN_ALLOW_THREADS RIGHREL
XA, BT Py_END_ALLOW_THREADS . Xl % Bl £8/EFH %€ /O A I 4h, (HA5H 2 vl ATE S
5 /O I AL FESS . A%, Q0TF sRES IR BN —FEAY A A :

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL {84t

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function —if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the [source:| when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers —however, their variants
Py_XINCREF()andPy_XDECREF()d&

The macros for checking for a particular object type (Pytype_Check ()) don’ t check for NULL pointers —again,
there is much code that calls several of these in a row to test an object against various different expected types, and this

18 Chapter 2. RERE=ZFTREIET R

Extending and Embedding Python, £[F] 3.6.10rc1

would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL —in fact it guarantees that it is always a tuple®.

It is a severe error to ever let a NULL pointer [escape | to the Python user.

21.11 £ C++ bR EY R

AT DAE C+ g S JAsi, FURAT BEIR . 4028 A% 7 (Python fRERR) 26 C Gk aef g A 4%
1, 4Rk SR S SR A BB o AR Ct i e R BER AL XN AL R &2 9 Python
RS VR) GELH S R I (L R B0 LS H N extern "C" . MME7HAE extern "C" {...} HH
Python SKSCPENIAE IR AL, PEAIIRE LTS __cplusplus MEZGEX AN T (B B C++
G 2 XA o

2.1.12 45 RIERIZ 4 C API

Ry AL B T i) s ORISR IU At Python (], EA I AR LA ACRE AR AT RARI AL ™ AR 1]
B, — A9 RRHnT ASE I — AR [collection] K2 A T . B2 Python 5IEEH, 414 C
AP AAVFY A IR QM ZAES 5132, XAHHYAR G IR DA — e C e U T4 At ™ R B G

IR RAMR G AR EEE R Cof Al static), FRfUa IS, AR CAPTIICR . SLbx
AR I RS J i S R £ Python AR SRINS (L2 W] AR TARMY . RIS DAIE e gefiemy, — M
B AT E SO — MBI RT UL . AT UL A0 (OB T4 E R S8, — L8 R GENY Python fEREAR 011 42 Ry
2 2518) (BN Windows), A LEMFESER N F5 2 — ™I E FALFSIIER (— M 752 AIX), s iRtk
AN TR S (A Unix Z851). BIERAF S 24 Rml WA, VR EER T BB RT B v A 2K

RSV B RENS AT Al I MUE T R . X RE Y R L A A5 #R Il static, BRT
BRI IR R, Al 5 HA Y AR 1 i 44 vh 98 (FEBE ALk 77 5 R A s 1L A FRhig) o X EIIR
AT NI oL IR AL HoA 5 7 FOR P A LR 517

Python $2{t T —AMERBIMIHLHI AL C U5 S 85D, M—DP iz 5 —4~: Capsules. —> Capsule
J&—~ Python (#liK AL, {RAEHEEr (void *). Capsule HEgiE T C APLREIEAIT], HATAGH AL
Python X5 —FE (& . E, OTTASEE — ¥ RS A S RIS F . HALY R DLS A
P, PFHEXA2FRIME, A5 Capsule FREUTRET

Capsule W[DA ZF005 X3 i C APL 434 Rtk . &R T A B © Y Capsule, 5% T4 C APLESE AT DA
FERETE— R L, B TR A A 45 Capsule, ARSI A 2 R0, BE% FomAsibe il

‘Whichever method you choose, it’ s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *);you’ re permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

EHKYL, Capsule i T555 C API, HA 7 WAREEIRUIH ML :

modulename.attributename

fEF| K%L PyCapsule_Import () WA B2 Al Capsule $2{1L1) C API, {U¥E Capsule (144 F-VERL T .
XANMT AR C APT] FHAIE T BE R MR EAIE#f 1) C APLL

W B R AR R S Al S A E R R D3R, @ TR TR R AT C AP 541
Bl B) 1 void fFH IR, H-OEH(EAS Capsule. X R GREHSKSCPFR L T 2R B G AR
BRAMIZEHL C APL 458t ; &) i U5 2E D) C AP piri X A2 Bl

LR TIAZ] KA 20, S IEAR RO, R IRIBEAE TR E B,

2.1. L) C & C++ #E 3 Python 19

Extending and Embedding Python, ([3.6.10rc1

SHAEHEM E spam Bk, KH—A#F2a96) T Bk, A spam.system () A& HETHH C ERE
system() , H—/ %l PySpam_System () & HTTRHA, SIRIL P ST L (FIa0ds i [spam] |4
4). BRI PySpam_System () &S H A HALY R,

PREL PySpam_System () &4l C REL, M static gifg A 0

static int
PySpam_System(const char *command)

{

}

return system(command) ;

PRI spam_system () IR B

static PyObject *
spam_system (PyObject *self, PyObject *args)

{

const char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PylLong_FromLong(sts);

FEBHIT K, FE AT)G

#include "Python.h"

B ST

#define SPAM_MODULE
#include "spammodule.h"

#define FITHAL U FREAS A FHNESL, MARE ik, 2, BRI LE 1L R Eu (5t
WItaAk C AP F84 14

PyMODINIT_FUNC
PyInit_spam(void)

{

PyObject *m;
static void *PySpam_API[PySpam API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API[PySpam_System_ NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New ((void *)PySpam_API, "spam._ C_API", NULL);

if (c_api_object != NULL)
PyModule_AddObject (m, "_C_API", c_api_object);

(continues on next page)

20

Chapter 2. RERAE=FTHREUEYT R

Extending and Embedding Python, £(F 3.6.10rc1

FEH LR

return m;

& PySpam_API mH N static; IWAMEEIEHISTE PyInit_spam () &5 JGTHK!
33 spammodule . h B —HETAE, FHERAT s

#ifndef Py SPAMMODULE_H
#define Py SPAMMODULE_H
#ifdef __ _cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM _MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_ RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam System \
(* (PySpam_System RETURN (*)PySpam_System_ PROTO) PySpam_ API [PySpam_System_ NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception 1if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._C_API", 0);
return (PySpam_ API != NULL) 2 0 : -1;

3

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

7 S R R 20 A HE A B A RS0 9 0 R T BR R import_spam () (8 fh 72 A BE 15) B6 KL
PySpam_System() .

2.1. L) C & C++ #E 3 Python 21

Extending and Embedding Python, ([3.6.10rc1

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

}

RAPIAI LB RUR, SUMF spammodule h i AL, B, MHREELT YRS, FAGHZALIR
BreA R 823 —R

I T BRI A2 Capsule $24E THISMALIGE, F TAEM7E Capsule A4 AR BCRIREIL. 75 %
Python/C API 2% F)2y capsules F1 Capsule fJsEFH (£F Python A% &K fTfH) Include/pycapsule.h
1 Objects/pycapsule.c).

%
22 HENT REE: HiE

Python FL¥F 45 C 4" JEAHE i AM Python fURS BN ABI R AL, SXARMRNER) str Ml 1ist KA, Py
YRR REE— B, (AR RTHRZ B, T2 T Loy . XA SRR A N4

2.2.1 Kl

CPyhon JEATHALIEAT Python A G %2 Pyobiect » A8 kt, HIPFAT Python X4) HRAM] .
PyOb3ect ZEHHKALHL A T X QM reference count RUTHG)) FHXEG . SR G E MRRERET 22 A I
52 (C) B, I PIRAEREI— RS, — I, S0 S 5 RIS 0 C MR
PP

FRA, AR SRR TR, T O ST .

B U 0 TARRE, 50T — MU SER RS, 522 X T 4 S Custon 7 C 5 R

custom H,

fE: XHEERI R E X static P IRBTI LS 3R AIAE & KE D Ak, C AP PLE LAEHE F
SCHP RESRAL, i PyType_FromSpec () BREL, EAERATTEITHE.

#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)

(continues on next page)

22 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

i

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type."
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

XH R Zp U, X2 R TR bRt b XA SO LT =R
1. Custom X4 ObJect f4 T CustomObject 54, Aj]ﬁ/\ Custom LB B —IK .

2. Customtype {474 X /& CustomType 45MAK, HiE LT —HEbR iR AR EIEEr, SF5m Ress Bk
SKIFHAE

3. WIHA4L custom il PyInit_custom REFINT VY custommodule 5#{A
EMI S — P2

typedef struct {
PyObject_HEAD
} CustomObject;

XA H E XL &). PyObject HEAD & 5l il BR OAMIFE B AN 51k 2 1T, H DASE X
—ANRAH PyObject MBI ob_base , W& T —MEEHE M RBUG A — A5 8 GXnT DA 22
Py_REFCNT fl Py_TYPE R4, HZZRAMGE, M INZEB] DA 2

ffil): ALK PyObject HEAD JEHA T . BAMNRINGS & 58U i S

IR, XGR T HE PyObject HEAD fEgEEAN, G EINEE: Blan, @0F & ST FrifEf Python 37 M4

typedef struct {
PyObject_HEAD

(continues on next page)

22. BEXLT REE: #HE 23

Extending and Embedding Python, ([3.6.10rc1

(R —H)

double ob_fval;
} PyFloatObject;

B AL IR I E S

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_new = PyType_GenericNew,

bi

HH: RO 0 L CO9 BUSIIAIA(L, DABESBIHBFAT) PyTypeobiect TR, JUrRfls RAFAT %%
A1y, BORFALPT DL S B9 S

& object .h FFSLPRE XY PyTypeObject BA M EE SCEZM 7B, AT B H CHiFRNE
KIFE, EHEPMEERA AR E TN, BRAMRETREEA].

A ek, BR—AFE:

’ PyVarObject_ HEAD_INIT (NULL, 0)

XA skl A, T CARIR RN E3R 2 ob_base T

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

f#(E]: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in
its __bases__, or else it will not be able to call your type’ s ___new__ () method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for t p_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

24 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

We set the class flags to Py_TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = "Custom objects",

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new___ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

’.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < O0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Cust om class:

>>> import custom
>>> mycustom = custom.Custom()

That’ s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python —you should
be able to import custom and play around with Custom objects.

That wasn’ t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’ t do anything. It can’ t even be
subclassed.

#5[F): While this documentation showcases the standard distutils module for building C extensions, it is recom-
mended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on how
to do this is out of scope for this document and can be found in the Python Packaging User’ s Guide.

22. BEXLT REE: #HE 25

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, ([3.6.10rc1

2.2.2 Adding data and methods to the Basic example

Let’ s extend the basic example to add some data and methods. Let’ s also make the type usable as a base class. We’
1l create a new module, custom?2 that adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
t
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);

(continues on next page)

26 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom2.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,

bi

(continues on next page)

22. BHEMT REE: #iE 27

Extending and Embedding Python, ([3.6.10rc1

(R —H)

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom?2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (== NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

This version of the module has a number of changes.

We’ ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

28 Chapter 2. RERE=ZFTREIET R

Extending and Embedding Python, £[F] 3.6.10rc1

This method first clears the reference counts of the two Python attributes. Py_XDECREF () correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_f ree member
of the object’ s type (computed by Py_TYPE (self)) to free the object’ s memory. Note that the object’ s type might
not be CustomType, because the object may be an instance of a subclass.

#([E): The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a t p_new implemen-
tation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;

and install it in the t p_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the __new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we use
the t p_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(aka. tp_initinCor__init__ in Python) methods.

#iE): tp_newshouldn’ tcall tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the t p_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

22. BEXLT REE: #HE 29

Extending and Embedding Python, ([3.6.10rc1

#iE): We didn’ tfill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

HE: If you are creating a co-operative tp_new (one that calls a base type’ s tp_new or __new__ ()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its tp_new directly, or via type—->tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) A
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

;

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return O;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slotisexposedin Pythonasthe _init__ () method. Itis used to initialize an object after it s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or —1 on error.

Unlike the t p_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module by
default doesn’ tcall __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

30 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

But this would be risky. Our type doesn’ t restrict the type of the £irst member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the £irst member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’ t we have to do this?

* when we absolutely know that the reference count is greater than 1;

 when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our type’
s code;

¢ when decrementing a reference count in a t p_dealloc handler on a type which doesn’ t support cyclic garbage
collection.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

and put the definitions in the t p_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the ;2 7! 2, /14 5 72
section below for details.

A disadvantage of this approach is that it doesn’ t provide a way to restrict the types of objects that can be assigned to
the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further,
the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized
to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self)
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
3

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’ t support garbage collection.

22. BHEMT REE: #iE 31

Extending and Embedding Python, ([3.6.10rc1

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’ t take any and don’ t need to accept a positional argument tuple or keyword argument dictionary.
This method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and last members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict the
attribute values to be strings. We’ 11 see how to do that in the next section.

Now that we’ ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ 1l make our type usable as a base class for subclassing. We’ ve written our methods carefully so far so that
they don’ t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom?2 (), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

2.2.3 Providing finer control over data attributes

In this section, we’ 11 provide finer control over how the first and last attributes are set in the Custom example.
In the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD

(continues on next page)

32 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->1last);

Py_TYPE (self)->tp_free ((PyObject *)

static PyObject *

self);

Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)

{
CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {
Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int

Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

{

static char *kwlist[] = {"first",

PyObject *first = NULL, *last = NULL,

if (!PyArg_ParseTupleAndKeywords (args,
&first,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

3

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

"last", "number", NULL};
*tmp;

kwds, "|UUi", kwlist,

&last,

(continues on next page)

22. BEXLT REE: #HE

33

Extending and Embedding Python, ([3.6.10rc1

(R —H)

return O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{

PyObject *tmp;

if (value == NULL) {

PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");

return -1;

}

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,

"The first attribute value must be a string");

return -1;

}

tmp = self->first;

Py_INCREF (value) ;

self->first = value;

Py_DECREF (tmp) ;

return O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{

PyObject *tmp;

if (value == NULL) {

PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");

return -1;
3
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;

}
tmp = self->last;

(continues on next page)

34 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

Py_INCREF (value) ;
self->last = value;
Py_DECREF (tmp) ;
return O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom3.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi
static PyModuleDef custommodule = {
PyModuleDef HEAD_INIT,
.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

b

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;

(continues on next page)

22. BEXLT REE: #HE 35

Extending and Embedding Python, ([3.6.10rc1

(R —H)

if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

To provide greater control, over the first and last attributes, we’ 1l use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0O;

The getter function is passed a Custom object and a [closure] , which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a
string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

36 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDef structure is the [closure] mentioned above. In this case, we aren’ t using a closure,
so we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_XDECREF () calls can be converted to Py_DECREF ()
calls. The only place we can’ t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

‘We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup. py file.

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’ t call back into our objects, we can’ t guarantee that deallocating
an instance of a string subclass won’ t call back into our objects.

22. BHEMT REE: #iE 37

Extending and Embedding Python, ([3.6.10rc1

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’ t drop to zero. Fortunately, Python’ s cyclic garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add arbitrary
attributes. For any of those two reasons, Cust om objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arq)
{

Py_VISIT (self->first);

Py_VISIT (self->last);

return O;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)

{
PyObject_GC_UnTrack (self);

(continues on next page)

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference cycles.

38 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);
static PyObject *

{
CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int

{

PyObject *first = NULL, *last = NULL, *tmp;

&«first, &last,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

;

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

;

return O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number),
"custom number"},
{NULL} /* Sentinel */

bi

Custom_new (PyTypeObject *type, PyObject *args, PyObject

static char *kwlist[] = {"first", "last", "number",

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi",

*kwds)

Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

NULL};

0,

kwlist,

(continues on next page)

22. BEXLT REE: #HE

39

Extending and Embedding Python, ([3.6.10rc1

(R —H)

static PyObject *

Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)

{

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;

}

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,

"The first attribute value must be a string");

return -1;

}

Py_INCREF (value);

Py_CLEAR(self->first);

self->first = value;

return O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR(self->last);
self->last = value;
return O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

by

(continues on next page)

40 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom4.Custom",
.tp_doc = "Custom objects",
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom4d",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
PyModule_AddObject (m, "Custom", (PyObject *) &CustomType);
return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

22. BEXLT REE: #HE M

Extending and Embedding Python, ([3.6.10rc1

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arq)
{
int vret;
if (self->first) {
vret = visit (self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;
3

return O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal
method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arqg)
{

Py_VISIT (self->first);

Py_VISIT (self->last);

return 0;

#iE): The tp_t raverse implementation must name its arguments exactly visit and arg in order to use Py_VISIT ().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

Notice the use of the Py_CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_XDECREF () instead on the attribute before setting
it to NULL, there is a possibility that the attribute’ s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

#(E): You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

42 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’ t try
to micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) >tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’ s pretty much it. If we had written custom tp_alloc or tp_free handlers, we’ d need to modify them for
cyclic garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these Py TypeObject
structures between extension modules.

In this example we will create a SubLi st type that inherits from the built-in 11 st type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;
return Pylong_FromLong (self->state);

(continues on next page)

22. BEXLT REE: #HE 43

Extending and Embedding Python, ([3.6.10rc1

(R —H)

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0O;

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT (NULL, O)

.tp_name = "sublist.SubList",

.tp_doc = "SubList objects",

.tp_basicsize = sizeof (SubListObject),

.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,

.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule);
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;
PyModule_AddObject (m, "SubList", (PyObject *) &SubListType);
return m;

As you can see, the source code closely resembles the Custom examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;

(continues on next page)

44 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

int state;
} SubListObject;

The primary difference for derived type objects is that the base type’ s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;

We see above how to call through to the __init___ method of the base type.

This pattern is important when writing a type with custom t p_new and tp_dealloc members. The t p_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’ s concrete base class. Due to cross-platform
compiler issues, you can’ t fill that field directly with a reference to PyList_ Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;
PyModule_AddObject (m, "SubList", (PyObject *) &SubListType);
return m;

Before calling PyType_Ready (), the type structure must have the t p_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the t p_alloc slot with PyType_GenericNew () —the allocation function
from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

22. BEXLT REE: #HE 45

Extending and Embedding Python, ([3.6.10rc1

&iE
2.3

ARE

X2

ENLT REE: EF%REA

R S AR AT ASE B 2R B398 S I R TR Y 4

C KA pyTypeObject HYE L, M T N T IR 7B

typedef struct _typeobject {

PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

printfunc tp_print;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

(continues on next page)

46

Chapter 2. RERAE=FTHREUEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObiject;

XA RS TR BRAERAHL, RAREE LA, Gl RS S B RR Tk

IEARIE RN —F, FATE S — P N 245 R AL BEAR T o lﬂﬂﬁﬁ%ﬂ@)ﬁi@ﬁk?}ﬂﬂ%&éﬁﬁlﬁ
PABRATTA SR E N IFESTA V8 BUE SCR I IR @R A 5) — DM S IR B By il 1, @(FE&
AR{H B AR B 262

’const char *tp_name; /* For printing */

RN LT - LR By, SHRERZHY, JLFEMWER N TR HK . Sl Mra T, 5t
TR A # Bl

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

X L B Rz A T I G A B RIN T LD DI A7. Python Oy TSR BEMLEH (JF:
R, Eéﬂ) ALNELR, X2 tp_itemsize FRUAFAEMI . X0 E R

’const char *tp_doc;

X HURAT AR — B e (BCEERtdl) , 44RAEAE Python JIARG I obj . __doc__ ik MIX By SCRy 5
iR

BAERRARFA — N EAFIITIE - REHY LRI IIE-

23. BN REE: EFXEHE 47

Extending and Embedding Python, ([3.6.10rc1

2.3.1 KLEFMAERER

destructor tp_dealloc;

YA RSB 5 VRO Z - H. Python MR A ZL MU E IS, REUR) BERR AR, ISRARAY A Y
AR A T A 2R, AR DM B X B e W RAS By T X HUREI . DATT e e R R n 1) -

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj)->tp_free (obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject (self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

3
Py_TYPE (obj)—>tp_free ((PyObject*)self);

#§[E]: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’ s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

M Python 3.4 FFify, EFAAREAE tp_dealloc MEAMALEM, W2 tp_finalize A,
%

48 Chapter 2. RERE=ZFTREIET R

Extending and Embedding Python, £[F] 3.6.10rc1

PEP 442 iR TR A ST %

23.2 MRBR

1 Python Hr, iR 20T PALE BN G SCAFRIR: repr () BRECRT str () B%L. (print () MRES EH
i str ().) XEAb PR AR n 3R

reprfunc tp_repr;
reprfunc tp_str;

tp_repr ALPFRF VAR — DN FRAHXG, HAa SR Epli2oniE. e — M smp) 1

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);
}

WERBAHEE to_repr ALHARST, MRREEGRRHRZME—ME tp_name MIFTRIER AN R A MHE—FR IR

The tp_str handleris to st r () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

N AR R 1

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",
obj—->obj_UnderlyingDatatypePtr->size);

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject*. Each type can use whichever pair makes more sense for the implementation’ s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

S L. xS

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject * version of the attribute management functions. The actual

23. BN REE: EFXEHE 49

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, ([3.6.10rc1

need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

ZBREMER

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.
2. AFREAFRREHRIC R B R S A RS, WA TR AR IR
TR, WHRAXS BRI (AT]SO S B 0 A7 Ay =Xt AT AT B 11 o

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

FW R object:: ZERUPY = A B

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;
int type;
int offset;
int flags;
char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is used
to store flags which control how the attribute can be accessed.

AR 8 X AEfile: [structmember.h [; B410 PAfHF bitwise-OR 2H &,

50 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

B aXx

READONLY G] 5)
READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.

RESTRICTED TEZ BRI N AT, A5,

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject * flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you’ 1l understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PyLong_FromLong (obj->data) ;

PyErr_Format (PyExc_AttributeError,
"'%$.50s' object has no attribute '%.400s'",
tp—>tp_name, name);

return NULL;

The tp_setattr handler is called when the ___setattr_ () or _ delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int
newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)
{

PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);

return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

23. BN REE: EFXEHE 51

Extending and Embedding Python, ([3.6.10rc1

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like __1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GT,Py_LTor Py_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’ s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->o0bj_UnderlyingDatatypePtr->size;

switch (op) {

case Py_LT: c = sizel < size2; break;
case Py_LE: c = sizel <= size2; break;
case Py_EQ: c = sizel == size2; break;
case Py_NE: c

case Py_GT: c

case Py_GE: c

}

result = ¢ ? Py True : Py _False;
Py_INCREF (result);

return result;

= sizel != size2; break;
= sizel > size2; break;
= sizel >= size2; break;

2.3.5 Abstract Protocol Support

Python supports a variety of abstract [protocols;] the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines from the type implementation, the older
protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked
by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the
presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Object s directory of the Python source distribution.

52 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)
{

Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is [called | , for example, if obj1 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ("hello'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the argu-
ments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword ar-
guments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy t p_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

char *argl;

char *arg2;

char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) |
return NULL;

3

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

23. BN REE: EFXEHE 53

Extending and Embedding Python, ([3.6.10rc1

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to the Python
__next__ () method.

Any iterable object must implement the t p__it er handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

* For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each call to tp_iter.

¢ Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. Aniterator’ s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’ s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

hs%:
Documentation for the weakref module.
For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject * field in the C object structure dedicated to the weak reference mechanism. The object’ s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObiject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT (NULL, O)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),
bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

54 Chapter 2. RERE=FTHREEYT R

Extending and Embedding Python, £[F] 3.6.10rc1

static void
Trivial_dealloc(TrivialObject *self)

{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self)->tp_free ((PyObject *) self);

23.7 ESEI

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) |
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

}

hz%:
"F#k CPython JFfCISRAS. https://www.python.org/downloads/source/
GitHub |-J% CPython JR{CiZIY) CPython JiiH . https:/github.com/python/cpython

24 W CIC++ ¥ B

—~ CPython [{] C " @2 — =% (Bilfn—> Linux FfY .so , 3 Windows [.pyd), H&E&FH—4
FAR R A

KT AR, EEELGE PYTHONPATH HOf 28, HAM i r 44 SR E 7, Wi id 4 my . 24468 H
distutils [, 2 H 34 SOER I S04 .

WIHRA SR P BT -

PyObject* PyInit_modulename (void)

PR ER [B] SE B IR A i AR, B> PyModuleDef 5Efil. #F initializing-modules T i B2 41177 .

XTFANAE ASCI 4is g Bibe 42, BREULATE PyInit_<modulename> , }f <modulename> il A
145 5. 24 # il multi-phase-initialization F}, iR il 3E ASCIT 4 i (A5 24 . BUISH) 46 Ak R 55017 44 5 42
PyInitU_<modulename> , |fij <modulename> FFH Python Y punycode 4t , ETS TR N FRIL.
7r Python Hi:

def initfunc_name (name) :

try:
suffix = b'_ ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-', b'_")

return b'PyInit' + suffix

24. ¥E C/IC++ T'RR 55

https://www.python.org/downloads/source/
https://github.com/python/cpython

Extending and Embedding Python, ([3.6.10rc1

A LATE— DB PR LS I 2R, il il LSRR AL T AT ZAT S el i S AR,
R A B I U B T SO A R A el e B R [—AFE 2oy 4k] T, 15 PEP 489 THRHEZ
a4y

2.4.1 {#H distutils 33 C #1 C++ ' &

PR] DA distutils A5 7, X J& Python H 7R, distutils 937 #5608 kG, P LB HiFEssm
distutils G RELEEY R,

—~ distutils W T —MNIKEHHA setup. py o K& 4L Python UM, REBRHMEAR 8, FHEARUT:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description 'This is a demo package',

ext_modules [modulel])

WS setup.py , MM demo.c, i&fTHITH

python setup.py build

XL GiFE demo. ¢, ARIEFAE— Y REHIUM demo #EH 5% build B, {KBIT RS, B SCHFSTER
AMTHZFEEM build/lib. system , 4FA]fER demo. so B demo.pyd

TS setup.py B, IrAIMERA D@ setup K. ZRET A TR B XA 240, _Bmm
FIFREH T AT FrRlfEEdEns e TWEENITER, AEREE TENE. iE - Mat
FEZ AL, W% Python [FYRRGELEL . SCRY . % . 5S4 distutils [193C8Y, FE distutils-index & T i 8 £
distutils PRRME; ASEETT HUARRER B R4y .

HHF RS setup (), MEELFALEHACIKSI A . A anin_ b Gl K%L setup ()) ext_modules
SR, 42— Extension REYSLl. BT ESEHIE L T Y RGN demo , M E—
PEAD S 7 demo . c

HLmE, W RAERNL , FHEAIMYIALBE e SCRIPE . 417) 1R T X 2t

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
("MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = '"Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,

long_description = '''
This is really just a demo package.

(continues on next page)

56 Chapter 2. RERE=FTHREEYT R

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

ext_modules = [modulel])

Bl A setup () FERHRBIMER TIOE R, BIEFERGOMENYNE. N TXN R, HEET
TULPEAS & X, include H3%, FEHE, . MBT9i1%a%, distutils 782> F HA Oy A48 (5 B A i . Bl
7E Unix |, 254200 F gmifmn s

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
< VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —-shared build/temp.linux-1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux-1686-2.2/demo.so

AT AR TR H Y5 distutils J P R2AH(E distutils BEIERRTE .

2.4.2 HHIREYY RARIR

B YR LM E, =R .
IR A Pl B, W PAIX 20817

’python setup.py install

BRSPS ;. BT AIsA T

’python setup.py sdist

ALAGOUT , F LRI A A B MY SCPF s Xl MANTFEST . in SCHFSEBE, #5 manifest T 74
A7

ARG A AT T, dEfE WAl DA R AT . BT S, — A an T

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 £ Windows FEESEFC I C++ ¥R

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

#iE): This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, ' X' will be the major version number and 'Y "' will
be the minor version number of the Python release you’ re working with. For example, if you are using Python 2.2.1,
XY will actually be 22.

2.5. £ Windows FE&SmiIFC 1 C++ ¥R 57

Extending and Embedding Python, ([3.6.10rc1

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’ s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’ s memory;
instead, the code already uses the DLL’ s lookup table, and the lookup table is modified at runtime to point to the functions
and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. 0). During the link step
to create a shared object file (. so), the linker may find that it doesn’ t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library is
like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A . a to the linker for B. so and C . so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building 2. d11 will also build 2. 1ib. You do pass A. 1ib to the linker for B
and C. A. 11ib does not contain code; it just contains information which will be used at runtime to access A’ s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’ s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *;itdoes create a
separate copy.

2.5.3 Using DLLs in Practice
Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland seems
to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 11ib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

58 Chapter 2. RERE=FTHREEYT R

https://github.com/python/cpython/tree/3.6/PCbuild/winsound.vcxproj

Extending and Embedding Python, £[F] 3.6.10rc1

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.d11 (and .obj and . 1ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your exe-
cutable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the correct
msvcrtxx.lib to the list of libraries.

2.5. 7£ Windows ES4RiFCHF C++ ¥R 59

Extending and Embedding Python, ([3.6.10rc1

60

Chapter 2. RERAE=FTHREUEYT R

CHAPTER 3

A E KRN HAZ R CPython iZ1THY

A, AeEAEAE Python RS 110 T AR 2T R, M2 A B CPython sz AT IR A E K1Y
W ARF o AT T B SE U VR T Sy — 2240

3.1 EHE App [[J#gr A Python

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your appli-
cation in Python rather than C or C++. This can be used for many purposes; one example would be to allow users to tailor
the application to their needs by writing some scripts in Python. You can also use it yourself if some of the functionality
can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python —instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has
to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize (). There
are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

hz%:

c-api-index The details of Python’ s C interface are given in this manual. A great deal of necessary information can be
found here.

61

Extending and Embedding Python, ([3.6.10rc1

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#include <Python.h>

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);
if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);
}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");
if (Py_FinalizeEx() < 0) {
exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_TInitialize () toinform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (), followed by
the execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx () call
shuts the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script
from another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better
be done by using the PyRun_SimpleFile () function, which saves you the trouble of allocating memory space and
loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but ex-
changing data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

62 Chapter 3. ZEEXBIN AR\ CPython iz{TH}

Extending and Embedding Python, £[F] 3.6.10rc1

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#include <Python.h>

int

main (int argc, char *argv[])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) |
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) {
pValue = PyLong_FromLong (atoi (argv([i + 3]));
if (!pvValue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong(pValue));

(continues on next page)

3.1. #£HTE App [Fi#z A\ Python 63

Extending and Embedding Python, ([3.6.10rc1

(R —H)

Py_DECREF (pValue) ;

}

else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");
return 1;

t
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
3
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
3
if (Py_FinalizeEx () < 0) {
return 120;
3

return 0;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’ s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20

for i in range (0, a):
c=c¢c+b

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

64 Chapter 3. EEXBNARFP#ERA CPython ia{Tht

Extending and Embedding Python, £[F] 3.6.10rc1

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we’ re looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds
by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PyLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. #£HTE App [Fi#z A\ Python 65

Extending and Embedding Python, ([3.6.10rc1

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is generated
as part of the installation process (a python3—config script may also be available). This script has several options,
of which the following will be directly useful to you:

* pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config —--cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —-fwrapv -03 -Wall.
——Wstrict-prototypes

pythonX.Y-config --1ldflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m —-lpthread -1dl1 -lutil -1m -lpython3.4m —-Xlinker -
—export-dynamic

#i[E]: To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the above example.

If this procedure doesn’ t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’ s documentation about dynamic linking and/or examine Python’ s
Makefile (use sysconfig.get_makefile_filename () to find its location) and compilation options. In this
case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will want to
combine together. For example:

>>> import sysconfig

>>> sysconfig.get_config_var ('LIBS')
'-lpthread -1dl1 -lutil’

>>> sysconfig.get_config_var ('LINKFORSHARED')
'-Xlinker -export-dynamic'

66 Chapter 3. ZEEXBIN AR\ CPython iz{TH}

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2t03 4 Python 2.x (TS Python 3.x (R T 5L, AEUSALTRACHS S AU USRI I3 BB R A
DU ZI () AN 2 I
2t03 f EFFEFRUEIE Y, B4 1ib2to3; HHRME—SZ AT X Tools/scripts/2to3. £
2to3-reference.,

abstract base class — IR IR G EEFFR ABC, @Xfduck-typing BAb7E, AL T —FhE LR O
X, M2 FHABRIGFA hasattr () B TREMECHE RS IR (FlanfHE BRI). ABC5IA
TR, XM EM R 5 A2, HARER: isinstance () fl issubclass () FrAR]; i
I abe FEHSCRY . Python HAFFZL P E) ABC I TSLBEHE45H (7F collections.abe fidkHr) .
BFE (FF numbers) L i (FF io Bithdh) . SAEHRESANEEE (FF importlib.abe bk
H) o ARFTRAE] abe ka3 H 2 ABC.

annotation — A7l KECEIIEAARE . REM:. RETESSUR MHEIARE, BEENE Npe hint Al .

SR AR AR IS TR AN D), (HA R AR B AR B AR £ AR . SN R
__annotations__ fFiREMH:A.

2 W variable annotation., function annotation, PEP 484 1 PEP 526, %fitIhEEH NH .
argument — 5 YU REBHE 45 function (B{method) W{H. S0 HWiFh:

o KT A TEREOR T T A AR R (BIA0 name=) SCEAE N A STERTI A <+ YT HLH
ME A 28BS, 3 A1 S FELATRXT complex () HYRMHIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s AL E Ade ARTRETSHNSI (CESHOTH T SR ERRIT L AR S AR R aa A
* Wyiterable P TCRGAL A 2B, 3 A1 5 FELA TR g T B S 4

67

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, ([3.6.10rc1

complex (3, D5)
complex (* (3, 5))

SRR REL X R AV L. A7 RN B 0 calls —7 . ARABIEYE, (k50T
PSR AR A BHG S O (E 2 B X I oA

3% Wparameter REFRFH , HILFEH SEGESH K5I K PEP 362,

asynchronous context manager — 525 |1 FSCEPIZS AT £ WL E X _ _aenter_ () Ml __aexit_ ()
FEFRXT asyne with @A) P RFHREEFTEE S, B PEP 492 5] A,

asynchronous generator — 52524 R %S IR [BI{E Nasynchronous generator iterator WA . B-5M] async def
T SRR R BARAARL, ARRZAATET B vield REX A4 —FRIIWTE async for fEHH{H
HME.

BEARTE T H 245 5 AN ae s L, (BAERS S OU N R BE 248 7+ £ m Bk K& . WERTFEE A
FARE S, T 4 FR ARG 8

SRR LA avait FAREK asyne for M async with .
asynchronous generator iterator — 535 /L R 25608 asynchronous generator FRB BTN .

WXt J& T asynchronous iterator, 24§l __anext__ () F{ERAI &R Bl —AN 0l 2R 4 sk AT 74
A S R A U L) R —4> vield ik

f4 yield QUG AL, JCfEH AR IR (IR RATHR vy FA). % 5
R BERE TN anext () BENITFEMEARIKELN, © 2N LRASNT. S0
PEP 492 1 PEP 525,

asynchronous iterable — 525 [%A% 7 £ async for EHA R M A M X L. LAESTE W
__aiter_ () F¥ERE—A asynchronous iterator, {1 PEP 492 5| A,

asynchronous iterator — S2B k03 SLHL T __aiter_ () Ffl __anext_ () HYEMNS. __anext_ Wb
R 8] —A~awaitable %45 async for LI RAARN __anext () FEFTIR IR S5 R
%, HIHF| K —1 StopAsyncIteration F#. H1 PEP 492 5] A,

attribute - JEPE SCECE]—XTRAME, ATRAGE S 3kl ARG . flan, R 5R o BA
— Mgtk a, WATLAR o.a REIHE.

awaitable — WZEfER St GEAE await FIRK BN S . A PAZcoroutine {2 B __await__ () FERY
4. % PEP 492,

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

binary file — “_JERI S file object RENG TS F 7 K xt f. THEHISCHARI G AR DA HIEEEL ("rb, "wb!
or 'rb+"') FTHMICH:. sys.stdin.buffer, sys.stdout.buffer DA} io.BytesIOfil gzip.
GzipFile [SLH.

A5 Wiext file T fRREMSTES str RGISCIERTSR .

bytes-like object — =ik %f 4 7 FF bufferobjects H: H. 58T C-contiguous LRI % . XIEFFA bytes.
bytearray fll array.array X%, PARIFZEH memoryview X5, PN Gl 1E 2 fp 3k
BAREEP R s XS E IR AR . PRAFR B SO DA S R R IR A

FLCPRA R] 2R R . XM RAE SR PR R TR R ARG A R
B T44% bytearray PAK bytearray i memoryview. HAMMEER —JbHiRRAT T A W] 2%
G THREEFWERXG]) RFRREBI T4 bytes LAK bytes MR memoryview,

bytecode — “y1ify Python YUY &4 74785, I CPython iR & o/ Python ¢ Y AL . 7
LR EAFAE cpyc S, SRS AT [A)— SO R EpR - (AT DA G 25-K5 U B0 4 150 7
Tl o XA [P S] B ERYE 7 R A AL B virtual machine 2 b 3§ N [A Python
FEAL R T A&l , A -—ERETEA] Python A EARZ .

68 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/~guido/

Extending and Embedding Python, £[F] 3.6.10rc1

FATHFE A F 2 1] DATE dis B SCRY R A .
class - & I RANE P E SO SRR . 20 SGE B AL S M HZ IS SR - T B E I i 8 s
class variable — Q338 & 7E2 g LAYAE &, I HAURFE R B Z S B0 (A 27 20 LB 850

coercion — ST The implicit conversion of an instance of one type to another during an operation which
involves two arguments of the same type. For example, int (3.15) converts the floating point number to the
integer 3, but in 3+4 . 5, each argument is of a different type (one int, one float), and both must be converted to
the same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather
than just 3+4.5.

complex number — 528 WHIE SRS R, Hoo B BT EEER A N — A SR — A A REAR
MR, (1 B AR) AYSEAER, W TERCAT SN 1, TR S J. Python NE T X4
By scfe, RN TREARIS T 20 g —A 5 52, BN 3+15. WPRTEZE math BEER ARG 15X
WARBRA, WHA cmath, ER MR — DB BAEARE . WRIRBOER A L, ZIgE
LA LA AT AR 17 L

context manager — |+ F3C8FHIZS AF with 50, @idE XN _ _enter_ () fl _exit_ () FEFRE
HHFEDRESHIN G . 2L PEP 343,

contiguous — #4; —NFh AR IS C i 45 Fortran i 8l S0 N R LT . BYELErh)& C Al Fortran 1447
K. TE—4EB T, BT 25 H U PE NAE TR b A SR HES Y, R B IFUR s RS 0y . FEL 4k
C-IEZ gy, M A HES B e — A2 5 5 R 25 H I B bl . {2 7F Fortran JEZ25 40
W RS — ARG Hebk.

coroutine — P Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function — PHpREREEL IR W] — 1 coroutine ST EREL. THAERET T asyne def {BARE X, FF
A REfL P await, async for fll async with e, X2 H PEP 492 5] A

CPython Python ZRFE1EF WIMITESLEL, FE python.org [% .] CPython] —i] F F7E0A i S B Hofth
SEFEIGN Jython BY, IronPython FH X 41l

decorator — $EHigy R MIMECH 7 — AR %L, WHE B ewrapper EETEAKIATREUE e . R AMRRH
LA TAdE classmethod () Ml staticmethod ().

PR U RN, DU AR B0 SR S R Se 45 i

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

RS R T8, (B ER A . A SRR PN 1T 2 0 eR B0 SORI 2858 S S0

descriptor — filiih gy TME LT __get_ (), _set_ () B __delete_ () FIEMIXNSR. Y—1KEMH
HTERERET, B RERR ET S ST R A IR A & . EEE IR, O a.b RIREL. WE S
— N EVERTSTE a (R FHAPERATN b XIS, B b 2R, WS X R iR
. PRI R SR &2 BV 2 I PR Python (1) 65 RN VP2 SRR ELAE , 035K %K.
FE. B EhE. B EARST RG] &%,
B FERRFF FER A 7T 2 descriptors.

dictionary — ‘72t — /N SEECKEA, HoH BT B BAR L S B AR B BB, BRI DARATE M A __hash__ ()
eq () HERXNS., AE Perl 5= K4 hash,

69

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, ([3.6.10rc1

dictionary view — “‘FHLFE] M dict.keys (), dict.values () fll dict.items () IR EIRINTEYEFR UL
ME. ERETFREEN - ISHE, XEREYFHUARR, RSN A BRI
PR o BUE R4 26, AT list (dictview) . &I dict-views.

docstring — SCRYFAFHY (o098, BRBCEH 2 955 — A RaA U BU 47 5 P . EAEAUHE AT &
B, (Hu R R B A RBERIRAY __doc__ @M. mTErITFRIBHNA,
PR IR GAT S A LT (o

duck-typing — W1 8% f5—Fhgn e g, B AMRKEE AR RAORG ST AAIEMWED, MEH
PO A s s (“BRRGN T, MERREGEN T, Bagemet.”) hTmiEe
Fm AR E 2R, Bt AT A P i 2 AR ORI T R G . B9 FRALRG M type () B
isinstance () f. ((HEFEM BT DAGE A 40 28 & fE kb s,) MIfEES R hasattr ()
K M BE EAFP S o

EAFP “KJFHORIF AT S Y " B3 SCHEE . XAl Python 3 HIACHS 4 5 XUk 2 B8 i s 1) S8 BB AP AE
FAEABE SR AR R o X P T PR A R RO R R s] try Ml except 4], T HAXHY
MR PTELBYL XA%, LT C 452 HAliE = .

expression — FKiA R, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all

return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as i f. Assignments are also statements, not expressions.

extension module — " JEELHe DL C 50 C++ i S5 HUHIEL, (1] Python iy C AP SR 515 F Bl A K P AU E

TEH,

f-string — f- 7 A £ 5P BISRIOEAT R FIEEE RN AT B AS SRS R S TR
8% . 2 PEP 498,

file object — SCPRXF G X AN ML) SCIF APT DA T2 BT S (A read () B write () IXFERYTT
5) o MRIEHAUET SRR, SO R AT DAL P BLSCREESCHF, XA f, SR NI SR
AR (PIANbRHER A/ . AR X BT IS) . U R WP ST 23 2 80A.

SEPR A =R B SO G B G =2) SO, Goh =R S DARSOR . BT E X
TE fo b, BSOS R TE e A open () PR%L.

file-like object — LN 4R file object W [R) SLiF] .
finder - # 4Ry —Fh 2 AR T AR loader XI5 .

M Python 3.3 JZAFE AR BU I A $k 48 Lk 12 & 45 % BLE sys.meta_path], PAKpath entry
finders fit & sys.path_hooks ffiff].

LTS 0 PEP 302, PEP 420 | PEP 451,

floor division — [i] FEURERRIE) N & A B S BN BE R YR . I FEURBE BB // - B,
Fib 11 /7 A WITELRRE 2, S ZMHRRIF SN EIERRERE 2.75 . HE (-11) //
4 &) -3 Ak -2.75 @ TR ASRI4EE . WL PEP 238

function — % 1T DA [& 3R R AME) — 415 A) . i8] PATA HAZ AT B EZ AN 520 HE R B ST
Wil « 5 Wparameter, method F1 function Z&75,

function annotation — FErbATE B4R BEE0E 2 5iR IBHE R annotation
PRV R TR 2042« BIan AR s Z A int SEOF LR E—4> int {H:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

BRI I TR DL function —5,
& & Fvariable annotation F11 PEP 484 % I GE A

70 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, £[F] 3.6.10rc1

future —Fh ORI, RIRRR R GO RS -5 2 BT RE R AN AR B T S R

WS A _ future_ BIHOIFXTH AP RASRIRAE, KT AR B BRRE TS 2 WO AGE 5 DA AR B BA
NN

>>> import __ future_
>>> _ future__ .division
7Feature((2, 2, O, 'alpha', 2)/ (31 OI Or 'alpha'/ O)I 8192)

garbage collection — J S W TGS T4 1 FH (%) N A7 2S (B A R o Python S a5 | FTHE0RT— A RS A AN
FTAGERG | OGS 0 s SR A TR M) o W RABE] gc BBk fil s [i s -

generator — LAY &[0l generator iterator WIRKEL. BRERMBGEEREL, AFAETHOY yield &
KA DA =2 — R AL for-IEHAE I 8@t next () REE—IKEL.
W ZARE AR R, BRI N TR R AR AR B R E . AR FEEERIBAAE S, EHl
FH A PR DATRE Gy S

generator iterator — ZE RS IEICES generator PRELPTOIEEMIRT A .
FAS yield IGHFEEAR, 0S4 HI AV EHATIRS (AFE RS RMERER vy HA]) o 241X £ &
BERBIKEN, BAMNETACERSIAT (X 5R U AR AT 158 s 22 IR) .

generator expression — 4 g 28335, An expression that returns an iterator. It looks like a normal expression followed

by a for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function — {Z MR Sy A []) 228 S B[] B4 1) 221 BRSOV AL BOR) eR 8 R T IR 2 ph IR EE SR
R 7 1% ik R A~ S B

W& S Wsingle dispatch R17EFSH . functools.singledispatch () 3/figePA & PEP 443,
GIL Z: W global interpreter lock

global interpreter lock — 2 R RESS 8 CPyrhon fEREAS IR B —FPHLE], BRI —B 20 308 — AN e
PWFT Python bytecode ., BEHLHITEIT B EXT G (36 dict SFEENERE) 43I &R RS
£fdifb T CPython SCHl. AR INBI M MREAS S AL T (8, HAAM N2 HidE T2 AL
RS DRI .

g, BEBEhRE Bl =05 I R TR AT T 4 BT 55 00 P 4 w0 A IR GIL
BEAh, FEAT VO AR A2 SR GIL.
QA (CAERSALEE R BUE I S8) A 2™ MRS 55 I MR, PRI 44
A AL AR DU T B PERE . 3845 SO MR Rl M BE A 18 i 3 B DA AR AR %, AT B A DA 4
o

hashable — nfWy Ay — > X 5 14 0 Ay fEL A0 R AE FC AR A Jo 0 N 4R A8 REBOPR Ol Tee A (EFREAA
__hash__ () Jrik) , IFATLARILAX AT (ERERA _eqa 0 Jik) o AIGAXIR L
I RAT AR G A (L LRSS R A A]

TG A PSR SRRSO SR AR B A B, PR Ak S B A A P Bt e A fE

All of Python’ s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except with
themselves), and their hash value is derived from their id ().

IDLE Pytl;)&n B IDE, “LERiIF Kk 52257 B9 RS . /2 Python ARk K 4TIty i B4 g A 2 1 AR
R

71

https://www.python.org/dev/peps/pep-0443

Extending and Embedding Python, ([3.6.10rc1

immutable — Anf A HAREERNR . AR GEFNT . FAAHAICA. AR R RS .
RIDBAFE— DA FRIE, WD AETEFN . BN S FE RS A AR 2 ETZAEN, fm
(S L EuE B

import path — AR hZME (s 258) HARIIIER, SR pah based finder JRAH A
Hbr. FEFAR, BAEIIZEFERE sys.path, (HXRHPEABLATHER A LHRMH __path__
JE .

importing — A 4— ML) Python fURSHE N I3 —AMELBR) Python (RS BIr (s I YL 72 o
importer — A %R AR MBI G O REEJET finder X & T loader .

interactive — 33 1 Python 5 5 — a2 B MERERS, BIAR AT DAYEMFRESR P2 R A7 5 i A B AL eIk =, A7 Bk
THERHRER . REATSHHED) python a3 (WA AEARIGTTHEALITF 46 3% B b g B AH .3 B
) o A I AR SR I B H RN L i s X Rb o XS AR . (GG help (x)).

interpreted — f %! Python —ZFPRREALIE S, S RHmIFAIET, BAMWE M XAH TF 1%
PREARIAEAE T A BB . X R I5 S T AL a1 T I AN 5 S = B i o] PAT SO st T AR
BUEFET BA AR BUE S BRI AR, B AR PR TS g . S Winteractive,

interpreter shutdown — fFREGS P 241 2R I, Python fERE G- UE A — MR AT B BOT E LR
AETECIR, PIAIRCR % F S N ARSI S5 . Bl 2 2R R eI 2 o Xl A P E S
e 55 U R A A AT o E S P BEAA TR W] RE B B A R, TR R LB ORI B U
EARTARL (IR B 1A PR BB AL 55 -

FRREAS T 2R IR R __main_ AUHREETIZTTHI AR O 58 kAT -

iterable — n[EACA R BEAS B — ik | Ho A DL R 5. R aEAC T R B O 45 B e A 2T (D 1ist.
str Ml tuple) PARIESCIEFHZRAIGIAN dict. AT % PARGEX T __iter_ () HiEEELEH
T Sequence 15 XY __getitem_ () HYERMTE H & XEXT4.

AERXTZ T T for MEIRDA K2 HMM TR Z— NP (zip (). map ())o J—AA[ER
MENERNSEAEHWNERE iter () B, BERENZASSEAERL . X FEAREH T XELE AR —
U 7 o« FEAE AT AR S, PR AR B iter O B0E HOAFRER TS . for IBMEN
PR SALBEARSEHAE B8 — MR A iy 24 72 B RAENR I R RAF B AR . S Witerator, sequence
PA K generator

iterator — KUY FRFR —ER RS . ERFEAERIN _next__ () H¥E (B HALL N E K
Bonext () FRERENR PRI 248%A BRSNS % StopIteration i, FXHHEL
st BRI C AR, AR next_ () HEHATHIRT] K StopIteration . £
TAIRA __iter_ () HERRBRFENZERIBXNILH Y, FILERIFUEWR S LIS, AT
FHAB T BTGB KRBT G . — A BEF BN & 2 K ER P B RIS . 25T
% (N 1ist) FEARBRR A A iter () BREEUETE for IH 6 A B RS = A — AT B AL
o ARAEPEE BT RS 26 A2 53R [P 7E 2 ji i AC AR tp R R] — s R &, AR
Kkt EEN.

W25 H A F typeiter,

key function — H#EpR % T R EEUPRRE IR £, 2 RERS IR [0 T HEF SR CLAO R W A 4. BTN, 1ocale.
strxfrm () A HTA B —AF A DKIHE T 29 1 HE 4
Python w5 1 2 T H & Ao F 8 s ORI U R HEAL 84 41 7 K. HAP 36 min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg.nlargest () PA K
itertools.groupby (),

S —MERBCE 2R 7. BN, str.lower () 7R AMIVEZBS K/ NEHEF 4R AL 5k,
SERB AT 1anbda Fkx0ORAIE, HI40 lanbda r: (r[0], r[2]). i&H operator il
T =R B ERE: attrgetter (). itemgetter () flmethodcaller (). & AE WIHT
—T PASRE B RN) B pR £ s 191

keyword argument — 3P E S Wargument ,

72 Appendix A. RiEMBE

Extending and Embedding Python, £[F] 3.6.10rc1

lambda — B fliexpression ¥ S 44 NERBR R, b A AETH I IOR(E. Q18 lambda e85 AJA

lambda [parameters]: expression

LBYL B GBRER” MSCHS . XM RS g 5 XUA% SAEUEA T IR) sl 2 1 S O A A i P 4 1F . I
A5 EAFP J7 UG O LG, HAF R KR 1 £ 14

L2 LB Y, LBYL S8 “AF/” M “BRER” Z R EAF Mg R . B, AR it
key in mapping: return mappinglkey] A REH TR A EAEZ G HAMLKFE N mapping H
T key T i X) AT JE B 681 EAFP 5 R g

list — 514 Python N B) —Fhsequence. BIRAAHNZR, (HHEIUT HABEF h RO m A%, V)
[TCZ IR S A% R O(1) .

list comprehension — FI#Hl: X AL B — AN 7 91 v i) Bir A3 80K 43 JC IR Eé*%ﬂ%%ﬁ’ﬂ*ﬁ%?%%‘%o
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] ¥HEK—70
) 255 5 [A R F oS 2R AR BOR B AR (Ox.) B FIFR. o i ?/UXET [, 2R A g
range (256) HHIFTAITTRA AT

loader — JIERZY ATTMMEMBIRT G . BUHIE L4 load_module () BTk, MEAHE T B —1finder
R, S PEP 302, %FTabstract base class B] 2=, 1mportllb .abc.Loader,

mapping — WL —FP SCRHME BB ARSI T Mapping 8 MutableMapping g3 BT e ik m 2%
T E, RS H 74335 dict, collections.defaultdict, collections.OrderedDict
PAM collections.Counter,

meta path finder — JLEEEERIRES sys.meta_path WY R TR R finder. ToIEARE TR 4% Spath entry finders
FEAE RIAHFF A] -

5% importlib.abc.MetaPathFinder T fRICIARTA Hoas T SE I 71k .

metaclass — 0 —FPHTAIELRAIE. B LAFERL . REMAELN L., TR AFTEZ LR =13
QI B2 . JCEBA3 T8 1) X S 0 A 5 AP S Rl — N BRI S B Python {45532 ALAET 1T AR
@EEXE o KRBT H PAGEATFT XA TH, (HY4TFEB IR, T nT$EHbsm K m O HEr) ik 7
ﬂla%ﬁﬁﬁﬂ%ﬂ%)@ PRI H A BSR4t R a0 at . Sl i, DA AT 24555 .

E%ﬁﬁﬁm metaclasses .

method Jjik FEIENHE LW BREL. WERVE R LB — A @R, 75 2 RBUE IR S A R
F—Aargument (R 4N self). Z: 0L function FMnested scope.

method resolution order — Jj iLfRBTIIT 5 ¥ AEHT I T S 70 2 4% N A HE R AL P Y e)5 Y . 16
¥ Python 2.3 7 PEMTIN Y T AEE 2.3 BGEE Python fAT#5T FIAH 6 B 16 S

module it JH:XT%E Python AU —Fh RN, AR A ML 44 25 8], A4 34L& Python X 4.
FEHRT @ i importing FRAFR N3] Python Ff,
55 Wpackage.

module spec — RS — A~y 4 S), KPS T BB A X T A B, 2 importlib.
machinery.ModuleSpec HJSEH.

MRO Z: iLmethod resolution order ,
mutable — W[/ FASKFRATATER: id () PRFREE RO T BUEHIE. 531§ S Wimmutable.,

named tuple — B. #7041 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

73

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, ([3.6.10rc1

namespace — iy 4450 32 ARSI A EA R, £RANER, SaNZR P RiREm
HSE) (FEHIEZ W) o A 25108 2 B 1E v 44 oh 58 R S Fppsidlefb . 5, pR% builtins. Open'ﬁ
os.open () A[@IT 4 H 2 25 AR IR 4. fir 44 25 18] 38 1o BH A A B S BRIRAS R BSOR 35 B 3 5
ﬂiﬁﬁﬂﬂﬁ’ﬁf‘@ B4, random.seed() B itertools.islice(Lﬁ'ﬁ%@?@%Tﬁﬁ“@’ﬁ%
B random 5 itertools FiH - HISEELT .

namespace package — @y #4544 PEP 420 i 5| A —M e AIVE T Wpackage, fiv 8 25 A0 0] DA%
Bk IR, HAid T Hregular package KRR, FEAEATRA __init__.py Xff.
FHAIZ Wmodule ,

nested scope — iR E1EHIN 76— SGEREIN G HAS RGeS . Blan, FE5— @@IZV‘]EXE’JL@ITU\?IW
RIS . TR IS A A A nglﬂﬁﬁxﬁlﬁﬁﬁ}r&kﬁﬂﬁxﬁl JaERAS R L E # A2 PR T i R E
M. BRI, RS WER T2 R4 a0, #id nonlocal %%ﬁ?ﬁfﬁﬁg/\ﬁl‘gﬁfﬂﬂ
i

new-style class — FrJ XFT H 5 9 T A 502 19388 X IHPRIE - 7E5- 580 Python fitAcH, HA# =
FAEE 1] Python By 58 RyGHEHE, Bilan __slots__ . #iiR%F. FefEE M. __getattribute_ ().

KBS TS

object — X% LATHAIRGS (BMESE) PAKRTIE AT () W5k, object L2 T lnew-style class [
HIERERY .

package — {4 —FP] & T BB IS ML & P) Python module, MR Lk, H/2HWHA __path_ &
P Python L,

Y52 W regular package Fnamespace package.

parameter - 65 funciion (8irvk) i XRHIGA 0K, EHSE AT AR argument (siAERCLEN;
W, A4S, HTAEE:

* positional-or-keyword : {7 E B BT, F5E DV DMERNE E A3 8 AW AT DAVE N X 48 F 2 1%
AW, X RBIAWTES AL, HIUTR K foo F1 bar:

def func(foo, bar=None): ...

* positional-only: {LFRAIE, € — HBEHALEE AR SE. Python Hilcf E AR ETE 21
k. (AR NEREA MURMEES (il abs ().
* keyword-only: {{[RICHET, F5E A HAEEEL R THEANSE. (URIKE TS il oE KL

E XIS IR PG A A B S WA N AN B S ZH—A * kE X, BT
T kw_onlyl F1 kw_only2:

’def func(arg, *, kw_onlyl, kw_only2): ... ‘

* var-positional:][RI, € W] ABRME f—MERECR AL B SEA T (FEITEHAE 2
CRZNNESHZIG). RIS AR S AR * KE L, Bl FE args:

’def func (*args, **kwargs): ... ‘

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FEOITE MBS C #3205
FLRZIG) . RIS EETEIE S ARG «* e L, Bl Lmr kwargs.

FEZ T VAR 8 € AT e S 4L, AT A S SE T e S 40008 E BRI -

W2 Wargument RIEFZH . SEEESHX BT H)E ILE S, inspect .Parameter 2%, function —
LK PEP 362,

path entry — Y882 A 01 import path WP —ANEEI B, SWipath based finder Fl A4 E T A AL

path entry finder — J&E A HEERDS F—0[TH XL sys . path_hooks (Blipath entry hook) & [8] i) finder
WA GRS S path entry g R

74 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

Extending and Embedding Python, £[F] 3.6.10rc1

2% importlib.abc.PathEntryFinder DA T D ARSI SLIAI AN ¥

path entry hook — B4R A IV —Fh T XS 48, FERNIE AUART & 4R 4RF RE parh entry Y REHR 5 DL T REAS L1
H sys.path_hook #|FEiR [Bl—~path entry finder .

path based finder — 3¢ F¥EIRM AR EY ZRIANA—FhTsb 2 &35, RIFE—Aimport path A FARERL

path-like object — B#EH MR L E AU RGNS . BB R AR FREAEH str 8
bytes X%, [PA— LI T os.PathLike MM E . —A3ZHF os.PathLike MHYAIXI S
Al os. fspath () HREEEIR N str B bytes KRB M RGEPKIE; os. fsdecode ()
os.fsencode () A5 I RMALRIKS str o bytes BBIPWLER . x4 2 PEP 519 5| A,

PEP “Python I Y345 . — 1 PEP L —Griki SCRY, JHIf Python 4 RHEFEL, shifiia
A Python Iy BFHFPE B FLHEES SRS . PEP 1A B 0RO S0 A BTSSR R E]
PEP [l it B A HN . WCHERRDCA A BRI I DA B R 5 AT, Python B e 5
SCRAH L. PEP {8 A IEFEAE A D PR IR, T BRI B UL A SO
Z I, PEP 1,

portion — {5y F R — A~ 24 2 AL A H SR NSRS & (AT REAA T — A zip SCIFY) , HLHAE UL
PEP 420.

positional argument — {ii & %5 S Wlargument.

provisional APT - #[Z API & APL 2545 A B HEBRTEARME PRI 0] 5 A M ARIEZ S . I i 101 . B
SRR TEHE A TA EARUCE, (HHBH RO €, BT BETER O A E 1w A B Ol
TGRS E R (BRI D). SO A S ST — (FE APLBUINAZ Bk
% S I E EL R A B K IS A R] B XA
R @ X APTRUL, 0] 5 AR S Sl B eI 587 —] A R i A B
XA RRAE AR B —Fh) IS A e T 6
PR AP AR AR FERF SR WTHBE AN TR0 M KRBT B B . RS L PEP 411,

provisional package — # 5, Z: [provisional AP,

Python 3000 Python 3.x %A FEZIIEAR (X2 FAERRAS 3 1 LA RERE LI BTt T il 7)o« A
%ﬁ%gj{j “Py3k”o

Pythonic $55—™ L% 80— B USSR 35 8E0H T Python o 5 e RO XA FIBE &, AN 2 (o AL o 5 v e
AR A S BACRS . BN, Python [I XAR 2 (] £or TRAIIRERAM) — >l AU R i T T
o WZHAE S A AR, AP Python A I 2 W6 — MO T -

for i in range(len(food)):
print (food[i])

TR, Y B 1575 B Pythonic (77 34 /& X FERY:

for piece in food:
print (piece)

qualified name — g /¥ — NPASUS BRI A PR, R ISR Y 2 JR VPR E AR R b o LR B
B0 BT, MHE I PEP 3155, T i Z A RECRIZE, FREA RS X R AR —E

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname_
IC’

(continues on next page)

75

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, ([3.6.10rc1

(R —H)

>>> C.D.__gualname___

'Cc.D'

>>> C.D.meth._qualname___
'C.D.meth’

295 T 5 AR, % RE S AR AR R IR LSS TR N i AR, s a1 AL
, il email .mime.text:

>>> import email.mime.text
>>> emaill.mime.text. name
'email.mime.text'

reference count — 5[JIIiH4 SR E XTS5 HREEE . 24— DX RI5 | TR BN, B4 B v TR oRE
e 51ATHECT Python fAHE K il # 2 AT LAY, {H'E SR CPython SEPLH)— N K HEICE . sys BBLUE X
T—A~getrefcount () pREL, FEF G2 ATUE B AR mIR X205 | 4L

regular package - AL ZG A package, BIMEEEH—A __init__.py CARYHR.
5% Wnamespace package.

_slots__ —FEGYEA N TR AT B, 18 1 951 5 7 B S 1) JaR 1R A 0 R I RS R S 01 7 R 548 A BRI R
TARGAT, HARZNE AR, St RRBAEDBAROUT RN, BN iRy, 7
HIH A a5 KRS

sequence — Ji41 —Fhiterable, 'S _ getitem () HRFR R A AR [T RAUR G R TTIA),
HEXL T —MREFHKER __len_ () FiE. WEFHIZKAA 1list, str, tuple fil bytes,
WEER dict BHH _ getitem () Al __len_ (), {HEHANBTME RS, K AEE
RIS F AT B i) immutable ST AEFEHL

collections.abc.Sequence MR HREXN T —TMEEEFEWED, BT _ _getitem_ ()
H__len_ (), WIT count (), index (), __contains__ () fl __reversed__ () . W[PA#EH
register () RAJEM LI FEH OREAL.

single dispatch — Jis3Jk —Fhgeneric function 73IRIEA, HSELHUE BT A SR FERDRIEREH) -

slice — Y)Y 305 HALS THEE sequence H)—FB5r A4 . YIR 2 A Mnbmic R BIER, 7 11 P4l
JIANLAE B TEIErT, fltl variable_name[1:3:5]1. 4SS (FR) FRCERNEREH slice Xt
%

special method — $§5% Jj ik —7#fith Python I MR %, HIRXFAS B PATH E RAE BN I 255 . X
M5 AR A FRE T AU TR LR . REFATT ¥R SCH 2 DL specialnames .,

statement — i54) 150 2B (— MU W) AN, —SiEA T DA — A expression B %
SEFERYEERY, BN if. while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().

text encoding — SCASRY JI T Unicode 47 R 25 i A 737 R A i 985 o

text file — LA —FhRENS IS str X5 file object . B HE— > SCAS SO SE bR 1 1) —A T8 1) 47 B9 B
T H ik Brext encoding . SCASCAFMIBIFAFEASCARIE (Ter 3 'w') FTHIRSCHE. sys. stdin,
sys.stdout PAM io.StringIO fY3LH,

FWSEbinary file | fRREVS S F 7 K3 2 SR

triple-quoted string — 5 '3 fFih AW =AESEWGS () 88515 () /5. BITEDREL
HERES 519t TR A2, B2t ENarirETfFHanNEERE

76 Appendix A. RiEMBE

Extending and Embedding Python, £[F] 3.6.10rc1

e ARG S HINE S, H A DABS B AT JO T G HESRAT , (E20 5 SOR A0 R IPRE 5

type — J3% KA i —> Python X4 J& TAHAMIE; B MXEREEA A, EHEX IR, ATA
ViRER __class__ J@E, sididid type (obj) SEIRHL

type alias — 28R % —RAAG [S, Q)7 2R B R BRI R E BARRAT .
KRB BRI fa A X 2w . Biln:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

AT DA A R AT s

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

Z:)l typing Fl PEP 484, HAA7xh I RER A4 -
type hint — RBIPLR annotation 28 E . KJEME. BB S B0k IE 2 BU R 262,

RAERE T RIS, Python ABSKAEHE, (HHAXEHARA M THARIEN , FF A) IDE S8 H
A S,

&R, RIBMER R R B R A typing.get_type_hints () Ry, {HJEHRAS &N
AHTPA,

Z), typing fil PEP 484 g st I IhfERY 404 .

universal newlines — i i1 7 — A2 CAS IR AY /7, B PAT P A7 S8R IR A T4 bR . Unix H4745
WAE "\n'. Windows FJZ%E '\r\n"' PAKIHMK Macintosh {25 '\r'. =, PEP 278 1 PEP 3116
Flbytes.splitlines () [fE¥ £ HELH.

variable annotation — A8 HubiiE XA & 52K g ¥ annotation
TEAREAR S @ MR, 20 T PR A LA

class C:
field: 'annotation'

AR EAREE T O A K AR 0 BINDA R AR B2 int JREURO(E:

count: int = 0

A AR TRYA N TEAE fRRE I annassign —7
m%ﬁMMMWWWMmPHWMﬂPUW%,A*ﬁ%m EEEREEAIETI iU

virtual environment — JEAUBRSE — 5 R YRR B RIB T T ERSRE, feiF Python Ji RIS I 7 A 22 4 Al
TH4k Python 73 R ADIIA T HE 3 [l — R 58 Eizt7i HAt Python W AR FFHIATH .«

HZ venv,

virtual machine — JEHIPL — & 58 &8 S B 2 LAY AL. Python 8L ML v] $0 47 7 1 18 4 13 44 BT A= B
Hbytecode.

77

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, ([3.6.10rc1

Zen of Python — Python 24 51k Python JHHA BN S5, 4 DY TR 5 MRS . A JLR I
AI{E HBES R [import this .

78 Appendix A. RiEMBE

APPENDIX B

BARIELEFIRA S 14

15 LB S 28 Sphinx (—{# 5(E] Python [EJWA SR 85 1 SRR BERS) M0 reStructured Text 4#57
PR B L A A T o

4l Python [&, iith H A1) %5 1 I SCPRELERHEAR H BT TR . F AR IR A ik, 75 52 reporting-
bugs EUTE, [EVSAHBA A FoAM i Balpy BB A

B
* Fred L. Drake, Jr., J5lf Python SC{ TR AR M RIEE DA R — K EIAHI1ER .
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx 4¢f) Alternative Python Reference w1-#] H IS 2 00 5 .

B.1 Python {898 BRKE

7% A\#RH[E] Python 1& 137 . Python 121 ik X AN Python [EJRA SCAFET MR . Python FT#(EIfY 5 AA RS &
A ERCEREH, @5 R Misc/ACKS ,

TEFAIE] Python A7 1458 3 B Bk A 4 7 15 (R i (E] S — Jalt i iR g A1 !

79

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.6/Misc/ACKS

Extending and Embedding Python, ([3.6.10rc1

80

Appendix B. FiELFRAN

apPENDIX C

JE Sh B

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

ffilE): GPL 345 H A ERF Python {£ GPL R k7. 5 GPL [, Jiif Python ¥ niEAR AL 43 B A UG

W

81

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, ([3.6.10rc1

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 iF PYTHON 3.6.10rc1 &Y PSF o] HpiY

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.6.10rcl software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python 3.6.10rcl alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's notice.
—of

copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.6.10rcl alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.6.10rcl or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.6.10rcl.

4. PSF is making Python 3.6.10rcl available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.

—0OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.

—THE
USE OF PYTHON 3.6.10rcl WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.6.10rcl

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.6.10rcl, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

82 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.6.10rcl, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM #F &l

BEOPEN PYTHON JF5 /8] Pl & 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(continues on next page)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 83

Extending and Embedding Python, ([3.6.10rc1

(R —H)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g CNRI ¥#F o] il

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(continues on next page)

84 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FF PYTHON 0.9.0 E 1.2 5 CWI ¥ a]H#piY

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 WM fFa9F ok S5
A2 Python JATHU SIS =y BOPH VAT RIS oL, i R A S FLRIE A K

C.3.1 Mersenne Twister

_random RS BT http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html F 28 113,
. ARG R (FFE):

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

(continues on next page)

C.3. #HWrRIRHFaYVF ol 5053 85

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, ([3.6.10rc1

(R —H)

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EfEx

socket il getaddrinfo () il getnameinfo () pRER, XLEpREECISHE WIDE i H (http://www.

wide.ad.jp/) B ERAMIRSCAF

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND

(continues on next page)

86 Appendix C. FEshELigig

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-—
cial products, process, or service Dby trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C34 REEEFRS

asynchat and asyncore #EHHE AT A HH:

C.3. WURIRHFEYIFETiE SIS H

87

Extending and Embedding Python, ([3.6.10rc1

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie &1

http.cookies B E DL T ERH:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 MITERR

trace BHALE DA I

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

(continues on next page)

88 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode 5 UUdecode F#

uu AEHAL S PATR A A

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. WURIRHFEYIFETiE SIS H

89

Extending and Embedding Python, ([3.6.10rc1

C.3.8 XML 2T iAMA

xmlrpc.client FBHEE DA R ER:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

test_epoll B FHLATFEM:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

90 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

C.3.10 Select kqueue

select Ml XF kqueue B AL S DA R AEH:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Pyt hon/pyhash. c contains Marek Majkowski] implementation of Dan Bernstein’ s SipHash24 algorithm.
The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. #HWrRIRHFaYVF ol 5053 N

Extending and Embedding Python, ([3.6.10rc1

C.3.12 strtod and dtoa

Python/dtoa.c XML T CiEF R dtoa Fl strtod pR%L, TR C 155 WSO FE BURFAF R A 7440, %
A Hy David M. Gay Fi 7] 4 SCHFIRAE T 2K, 24T AT A http://www.netlib.org/fp/ F#k. 2009 4E 3 H 16 H&3|
) 2 SO 75 DA BRURCRR 1 1T s B

/**

The author of this software is David M. Gay.

* % o

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

E

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.13 OpenSSL

WMRBAERG WA, W hashlib, posix, ssl, crypt BH(H] OpenSSL FE 42 &thfE. Moh, WHT
Python [#) Windows F1 Mac OS X “Z-%¢#2)7 1] BBt % OpenSSL FER#E U1, BT PAZE AL 51 H T OpenSSL /1]
TR HE DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

L O S T

(continues on next page)

92 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L I S S T A SR R N N R S SN S N S T S T S S N S T S .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
*

included with this distribution is covered by the same copyright terms

(continues on next page)

C.3. WURIRHFEYIFETiE SIS H

93

Extending and Embedding Python, ([3.6.10rc1

(R —H)

except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L I I R A S N S S SN S SN SRS N S T SN S SN S N S S S S S S S e N S N S S N R

C.3.14 expat

BRI ——with-system-expat FLE T, I pyexpat § ARG M5 expat JRIHE DAL E R

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

(continues on next page)

94 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

(R —H)

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

BRAEBE —-with-system-1ibffi FUE THHE, I _ctypes § AR 65 Libfi JHATHE DM R

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

AR ARG EAR PR 21ib BAKIFTFE kN THE, W a5 2lib SR8 DR 2110 3 E:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

(continues on next page)

C.3. #HWrRIRHFaYVF ol 5053 95

Extending and Embedding Python, ([3.6.10rc1

(R —H)

including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

tracemalloc {§i [l MG FZE M S B E T cfuhash 3 H :

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

96 Appendix C. FEshELigig

Extending and Embedding Python, £[F] 3.6.10rc1

C.3.18 libmpdec

BRG] —-with-system-libmpdec MU TH#, BN _decimal BRI libmpdec FEfFE DAY

JEip

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. WURIRHFEYIFETiE SIS H

97

Extending and Embedding Python, ([3.6.10rc1

98

Appendix C. FEshEL{Zig

APPENDIX D

=
i
|mit
If

Python Hlig 25302 -

A © 2001-2019 Python Software Foundation, {58 g Al .

Copyright © 2000 BeOpen.com {4 i — Y HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SRR R A G 2 R At

99

Extending and Embedding Python, ([3.6.10rc1

100 Appendix D. jfiEEE

3l

Non-alphabetical
..., 67

2to3, 67

>>>. 67

_ future_ ,71

_ slots_ ,76
K

PYTHONPATH, 55

A

abstract base class ——- W HE%, 67

annotation —-- AFi, 67

argument -- ¥, 67

asynchronous context manager —- 3 ¥
TXEHEE, 68

asynchronous generator -- 354 &%, 68

asynchronous generator iterator —- &

¥4 R BERE, 68
asynchronous iterable —-- % ¥ 7% % 4,
68
asynchronous iterator —— F3¥ %R, 68
attribute -- B4, 68
awaitable —- HE£#& %, 68

B

BDFL, 68

binary file —-- Z##| X, 68
bytecode -- F ¥, 68

bytes-like object -- F¥ £ %, 68

C

C-contiguous, 69
class —— 2,69

class variable —-- (T &, 69
coercion -- WEH| XA H#, 69
complex number -- £#, 69
context manager —- T X% &, 69
contiguous -- # 4, 69

coroutine -- HH4E, 69

coroutine function -- WA F L, 69
CPython, 69

D

deallocation, object,48
decorator —-- M, 69
descriptor —- #HAE, 69
dictionary —-- 4,69

dictionary view -- FHME, 70
docstring —- XAHIFEHE,T0
duck-typing —-- #F %A, 70

E

EAFP, 70
expression -- iR, 70
extension module -- # ERH, 70

F

file object —— XX £,70
file-like object —-- X £ £, 70
finalization, of objects,48
finder —— THE, 70

floor division —-- [FEZERBR &, 70
Fortran contiguous, 69

f-string —— f-Ff4&,70

function —— H#, 70

function annotation -- EHAriE, 70

G

garbage collection —- # 3 [E Y, 71
generator, 71

generator -- 4K #, 71

generator expression,7l

generator expression -- 4 KBELRER, 71

generator iterator —— 4 K HE%KE, 71

generic function —— Z & H#, 71

GIL,71

global interpreter lock —— 4 & % &4,
71

101

Extending and Embedding Python, ([3.6.10rc1

H

hashable -- H®BF,71

IDLE, 71

immutable -- 4,72
import path -- S AKRE, 72
importer —— BA#,72

importing —- & A,72
interactive —-- R %,72
interpreted —— @EA, 72

interpreter shutdown —- FB & XM, 72
iterable —— HHERX4£,72
iterator —— #% R #E, 72

K

key function —-- # &%, 72
keyword argument —— *®FHH, T2

L

lambda, 73

LBYL, 73

list —— % %,73

list comprehension —- F|k#EER, 73
loader —-— jn# #,73

M

mapping —- B4, 73
meta path finder -- TLEAEKE, T3

metaclass -- 0,73
method resolution order —-- % ¥ # I 7,
73

method F i, 73
module spec -- HEHHAE, 73
module 3%, 73

MRO, 73

mutable —- 4,73

N

named tuple -- B &G4, 73
namespace —— 4 X, 74
namespace package -- W% X [E 4, 74
nested scope —-- #kEEHH, 74
new-style class -- #FHA%, 74
object

deallocation, 48
finalization,48
object —— X%,74

P

package —-— 4,74

parameter -- 4,74

path based finder -- ETHBEHNEKE, 75
path entry -- BHEANH,74

path entry finder —- BHEANDERKHE, 74
path entry hook —-- E&ANBHTF,75
path-like object —-- BFEEX£,75

PEP, 75

Philbrick, Geoff, 14

portion —-- #4775

positional argument —-- L& S #, 75
provisional API -- % % API,75
provisional package -- ¥ ZEAM4,75

PyArg_ParseTuple (), I3
PyArg_ParseTupleAndKeywords (), 14
PyErr_Fetch(), 48
PyErr_Restore (), 48
PyInit_modulename (C % 3R), 55
PyObject_CallObject (), 11
Python 3000, 75
Python Enhancement Proposals

PEP 1,75

PEP 238,70

PEP 278,77

PEP 302,70,73

PEP 343,069

PEP 362,68, 74

PEP 411,75

PEP 420,70, 74,75

PEP 442,48

PEP 443,71

PEP 451,70

PEP 484,67,70,77

PEP 489, 10,56

PEP 492,68, 69

PEP 498,70

PEP 519,75

PEP 525,68

PEP 526,67,77

PEP 3116,77

PEP 3155,75
Pythonic, 75
PYTHONPATH, 55

qualified name —- [RE&W,T5
R

READ_RESTRICTED, 51
READONLY, 51

reference count —- B|fit#k, 76
regular package —- %%ﬂu@,76
repr

Bz & =X, 49

RESTRICTED, 51

102

EL]

Extending and Embedding Python, £[F] 3.6.10rc1

S
sequence —— J¥7%|,76
single dispatch -- B4k, 76

slice —— Y F,76
special method -- #%kF %, 76
statement -- JE4],76
string

object representation,49
struct sequence, 76

T

text encoding —— X A%, 76
text file —-- UAXH,76

triple-quoted string -- Z 5| 5FHH,76

type —— X&,77
type alias —— KA F 4,77
type hint —— KRR, 77

U

universal newlines —- 47,77

variable annotation -- T EAFE, 77

[El &
repr, 49

virtual environment —- EWIHIE, 77
virtual machine —-— E#H, 77

W

WRITE_RESTRICTED, 51

Z

Zen of Python -- Python 7,78

e]

103

	推荐的第三方工具
	不使用第三方工具创建扩展
	以 C 或 C++ 擴充 Python
	自定义扩展类型：教程
	定义扩展类型：已分类主题
	构建C/C++扩展
	在Windows平台编译C和C++扩展

	在更大的应用程序中嵌入 CPython 运行时
	在其它 App 內嵌入 Python

	术语对照表
	關於這些說明文件
	Python 文件的貢獻者們

	歷史與授權
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	版權宣告
	索引

