timer file descriptor HOWTO

(F) 3.13.1

Guido van Rossum and the Python development team

1

2 R 27,2024

Python Software Foundation
Email: docs@python.org

Contents
1 #pl 1
Release
1.13

This HOWTO discusses Python’s support for the linux timer file descriptor.

1 3641

The following example shows how to use a timer file descriptor to execute a function twice a second:

Practical s s should use really use a non-blocking timer,

we use a blocking timer here for simplicity.

import os, time

Create the timer file descriptor
fd = os.timerfd_create (time.CLOCK_REALTIME)
Start the timer in 1 second, with an interval of half a second

os.timerfd_settime (fd, initial=1, interval=0.5)

try:
Process timer events four times.
for _ in range(4):
read() will block until the timer expires
= os.read(fd, 8)
print ("Timer expired")

finally:
Remember to close the timer file descriptor!

os.close (fd)

J

To avoid the precision loss caused by the f1loat type, timer file descriptors allow specifying initial expiration and

interval in integer nanoseconds with _ns variants of the functions.

This example shows how epol1 () can be used with timer file descriptors to wait until the file descriptor is ready for

reading:

e M
import os, time, select, socket, sys

Create an epoll object
ep = select.epoll()

In this example, use loopback address to send "stop" command to the server.

#
#
S telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '"]'.

stop

Connection closed by foreign host.
#

sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
sock.bind (("127.0.0.1", 1234))

sock.setblocking (False)

sock.listen (1)

ep.register (sock, select.EPOLLIN)

Create timer file descriptors in non-blocking mode.

num = 3

fds = []

for _ in range (num) :
fd = os.timerfd_create (time.CLOCK_REALTIME, flags=os.TFD_NONBLOCK)
fds.append (£d)
Register the timer file descriptor for read events
ep.register (fd, select.EPOLLIN)

Start the timer with os.timerfd settime_ns () 1in nanoseconds.
Timer 1 fires every 0.25 seconds; timer 2 every 0.5 seconds; etc
for i, fd in enumerate (fds, start=1):

one_sec_in_nsec = 10%*9

i = 1 * one_sec_in_nsec

os.timerfd_settime_ns (fd, initial=i//4, interval=i//4)

timeout = 3
try:
conn = None
is_active = True
while is_active:
Wait for the timer to expire for 3 seconds.
epoll.poll() returns a list of (fd, event) pairs.
fd is a file descriptor.
sock and conn[=returned value of socket.accept ()] are socket objects, not file.
—descriptors.
So use sock.fileno() and conn.fileno() to get the file descriptors.
events = ep.poll (timeout)

If more than one timer file descriptors are ready for reading at once,
epoll.poll() returns a list of (fd, event) pairs.

#

In this example settings,

1st timer fires every 0.25 seconds in 0.25 seconds. (0.25, 0.5, 0.75, 1.0, ...)
2nd timer every 0.5 seconds in 0.5 seconds. (0.5, 1.0, 1.5, 2.0, ...)

3rd timer every 0.75 seconds in 0.75 seconds. (0.75, 1.5, 2.25, 3.0, ...)
#

In 0.25 seconds, only 1lst timer fires.

In 0.5 seconds, 1lst timer and 2nd timer fires at once.

In 0.75 seconds, 1lst timer and 3rd timer fires at once.

In 1.5 seconds, 1st timer, 2nd timer and 3rd timer fires at once.

#

BE T

If a timer file descriptor is signaled more than once since
the last os.read() call, os.read() returns the number of signaled
as host order of class bytes.
print (f"Signaled events={events}")
for fd, event in events:
if event & select.EPOLLIN:
if fd == sock.fileno():
Check if there is a connection request.
print (f"Accepting connection {fd}")

conn, addr sock.accept ()
conn.setblocking (False)
print (f"Accepted connection {conn} from {addr}")
ep.register (conn, select.EPOLLIN)
elif conn and fd == conn.fileno():
Check if there is data to read.
print (f"Reading data {fd}")
data = conn.recv (1024)
if data:
You should catch UnicodeDecodeError exception for safety.
cmd = data.decode ()
if cmd.startswith("stop"):
print (£"Stopping server")
is_active = False
else:
print (£f"Unknown command: {cmd}")
else:
No more data, close connection
print (f"Closing connection {fd}")
ep.unregister (conn)
conn.close ()
conn = None
elif fd in fds:
print (f"Reading timer {fd}")
count = int.from bytes(os.read(fd, 8), byteorder=sys.byteorder)
print (f"Timer {fds.index(fd) + 1} expired {count} times")
else:
print (f"Unknown file descriptor {fd}")
finally:
for fd in fds:
ep.unregister (£d)
os.close (fd)
ep.close ()

(el b —50

J

This example shows how select () can be used with timer file descriptors to wait until the file descriptor is ready

for reading:

import os, time, select, socket, sys
In this example, use loopback address to send "stop" command to the server.

#
#
S telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '"]'.

stop

Connection closed by foreign host.
#

sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
sock.bind (("127.0.0.1", 1234))

sock.setblocking (False)

sock.listen (1)

(BT —5)

(el b —50

Create timer file descriptors in non-blocking mode.

num = 3

fds = [os.timerfd create (time.CLOCK_REALTIME, flags=os.TFD_NONBLOCK)
for in range (num)]

select_fds = fds + [sock]

Start the timers with os.timerfd _settime () in seconds.

Timer 1 fires every 0.25 seconds; timer 2 every 0.5 seconds; etc
for i, fd in enumerate (fds, start=1):

os.timerfd_settime (fd, initial=i/4, interval=i/4)

timeout = 3
try:
conn = None
is_active = True
while is_active:
Wait for the timer to expire for 3 seconds.
select.select () returns a list of file descriptors or objects.
rfd, wfd, xfd = select.select (select_fds, select_fds, select_fds, timeout)
for fd in rfd:
if fd == sock:
Check 1if there 1is a connection request.
print (f"Accepting connection {fd}")
conn, addr = sock.accept ()
conn.setblocking (False)
print (f"Accepted connection {conn} from {addr}")
select_fds.append (conn)
elif conn and fd == conn:
Check if there is data to read.
print (f"Reading data {fd}")
data = conn.recv(1024)
if data:
You should catch UnicodeDecodeError exception for safety.
cmd = data.decode ()
if cmd.startswith("stop"):
print (f"Stopping server")
is_active = False
else:
print (f"Unknown command: {cmd}")
else:
No more data, close connection
print (f"Closing connection {fd}")
select_fds.remove (conn)
conn.close ()
conn = None
elif fd in fds:
print (f"Reading timer {fd}")
count = int.from bytes(os.read(fd, 8), byteorder=sys.byteorder)
print (f"Timer {fds.index(fd) + 1} expired {count} times")
else:
print (f"Unknown file descriptor {fd}")
finally:
for fd in fds:
os.close (fd)
sock.close ()
sock = None

	範例

