Extending and Embedding Python
2(F) 3.13.0rc2

Guido van Rossum and the Python development team

9 A 18, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 HEsmss—Ji TR 3
2 MG 05 TR s 5
21 PACEL CH++EFEPython o e 5
2.1 —EFFEGG ... 6

2.1.2 Intermezzo: Errors and Exceptionso e 7

213 [EBEG] . . . oo e 9

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage 11

2.1.6 Calling Python Functions from C 12

2.1.7 Extracting Parameters in Extension Functions 14

2.1.8 Keyword Parameters for Extension Functions 15

2.1.9 Building Arbitrary Values oL 16
2.1.10 Reference Counts o it e e e e 17
2.1.11 Writing Extensions in C++ L e 20
2.1.12 Providing a C API for an Extension Module 20

2.2 Defining Extension Types: Tutorial L 23
221 TheBasics e 24

2.2.2 Adding data and methods to the Basicexample 27

2.2.3 Providing finer control over data attributes oL 34

2.2.4 Supporting cyclic garbage collection Lo 38

2.2.5 Subclassing other typeso e e e e e e e e 43

2.3 Defining Extension Types: Assorted Topics 46
2.3.1 Finalization and De-allocation e 48

232 ObjectPresentation 49

2.3.3 Attribute Managementol e e e e e e e e 50

2.3.4 Object COMPariSON . . . v v v v v v v e 52

2.3.5 Abstract Protocol Support 52

2.3.6 Weak Reference Supporto 54

237 More Suggestions i i i e e e e e e e e e e e e e e 55

24 #AT CE CH++ETEEM . o o e 55
2.4.1 Building C and C++ Extensions with setuptools 56

2.5 #F Windows R CHICH RIS - - - o o o o o 56
2.5.1 A Cookbook Approach 56

2.5.2 Differences Between Unix and Windows 56

253 UsingDLLsinPractice e 57
TESE R NIRRT ik A CPython 4 TEREE (runtime) 59
30 FEHT App FEHRAPYthon 59
3.1.1 VeryHighLevel Embedding 60

3.1.2 Beyond Very High Level Embedding: Anoverview 61

3.1.3 Pure Embedding 61

3.1.4 Extending Embedded Python 63

3.1.5 Embedding Pythonin C++ e 64

3.1.6 Compiling and Linking under Unix-like systems 64

A Bk 67
B s s EI S fk 83
B.1 Python SUIRIERRE . . - o o e 83

C W BLEZhE 85
C.l O BREBUYEE | 85
C2 BAMAFEE DA U Python BUETAIMEZR . . . o o oo 86
C2.1 JHJAPYTHON 3.13.0rc2 Yy PSFAZHEATA) . . . o o oo 86

C.2.2 A PYTHON 2.0 1) BEOPEN.COM FZHEEAT o o o o oo 87

C23 JJAPYTHON 1.6.1 () CNRI FZRESZT . o o o o o s 88

C24 JHAPYTHON0.9.0 £ 12 F CWLHHESAT . o . e 89

C2.5 JfIJ# PYTHON 3.13.0rc2 [FIif SC {5051 ZERO-CLAUSE BSD #24i 89

C3 WlkEWEBMFEREBEA 90
C.3.1 Mersenne TWIStET o v v i e e e e e e e e e e e e e e e e e e e 90

C.3.2 Sockets e e e e e e 91

C3.3 JE[AI2E socket HRFG . . . o o v e e e 91

C3.4 Cookie BHE e 92

C3.5 HATEE . . . o 92

C.3.6 UUencode i1 UUdecode BRI o o o o o o o e s s e e e 93

C.3.7 XML g FEFRERY e 93

C.3.8 test_epoll L e e e e 94

C3.9 Selectkqueue 94

C.3.10 SipHash24 e e e e e 95

C3.11 strtod HL dtoa o o e e e 95

C3.12 OpenSSL o . e e e 96

C3I3 expat. oo 99

C3.14 Libfhi e e e 99

C3.15 zlib . . . e e e e 100

C.3.16 cfuhash e e e 100

C3.17 Hbmpdec e e e e e 101

C3.18 W3CCHN HIEEM: . . . 101

C.3.19 mimalloc e e e e 102

C.3.20 aSYNCIO .« v v v v v e e e e e e e e e e e e e 102

C.3.21 Global Unbounded Sequences (GUS) 103

D flREE 105
#ul 107

Extending and Embedding Python, %[3.13.0rc2

B EIH SO R Il C 8k C++ WP B, V6 A 4L S 75 Python BL%gRThfE. APLAIAN
HERTAE B R, Rl PAEFEH B4 BUE K ¥ (method) . SCAHEIZ ik infaf 4% Python B
FRTHA Y — W R, (E)FEIEFTRE T (extension language) T . fef&, B & RN WA Hi 5 A s
fﬁ%%ﬁﬁ%ﬂ, AR A T DAE) fE M (TEUATEREE) B AR Eideh, iR KEIEERARA RkE
I RE -

1& 15 [EIH SO R R BA Python A EEBREANE, . B IFES HUIEER N 4H, 752 tutorial-index . reference-
index %4 P I wE = EEIE XK E S . library-index 5EE 7 BT M EE 5 B2) & B R E) st (B
AYAIPA Python $i & 1)) #i4H .

B 52 B 1 Python/C APL REAINAH, W52 (E)Y) 4h—1r c-api-index.

Contents 1

Extending and Embedding Python, %[3.13.0rc2

2 Contents

CHAPTER 1

HERNS=ATH

B S EEIE T CPython M A FTHEMLY) . A SIS E AT B, =)y TH, ffl40 Cython, cffi,
SWIG #l Numba, #{ft7 S EIf 3 &% wEEEER 25)77k, K(E Python #37. C Al C ++ 55

hz%

Python BHSSHE I 45 il
Python f#{f1 | % $ (Python Packaging User Guide) /i # T ef ol DA ACHH . e il 70
AR TR, b AR T AL A R ARA 18 A% .

https://cython.org/
https://cffi.readthedocs.io
https://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, %[3.13.0rc2

4 Chapter 1. ##EME=FITH

CHAPTER 2

MERE=AITEBIHESR

AdeE P E W E, EEASE = THE T, frE@ss Cfl C ++ 7. BEERR A
AR THEARIMEE P, A RRIRESL A O/ C TSI A,

2.1) C g C++ #E3¢ Python

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call
C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

e

The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementa-
tions. For example, if your use case is calling C library functions or system calls, you should consider using the
ctypes module or the cffi library rather than writing custom C code. These modules let you write Python code
to interface with C code and are more portable between implementations of Python than writing and compiling
a C extension module.

https://cffi.readthedocs.io/

Extending and Embedding Python, %[3.13.0rc2

2.1.1 —{ARHEEH

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library function system () '. This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status =

spam.system("1ls —-1") }

Begin by creating a file spammodule. c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be

just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

|

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice

if you like).

fti(E]

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

#define PY_SSIZE_T_CLEAN was used to indicate that Py_ssize_t should be used in some APIs in-
stead of int. It is not necessary since Python 3.13, but we keep it here for backward compatibility. See arg-
parsing-string-and-buffers for a description of this macro.

All user-visible symbols defined by Pyt hon . h have a prefix of Py or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file
does not exist on your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we'll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self,
{
const char *command;
int sts;

if
return NULL;
sts = system(command) ;

(!PyArg_ParseTuple (args,

PyObject *args)

"s", &command))

return PyLong_FromLong (sts) ;

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")
to the arguments passed to the C function. The C function always has two arguments, conventionally named self and

args.

The self argument points to the module object for module-level functions; for a method it would point to the object

instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects --- in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () in the

! An interface for this function already exists in the standard module os --- it was chosen as a simple and straightforward example.

Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the
C equivalents of the members of the Python tuple returned by sys.exc_info (). These are the exception type,
exception instance, and a traceback object. It is important to know about them to understand how errors are passed
around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The
exception object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the
cause of the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful functionis PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable e rrno. The most general functionis PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_ INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred () . This returns the cur-
rent exception object, or NULL if no exception has occurred. You normally don'tneedtocallPyErr_Occurred ()
to see whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —-1). It should not call one of the PyErr_* functions --- one has already been called by g. f’s caller is
then supposed to also return an error indication to ifs caller, again without calling PyErr_*, and so on --- the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_ *
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () isif it doesn’t want to pass the error on
to the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc () call must be turned into an exception --- the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an
integer status usually return a positive value or zero for success and —1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should
choose exceptions wisely --- don’'t use PyExc_TypeError to mean that a file couldn’t be opened (that should prob-
ably be PyExc_OSError). If something’s wrong with the argument list, the PyArg_ParseTuple () function

21. L) C g} C++ #E 3 Python 7

Extending and Embedding Python, %[3.13.0rc2

usually raises PyExc_TypeError. If you have an argument whose value must be in a particular range or must
satisfy other conditions, PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

[static PyObject *SpamError; }

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;
SpamError = PyErr NewException ("spam.error", NULL, NULL);
if (PyModule_AddObjectRef (m, "error", SpamError) < 0) {
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

J

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function
may create a class with the base class being Exception (unless another class is passed in instead of NULL),
described in bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as
shown below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;
if (sts < 0) {
PyErr_SetString (SpamError, "System command failed");

return NULL;
}

return PyLong_FromLong(sts);

8 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

2.1.3 EEFEH

Going back to our example function, you should now be able to understand this statement:

if (!PyArg ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has
been copied to the local variable command. This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variable command should properly be declared as const char
*command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

[sts = system(command) ; }

Our spam. system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

[return PyLong_FromLong (sts) ; }

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE
macro):

return Py_None;

Py_INCREF (Py_None) ; }

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL
pointer, which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and
address in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value
of 0 means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_ VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

2.1.) C 5} C++ #& 3 Python 9

Extending and Embedding Python, £[F] 3.13.

Orc2

static struct PyModuleDef spammodule
PyModuleDef_ HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation,
_1, /*

SpamMethods

bi

size of per-interpreter state of the module,
or -1 if the module keeps state in global variables.

{

may be NULL */

74

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_name (), where name is the name of the module, and should be the only non-

static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule)

’

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDe £ structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It
may abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily.

The init function must return the module object to its

When embedding Python,
an entry in the PyImport_Inittab table.

the PyInit_spam{()

caller, so that it then gets inserted into sys .modules.

function is not called automatically unless there’s
To add the module to the initialization table, use

PyImport_AppendInittab (), optionally followed by an import of the module:

#define PY SSIZE_T CLEAN
#include <Python.h>

int

main (int argc,

{

char *argv([])

PyStatus status;
PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);

/* Add a built—-in module,

if (PyImport_AppendInittab ("spam",
fprintf (stderr,
exit (1) ;

"Error:

before Py _Initialize */

PyInit_spam) -1)

{

could not extend in-built modules table\n");

/* Pass argv[0] to the Python interpreter */

status
if (PyStatus_Exception (status))
goto exception;

{

/* Initialize the Python interpreter.

If this step fails,
status
if

(PyStatus_Exception (status))
goto exception;

{

}
PyConfig_Clear (&configqg);

PyConfig_SetBytesString(&config,

it will be a fatal error.

&config.program_name, argv[0]);

Required.

*/

Py_InitializeFromConfig(&config);

€ & A}

10

Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

(R L —5)

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

}
// ... use Python C API here
return 0O;

exception:

PyConfig_Clear (&confiqg);
Py_ExitStatusException (status);

ftiE)

Removing entries from sys .modules or importing compiled modules into multiple interpreters within a pro-
cess (or following a fork () without an intervening exec ()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This
file may be used as a template or simply read as an example.

il

Unlike our spam example, xxmodu 1 e uses multi-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details
on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chapter 3 5= C $2 C++ % 7% #) and additional information that
pertains only to building on Windows (chapter 3% & Windows t#49 C #= C++ % 7) for more information about
this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add
a line to the file Modules/Setup. local describing your file:

[spam spammodule.o }

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running ‘'make Makefile’. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as
well, for instance:

21. L) C g} C++ #E 3 Python 11

https://peps.python.org/pep-0489/

Extending and Embedding Python, %[3.13.0rc2

[spam spammodule.o —-1X11 }

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input --- if you’re interested, have
a look at the implementation of the —c command line option in Modules/main . c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful to Py_INCREF () it!) in a global variable --- or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple (args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;

}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments
are documented in section Extracting Parameters in Extension Functions.

The macros Py_ XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are
safe in the presence of NULL pointers (but note that zemp will not be NULL in this context). More info on them in
section Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no ar-
guments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildvValue ()
returns a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

HERET—TD

12 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

(B —1)
arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist) ;

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is "reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF () -ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is "new”: either it is a brand new object, or it is an existing
object whose reference count has been incremented. So, unless you want to save it in a global variable, you should
somehow Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyObject_CallObject (). Insome cases the argument list is also provided by the Python program, through
the same interface that specified the callback function. It can then be saved and used in the same manner as the
function object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way
to do this is to call Py_BuildvValue (). For example, if you want to pass an integral event code, you might use
the following code:

PyObject *arglist;

arglist = Py_BuildvValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments
and keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

21. L) C g} C++ #E 3 Python 13

Extending and Embedding Python, %[3.13.0rc2

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

[int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

J

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual.

The remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot
check the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will

probably crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement

their reference count!

— LB L g3

#define PY SSIZE_T CLEAN
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple (args, ""); /* [El#& 3| # ~/
/* Python ™ ®| : f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg ParseTuple(args, "1lls", &k, &1, &s); /* Two longs and a
/* Possible Python call: f(1, 2, 'three') */

string */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &Jj, &s, &size);

/* A pair of ints and a string, whose size is also returned */

/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam")

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple (args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

14 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, %[3.13.0rc2

Py_complex c;

ok = PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+23) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char * const *kwlist, ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict param-
eter is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is
a NULL-terminated list of strings which identify the parameters; the names are matched with the type information
from format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it
returns false and raises an appropriate exception.

e

Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY _SSIZE_T CLEAN
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %$s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —-- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
74
{"parrot", (PyCFunction) (void (*) (void))keywdarg_parrot, METH_VARARGS | METH_
—~KEYWORDS,

EET—TD

2.1.) C 5} C++ #& 3 Python 15

mailto:philbrick@hks.com

Extending and Embedding Python, %[3.13.0rc2

(B —1)
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
bi
static struct PyModuleDef keywdargmodule = {
PyModuleDef HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
i
PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;
}
2.1.9 Building Arbitrary Values
This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:
[PyObject *Py_BuildValue (const char *format, ...);]

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it
to return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_BuildvValue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello!'
Py_Buildvalue ("ss", "hello", "world") ('hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue (" ()") ()
Py_BuildvValue (" (i)", 123) (123,)
Py_BuildvValue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,1i)", 123, 456) (123, 456)
Py_Buildvalue("[i,1i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:1i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)™",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

16 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete
are used with essentially the same meaning and we'll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free (). Itis important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called
a memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it
creates a conflict with reuse of the block through another malloc () call. This is called using freed memory. It has
the same bad consequences as referencing uninitialized data --- core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block
of memory, do some calculation, and then free the block again. Now a change in the requirements for the function
may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s
easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later
to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small
fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent
in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from
happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improve-
ment in speed or memory usage --- this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the func-
tions malloc () and free () are available --- which the C Standard guarantees). Maybe some day a sufficiently
portable automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference
count which is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging
to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no further
references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run
the detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at
runtime.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing
of the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t
call free () directly --- rather, it makes a call through a function pointer in the object’s type object. For this purpose
(and others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF (x) and Py_DECREF (x) ? Let’s first introduce some
terms. Nobody “owns” an object; however, you can own a reference to an object. An object’s reference count is now
defined as the number of owned references to it. The owner of a reference is responsible for calling Py_ DECREF ()
when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to
dispose of an owned reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned
reference creates a memory leak.

21. L) C g} C++ #E 3 Python 17

Extending and Embedding Python, %[3.13.0rc2

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF ().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely’.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code --- in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has
in fact disposed of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF () . This does not affect the
status of the owner from which the reference was borrowed --- it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, such as PyLong_FromLong () and Py_Buildvalue (), pass own-
ership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that
object. For instance, PyLong_FromLong () maintains a cache of popular values and can return a reference to a
cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString (). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the function borrows the reference from you ---
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() andPyList_SetItem (). These functions take over ownership
of the item passed to them --- even if they fail! (Note that PyDict_SetItem () and friends don’t take over
ownership --- they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when
such a borrowed reference must be stored or passed on, it must be turned into an owned reference by calling
Py_INCREF ().

The object reference returned from a C function that is called from Python must be an owned reference --- ownership
is transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_ DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
(T —5)

2 The metaphor of ”borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work --- the reference count itself could be in freed memory and may thus be reused
for another object!

18 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

(L —5)
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a ___del__ () method. If this class instance has
a reference count of 1, disposing of it will callits __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is
accessible tothe ___del_ () method, it could execute a statement to the effect of del 1ist [0], and assuming
this was the last reference to that object, it would free the memory associated with it, thereby invalidating it em.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

J

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why his __del__ () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and
to re-acquire it using Py END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads
use the processor while waiting for the I/O to complete. Obviously, the following function has the same problem as
the previous one:

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

21. L) C g} C++ #E 3 Python 19

Extending and Embedding Python, %[3.13.0rc2

NULL igiE

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL
only to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often
pass the objects they receive on to other function --- if each function were to test for NULL, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test for NULL only at the “source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers --- however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers --- again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples)
is never NULL --- in fact it guarantees that it is always a tuple*.

It is a severe error to ever let a NULL pointer “escape” to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter)
is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter
(in particular, module initialization functions) have to be declared using extern "C". It is unnecessary to enclose
the Python header files in extern "C" {...} --- they use this form already if the symbol __ cplusplus is
defined (all recent C++ compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type “collection” which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions
for direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them static, of course), provide an
appropriate header file, and document the C API. And in fact this would work if all extension modules were always
linked statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined
in one module may not be visible to another module. The details of visibility depend on the operating system; some
systems use one global namespace for the Python interpreter and all extension modules (Windows, for example),
whereas others require an explicit list of imported symbols at module link time (AIX is one example), or offer a
choice of different strategies (most Unices). And even if symbols are globally visible, the module whose functions
one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declared st at ic, except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in section 7he Module’s Method Table and Initialization Function).
And it means that symbols that should be accessible from other extension modules must be exported in a different
way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: Capsules. A Capsule is a Python data type which stores a pointer (void*). Capsules can only be created
and accessed via their C API, but they can be passed around like any other Python object. In particular, they can

4 These guarantees don’t hold when you use the “old” style calling convention --- this is still found in much existing code.

20 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function
could get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule.
And the various tasks of storing and retrieving the pointers can be distributed in different ways between the module
providing the code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char*); you're permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell
one unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

[modulename.attributename }

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only
if the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the
Capsule they load contains the correct C APL

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.

g wm g

The exporting module is a modification of the spam module from section — 12 ffj # %3 17). The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding ”spam” to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System(const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System(command) ;

return PylLong_FromLong (sts) ;

In the beginning of the module, right after the line

[#include <Python.h>]

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

21. L) C g} C++ #E 3 Python 21

Extending and Embedding Python, %[3.13.0rc2

The #define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam API[PySpam API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_ API, "spam. C_API", NULL);

if (PyModule_Add(m, " _C_API", c_api_object) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

J

Note that PySpam API is declared static; otherwise the pointer array would disappear when
PyInit_spam() terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py SPAMMODULE_H
#ifdef __ _cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam_System NUM 0

#define PySpam System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */

#define PySpam_API_pointers 1

#ifdef SPAM_MODULE

/* This section is used when compiling spammodule.c */

static PySpam_System_ RETURN PySpam_System PySpam_System PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System RETURN (*)PySpam_System PROTO) PySpam API[PySpam_ System NUM])

€ & A}

22 Chapter 2. RERAE=FTHREIRR

Extending and Embedding Python, %[3.13.0rc2

(B —1)
/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/
static int
import_spam (void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._ C_API", 0);
return (PySpam API != NULL) ? 0 : -1;

I

#endif

#ifdef __ cplusplus

s
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function
(or rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule) ;
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule. h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory
allocation and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Refer-
ence Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.h and
Objects/pycapsule. c in the Python source code distribution).

[FIfg
2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code,
much like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some
details that you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2. Defining Extension Types: Tutorial 23

Extending and Embedding Python, %[3.13.0rc2

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a “base type” for
all Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the
object’s “type object”. This is where the action is; the type object determines which (C) functions get called by the
interpreter when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another
object. These C functions are called “type methods”.

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type named Custom inside a C extension module cust om:

il

What we’re showing here is the traditional way of defining stafic extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the Py Type_FromSpec () function,
which isn’t covered in this tutorial.

#define PY _SSIZE_T CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

static PyTypeObject CustomType = {
.ob_base = PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
.m_base = PyModuleDef HEAD_ INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomTIype) < 0) {
Py_DECREF (m) ;
return NULL;

return m;

€ & A}

24 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, %[3.13.0rc2

{ (R L —5)
}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file
defines three things:

1. Whata Cust om object contains: this is the Cust omObject struct, which is allocated once for each Cust om
instance.

2. How the Custom type behaves: this is the CustomType struct, which defines a set of flags and function
pointers that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and
defines a field called ob_base of type PyObject, containing a pointer to a type object and a reference count
(these can be accessed using the macros Py_TYPE and Py_ REFCNT respectively). The reason for the macro is to
abstract away the layout and to enable additional fields in debug builds.

il

There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example,
here is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
.0b_base = PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

il

We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields’ declaration order.

The actual definition of PyTypeObject in object .h has many more fields than the definition above. The
remaining fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly
unless you need them.

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, %[3.13.0rc2

We're going to pick it apart, one field at a time:

[.obfbase = PyVarObject_HEAD_INIT (NULL, O) }

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

[.tpfname = "custom.Custom", }

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using
the real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize
is only used for variable-sized objects and should otherwise be zero.

fti(E]

If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your
type first in its __bases__, or else it will not be able to call your type’s __new__ () method without getting
an error. You can avoid this problem by ensuring that your type has a larger value for tp_basicsize thanits
base type does. Most of the time, this will be true anyway, because either your base type will be object, or
else you will be adding data members to your base type, and therefore increasing its size.

We set the class flags to Py_ TPFLAGS_DEFAULT.

[.tp_flags = Py_TPFLAGS_DEFAULT, }

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If
you need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

[.tp_doc = PyDoc_STR("Custom objects"), }

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), buthas to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

[.tpinew = PyType_GenericNew, }

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including
ob_type that we initially set to NULL.

26 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (m) ;
return NULL;

J

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Cust om class:

<
>>> import custom

>>> mycustom = custom.Custom /()

That’s it! All that remains is to build it; put the above code in a file called custom. c,

[build-system]

requires = ["setuptools"]

build-backend = "setuptools.build_meta"
[project]

name = "custom"

version = "1"

in a file called pyproject .toml, and

from setuptools import Extension, setup
setup (ext_modules=[Extension ("custom", ["custom.c"])])

in a file called setup . py; then typing

[$ python -m pip install . }

in a shell should produce a file custom. so in a subdirectory and install it; now fire up Python --- you should be
able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’'ll
create a new module, custom?2 that adds these capabilities:

#define PY SSIZE_T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) —>tp_free ((PyObject *) self);

€ & A}

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, %[3.13.0rc2

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
s
self->number = 0;

I3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
&first, &last,
&self->number))
return -1;

if (first) |
Py_XSETREF (self->first, Py_NewRef (first));
}
if (last) |
Py_XSETREF (self->last, Py_NewRef (last));
}

return 0O;

static PyMemberDef Custom_members|[] = {
{"first", Py_T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", Py_T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", Py_T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
I3
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;

(R L —5)

(BT —H)

28 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

(R L —5)
}

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
.0b_base = PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,

bi

static PyModuleDef custommodule = {
.m_base =PyModuleDef HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

This version of the module has a number of changes.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_ HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
(R~ —5)

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, %[3.13.0rc2

(L —5)
int number;
} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

[.tpidealloc = (destructor) Custom_dealloc, }

This method first clears the reference counts of the two Python attributes. Py_XDECREF () correctly handles the
case where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free
member of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s
type might not be Cust omType, because the object may be an instance of a subclass.

il

The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject *
argument. Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new imple-
mentation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
s
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;

and install it in the t p_ new member:

[.tp_new = Custom_new, }

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in
Python as the __new__ () method. It is not required to define a tp_new member, and indeed many extension

30 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.0rc2

types will simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this
case, we use the tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to
initializer (a.k.a. tp_initinCor___init__ in Python) methods.

e

tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

[self = (CustomObject *) type->tp_alloc(type, 0); }

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

fHi(E]

We didn’t fill the tp_alloc slot ourselves. Rather PyType_ Ready () fills it for us by inheriting it from our
base class, which is object by default. Most types use the default allocation strategy.

fHi(E]

If you are creating a co-operative t p_new (one that calls a base type’s tp_new or __new___ ()), you must not
try to determine what method to call using method resolution order at runtime. Always statically determine what
type you are going to call, and call its t p_new directly, or via type->tp_base->tp_new. If you do not do
this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg ParseTupleAndKeywords (args, kwds, "|00Oi", kwlist,
&first, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

(BT —H)

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, %[3.13.0rc2

(L —5)
return 0O;

.

by filling the tp_init slot.

[.tpfinit = (initproc) Custom_init, }

The tp_init slot is exposed in Python as the __init__ () method. It is used to initialize an object after it’s
created. Initializers always accept positional and keyword arguments, and they should return either O on success or
—1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module
by default doesn’t call __init__ () on unpickled instances). It can also be called multiple times. Anyone can
callthe _ _init__ () method on our objects. For this reason, we have to be extra careful when assigning the new
attribute values. We might be tempted, for example to assign the £ irst member like this:

if (first) {
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object.
It could have a destructor that causes code to be executed that tries to access the £irst member; or that destructor
could release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our
object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

« when we absolutely know that the reference count is greater than 1;

« when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our
type’s code;

» when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic
garbage collection”.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is
to define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", Py_T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", Py_T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", Py_T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the tp_members slot:

[.tpfmembers = Custom_members, }

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic
Attribute Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

32 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

Further, the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members
are initialized to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom. name (), that outputs the objects name as the concatenation of the first and
last names.

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
I3
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

The method is implemented as a C function that takes a Cust om (or Cust om subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well,
but in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary.
This method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they
can be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to
restrict the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

[.tp_methods = Custom_methods, }

Finally, we’ll make our type usable as a base class for subclassing. We've written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add
the Py_ TPFLAGS_BASETYPE to our class flag definition:

[.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, }

We rename PyInit_custom() to PyInit_custom?2 (), update the module name in the PyModuleDef
struct, and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to include the new module,

from setuptools import Extension, setup
setup (ext_modules=]|
Extension("custom", ["custom.c"]),
Extension ("custom2", ["custom2.c"]),

1)

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, %[3.13.0rc2

and then we re-install so that we can import custom2:

[$ python -m pip install

2.2.3 Providing finer control over data attributes

In this section, we'll provide finer control over how the first and last attributes are set in the Cust om example.
In the previous version of our module, the instance variables first and last could be set to non-string values or

even deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE_ T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) —>tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;

€ & A}

34 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, %[3.13.0rc2

if (first) |

Py_SETREF (self->first,
}
if (last) |

Py_SETREF (self->last,
I3

return 0O;

static PyMemberDef Custom_members|]
{"number", Py_T_INT,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_getfirst (CustomObject *self,

{
return Py_NewRef (self->first);

static int
Custom_setfirst (CustomObject *self,
{

if (value == NULL) {
PyErr_SetString (PyExc_TypeError,
return -1;

}

if (!PyUnicode_Check (value)) {

offsetof (CustomObject,

(R L —5)

Py_NewRef (first));

Py_NewRef (last));

= {

number), O,

void *closure)

PyObject *value, wvoid *closure)

"Cannot delete the first attribute");

PyErr_SetString (PyExc_TypeError,

"The first
return -1;

}
Py_SETREF (self->first,
return O;

static PyObject *
Custom_getlast (CustomObject *self,

{
return Py_NewRef (self->last);

static int
Custom_setlast (CustomObject *self,

{

if (value == NULL) {
PyErr_SetString (PyExc_TypeError,
return -1;

}

if (!PyUnicode_Check (value)) {

attribute value must be a string");

Py_NewRef (value)) ;

void *closure)

PyObject *value, void *closure)

"Cannot delete the last attribute");

PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");

return -1;
}
Py_SETREF (self->last,
return 0O;

static PyGetSetDef Custom_getsetters|]
Custom_getfirst,

{"first", (getter)

Py_NewRef (value));

= {

(setter) Custom_setfirst,

(BT —H)

2.2. Defining Extension Types: Tutorial

35

Extending and Embedding Python, %[3.13.0rc2

"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
.0b_base PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_ TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
.m_base = PyModuleDef HEAD_INIT,

.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType)

Py_DECREF (m) ;
return NULL;

return m;

(R L —5)

< 0) |

J

To provide greater control, over the first and last attributes, we'll use custom getter and setter functions. Here

are the functions for getting and setting the £irst attribute:

36 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.0rc2

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value) ;
self->first = value;
Py_DECREF (tmp) ;
return 0O;

The getter function is passed a Custom object and a “closure”, which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value
is not a string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

and register it in the tp_getset slot:

[.tp_getset = Custom_getsetters, }

The last item in a PyGet SetDef structure is the "closure” mentioned above. In this case, we aren’t using a closure,
S0 we just pass NULL.

‘We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", Py_T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, %[3.13.0rc2

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

I3

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

I3

return O;

With these changes, we can assure that the first and last members are never NULL so we can remove checks
for NULL values in almost all cases. This means that most of the Py_XDECREF () calls can be converted to
Py_DECREF () calls. The only place we can’t change these calls is in the tp_dealloc implementation, where
there is the possibility that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to the setup . py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are
not zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append(1l)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add
arbitrary attributes. For any of those two reasons, Cust om objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom): pass

>>> n = Derived()
>>> n.some_attribute = n

however, we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee
that deallocating an instance of a string subclass won’t call back into our objects.

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference
cycles.

38 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.0rc2

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic
GC, our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY SSIZE_ T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py _VISIT (self->first);

Py _VISIT (self->last);

return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) >tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
(BAET—H)

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, %[3.13.0rc2

(R L —5)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))
return -1;

if (first) |
Py_SETREF (self->first, Py_NewRef (first));
}
if (last) |
Py_SETREF (self->1last, Py_NewRef (last));
}

return 0O;

static PyMemberDef Custom_members|[] = {
{"number", Py_T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)

{

return Py_NewRef (self->first);

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_XSETREF (self->first, Py_NewRef (value));
return 0;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)

{
return Py_NewRef (self->last);

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");

(BT —H)

40 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, %[3.13.0rc2

(B E—H)
return -1;

}
Py_XSETREF (self->last, Py_NewRef (value));
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,

bi

"last name", NULL},
{NULL} /* Sentinel */

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))

{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {

bi

{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"

br
{NULL} /* Sentinel */

static PyTypeObject CustomType = {

.0b_base PyVarObject_ HEAD_INIT (NULL, O0)

.tp_name = "custom4.Custom",

.tp_doc = PyDoc_STR("Custom objects"),

.tp_basicsize = sizeof (CustomObject),

.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi
static PyModuleDef custommodule = {
.m_base = PyModuleDef HEAD_INIT,
.m_name = "custom4",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)

{

PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

(BT —H)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, %[3.13.0rc2

(B E—H)
if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{
int vret;
if (self->first) {
vret = visit (self->first, arqg);
if (vret != 0)
return vret;
I3
if (self->last) {
vret = visit(self->last, arg);
if (vret != 0)
return vret;
I3

return 0;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the
traversal method. The visit () function takes as arguments the subobject and the extra argument arg passed to the
traversal method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can mini-
mize the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py _VISIT (self->first);

Py _VISIT (self->last);

return 0O;

e

The tp_traverse implementation must name its arguments exactly visit and arg in order to use
Py_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR (self->first);
Py_CLEAR (self->last);
return 0;

J

Notice the use of the Py_CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary
types while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before

42 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, %[3.13.0rc2

setting it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute
again (especially if there is a reference cycle).

fti(E]

You could emulate Py_ CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_ CLEAR () when deleting an attribute. Don’t
try to micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can
be triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from
the GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator
using PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) ->tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

[.tpiflags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,]

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we'd need to modify them for
cyclic garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the
built in types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these
PyTypeObject structures between extension modules.

In this example we will create a SubList type that inherits from the built-in 1ist type. The new type will
be completely compatible with regular lists, but will have an additional increment () method that increases an
internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

>>> print (s.increment ())

>>> print (s.increment ())

#define PY SSIZE_T CLEAN
#include <Python.h>

typedef struct {
(M T—F)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, %[3.13.0rc2

PyListObject list;
int state;
} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;

return PyLong_ FromLong (self->state);

}

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0O;

static PyTypeObject SubListType = {
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof (SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "SubList", (PyObject *) &SubListType)

Py_DECREF (m) ;
return NULL;

< 0)

(R L —5)

{

(BT —H)

44 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, %[3.13.0rc2

(R L —5)

return m;

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down
the main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The
base type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python objectis a SubList instance, its PyObject * pointer can be safely casttobothPyListObject
*and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

We see above how to call through tothe __init__ () method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The tp_new
handler should not actually create the memory for the object with its t p_alloc, but let the base class handle it by
calling its own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can't fill that field directly with a reference to PyList_Type; it should be done later in the
module initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "SubList", (PyObject *) &SubListType) < 0) |

Py_DECREF (m) ;
return NULL;

return m;

J

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving
an existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () -- the allocation
function from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic
Custom examples.

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, %[3.13.0rc2

ha) 3
2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;

46 Chapter2. RERE=FTRBIKRTE

Extending and Embedding Python, %[3.13.0rc2

iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;
} PyTypeObject;

(R L —5)

J

Now that’s a lor of methods. Don’t worry too much though -- if you have a type you want to define, the
very good that you will only implement a handful of these.

chances are

As you probably expect by now, were going to go over this and give more information about the various handlers.
We won't go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields. It’s often easiest to find an example that includes the fields you need and then change the

values to suit your new type.

[const char *tp_name; /* For printing */

J

The name of the type -- as mentioned in the previous chapter, this will appear in various places, almost entirely for

diagnostic purposes. Try to choose something that will be helpful in such a situation!

[Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

)

These fields tell the runtime how much memory to allocate when new objects of this type are created.

Python has

some built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field

comes in. This will be dealt with later.

[const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references ob j
to retrieve the doc string.

Now we come to the basic type methods -- the ones most extension types will implement.

._ doc___

2.3. Defining Extension Types: Assorted Topics

47

Extending and Embedding Python, %[3.13.0rc2

2.3.1 Finalization and De-allocation

[destructor tp_dealloc; }

This function is called when the reference count of the instance of your type is reduced to zero and the Python
interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here.
The object itself needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr) ;
Py_TYPE (obj)—>tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing
any member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{

PyObject_GC_UnTrack (obj) ;

Py_CLEAR (obj->other_obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed
may detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way
to protect against this is to save a pending exception before performing the unsafe action, and restoring it when done.
This can be done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs (self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

/* This restores the saved exception state */
PyErr_Restore (err_type, err_value, err_traceback);

Py_DECREF (self->my_callback) ;
I3
Py_TYPE (obj) —>tp_free ((PyObject*)self);

48 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, %[3.13.0rc2

fi(E]

There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or
finalized by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its
reference count is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up
calling tp_dealloc again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and
instead use the new tp_finalize type method.

hzs%

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the st r ()
function. (The print () function just calls str ().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject *obj)
{
return PyUnicode_FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and
a uniquely identifying value for the object.

The tp_str handler is to str () what the tp_repr handler described above is to repr () ; that is, it is called
when Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr
function, but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr
handler is used instead.

DA 2 {1 ff S) i 91 -

static PyObject *
newdatatype_str (newdatatypeobiject *obj)
{
return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",
obj—>obj_UnderlyingDatatypePtr->size);

2.3. Defining Extension Types: Assorted Topics 49

https://peps.python.org/pep-0442/

Extending and Embedding Python, %[3.13.0rc2

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to
set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed
to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject *. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

/% ooo %Y

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyObject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there
are many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or
how relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which
are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object.
Each of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited
from their base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the
base type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from
a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name
field of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive
C types are supported, and access may be read-only or read-write. The structures in the table are defined as:

50 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.0rc2

typedef struct PyMemberDef ({
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

J

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The t ype field should contain a type code like Py_T_INT or Py_T_DOUBLE; the
value will be used to determine how to convert Python values to and from C values. The £1ags field is used to store
flags which control how the attribute can be accessed: you can set it to Py_ READONLY to prevent Python code from
setting it.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any
attribute defined this way can have an associated doc string simply by providing the text in the table. An application
can use the introspection API to retrieve the descriptor from the class object, and get the doc string usingits ___doc___
attribute.

As with the tp_methods table, a sentinel entry with a m1_name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only
difference between the char* and PyObject* flavors of the interface. This example effectively does the same
thing as the generic example above, but does not use the generic support added in Python 2.2. It explains how the
handler functions are called, so that if you do need to extend their functionality, you’ll understand what needs to be
done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

L PRIk

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PyLong_FromLong (obj->data) ;

PyErr_Format (PyExc_AttributeError,
"'$.100s' object has no attribute '%.400s'",
Py_TYPE (obj) —>tp_name, name) ;

return NULL;

The tp_setattr handleris called whenthe __setattr__ () or__delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that
simply raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, %[3.13.0rc2

2.3.4 Object Comparison

[richcmpfunc tp_richcompare; }

The tp_richcompare handler is called when comparisons are needed. It is analogous to the
rich comparison methods, like ___1t__ (), and also called by PyObject_RichCompare () and
PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE,Py_LTorPy_GT. It should compare the two objects with respect to the specified operator
and return Py_True or Py_False if the comparison is successful, Py_NotImplemented to indicate that
comparison is not implemented and the other object’s comparison method should be tried, or NULL if an exception
was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (newdatatypeobject *objl, newdatatypeobject *obj2, int op)
{

PyObject *result;

int ¢, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;

switch (op) {

case : ¢ = sizel < size2; break;
case c = sizel <= size2; break;
case : ¢ = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;

}

result = ¢ ? Py_True : Py_False;
Py_INCREF (result);

return result;

2.3.5 Abstract Protocol Support

Python supports a variety of abstract ’protocols;’ the specific interfaces provided to use these interfaces are docu-
mented in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In par-
ticular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols
have been added over time. For protocols which depend on several handler routines from the type implementation,
the older protocols have been defined as optional blocks of handlers referenced by the type object. For newer pro-
tocols there are additional slots in the main type object, with a flag bit being set to indicate that the slots are present
and should be checked by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag
may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of a
structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,

52 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.0rc2

respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each
of these in the Ob jects directory of the Python source distribution.

[hashfunc tp_hash; }

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a
simple example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)
{

Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

J

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an
error, which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

[ternaryfunc tp_call; }

This function is called when an instance of your data type is “called”, for example, if ob7j1 is an instance of your
data type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello"), then self
isobjl.
2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the

arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to
support keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword
arguments are not supported.

Here is a toy tp_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *obj, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) |
return NULL;

I3

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%$s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

/* BRE&E */
getiterfunc tp_iter;
iternextfunc tp_iternext;

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, %[3.13.0rc2

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and
return NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to
the Python ___next__ () method.

Any iterable object must implement the tp_iter handler, which must return an iterator object. Here the same
guidelines apply as for Python classes:

« For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should
be created and returned by each call to tp_iter.

« Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_1iter by returning a new reference to themselves -- and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. Aniterator’s tp_iter handler should
return a new reference to the iterator. Its tp_ iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_ iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly
better performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

hz%

Documentation for the weakref module.

For an object to be weakly referenceable, the extension type must set the Py_ TPFLAGS_MANAGED_WEAKREF bit
of the tp_flags field. The legacy tp_weaklistoffset field should be left as zero.

Concretely, here is how the statically declared type object would look:

static PyTypeObject TrivialType = {
PyVarObject_ HEAD_INIT (NULL, O0)
/* ... other members omitted for brevity ... */
.tp_flags = Py_TPFLAGS_MANAGED_WEAKREF | ...,
bi

The only further addition is that tp_dealloc needs to clear any weak references (by -calling
PyObject_ClearWeakRefs ()):

static wvoid

Trivial_dealloc(TrivialObject *self)

{
/* Clear weakrefs first before calling any destructors */
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE (self)->tp_free ((PyObject *) self);

54 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.0rc2

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPyrhon source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) {
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

hs%

Download CPython source releases.
https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed.
https://github.com/python/cpython

2.4 BT CH C++ IBEFZFEH

—{# CPython f¥) C I e =2 — 3L k0 (FIANHE Linux FAY . so #8%E, 7F Windows [fY .pyd),
B BE i A48 10 3 X

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using setuptools, the correct filename is generated automatically.

The initialization function has the signature:

PyObject *PyInit_modulename (void)

It returns either a fully initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with
<modulename> replaced by the name of the module. When using multi-phase-initialization, non-ASCII mod-
ule names are allowed. In this case, the initialization function name is PyInitU_<modulename>, with
<modulename> encoded using Python’s punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b' ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-', b'_")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions.
However, importing them requires using symbolic links or a custom importer, because by default only the function
corresponding to the filename is found. See the "Multiple modules in one library” section in PEP 489 for details.

24. BT CH C++ IBXEEHL 55

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://peps.python.org/pep-0489/

Extending and Embedding Python, %[3.13.0rc2

2.4.1 Building C and C++ Extensions with setuptools

Python 3.12 and newer no longer come with distutils. Please refer to the setuptools documentation at https:
//setuptools.readthedocs.io/en/latest/setuptools.html to learn more about how build and distribute C/C++ extensions
with setuptools.

2.5 #E Windows FEJ CFf1 C++ IR

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++,
and follows with more detailed background information on how it works. The explanatory material is useful for both
the Windows programmer learning to build Python extensions and the Unix programmer interested in producing
software which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual
C++.

(e

This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, ' X' will be the major version number and
'Y ' will be the minor version number of the Python release you're working with. For example, if you are using
Python 2.2.1, XY will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the
setuptools package to control the build process, or do things manually. The setuptools approach works well
for most extensions; documentation on using setuptools to build and package extension modules is available in
Building C and C++ Extensions with setuptools. If you find you really need to do things manually, it may be instructive
to study the project file for the winsound standard library module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and
data that it expects to find in the program. When the file is joined to the program, all references to those functions
and data in the file’s code are changed to point to the actual locations in the program where the functions and data
are placed in memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point
to the functions and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The
linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library
is like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker
uses the information from the import library to build the lookup table for using identifiers that are not included in the

56 Chapter 2. RERE=FTRBIIRAE

https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://github.com/python/cpython/tree/3.13/PCbuild/winsound.vcxproj

Extending and Embedding Python, %[3.13.0rc2

DLL. When an application or a DLL is linked, an import library may be generated, which will need to be used for
all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
Unix, you would not pass A. a to the linker for B. so and C. so; that would cause it to be included twice, so that B
and C would each have their own copy. In Windows, building 2.d11 will also build A.1ib. Youdo pass A.1ib
to the linker for B and C. A. 1ib does not contain code; it just contains information which will be used at runtime
to access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *; it does
create a separate copy.

2.5.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this
section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 11ib to the linker. To build two DLLSs, spam and ni
(which uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dl1l does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.1lib.

The second command created ni.d11 (and .obj and . 1ib), which knows how to find the necessary functions
from spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), asin void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvert xx. 1ib to the list of libraries.

25. 8 Windows t#j C 1 C++ K3 57

Extending and Embedding Python, %[3.13.0rc2

58

Chapter 2. REA®=FTRAEIKZE

CHAPTER 3

EEXRHERER FH#r N CPython E{TERIER (runtime)

AIREAE, IO S, — RIS, (THAE Python Bl fEE R MARAGEST, B AU CPython 4T
BB 2R AR S A0 3 LS S8 AR B i I O AR

3.1 #EHE App [Eli)\ Python

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching
a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by
embedding Python in it. Embedding provides your application with the ability to implement some of the functionality
of your application in Python rather than C or C++. This can be used for many purposes; one example would be to
allow users to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if
some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have
nothing to do with Python --- instead, some parts of the application occasionally call the Python interpreter to run
some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize ().
There are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any
part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), oryoucan pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters
to construct and use Python objects.

hzs%

c-api-index
The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

59

Extending and Embedding Python, %[3.13.0rc2

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int

main (int argc, char *argv[])

{
PyStatus status;
PyConfig config;
PyConfig_InitPythonConfig(&config);

/* optional but recommended */
status = PyConfig_ SetBytesString(&config, &config.program_name, argv[0]);
if (PyStatus_Exception(status)) A

goto exception;

status = Py_InitializeFromConfig (&config);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_Clear (&configqg) ;

PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");
if (Py_FinalizeEx () < 0) {
exit (120);
}

return 0;

exception:
PyConfig_Clear (&confiqg);
Py_ExitStatusException (status);

fi(E]

#define PY_SSIZE_T_CLEAN was used to indicate that Py_ssize_t should be used in some APIs in-
stead of int. It is not necessary since Python 3.13, but we keep it here for backward compatibility. See arg-
parsing-string-and-buffers for a description of this macro.

Setting PyConfig.program_name should be called before Py_InitializeFromConfig () to inform
the interpreter about paths to Python run-time libraries. Next, the Python interpreter is initialized with
Py _Initialize (), followed by the execution of a hard-coded Python script that prints the date and time. Af-
terwards, the Py_FinalizeEx () call shuts the interpreter down, followed by the end of the program. In a real
program, you may want to get the Python script from another source, perhaps a text-editor routine, a file, or a
database. Getting the Python code from a file can better be done by using the PyRun_SimpleFile () function,
which saves you the trouble of allocating memory space and loading the file contents.

60 Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

Extending and Embedding Python, %[3.13.0rc2

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At
the cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from
Python to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references
and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter,
you can refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY_SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv[])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

(BFET—H

3.1. ZEHE App [F# A Python 61

Extending and Embedding Python, %[3.13.0rc2

(R L —5)

if (pFunc && PyCallable_Check (pFunc)) {
pArgs = PyTuple_New(argc — 3);
for (i = 0; 1 < argc - 3; ++i)
pValue = PyLong_FromLong (atoi (argv([i + 3]));
if (!pvValue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong(pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr, "Call failed\n");
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
I3
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%$s\"\n", argv[l]);
return 1;
}
if (Py_FinalizeEx() < 0) {
return 120;
}

return 0O;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments
are the other values of the argv array. If you compile and link this program (let’s call the finished executable call),

and use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20

for i in range (0, a):
c=c¢c+b

return c

then the result should be:

[$ call multiply multiply 3 2
(R~ —5)

62 Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

Extending and Embedding Python, %[3.13.0rc2

Will compute 3 times 2
Result of call: 6

(R L —5)

Although the program is quite large for its functionality, most of the code is for data conversion between Python and

C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_TImport (pName) ;

After initializing the interpreter, the script is loaded using PyImport_Import (). This routine needs a Python
string as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_ Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we're looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds

by constructing a tuple of arguments as normal. The call to the Python function is then made with:

[pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function.

Be sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines
provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application
starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write some glue code
that gives Python access to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PylLong_ FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,

{NULL, NULL, 0O, NULL}
bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

/* Return the number of arguments of the application command line */

"Return the number of arguments received by the process."},

€ & A}

3.1. ZEHTE App [t Python

63

Extending and Embedding Python, %[3.13.0rc2

(L —5)
bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

}

J

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb .numargs () function accessible to the em-
bedded Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the
C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to compile
and link your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python in-
terpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is
generated as part of the installation process (a python3-config script may also be available). This script has
several options, of which the following will be directly useful to you:

e pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.11-config —--cflags
-I/opt/include/python3.11 -I/opt/include/python3.11 -Wsign-compare -DNDEBUG -
—g —fwrapv -03 -Wall

e pythonX.Y-config —--ldflags -—embed will give you the recommended flags when linking:

$ /opt/bin/python3.11-config --1dflags —--embed
-L/opt/lib/python3.11/config-3.11-x86_64-linux—-gnu -L/opt/lib -lpython3.11 -
—lpthread -1dl -lutil -1m

e

To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the above
example.

64 Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

Extending and Embedding Python, %[3.13.0rc2

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s
Makefile (use sysconfig.get_makefile_filename () to find its location) and compilation options. In
this case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will
want to combine together. For example:

>>> import sysconfig

>>> sysconfig.get_config_var ('LIBS")
'-lpthread -1dl1 -lutil’

>>> sysconfig.get_config var ('LINKFORSHARED')
'-Xlinker —-export-dynamic'

3.1. ZEHE App [F# A Python 65

Extending and Embedding Python, %[3.13.0rc2

66

Chapter 3. #EEXRYFE HIEEX dr#r A\ CPython E{TIEIE (runtime)

APPENDIX A

>>>
The default Python prompt of the inferactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

AR

o The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

o i Ellipsis,

abstract base class (Hli4ILcKiE)
W& REE (UHEE ABC) 24t 7T —MeRmNMm ik, EEduck-ryping (16F2E) AR,
HAFERIY AT, 1852 hasattr (), HIFERRMMBORA A MRUWETR (B0 BERT /772 (magic
method)) . ABC [EIJf[EJ#E1 subclass (FHEE]) , BMERERH 55— class (JEE]) , EA5A]
¥ isinstance () } issubclass () ¥k 2 E) abe BALRERN S04, Python A 7 £ B
ABC, HIINERIEHE (7E collections.abe #ifl). B (¥£ numbers fi4H). HB (F£ 1o #i4H)
J import G AL (FF importlib.abe f#H). MRATAEH abe fig a7 H T ABC.

annotation ([EJf%)
;@;ﬁi?ﬁé%{‘ class k. o002 Bk I MEACAT BB O AELED. JRABLOI), &R AR ype hine (4
[EHER) .

TEFATIRES (runtime) , (5 es) (VR IR VA AT, (AL AIE38 L. class B MERTRNME)R, &0 (F
WA . class fIEEFCHY _ annotations_ 4k E M,

#8522 [Elvariable annotation. function annotation, PEP 484 F1 PEP 526, 15025 %A thaefERY .
A EVRE A A BT B8 v th 75 22 E) annotations-howto

argument (5|%)
WY pR 2 IR BB 45 function (B{method) W{H. 5|8CE WifE:

o B4 7| B (keyword argument): FERRZNTEIY F1, PLFRE)IT (identifier, 4N name=) BHFEIT |3,
B2 DA ** 12 1A dictionary (Fih) [ERUEMELERS 3. B0, 3 F 5 #RZPAT complex ()
L] v) [5 |

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

67

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Extending and Embedding Python, %[3.13.0rc2

o 15 E 51 ¥ (positional argument): NJe BT 5T B L8 T | BOTHE— {5 B LA E IR
B, A () fEE) * 2 & iierable (PEWCHIFE) PTHOTCHEPER. G0, 3 F S HRLAT
R NCIVATCIE &

complex (3, 5)
complex (* (3, 5))

5| BB S A e P R PR DS B, B SCICIE R i i AR A R, 5 () calls Biffi . 72
g b, ARAE S AR T AT ARG R — A5 18 HRPAS (i o i [s 0

Sy 2 ORI parameer (Z80) WH . % LHEET 58282 B 2EE, YAk PEP 362,

asynchronous context manager (JE[]2{E555H1%%)
—H A AFE] async with BRAX P IR WY, MEREBEFR __aenter_ () Hl
__aexit__ () method (J7¥k) AAEHINI. H PEP 492 5] A,

asynchronous generator (JE[RIZBE:ZS)
— 1l &r [8{#asynchronous generator iterator (E[RIHEAEZREULEE) WER. BHEERG—MPA async
def M LKL (coroutine function), FHRFEHE BT T vield EHX, feAM—FRIIWH
A async for [FIREMIME.

T AT AR — AR P E A 2R i, (EAERESE , WATRER R Ak R A SEX
% (asynchronous generator iterator). #—AFIEMEBARENERE, WO 52 R HIaE, ARG B
o

—{HFER B E SRR AL await E X, PAM async for fll async with BIARR.

asynchronous generator iterator (JER]35E): 25 EURES)
—Aiil i asynchronous generator (FE[EMEIAERE) RAFTESL Y.

& B—asynchronous iterator (AE[EHEULEE), BB PA__anext_ () method FEIFNYIEE, €r[a]{EH—
H AT R (awaitable object), ZYIMFATIEF A EVERS MR TR, HFBEF M yield
B yield S Hifey, [ERC B ERITIRAE (38 R M E P wy BA) . &k
R ¥ EA BERENS P __anext_ () [BIMEM WS AA RO EER, &/ E LK
FHEREAT. 520 PEP 492 fll PEP 525,

asynchronous iterable (] nf[F{CH1:)
— AP, B PATE async for BRAX R . LA TR __aiter_ () method [u]{E—
B asynchronous iterator (FE[FAHENLES). H PEP 492 5] A,

asynchronous iterator (JE[RI2BERES)
—{HEIE _aiter_ () fl__anext__ () method ¥k, _ anext_ () WA E—{Fawaitable
(WSEFYE) o async for GFNTAERIZEEIR AN __anext_ () method Jir [l /Y] 2 R4 14,
HEE5|% stopAsyncIteration ffl4b. H PEP 492 5| A,

attribute ()&M)
— {1 B A B W (B, %R 22 Rz 2t £ P 40 B i3 5 (dotted expression) Y44 Fl g2 HE . 3l
an, WY o A& a, HIFZETEREDA 0.0 #EZ3 K.

WR—AYE T, ST — 4 A2 identifiers fif & 382 #h[E)FF (identifier) (1))@ M2 A
AIRERY, BIANfEH setattr () o 1318 bk B B8 M e 5 (i) 28640 b B B R B, T 2 v 2
getattr () FHEIGE.

awaitable (WZ54591t:)
—] DAKE await EE X PWEH O . E A DA — Wcoroutine (A2) , w2 —MA
__await__ () method i, ##E&E PEP 492,

BDFL
Benevolent Dictator For Life (& E{-28M##), X4 Guido van Rossum, Python [l 15 %

binary file (- ifEfiH§ER)
— 1 REERHURN 55 Abyres-like objects (N TCHEWI) 1 file object (REZEWI) . —IENIRE MBI
A DAL (b, 'wb! 8 'rb+') BIERMEZE. sys.stdin.buffer. sys.stdout.
buffer, PAM io.BytesIO Ml gzip.GzipFile EHi.

68 Appendix A. #iiEER

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Extending and Embedding Python, %[3.13.0rc2

w2 Eex file (CFREE), B MARERIRREA str W RD.

borrowed reference (ff)J1]%18)
1& Python) C APL 1, f§ 12BN 28, Lz RS EA g S M2
M. ARz R E), B BE) A KR FEAF (dangling pointer), 4N, — K3 [A]IK (garbage
collection) W] ARG MW (11 et — Bl strong reference (12 1&), i sz {-85(E,

$borrowed reference WFNY Py_INCREF () DAY T JEH (in-place) ¥ ([ElElstrong reference &k ik i
¥, BRI AR E R IR 2 IR 22 migiss(El. Py_NewRef () pRzUA] RS EESL— M0 BT

Hstrong reference.

bytes-like object (Jfiyc4lHh#fl)
— i 5 3% bufferobjects H.AE[FIFE Y} C-contiguous B WM. BHAIEITEN bytes, bytearray
M array.array Y, PAKFEFZH A nemoryview . B ToAH Y7 AT A BEHL (L
BRI AR EGE AR EA fAF E EORSERE I socket () Bk

R S R OB T B . (WSS 2 i ey (R [T L ST AL .
AT S I Y (0% bytearray, DAK bytearray iy memoryview. JLAMIMEYTo M i
PO BB LE AR TSI (TMERU IR TCALER IR]) 5 SEEEMIFAHE bytes, DA bytes
YA memoryview,

bytecode (fyiJCA1RS)
Python [J5% 4G 8% & 9% sk U AT AT, B2 Python £2:U7E CPython Bk i FIRS#R k. %L
TCALIE R SO A pyc RET, DAEEE R — A LR GE R pu (n] DA AR S5 AA1
R E N CALE) . S [EE S (intermediate language) | 45 ([F) 2 847 7F — i virtual machine
(Elerges) b, s EIeies G fT B (17 CAHLAS S E A A28 6 (machine code). BEYEEMIE, 7
JCALAS sy _b S A R F]) Python [EfEMR BHEMER), BASREXEA IR AR Python 2 B 45

(LTCALAGAY 451 T ATE dis AR EIRT SO)

callable (n]WF-nl$y1}:)
— 1 callable ;2 F] DARLIF I 404, WU IRF AT REDA R ST A — A5 9 (i Rargument) -

[callable(argumentl, argument2, argumentN) }

—AW function B AL jmethod FR 2 callable, —{F7G EAE __call__ () JyER class 22 B B2 1
callable,

callback ([a]If)
VIS | 3ol (0) — 18 B R 2X (subroutine) Rz, @ F A 2 AR5 T B LA 7

class (Hi([E])
— {1 H A S 3 W A B . Class 19 3838 % & 9 & method Y EFE, 8 £E method 1] DA
TE class [EBI_EIET 4R

class variable (K([E/5%4%)
—{H7E class FREESE, HERZ HAETE class JEIR (BRI RAE class BB) W&o s,

complex number ([EJ%)
—EFM AR EER ST, TR Ber A e gl on [— |l B — M ER 2 f . [E#ot 2
EVCAL (-1 PR RECBRS, AR AR PR 1, ETAREDHEE . Python
[z T #EK %, ©rARERRERIRES; ERRetE —mesn 5 sime, sl
3+13. HEA math FAHEN TR0 A RE, A cmath B0, F0 62— A
HERE BRI RE . AR EIG 25 B3 B MK, ARE AT REREE 17T DAL A 2 A

context manager ([5E345PI%)
— (AR PAFE] with BRI T RIREEYIE, MELBHREFR __enter_ () fil _exit_ ()
method A5l . w5 2([E PEP 343,

context variable ([¥55%4%)
S, PLEATDURES S ST AR A . S5 44 B B 7 (Thread-Local Storage).
e, s EAE R A T4 PTRE A R R (. SR, BUAIESE S, 2T TR e
LIS, s F g, RAEETHIERHT# (concurrent asynchronous task) 1, ¥
TASEEORAEBE], 35 2[F contextvars,

69

https://peps.python.org/pep-0343/

Extending and Embedding Python, %[3.13.0rc2

contiguous (JHiZEAY)
WS — {4 1 5 & C-contiguous B J2& Fortran contiguous, RII'E € HEYI A HLE R HAY . F4fE (zero-
dimensional)) 4% 1dr [# &R s C J Fortran contiguous . 7£—#E (one-dimensional) [#%1 /| £&-J8 H W /EAFRL
TR RS PO A AR RS, TR T 7 A BRAGIERY . ¥E 2 40 (multidimensional) C-contiguous
S, FeRn AR AL T R B A B H R, fefg— R G 88 SR, 7E Fortran contiguous
fg SRS e

coroutine (%)
LR AL (subroutine)) HEEEVRESEAOTE X . MRS A A IS T A EE 55—
BRHR . R NT AFERF 2 R R RE B AL IR . BMEEEILL async def BIAHE
H1E. HiE2(E PEP 492,

coroutine function ({FErA=)
— Al B coroutine (W) PyfFRRR. —MHFRRAELA async def BuA ek, T ae
4 await. async for Ml async with BA#ET. BSLLEEFH PEP 492 5] A,

CPython

Python 235 = 1A B /F (canonical implementation), ##7i7E python.org . [CPython] & A#7
FETES BRI, DA I B AR B B HE S B, 9140 Jython Y TronPython,

decorator (ZH:fiigy)
—H R, B el S — R, T e] ewrapper 3EVE, B A [E)—7% oK =X 19 % [F) (function
transformation), #EAf#SHYH RHEIFE classmethod () fll staticmethod ().

Fetfian ik HUR AR pE . DA W ek o SRR 3R R A ALY

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

Class WAL FAES, (EAEAREIBOR T H . B Setidn i e 207, 52 Em U 2R class
SE S IR S0

descriptor (HiiA%%)
FERT __get_ (). __set_ () Bf __delete__ () method ¥4, & —1M class B E—
AR, ERERE LT E e A R R e . W, BT o.b B . S s B
JEYERE, G a 1Y class FHL AP EIRAFEE b (90F, (RAR b2 MR, BIAREER AR
method G Iy . EHEIRER B Z IR AR Python (B, WEICMEHFLIIREMERE, B
ThEEUHE R, . method. J&VE (property). class method. [EJfiE method, DA J% ¥} super class (4QHA[E))
2.

PR HA S method FYSE 2 ¥R, #52(E] descriptors SR 3 6 FH e «

dictionary (52ilL)
— {1 B 1B (%7 (associative array), FHCHTRESE S ot BIE . SR UL A __hash_ () Fl
__eq__ () method {y¥114. #& Perl HgifBEIFEE] (hash).

dictionary comprehension (‘L5 4 EE)
— MBI AERE— R T EMR A i AR iR e 3R, ELI R ERA SR DA — R 2 L] e
results = {n: n ** 2 for n in range (10)} SFA&E—FFH, TS TH n MITENE
n ** 2, #52[F] comprehensions,

dictionary view (“ZHLiGH)
dict.keys (). dict.values() M dict.items () [IHWIERREEFZHARE . BMERAE
T TE H B RAR, BN T B AR s e B . 2 B AR R
T E5E s list (EB%1)), ZE{HH] 1ist (dictview) . FHZ[F dict-views,

docstring ([EIW]z¢t)
—fHIA7E class, PR EAEA P, VEEIS —EER X B 7R SOAR . BESR EAE BT S gt 20

70 Appendix A. #iiEER

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Extending and Embedding Python, %[3.13.0rc2

e Edma g, EROAITE class. BB __doc_ BT . drtER]FHaT A&
WER (introspection) SV, PRI B S& 4 14 1) (B HH SCARAE TR R (L

duck-typing (4} %4(F))
— MR AGEEEEAE, BN R RS WY B E R e R B ERER A B2
/2, method oi & 1 € B AL pEIP I S . (TS Al AR —(EVG 7 if B i A fg —(EH
T, BB —EL BT,) HEEG A mmIEsy e 2E, osstrfSisae s 2w
(polymorphic substitution) S & () 88 5. T FRUEIE B] type () B{ isinstance () i
TR, (ER e, WrBIEnr AT 46 %08 k38 [E] (abstract base class) RAGFE.) SR, BEH
B hasattr () i, B2 EAFP FEAREHTEFE .

EAFP
Easier to ask for forgiveness than permission. (FE>REA W RA A ELEY) BT R Python 4
JEUE Er S B 3k S B R A, (D 5 (S ol T R PRl A 491 Do 35 T i () LR) S
HAFHORFERTF 2 try Fl except A, % Hi 2 HABES (F40 C) % WIMLBYL JaA%
TERLT #H

expression (i)
— B AR EDR (AR . EAEEE], — M e oy, SR, BEFR. EE TR
Wy S5 B TR B, TS LE oA RE (. B2 AR S AR A2, FHEE R
Python & F M # & E A 734N —Lstatement (BAZ) ANREPLHEER X, HlU0 while, BX
{H (assignment) tH 2R, MARIEER.

extension module (7 B4)
—HPA C 3 C++ & A4, B0 Python /) C APT AREEAZ L S il I 5 A Ul i A T HL 8

f-string (f GzH8)
DA 5 F [T R SRl) [f 2B, B R R SOAR M SR . a2 (E
PEP 498,

file object (K%RW1l)
— {1 P i 228] (file-oriented) API (1l read () B{ write () %5 method) ARERVEIEIEE
TR ARBERE Bt 2, REE) o 3 BB R RS 8 ol L A B %) ol A7 e i R
HE (BlIaEER A /. el E R . socket (##FE). 45 (pipe) %) WIFFEL. HEEWE
WA FRE 3 4% 2 M 1 (file-like object) BY, % 34, (stream) .
BB L, A=FEEEY: IR = 1548 5 &l — B4 SR F 48 % . EMPNAETE io
B e g%, B EEYW AR A2 M open () .

file-like object (Kik§4:Wtl)
file object (REZEWI) WIFIFEF .

filesystem encoding and error handler (K2R LM REMFR)
Python JIT 4] i) — 7 4w 5 A S s pE H pR =X, F SRR 2R B VESE R S eA, PAAHS Unicode %5l
FMEERS
T 56 2R 45 o A 00 JE AR R BE RSN AR T A /NS 128 IR TeAH . RAE 6 A S g A Ay it s A%, 1)
API (/=& 5] % UnicodeError,

sys.getfilesystemencoding () fll sys.getfilesystemencodeerrors () ERIH HHMEL
PR S AR 00 A A R S R BE P R 2

filesystem encoding and error handler (& 28 % &% 4 f% F1 8% 3% % 7 6 =) & ¥F Python [&) I |
PyConfig Read () BRI KELE: 52 filesystem_encoding, DA PyConfig fE
filesystem_errors,

#t2(Ellocale encoding (@I 41E) .

finder (=HbgrdY)
—fEIE, EaEREIETEY import AL R oader (FARR) -

AR) R AR L3448 B4 3 (mera path finder) 1 sys.meta_path, TiishieA A 44
% (path entry finder) € ffiffl sys.path_hooks.,

i 2[F) importsystem il import1ib DA T fEHE Z AN .

7

https://peps.python.org/pep-0498/

Extending and Embedding Python, %[3.13.0rc2

floor division (] F %)
) AR A 25 B B BT R B SR Ry .) N BRYE R 2 / /. filn, R 11 /7 4
FFHASRE 2, 82 float (FRERMD) ELRREFTEIERY 2.75 AR, #@50RE, (-11) // 4ERRE
-3, HER -2.75 & FEGLE L. @E2E PEP 238,

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

function (pA=X)
—HER A BOAS, B REE Y 2 e T R AR R B B 7| L, 5 e | don]
R RS Eparameter (23). method (J53%), A function i

function annotation (p&sX([EIRE)
PR 2 2 R BB — {8 annotation ([E1f#).
o R o e o PR A 2 (B2 =+ i, 35 (W ek sCTE I € A5 2 Wil int 518, [Eef—M int 1]
A :

def sum_two_numbers(a: int, b: int) -> int:
return a + b

bR A EIRE A R FE function FEHiAT wEAH Rk .
it 22 [Elvariable annotation F1 PEP 484, ¥4 WINGER A . BIRERMREERTE, Bzl

annotations-howto,

future
future fiAR: from _ future_ import <feature>, /R4 Eae i I ILLLYE Python R
PRI B A P R HE A R YA SR RE 28, AR E B4, 1M __future_ BIAHIGET
feature (4%) WBERY(E. it import SUASA FISE A HORAE, /RVT LAE 18 3700 2 e 2 1] Rs 1
WHHEE| EES T, AR eI e (e %) mEEZmhhE:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (b nlik)
RO TR N TR0 R, R LR R iR R . Python AT RIS ML, 2% i 2 IEET B (reference
counting), DA K — {1 fiig [EAG J 71 v B 2 BRI 2 (reference cycle) 11 B 5 3% Bl #% (cyclic garbage
collector) A&5¢ . 33 M1 PT LA oo B4 36 HLt A T4 il

generator ([E14:5%)
— il € |8l {E generator iterator ([EVA#ENES) M. BHEERE —HIEFEKER, (HARKZE
WET yield AKX, fEEE—RHIWME, ELEn] AR for FlE, S02PAnext () Kz, kM
RHA R —E{E

TE E T RE 1 ACFOR —EA gk, (AFESEs s, Wit R oML ZERE. H—HE
EEREERERSRE, It se s rah . DA T

generator iterator ([F)2:%$EMCES)
—Alil figenerator ([F1A2%) MR=FTESLAPI1E.

B yield EFRIA)T, ERAAIERTRE (FU5E FE MO E b oy Bd) . &
A BERENEE, ©ERE R BEAT (IR U 8 R E08T B AR i ok U TR
IAl).

generator expression ([EF)/}: 2§35
An expression that returns an iferator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional i f clause. The combined expression generates values for an enclosing
function:

72 Appendix A. #iiEER

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/

Extending and Embedding Python, %[3.13.0rc2

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function (7Z%IpX)
1 £ 2 R AR B pR X, % o X A [1) B (BB VF R [(Y S . P o] 3 o R % (D O A
Y, B E: (dispatch algorithm) 2[EF5E .

k2 [Elsingle dispatch (—3F) #isE5R1%H . functools.singledispatch () fifizsfl PEP
443,

generic type (JZ%I%I[F])
— i GEEIW 22 ¥4k (parameterized) [Krype (HUE]); # 2 HaHE, B2 list fldict. B
R A [Flag = fIE .

g2z AE 4~ RE. PEP 483, PEP 484, PEP 585 il typing Bigl.

GIL
%52 (Flglobal interpreter lock (430 B 2E8544) .

global interpreter lock (4% 8H)
CPython H a3 T AT, T DARE PR B RS KA — (34T 4% BESLAT Python [byrecode ({7 7CHL
) . WA (AR EERE), i dict) [EyMhEfEfTEEL (concurrent access)
WIfE B, BT AT DA 4k CPython MO BCAE. 8@ B E s, @M E SRR ER S MEZHAT4H
(multi-threaded), {FfQ B2 & ik 5 22 JEF A (i 2 BE(EMR L) — B - FA 71 (parallelism),

SRIM, AL Femial, M 2R a e st =0 i, Mt e AT I A s () S 5 B 4
(computationally intensive) F/T35HE, AI AR GIL. B4k, FE$ifT VO B, GIL 482 eyl fiis: .

As of Python 3.13, the GIL can be disabled using the ——disable-gil build configuration. After building
Python with this option, code must be run with -X gil O or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to use
multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc (FREIZEHERT pyc)
— (AL TCAAS (bytecode) T A7AE , Bl I AEEE A /2 S M JF A e MO B AR A U RE [, R e HoA
Wbk, #52([F pyc-invalidation

hashable (] 3EE))
WR— DA — R ENE, s EE A GE PACR s (BF%—# __hash__ () method),
HoJ B ALY G A (B3R __eq () method), AREVEHLE T aEW14. Hlg4E
JEHEE R 2 v 3 E 4, e M 0h ZE A A [A 2 (B

AT (hashability) (—{# 91 0] A dictionary () fY8ERN set (Sefy) MR, HEELE
KRR H B T EE.

K281 Python AT SAFI (A2 P AEENR : WISR0ZR88 (19040 list 5% dictionary) [EPARJZ; TR
A (B4 tple (JCAL) Al frozenset) , A EMICRZ T EERY, E14 LA 2 i
[Elf. #P R E# A E class FEH, RE LSS G oSBT A EN . B AMAE B HLBIRAR
AN (RAFEMERC LK), mEMEREFENZMEREMY 140 .

IDLE
Python [Integrated Development and Learning Environment (%45 BHaSBLEL B PEES) . idle 2 —{f A

) S AT EL AR B S . ENT Python RUBEHESEAT A —EHede fit.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable (An]%&1k)
—(H B EEENYE. RSy aiEET . FHA wple (JUAl) . BHEYIER N REHHCEN .
NSRS [A (b ZE R G A, MBS, — B . MR B EE R ENE R, i E
B, 40 dictionary (FHL) Hr)—fE G .

73

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

Extending and Embedding Python, %[3.13.0rc2

import path (5] AB#E)
—fAfE (b2 n) mpIk, MRS B AE import BEAHIRF , Eiparh based finder (L%
Bty) BN ACE . 7E import I, SUAZESIRIEHZHKA sys.path, HERTEN
(Subpackage) ME, EWnlfeeA e __path B,

importing (5IA)
— AR, — AL Y Python RexUHE AT AZ B ILIEAE , #0) — A4 H) Python REsXHS{H I .

importer (5| A%%)
—{HE REEIF R AW EBER finder (FAEE) WRloader (FARR) PiF.

interactive (H BjiYy)
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help (x)). For more on interactive mode, see tut-interac.

interpreted (i %11))
Python & — Tl F w5 5 SE AR RE T, S I T RE A AR, R EA (4L (bytecode)
SR AN ATAE o Li‘%ﬂ“%‘ﬁn%%—fu\ﬁ?iﬁl.ﬁ, T AN o HH R ST) — MR A T4 %ﬁﬁﬁﬁ
;.E‘%nn ul_(x%tlﬁ%ﬁ)%ﬁﬁgﬁﬁﬁﬂﬁﬁaﬂ%/ PREEEIN, R e R = o A A g
[Elinteractive (B

interpreter shutdown (B8 EIE)
H Python F{ e o ZURBHPANY, © & A—RrRRY B, 7RI E B A vl & & IR, Bl
TR A A4 TR B S E A 4 . 2 G 2RI 3538 el 22 (garbage collector). TaREEB B H % A
TE R fEMERE S (destructor) S5 5 | F) I (weakref callback), [EJ4TH: A Al . e BH PR B Bt
aﬁjﬁlﬁ%ﬁ%ﬁ;@ﬁﬂ%@% Ah, WIEE B g IR TRE AR FAER T (8 A B2 ik X R4
Iyt 1)

HAEG B 2P, 2 __main_ B EIEROES T EA O A HATE L

iterable (n[[EfC#1k)
— TR AR E— K [l B . W ER AR B A A BUE) (552 1ist, str
Ml tuple) FELLRFPHIAIE], 202 dict, 240, U\ZU I E A class 1, HEILL
class 5 __iter_ () method 82 B {Esequence (J74) FEEM _ getitem_ () method, ¥t
e T E 14
AERY TR for [EIEAFF 2 HMFLE—FFHIHTT (2ip O map () ..). F—EATEY
HAEED | S R AR iter () K, BEEZ%YE R E— ﬁ[.ﬁ%’% lfk.ﬁ%%lﬁjﬂﬂﬁ/\?r*ﬁ
—HHAE#E4 T3 (one pass) JEFT . ﬁmﬁ%’%ﬂ%ﬂ WEA—EEIFN iter () S HTEMEIRZY
. for AR & A EMENREFLE LS, BT RER R a2 5 %I JH AP 30
HizEtes. BiEzBieraor (EUCEE). sequence (JF51)) Figenerator ([EVEER).

iterator ([E{C%%)
—(AFRERR . EEHEEER2E _ next () method (HiJE T BB 4K
next ()))T EE R TS HE o BT SRR, R Er5|%f StopIteration 4.
e, #% lﬁ%%%#lﬁa%ﬁﬂﬂ AR _ next_ () method [{iE—EIEIY, # H € kS| 2
StopIteration, .ﬁ%ﬁﬁ“ﬁﬁ*ﬁ] __iter_ () method, &€ HENCEMIEA L, FroAGEH
EMR A AR T EU I F, ELRT AR K 2 S A b T 35 & . —EIREER Bl 41, &g
ik Z i [(multiple iteration passes) 2. — AP (82 1ist) FERFRRAGEEELS
iter () BRAITE for BB ERE, AEELE MBI, FHERSERLF (2R
ﬁ%ﬁﬁm gl e g —mER P @ e . [F— e g s EREs s iE, ARG E—
B 25 (A 254 o

1 typeiter SCH T DAFREI T L Bl o

CPython ‘£ ff 4l fili: CPython does not consistently apply the requirement that an iterator define
__iter__ (). And also please note that the free-threading CPython does not guarantee the thread-safety of
iterator operations.

key function (ZrA)
R B 7 K =X (collation function) s —{f AT (callable) pRx, &€ [m] {3 — 1] jAHE (sorting)

74 Appendix A. #iiEER

Extending and Embedding Python, %[3.13.0rc2

&7 (ordering) H{H. BlfH, locale.strxfrm () i AEIA 8 1 i [s & HE P 18 51 i HE
.

Python iiF 2 T A, #RH3Z DASE ek A il e 2 e e el L O 3. B E3E min () L max () .
sorted (). list.sort (). heapg.merge (). heapg.nsmallest (). heapg.nlargest ()
Ml itertools.groupby () »

B RAE AR DA, — . B, str.lower () method T PAFEIEIR 43K/ INEs HE 11 88t ki
o 83, —EE KA WA AR Lambda R AP, fIU0 lambda r: (r[0], r[2]). 7i4h,
operator.attrgetter (). operator.itemgetter () il operator.methodcaller ()

AR S A R 5 (constructor) . B AT 7 AN S R K G, S 2 E T -

keyword argument (B &5 190
52 (Flargument (5]35).

lambda
B —expression (GBS) B 4L A — 11 BE 4 47 [E)p 5X (inline function), 3% bR =Xk RF iy SR AH

#£37 lambda FFFHFEEVE 2 lambda [parameters]: expression

LBYL

Look before you leap. (=M1,) 1570 4 A% EUR G e A TPy sl e $k 2w, I At il st SE E Ak
o EEEREELEAFP Jr IR, HERNRORGATZ if MR

E—MEPATHESE T, LBYL =UATE [=8 R (247 Z M5 T #HEWRF: (race condition) 1
JaFE . FITNPA TIRER S if key in mapping: return mappinglkey]l, WS —HITEHE
P2 REAEAIRZ AT, € mapping FREER T key, HIZAEACHGAL & R AL 2 T DA T8 (lock)
i1 EAFP i X AR E.

list (Hi%1)
— il Python [El fjsequence (Fp31) . [EEERA T2 list, & HEC RS 5 b g — @ Bk
(array) AR —(H #4551 (linked llst) HEFHOCE EI’J IR (EJE L2 O(1).

list comprehension (£ 5|45 & i)
— 7 P A S 7 5 P AR Ay e E (A R A DA list [2y ¥k . result =
["{:#04x}'.format (x) for x in range (256) if x % 2 == 0] &[[F4&—{HFE list,
Moty 0 3 255 @EE, Fra@es oS s 0x.). if PR, WRERE, 1
range (256) HHIETA ITCEA S HEIL

loader (EAZY)
— {8 REEJE AL . B EFR—H4E load_module () H method (7). HAfeiH
Bl finder (F452%) [HE, WA 2(E PEP 302, Eﬁﬁ/\absnactbase class (HhaREHEE), #

%[F] importlib.abc.Loader,

locale encoding ([% 38 27%)
7t Unix [, ‘B2 LC_CTYPE WMz &M & fl5. © W PLH locale.setlocale(locale.
LC_CTYPE, new_locale) K#HE-

1 Windows |, ‘E42& ANSIUAEE (code page, fillll "cpl252™),
{E Android 1 VxWorks |, Python f§iJf] "ut £-8" VE[F I 4mE .
locale.getencoding () BJ DA RS 5 385 4 A
WA filesystem encoding and error handler

magic method (J J51k)
special method (FFRJTHE) M—M8EIE Rl 2 .

mapping (%)
— AR, BB EEN AR, H A8 EAF abstract base classes (fi % &R H(E) o,
collections.abc.Mapping B collections.abc.MutableMapping Arf§E) method. #i
BilfdFE dict .collections.defaultdict.collections.OrderedDict filcollections.
Counter,

meta path finder (JCI&{E=hHES)
— A sys.meta_path MM BE K finder (FAgss) . TCEEE AR aRELz4 1228 B 548 % (path
entry finder) MBI ZA A

75

https://peps.python.org/pep-0302/

Extending and Embedding Python, %[3.13.0rc2

BTN TEIE R B A PY B AE) method, 352 ([F) importlib.abc.MetaPathFinder,

metaclass (JtHE])
— & class 1Y class. Class & &R & & 57— class 44 . —1# class dictionary (ZFH#L), DAK—1#
base class (JEJEESHE]) %13, Metaclass B #5218 5185, [EE# % class, KZHAY 18
FEGE S St —(ATE R A B /E . Python fAFEZ JRAE Y E REA ST A 5T 1Y metaclass. K1) (i
HERARFEW T A, (HRHEFER, metaclass 7] DASEHEEIR HABREAMEE T . BME i
EIFEEAEE. B TaE 24t BEYEES . BEEEA (singleton), DAKFFZ HALATH

B4 & HI] PATE metaclasses #4848 F] .

method (J57%:)
—H7E class A< H4(Fl9E E 2 k=, WIS method VEEIH: class B (91— &8 E g hEny , HI &l er s
BN E PP IEE (05— Wargument (3180 (M3 BOBH BRI se1t). 2 E uncion ()
Flinested scope (HEIRAEIEL)

method resolution order (J5 7 M7 IE)T)
T5 YRR R A2 R A 2 AR, base class (JJKHBHE]) w8 = M)E . B Python
2.3 JRE AR T VR A, w5 2(E) python_2.3_mro,

module (%)
—{f#4T: Python F&sUE Y 4H %% B {7 (organizational unit) [4{:. g A — a4, BUGIE
[#) Python #{f. HAE I thimporting (AR, WA ZE Python,
iz Epackage ().

module spec (BigHHI#%)
— Al S, BAE RS AL import B & il. B J& importlib.machinery.
ModuleSpec —1{EEFl.

MRO
it 2(Emethod resolution order (75 YERMTNEFF) o

mutable (n[5E47})
YA DA R, BRI 1O o AR Eimmuable (RAEPIE) o

named tuple (Fff%c4l)
g [named tuple (P44 7C4L) | 2F54E tuple R (T BUE SR class, HEHW 25| (indexable) JC
ZHH AT DA P42 S 1 AR A E . 1 Le AR, class 7] DAL HiAth il 4k

A LE)#R(E)Z named tuple, f35H time.localtime () fl os.stat () EERE. B—FEHAT

2 sys.float_info:

>>> sys.float_info[1l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

£ 2% named tuple 2 [E@AE] (40 LB) o 5(#, — i named tuple 0] DAGE—fl IE BLHY class
FookE s, HEL class Z#7K H tuple, HEFE TS (named field) RIFT . 354119 class 7]
AT L% . W PA#K H typing.NamedTuple AR, WA A A LRER (factory function)
collections.namedtuple () R . BF MBI T —LLEH4MK) method, 5 2% method A]
b2 AEF 5 ok [E)7) named tuple H1, SEVEFR 1)

namespace (#yZ4sil)
SEMPE R o 45 25 M2 DA dictionary (281) WEECIE. G Wk . iy KIEE) a4 25 1
MAEYIEH (FF method H) A SR A 24 25 . w44 25 138 PR 7 Lk v 44 e, ARG AR A Ak . 51
1, P builtins.open £l os.open () E&EBEMA G S MARES B 425 MR
FH e [2 IR RS A AR B A — R X, ARSI W R PR S v Atk . BN, %5 random. seed ()
o itertools.islice () WML R, BEEHENEH random fll itertools MAIFEEE.

namespace package (@ #4235 WEA4E)
— 1 PEP 420 package (£1F) , & HBEIEET £ (subpackage) 1 —fH 7585 . A4 a5 M E(FrTfg

76 Appendix A. #iiEER

https://peps.python.org/pep-0420/

Extending and Embedding Python, %[3.13.0rc2

EV Sk, T H A ARE S P ARG R — Mreqular package (R , WEEMEBS
__init__.py mARE.

Az Emodule (F4H) .

nested scope (HUHR1ETIR)
REFI2 IR 41ME 2 2% (enclosing definition) FFAYSE#LRE F7 . ZRBIRIE], — M R =X AR 2 78 5 — 1 R =X
e, B2 BANgm0h s s, Fe, AESEET, SRR EERE H k2
W TR R . W SRR A EVE VR R IO R A TR, A SR A A A
SR E A . nonlocal R EANEEHEGEITE A

new-style class (#r=\HH(E])
—HEEX, CRIEBAENA N class P14 I A1 class JE@#& . FEHIH Python fiuA i, A 7K
class 7 Rt fl Python U . ZEDIRE, 152 _ slots__ . FiR#F (descriptor). J& 1 (property).
__getattribute_ (). class method (JHEIJ) Fi static method ([EJRE %),

object (¥1})
HARE (BUESE) KeieERMATE (method) MATMIEERL. BT Mnew-style class (FialH
[F]) fyf# base class (FJFHEE),

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package (£if})
—{[Python [{jmodule (F541), &0 DAL T4 (submodule) B 2 IEFIF) £/ (subpackage). I
W EmE, EEERA __path_ JEER—{H Python i .

Syt & Eregular package (IEHIEAE) Fnamespace package (fir S MEE) .

parameter (Z8)
Tr function (pRZ) B{ method & 3% F 1Y — W v 4% B B4 (named entity), B $500% KR BEEIIE 210 —
MHargument (5|%0), STEFLEEE MR 2518, EH RN RS HEA
« positional-or-keyword ({7 &S BISEF) © 80— 0T DAZ e 45 5 w2 VEEI M 48 5 7| Scpl g)
518 BRSEIWTHREE, BIUA N foo F bar:

[def func (foo, bar=None): ... }

« positional-only ({EFROZE) : H5H—MH L REHL BEOL EAHR LA T | . e E S 28 &£t
W/ TG, BnT DAERZ 7 OCHI T E FEAE R E 2 8, HIALAR) posonlyl FI posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

o keyword-only (fEFRBISEF): F500—F HAEDARH s F R R L 5 | 8. ek | S8 #h
A — AT = 8B 3 B 2 85 (var-positional parameter) By 2 BLAH 1 * F£I0, BUW DAYEHAZ 7 &
FAERR B2, BIINPAR Y kw_onlyl FI kw_only2:

[def func(arg, *, kw_onlyl, kw_only2): ... }

o var-positional (fEREMCEAIE) : 48U —HBELMER AR LI A7 B0 | (TEC B 2 8
O ET | M AN . BRSO ERTE L2 WA Em L~ AGEFRR, BIIPATY

args:

[def func (*args, **kwargs): ... }

o var-keyword ({EREHEBSET): AT HHRILN TR EE RS # (o ts 82
?QE@E@%?%I%&Z%)O B ERE RS EATR T E L~ e, Fn 1w #
| H) kwargs o

ST AR | ORI BRI Y s F5 0, o] DAE)— 6585 1y 5 | B o TR (-

77

Extending and Embedding Python, %[3.13.0rc2

55 it 2 BV 35 R Wargument (580 M H . % 5 BB 5] 3o 2 82 M2 ([, inspect.
Parameter class, function Z#ji, DA PEP 362,

path entry (W75
Aeimport path (3| ABEFE) TPy BCE, Wipath based finder (SERSEAEHTRE) G5% BHRE
S import FYBEAL.

path entry finder (B4 8423
¥ sys.path_hooks H{—1f Bl BRI {4 (callable) (& Rl —1{path entry hook) Bt [R/E) — & finder ,
B RITE AT PA— Ml path entry g (i 5EAH o

B A R TE H A2 EAER method, 5 2([F) importlib.abe.PathEntryFinder,

path entry hook (p&f%3HH(E))
f£ sys.path_hooks ¥ ZRHH—{E T IFIY {4 (callable), 58 FIE WMAAE— (855 & path entry H
T, A BlE—Fparh entry finder (FEARIEH A4 o

path based finder (FLRPEIRIFHES)
THFH) US4 A 4R 25 (meta path finder) Z—, B @ {E—@limport path 1825454 .

path-like object (JHPEFEH1E)
— B FRRAE R R BT DU — B FRR BRI str 5 bytes Y4, w2 —M
BHVF os.PathLike W EWWH. BBIFEIY os. fspath () K, —f%4E os.PathLike WE
YT ABEEIE] str 5 bytes R RHIEES: Tl os. fsdecode () K os.fsencode () HI
AER] A TERR st) bytes A4S, 1 PEP 519 3] A,

PEP
Python Enhancement Proposal (Python #[El#222), PEP 22—k #HEIH 304, & #EE] Python - EER
HEEFR, 2R Python 19—05 B BE 3% T BE RO AR P A ER 1% . PEP 5% TP (0L Y2 1t 36 17 A
PAS A ZE T RE A AR IR

PEP At HIY, R EE R PIREMFEEE . FLE b B Sl 1 R) 3 S, AR I
Python (1% #HEVRAIFEE, & Seilfeiy 1= 2] . PEP)14 2 & e te At Bk [g vy e e B s
.

52 PEP 1,

portion (34))
1B — H [) —4HAR 58 (0 n] BE R AAAE— 1 zip A), 38 LUAE 22 RE 38— 1 fin 44 25 H1 B 14 (namespace
package) G T E(RR, 4H[A PEP 420 HhiyE .

positional argument ({37 ¥ 514%)
w2 (Flargument (5]8Y).

provisional API (%47 API)
WAt APL 245, FEARE R U R [R AH A (backwards compatibility) R, S #HERRT APL.
BESR LN, REre MBI, M EER A ERWEE, FaEZ0REE A SR
EELE, Wnged BB EAHANE T (LA . S8 EEA G EmHhE L
——HA APT YA Z HI RSB e LA BRI e i 8 IRy, B A etk

RIS A 4T AP, [AR AA R0 Bt Gyl] [e 2] — S MT AT p st B ng R FE
8K G g T RSkt — 1 R A A I IRE T
T5 {18 R ol AR A v o X i o 5 B T AN BTt A, 7T S R it (R P IR) 25 BH 0 A B I s T ot
i 2[E PEP 411 T i 58 Z 40 .

provisional package (¥47£5{})
52 (Elprovisional API (%47 API),

Python 3000

PythOHJ&X ZONRAHERE (RACARITRIRER), EREEE 3 AT R EERE AR)] DA (E
[Py3k].

Pythonic (Python &K))
— (A AREE B US, EEM T Python 355 A W HIEE, A28 HALEE 5 Rayiid
AREAEREAAS . Fl4n, Python g Wy —MEE ML, MM for BHRX, ¥—MEnERY

78 Appendix A. #iiEER

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Extending and Embedding Python, %[3.13.0rc2

PRI A TCR AT EIRE . 32 HAURE 5 A E RS 4L, FTAR K Python 9 A R 61
A e e A A O -

-
for i in range(len(food)):

print (food[i])

.

2T, DA AR R . 3HA7 Python Jalks :

p
for piece in food:
print (piece)

qualified name (FR & %H%)
—{H B4R, B BRI — AL A 23 AE 3] A4 H 2 210 class. pRUEK method Y
[E%£% 1, W PEP 3155 W 3%, B TEIE R pRUAT class 5, FRE 44 f B (124 R AH) -

g
>>> class C:

class D:
def meth (self):
pass

>>> C.__qualname___

ICV

>>> C.D.__gualname

'C.D'

>>> C.D.meth.___qualname_
'C.D.meth'

BTG RBAERE, T2 TRE & & (fully qualified name) 23R %A V) SE BB 4 R BEAR , A 4E A
MAZEM, BTl email .mime.text:

>>> import email.mime.text
>>> email.mime.text._ name_
'email.mime.text'

reference count (= Wi514L)
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount () function to return the reference
count for a particular object.

regular package (IEBIEA)
—(HE & ipackage (BF), Bl—@a4& __init_ .py HEMHE.

52 Enamespace package (f4 2 MELE) .

REPL
An acronym for the "read—eval-print loop”, another name for the interactive interpreter shell.

__slots__
e class [ERRH)— M E 4y, ERFMFERESEOBENZSH, PALIEBE G dictionary (FHL) , 7K
WA O, MEAR RN, H bﬁ%ﬁ%u\ﬁﬁﬁﬂﬁﬁﬂi oA B 45 I AR A {1 e e o
(memory-critical)) i F R = AEAE A LB 1) 2 A D

sequence (J3:41)
—fRiterable (WJEMRA1F), &M __getitem_ () special method (HFFkHTiE), (B H K5I
BB EBCRI TR, EEF T —M __len_ () method [0l f# 3% 7 51 ({2 . —LL[E]
J?ﬁljiﬂ_@j% list, str, tuple fl bytes. FEHERE, MR dict T _ getitem_ () M
len , (A ERHEIE L (mapping) AR FH, PHIEHA)y 202 M AR 1 immutable §

Eﬁk%&

TH}%%TE%EE (abstract base class) collections.abc.Sequence F3% 7 — 1IN & 1/,
AEIRR _ getitem () f1__len_ (), BT count (). index (). _ _contains__ ()

79

https://peps.python.org/pep-3155/

Extending and Embedding Python, %[3.13.0rc2

Ml __reversed_ (). EfEMIEANAEAEE, WA register () #iIRSHEE. =2 E7»
JEAN RSO, R R SERAE.

set comprehension (&4 HR)
— MR E, AR T E Y i &R e, B R R AS DA set

[f#, results = {c for c in 'abracadabra' if c not in 'abc'} €r[E4—fF5
set: {'r', 'd'}. #H2[E comprehensions.

single dispatch (¥.—3)E)
generic function (ZHLpRZ) MR, FEdl, EIENSEEERENE 58 AE,

slice (YJ})
— @, [:.L%@/\ —Blsequence (7)) BIFE—5 . Br—BHYI R 175200 H R AAF9E (sub-
script notation) [1, 342, B EFEZ MEHE Y, #lil variable_name[1:3:5],
RS () f@?ﬁﬂ@%ﬁ, i slice Y.

soft deprecated
A soft deprecation can be used when using an API which should no longer be used to write new code, but it
remains safe to continue using it in existing code. The API remains documented and tested, but will not be
developed further (no enhancement).

The main difference between a “soft” and a (regular) "hard” deprecation is that the soft deprecation does not
imply scheduling the removal of the deprecated API.

Another difference is that a soft deprecation does not issue a warning.

See PEP 387: Soft Deprecation.

special method (5% Jj1):)
—TFE &9 Python [B)IFIYY) method, FI A ¥ SAE BUERAATHERLE R, Blanmi. & method (144
T & 7r BREE A4S B A Wi RJEEE]. Special method 7 specialnames H g #EAHEIHA .

statement ([4iiAX)
PR —MEMH (suite, —EFEXAE []) H—FB. BRR T UE—{flexpression (FEH
X)), WESHEBETE (Fllif. while 5§ for) MILT&ERY —.

static type checker ([FJREMI[Efur7s)
i i Python B ASEI A ATAIANEE T H, BEER HEERR, B2 f A TR EMRMEE. HiEzER
[El32-7 (type hints) PAJ% typing Big.

strong reference ([F1%1K)
1 Python) C AP 1, [F12 BUZSWIMFNS IR, W HERE %2 B reEs . s i
REZ I Py INCREF () RMMEZ K. RS MIFFZE# py_DECREF () BHEIZ M.

Py _NewRef () MizUnl IR @ —MEWHMES K. @5, EREESBEGEREZ 6, WHEE
2[F% M |-IEI Py_DECREF () gz, W% ER—{H2 0.
Yk 2[Elborrowed reference (fEH2M).

text encoding (3L &hils)

Python H1#) 55 22— Unicode A% % (code point) (#1751 (#iEAE U+0000 -- U+10FFFF 2 fif]). #F
ST E— FER B AT IR E— A e AT 5

ﬂ%ﬂ@???ﬂ%&ﬁ%ﬂ?ﬁm TRE) a5, WAL TCA T o) B S a% 7 mp R RRE) T AR
(decoding)],

A ZTEA ST I i ES (codecs), BEMBATRE [307 il .

text file (i%iﬁ’%)
— A REEFEI 5 A st Y —1f file object (REZEWIME) . BH, CFHEEE L RAFIITH
i) &R (byte-oriented datastream) [E)€r [B jE Ftext encoding (SCF4AE) . SCFEAEENBI T4 -
PIScEREE (e 5w) BIEMARZE. sys.stdin. sys.stdout PAK io.StringIO BB,

HakzElbinary file (“HEMER), B2 MEEEREBFIE A 281204 2 9 1F (bytes-like object) WK
ES7/ LN

triple-quoted string (= 5|3E[E))
H = E 598) S5 19% O BIEERSA R — M7 h . MR B MEEA SR ALET R 5 | 55 5 AL

80 Appendix A. fif5E%&

https://peps.python.org/pep-0387/#soft-deprecation

Extending and Embedding Python, %[3.13.0rc2

oNhAE, HERFFZEHE, MR RA K. SRR AT AR B E) (unescaped)
(R85 [DERNEE S| 5%, 1 e AT (81 #4170 (continuation character) i n] ARSI AT, JEMEFFE
A A 25 I T A R e A 1

type (%I[E])
—1# Python ¥+ REIEE T e A EEAE Y SmEDaEEa —mREE. —MAeErRENT
PAHER __class__ BMEAAFH, DA type (ob]) HAHR.

type alias (ZU[EIEI%)

—{EAE [3650, F A BE G 2 46— FR(EIFRF (identifier) KA.
REIE)4 A 2 [E32 5 (type hint) R . Biltn:

def remove_gray_shades (

colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:

pass
. J

FTPAR IR R, SR AR

Color = tuple[int, int, int]

-

def remove_gray_shades (colors: list[Color]) —-> list[Color]:

pass
. J

#2[F typing I PEP 484, A LI RERHIIA .

type hint (HI[EIHEA3)
—fannotation ([E1RE), EHeE— M. —H class J& M=o — 1 of =) 2 8k] 1 7 T AL ED
FERR R R, TR 24 Python (B, (HEMHEI &2 [l & %5 (startic type checkers){RA
A, [E)RelH B IDE 58 fF2 W54 4> (completion) FIE## (refactoring).
S s B class BRI R A OR & s) mBE R, v LM typing.
getftypefhints()ﬂ@ﬁﬂﬂo

i 2(E typing fll PEP 484, AU RERYHEIR .

universal newlines (i#i)JH[Ef7T5C)
— e i SCF L (text stream) [2, € AR A G ERRE)E— 470 &5 5 Unix f7 R 1E G
"\n'. Windows {&f '\r\n" FI#) Macintosh &% '\r'. FH2[E PEP 278 11 PEP 3116, DA
J* bytes.splitlines () BIFAINAHEE.

variable annotation (%5Z3(Ff%)
— (W S 85y, class JB P annotation ([EIFE) .

(VR B class J RIS, MRELRIEIRIER:

class C:
field: 'annotation'

St EREE 3 F RN [E32 7 (type hint): BN, SRS BOEMI € B int (358 (4:

[count: int = 0

5 B (EVRE (1) R AE annassign T 6047 2F 4 10 Al RE .

#52[Elfunction annotation (FRR[ERE). PEP 484 F1 PEP 526, %4 WIheEMHiA . BR RN &
B, 75 2(E annotations-howto.

virtual environment ([EJ}ER4%)
— W 173 VEFR B (cooperatively isolated) [TEEEE, fERE Python (15 I & A1 e HIFE 15 D2 S FITHA
Python #[EIEM:, Wi A€ ¥[8 R 4% _LiEF T Hifth Python JEE IR A7 HEA: T8 .

Haa(F venv,

81

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Extending and Embedding Python, %[3.13.0rc2

virtual machine ([EHEEKERS)
—B5E4s th R T E FRI B (computer) . Python [[EHEEAE S €T i bytecode (S7ICHLEE) SiiEes
g i e A -

Zen of Python (Python Z[F])
Python 51 I BT BLAG 51 %, HLEIZA B HA FRARFN (6 F ILRR = o BLs R nT DA e B B 4R
JUEEIA [import this| R4%KF|IE.

82 Appendix A. #iiEER

APPENDIX B

BARELEFIRA S 14

i SEEI] SO 7 Sphinx (—fE (E) Python [EIW SCIFFTERES O SCIFEERS) 6T reStructured Text 45
TR R AR R i

Uil Python B 5, i B 1155 1 T EIH SCAFBLE AR BB BT TR, AR ERIHR R, 7 57
reporting-bugs F{IfT, [EVEAH B, FAM A BGaHi B EE A

ECIE
« Fred L. Drake, Jr., 5l Python SC{4 T HALM A& DA — I A Ve
o A¥E reStructuredText F1 Docutils T.E.4H [Docutils B2 ;
o Fredrik Lundh ¢4, Sphinx #2ftBf¥) Alternative Python Reference wf3#| IS LT £ .

B.1 Python {895 Bk 1

#r 2 NF#R G [E] Python i3 M3E T . Python 422 p% 2)5 Al Python [FIR S E ki . Python B S (EIR R 4G
TAT M ERE R, # 7 Misc/ACKS .

TEFAE] Python A7 14458 g B Bk A 35 3 3 (AR 1 (BT SO - IRl BT B IR A 1y AL AP !

83

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS

Extending and Embedding Python, %[3.13.0rc2

84

Appendix B. Bji?i8£(FBAS #

appeENDIX G

i E IR

C.1 &icio

Python 2 1 7 B S22 A0 51 AR RL 2T 9T By (CWI, R, https://www.cwinl/) [Guido van Rossum Jji# 1990
EREBFEALE, i fEE—FRE ABC 3% 4% . (D Python (0 TR ACH HiAb M ETRL,
Guido /52 HFZMEH .

1995 4E, Guido {54 JE 5i N 55 i i B F A9 A 5] (CNRI, 5, https://www.cnri.reston.va.us/) #4548
e Python [TAE, [EEARETEEE] T340l i 22l AR 4% o

2000 4£ . H , Guido Al Python A%.0» B % H B i 51| BeOpen.com [EJj{57. T BeOpen PythonLabs . [f]
4+ H , PythonLabs [# X% % Digital Creations (FBi[E] Zope Corporation; 5, https://www.zope.org/), 2001
4E, Python BBl 4 6r (PSF, H https://www.python.org/psf/) 37, g —{HEEHEA Python FH 2
EEIRE A7 69 A48 R AL4% . Zope Corporation J2& PSF iy—1fi & B & & .

Jir A7 1 Python AR ZBHIRAY (A BHIBRURAIEFE, (0 hups//opensource.org/) . FEM b, KEH{HAE4
By Python JiAS, o2 GPLAHZHY; DATR A4 G 25 M A 1 22 [E.

BREA FEB i waE GPL 8% 7

09.0%F 12 A/l 1991-1995 CWI B2
132152 1.2 1995-1999 CNRI 2
1.6 1.5.2 2000 CNRI &
2.0 1.6 2000 BeOpen.com {5
1.6.1 1.6 2001 CNRI =
2.1 2.0+1.6.1 2001 PSF o
2.0.1 2.0+1.6.1 2001 PSF 2
2.1.1 2.1+2.0.1 2001 PSF y=s
2.1.2 2.1.1 2002 PSF ys
2.1.3 2.1.2 2002 PSF =
22 DAL 2.1.1 2001 £4- PSF 2

fi(E]

GPL 2 EIR /R FA" @1 GPL T #(E] Python. A8 GPL, Jir 1) Python FZHEAS T ATE/REE[EE i
BIRUAS, AR —E BRI 52 5 AEIBH IR . GPL AHZR W #2HE(E5 Python 7] DA% & HAl#E GPL 4%

85

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, %[3.13.0rc2

IR (I AT)

IR Z I AMRE T, A Guido F8E NIUAT, ifHE Le A iy B [ERE T fig.

C.2 FRFRHLHMFGXER Python BIEHIER

Python S FIEII SCF IR LR PSF 424 649

% Python 3.8.6 B4R, [EIMASCH:rpg&ifl, R BAIHADRE A, 298 FHIZHE (dual licensed) 7 PSF #%
KEA #1PA N Zero-Clause BSD 3% 42 ,

AN Python R BEFOR RO BE . TS RS LA RE 2 R — B . BRE L
FHER RSS2 EHO EI 9 0y 348 S 200

C.2.1 ¥ PYTHON 3.13.0rc2 i PSF 1% &1

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.13.0rc2 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—~hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.13.0rc2 alone or in any.
—derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All.
—Rights

Reserved" are retained in Python 3.13.0rc2 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.13.0rc2 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.13.0rc2.

4. PSF is making Python 3.13.0rc2 available to Licensee on an "AS IS"._
—basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

86 Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

USE OF PYTHON 3.13.0rc2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.13.
—~0rc2

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A_
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.13.0rc2, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee,.
—Or any

third party.

8. By copying, installing or otherwise using Python 3.13.0rc2, Licensee.

—agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 Fj¥ PYTHON 2.0 Y BEOPEN.COM #Z## &%)

BEOPEN PYTHON B #ZHEA 455 1 i

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects

€ & A}

C.2. ARFERHUEMFXMERM Python B)&#IER 87

Extending and Embedding Python, %[3.13.0rc2

(B —1)
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 Hj? PYTHON 1.6.1 B4 CNRI 1R &

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python

EET—3

88 Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

(B E—H)
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 ¥ PYTHON 0.9.0 £ 1.2 g CWI iR#EE#

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 F}* PYTHON 3.13.0rc2 [FEA #4FI#2X 5 /) ZERO-CLAUSE BSD 1%

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. ARFERHUEMFXMERM Python B)&#IER 89

Extending and Embedding Python, %[3.13.0rc2

C.3 #uk(CIeR RS Ry 12 18 B Bt
A (AR SRR A BEHE SRS, 3 5ULAE Python SEETA b TN 45 =)y W

C.3.1 Mersenne Twister

random BLAHIE T _random C #% £ #2402 7 DA http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html f F#REIFEERAFERE. PAN 2 FEGRA SR sg g -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

90 Appendix C. &% EiRiE

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, %[3.13.0rc2

C.3.2 Sockets

socket BAH /T getaddrinfo () il getnameinfo () K=, B¥E WIDE BZ (https:/www.wide.
ad.jp/) [E), FARTE] B JE A 2 vh bl 4 il -

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 FERF#¥ socket fRFE

test.support.asynchat fl test.support.asyncore FAA ST :

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB N

https://www.wide.ad.jp/
https://www.wide.ad.jp/

Extending and Embedding Python, %[3.13.0rc2

C.3.4 Cookie &8

http.cookies HiZH L& DA A :

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 #{TIEN

trace B W& PAT I
portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

92 Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

C.3.6 UUencode £ UUdecode F=,

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

— Arguments more compliant with Python standard

C.3.7 XML FEiRF2FFreny

xmlrpc.client M-S DA

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB

93

Extending and Embedding Python, %[3.13.0rc2

C.3.8 test_epoll

test.test_epoll BigHI & DA

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select B kqueue il & LA HEHH -

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

94 Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

C.3.10 SipHash24

Python/pyhash. c f§Z 6% Marek Majkowski’ %5 j* Dan Bernstein] SipHash24 B VERIEE. B0
Nk

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod Ed dtoa

Python/dtoa.c fHEHALT CHY doa fil strtod pR, F A C A EEKE BE 17 BE ORI =2 5 HAHE) . AR %
F2fiTA4: H David M. Gay B7 i[RI A5, 1235 BIAE W] DAJE https://web.archive.org/web/20220517033456/http:
/Iwww.netlib.org/fp/dtoa.c N, #2009 4E 3 H 16 H kR 1R G648 2005 DA IR RE B 2 REAZE Y -

/**

The author of this software is David M. Gay.

E

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

E O

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

*
*
*
*
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*
*
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

**/

C.3. #ugFIakienyIR{E BB 95

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Extending and Embedding Python, %[3.13.0rc2

C.3.12 OpenSSL

The modules hashlib, posix and ss1 use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

(HEBT—TD

96

Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

(B E—H)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(BT —H)

C.3. #ugFIakienyIR{E BB 97

Extending and Embedding Python, %[3.13.0rc2

do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

(R L —5)

98

Appendix C. &% EiRiE

Extending and Embedding Python, %[3.13.0rc2

C.3.13 expat

PrAFTERE E pyexpat R REE ——with-system—expat, HHIFZEE G AL expat AT
AR R A 2

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

BRAEFERIE _ctypes BALUK T _ctypes Mkt € —-with-system-1ibffi, FHHIRZIHKSE
- MEETE Tibffi 5 4R A5 1 Rl A 2

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 99

Extending and Embedding Python, %[3.13.0rc2

C.3.15 zlib

URAE R S BARBIY 2lib A KA ABOR vk R 2110 JE5E, Rz se g M —MEE 2ib [5G
AR R A 2

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc {Ji ¥ 3EEIZE (hash table) E4/E, DA cfuhash BZE([FIRLAE:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(HEBT—TD

100 Appendix C. B MR

Extending and Embedding Python, %[3.13.0rc2

(R L —5)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

MAEfE S decimal BLAHIECTF _decimal C 7 fE X Bt () ——with-system-libmpdec, &A%
B F—H(E) 5 libmpdec o X JFH) il A A 2 -

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N B EH

test AP CI4N 2.0 HIFLEM (Lib/test/xmltestdata/cl14n-20/) 24 W3C #Hu} https:
/Iwww.w3.0org/TR/xml-c14n2-testcases/ #A52%, H2HR 3-clause BSD #7HEw: %5 (F):

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(BT —H)

C.3. #ugFIakienyIR{E BB 101

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, %[3.13.0rc2

(R L —5)
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 mimalloc

MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

C.3.20 asyncio

asyncio BALMHMEIA 2 AE uvloop 0.16 FHEE2R, FA MIT $ZHE2CEE(E:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

(HERET—TD

102 Appendix C. B MR

https://github.com/MagicStack/uvloop/tree/v0.16.0

Extending and Embedding Python, %[3.13.0rc2

(R L —5)
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/gsbr. c is adapted from FreeBSD’s ”"Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ""AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. #ugFIakienyIR{E BB 103

https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

Extending and Embedding Python, %[3.13.0rc2

104 Appendix C. ;GZ iR

APPENDIX D

=
i
|mit
If

Python F13 {73 [HH SO0 HUHE -

Copyright © 2001-2024 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com {4 F—4JHEF] .

Copyright © 1995-2000 Corporation for National Research Initiatives { fF —JHEF] .
Copyright © 1991-1995 Stichting Mathematisch Centrum {4 & —JJ#E#8].

SERMR R A T 2 105 5 St

105

Extending and Embedding Python, %[3.13.0rc2

106 Appendix D. =&

5

FEIR=FEHIEFF
67

>

>>> 67

_ future_ ,72
__slots_ ,79
T

PYTHON_GIL, 73
PYTHONPATH, 55

A

abstract base class (£ & EHEE]) ,67

annotation ([EE) ,67

argument (5/#) ,67

asynchronous context manager (3 | ¥
REEE) 68

asynchronous generator iterator(JE[%
B4 #FIRE) 68

asynchronous generator (FEFFE4 %), 68

asynchronous iterable (3 & # T EI®X 4 #)
, 68

asynchronous iterator (FEFEF[EIRE) ,68

attribute (B#) ,68

awaitable (T &&41) , 68

B

BDFL, 68
binary file (Zi#fut¥ %) ,68
borrowed reference ({EH%E) ,69
built-in function ([EZE &)
repr, 49
bytecode ({IjC#L75) , 69
bytes-like object (MG EHHE) |, 69

C

callable (FHFey44) , 69
callback (E’]“?) , 69
C-contiguous (C ﬁ%fﬁ) , 70
class variable (’»K/E%%() , 69
class (H[E) , 69

complex number (%{) , 69
context manager (FEEEZHE) ,69
context variable (‘%fﬁ%%{) , 69
contiguous (FEZH) ,70

coroutine function (HEFERX) ,70
coroutine (#H#) ,70
CPython, 70

D

deallocation, object,48

decorator (ZHEAF#) ,70

descriptor (H#H##) ,70

dictionary comprehension (FHAgELEE),
70

dictionary view (FH##iE) ,70

dictionary (F#) ,70

docstring ([El#=#) ,70

duck-typing (%BFAFE]) ,71

E

EAFP, 71
expression (EHER) ,71
extension module (FEFHAEAM) ,71

F
f-string (f F&) ,71
file object (BEZEWH) ,71
file-like object (MM ZEHH) ,71
filesystem encoding and error
handler (# % R # % % 0 % & &
ZHR) 71
finalization, of objects,48
finder (FH#) ,71
floor division (E_FEX%F?J%) , 72
Fortran contiguous (Fortran #E&H) ,70
free threading, 72
function annotation (& R[[EE) ,72
function (EH) ,72

G

garbage collection (Hr3gEY) ,72
generator expression ([El4&HBEERX) , 72
generator iterator (é%’%ﬁ%&) , 72
generator ([El4#) ,72

generic function (BERER) ,73
generic type (ZAAF]) ,73

GIL,73

1

107

Extending and Embedding Python, %[3.13.0rc2

global interpreter lock (&3 3 E4) ,
73

H

hash-based pyc (EZH#H pyc) ,73
hashable (T #([EH) ,73

IDLE, 73

immortal, 73

immutable (R &4 H) ,73
import path (B AEAE) ,74
importer (BIA#) ,74
importing (3| \) ,74
interactive (Z#H) ,74
interpreted (Ei%fl']) , 74
interpreter shutdown (HZHHMHE) ,74
iterable (FERMH) .74
iterator (TJE%?F) , 74

K

key function (#E=R) ,74
keyword argument (B85 5|%) ,75

L

lambda, 75

LBYL, 75

list comprehension (BZ|&AEH) ,75
list (&%) ,75

loader (#AH) ,75

locale encoding (EHE %) ,75

M
magic
method (7‘5&) , 75
magic method (EH#TF %) .75
mapping (¥##k) ,75
meta path finder (TCEEZFWHE) ,75
metaclass (LHE) ,76
method resolution order (FEMATE)F) .
76
method (F %) ,76
magic, 75
special, 80
module spec (f}%%ﬂfﬂ%) , 76
module (#41) ,76

MRO, 76
mutable ([&YH) ,76
N

named tuple (& LH) ,76
namespace package (& XMEH) ,76
namespace (@4 =MH) ,76

nested scope (EWRIEASF) ,77
new-style class (FHE) ,77

@)
object (4#) ,77

deallocation, 48
finalization, 48
optimized scope, 77

P

package (&) ,77
parameter (&%) ,77
path based finder (ERBLEWIZHE) ,78
path entry finder (BREIHEEHZHKLE) ,78
path entry hook (BRIEEF) ,78
path entry (BEIEEH) ,78
path-like object (MEEBBH#) ,78
PEP, 78
Philbrick, Geoff, 15
portion (#4) ,78
positional argument (fLE35|#) ,78
provisional API (¥4T API) ,78
provisional package (T{TEH) ,78
PyArg_ParseTupleAndKeywords (C &), 15
PyArg_ParseTuple (C ®=) ,14
PyErr_Fetch (C ®R) ,48
PyErr_Restore (C ®=#R) ,48
PyInit_modulename (C function), 55
PyObject_CallObject (C ®=R) ,12
Python 3000, 78
Python Enhancement Proposals

PEP 1,78

PEP 238,72

PEP 278, 8l

PEP 302,75

PEP 343,69

PEP 362,68,78

PEP 411,78

PEP 420,76,78

PEP 442,49

PEP 443,73

PEP 483,73

PEP 484,67,72,73,81

PEP 489,11,55

PEP 492,68,70

PEP 498,71

PEP 519,78

PEP 525, 68

PEP 526, 67,81

PEP 585,73

PEP 683,73

PEP 703,72,73

PEP 3116, 81

PEP 3155,79
PYTHON_GIL, 73
Pythonic (Python JE#sH) ,78
PYTHONPATH, 55

Q

qualified name ([RE%FE) ,79

R

reference count (£ ME#%) ,79

108

#5l

Extending and Embedding Python, %[3.13.0rc2

regular package (IEHMEM) ,79
REPL, 79
repr

built-in function ([FZZR) ,49

S

sequence (JF%|) ,79
set comprehension (£4#%46EHE) ,80
single dispatch (E—3HE) ,80
slice (1K) ,80
soft deprecated, 80
special
method (73‘&2‘) , 80
special method (%% i) , 80
statement (EHZX) ,80
static type checker (%ﬂfﬁﬁ%&) , 80
string (¥ &)
object representation (#fF&kw) .49
strong reference (éﬁﬂﬁ) , 80

T

text encoding (X F#4#) .80

text file (XEHE) .80

triple—quoted string (ZB|3EF#) , 80
type alias (E[EE4%) ,81

type hint (A[E#EFR) ,81

type (A[F]) ,81

U

universal newlines (H#AE{TFETT) ,81

\Y

variable annotation (##([Ef) ,81
virtual environment (%ﬁ?ﬁiﬁ) , 81
virtual machine ([FJ## %) ,82

Z

Zzen of Python (Python Z[E]) ,82

%3 109

	推薦的第三方工具
	不使用第三方工具建立擴充
	以 C 或 C++ 擴充 Python
	一個簡單範例
	Intermezzo: Errors and Exceptions
	回到範例
	The Module's Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Reference Counting in Python
	Ownership Rules
	Thin Ice
	NULL 指標

	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalization and De-allocation
	Object Presentation
	Attribute Management
	Generic Attribute Management
	Type-specific Attribute Management

	Object Comparison
	Abstract Protocol Support
	Weak Reference Support
	More Suggestions

	建立 C 與 C++ 擴充套件
	Building C and C++ Extensions with setuptools

	建置 Windows 上的 C 和 C++ 擴充
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	在更大的應用程式中嵌入 CPython 運行環境 (runtime)
	在其它 App 內嵌入 Python
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems

	術語表
	關於這些說明文件
	Python 文件的貢獻者們

	沿革與授權
	軟體沿革
	關於存取或以其他方式使用 Python 的合約條款
	用於 PYTHON 3.13.0rc2 的 PSF 授權合約
	用於 PYTHON 2.0 的 BEOPEN.COM 授權合約
	用於 PYTHON 1.6.1 的 CNRI 授權合約
	用於 PYTHON 0.9.0 至 1.2 的 CWI 授權合約
	用於 PYTHON 3.13.0rc2 說明文件內程式碼的 ZERO-CLAUSE BSD 授權

	被收錄軟體的授權與致謝
	Mersenne Twister
	Sockets
	非同步 socket 服務
	Cookie 管理
	執行追蹤
	UUencode 與 UUdecode 函式
	XML 遠端程序呼叫
	test_epoll
	Select kqueue
	SipHash24
	strtod 與 dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N 測試套件
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	版權宣告
	索引

