Extending and Embedding Python
%I 3.13.1

Guido van Rossum and the Python development team

12 B 27, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 HEsmss—Ji TR 3
2 MG 05 TR s 5
21 PACEL CH++EFEPython o e 5
2.1 —EFFEGG ... 5

2.1.2 Intermezzo: Errors and Exceptionso e 7

213 [EBEG] . . . oo e 8

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage 11

2.1.6 Calling Python Functions from C 11

2.1.7 Extracting Parameters in Extension Functions 13

2.1.8 Keyword Parameters for Extension Functions 14

2.1.9 Building Arbitrary Values oL 15
2.1.10 Reference Counts o it e e e e 16
2.1.11 Writing Extensions in C++ L e 19
2.1.12 Providing a C API for an Extension Module 19

2.2 Defining Extension Types: Tutorial L 23
221 TheBasics e 23

2.2.2 Adding data and methods to the Basicexample 26

2.2.3 Providing finer control over data attributes oL 33

2.2.4 Supporting cyclic garbage collection Lo 37

2.2.5 Subclassing other typeso e e e e e e e e 42

2.3 Defining Extension Types: Assorted Topics 45
2.3.1 Finalization and De-allocation e 47

2.3.2 ObjectPresentation e e e e e 48

2.3.3 Attribute Managementol e e e e e e e e 49

2.3.4 Object COMPariSON . . . v v v v v v v e 51

2.3.5 Abstract Protocol Support 51

2.3.6 Weak Reference Supporto 53

237 More Suggestions i i i e e e e e e e e e e e e e e 53

24 #AT CE CH++ETEEM . o o e 54
2.4.1 Building C and C++ Extensions with setuptools 54

2.5 #F Windows R CHICH RIS - - - o o o o o 54
2.5.1 A Cookbook Approach 55

2.5.2 Differences Between Unix and Windows 55

253 UsingDLLsinPractice e 55
TESE R NIRRT ik A CPython 4 TEREE (runtime) 57
30 FEHT App FEHRAPYthon 57
3.1.1 VeryHighLevel Embedding 58

3.1.2 Beyond Very High Level Embedding: Anoverview 58

3.1.3 PureEmbedding 59

3.1.4 Extending Embedded Python 61

3.1.5 Embedding Pythonin C++ e 62

3.1.6 Compiling and Linking under Unix-like systems 62

A HhrahAR 63
B s s EI S fk 79
B.1 Python SUIRIERRE . . - o o e 79

C AVHELEZHE 81
C.l BRI e 81
C2 BAMAFEE DA U Python BUETAIMEZR . . . o o oo 82
C.2.1 JUHAPYTHON 3.13.1 (I PSF4ZFEG AT . . o o o e e e e e 82

C.2.2 A PYTHON 2.0 1) BEOPEN.COM FZHEEAT o o o o oo 83

C.23 JHHA PYTHON 1.6.1 B CNRIFZREAAT . . o o o e e e e 83

C24 JHAPYTHON0.9.0 £ 12 F CWLHHESAT . o . e 84

C.2.5 Jfji* PYTHON 3.13.1 [EJAH S REIRE A1) ZERO-CLAUSE BSD 24 85

C3 WlkEWEBMFEREBEA 85
C.3.1 Mersenne TWIStET o v v i e e e e e e e e e e e e e e e e e e e 85

C.3.2 Sockets e e e e e e 86

C3.3 JE[AI2E socket HRFG . . . o o v e e e 86

C3.4 Cookie BHE e 87

C35 HATEE . . o 87

C.3.6 UUencode i1 UUdecode BRI o o o o o o o e s s e e e 88

C.3.77 XML mEAEFIEIL . e 88

C.3.8 test_epoll L e e e e 89

C3.9 Selectkqueue 89

C.3.10 SipHash24 e e e e e 90

C3.11 strtod HL dtoa o o e e e 90

C3.12 OpenSSL o . e e e 90

C3I3 expat. oo 93

C3.14 Lbfli e e e e 94

C3.05 zIib . . . e e e e e e 94

C3.16 cfuhash e e 95

C3.17 Hbmpdec e e e e e 95

C.3.18 W3CCIAN JIEEM . . . o e 96

C.3.19 mimalloc e e e e 97

C.3.20 aSYNCIO .« v v v v v e e e e e e e e e e e e e 97

C.3.21 Global Unbounded Sequences (GUS) 97

D e i 99
#yl 101

Extending and Embedding Python, %[3.13.1

B EIH SO R Il C 8k C++ WP B, V6 A 4L S 75 Python BL%gRThfE. APLAIAN
HERTAE B R, Rl PAEFEH B4 BUE K ¥ (method) . SCAHEIZ ik infaf 4% Python B
FRTHA Y — W R, (E)FEIEFTRE T (extension language) T . fef&, B & RN WA Hi 5 A s
fﬁ%%ﬁﬁ%ﬂ, AR A T DAE) fE M (TEUATEREE) B AR Eideh, iR KEIEERARA RkE
I RE -

1& 15 [EIH SO R R BA Python A EEBREANE, . B IFES HUIEER N 4H, 752 tutorial-index . reference-
index %4 P I wE = EEIE XK E S . library-index 5EE 7 BT M EE 5 B2) & B R E) st (B
AYAIPA Python $i & 1)) #i4H .

B 52 B 1 Python/C APL REAINAH, W52 (E)Y) 4h—1r c-api-index.

Contents 1

Extending and Embedding Python, £(F] 3.13.1

2 Contents

CHAPTER 1

HERNS=ATH

B S EEIE T CPython M A FTHEMLY) . A SIS E AT B, =)y TH, ffl40 Cython, cffi,
SWIG #l Numba, #{ft7 S EIf 3 &% wEEEER 25)77k, K(E Python #37. C Al C ++ 55

& bz

Python BHSSHE I 45 il
Python f#{f1 | % $ (Python Packaging User Guide) /i # T ef ol DA ACHH . e il 70
AR TR, b AR T AL A R ARA 18 A% .

https://cython.org/
https://cffi.readthedocs.io
https://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, £(F] 3.13.1

4 Chapter 1. ##EME=FITH

CHAPTER 2

MERE=AITEBIHESR

AdeE P E W E, EEASE = THE T, frE@ss Cfl C ++ 7. BEERR A
AR THEARIMEE P, A RRIRESL A O/ C TSI A,

2.1) C g C++ #E 3t Python

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call
C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

O f#E

The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementa-
tions. For example, if your use case is calling C library functions or system calls, you should consider using the
ctypes module or the cffi library rather than writing custom C code. These modules let you write Python code
to interface with C code and are more portable between implementations of Python than writing and compiling
a C extension module.

21.1 —{AHEEH

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library function system () '. This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

! An interface for this function already exists in the standard module os --- it was chosen as a simple and straightforward example.

https://cffi.readthedocs.io/

Extending and Embedding Python, £(F] 3.13.1

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be just
spammify.c.)

The first two lines of our file can be:

#define PY SSIZE T CLEAN

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

L

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

#define PY_SSIZE_T_CLEAN was used to indicate that Py_ssize_t should be used in some APIs instead
of int. It is not necessary since Python 3.13, but we keep it here for backward compatibility. See arg-parsing-
string-and-buffers for a description of this macro.

All user-visible symbols defined by Python.h have a prefix of Py or Py, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not
exist on your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system(string) is evaluated (we'll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

sts = system(command) ;

return PyLong FromLong(sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")
to the arguments passed to the C function. The C function always has two arguments, conventionally named self and
args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects --- in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () inthe Python
API checks the argument types and converts them to C values. It uses a template string to determine the required
types of the arguments as well as the types of the C variables into which to store the converted values. More about
this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

6 Chapter 2. REA®=FTRAEIKZE

Extending and Embedding Python, %[3.13.1

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually -1 or a NULL pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the
C equivalents of the members of the Python tuple returned by sys.exc_info (). These are the exception type,
exception instance, and a traceback object. It is important to know about them to understand how errors are passed
around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value
(usually NULL or —-1). It should not call one of the PyErr_* functions --- one has already been called by g. f’s caller
is then supposed to also return an error indication to ifs caller, again without calling PyErr_*, and so on --- the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_*
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to the
interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception --- the direct caller of malloc () (or realloc())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who call malloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose
exceptions wisely --- don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_OSError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually raises
PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other
conditions, PyExc_ValueError iS appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

[static PyObject *SpamError;]

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

21. L) C g} C++ #E 3 Python 7

Extending and Embedding Python, £(F] 3.13.1

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_ NewException ("spam.error", NULL, NULL);
if (PyModule_ AddObjectRef (m, "error", SpamError) < 0) {
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as shown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) |
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PyLong FromLong(sts);

2.1.3 EREHI

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been
copied to the local variable command. This is a pointer assignment and you are not supposed to modify the string to
which it points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple ():

8 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, £(F] 3.13.1

[sts = system (command) ; }

Our spam.system() function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

[return PyLong_FromLong (sts);]

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,

"Execute a shell command."},

{NULL, NULL, O, NULL} /* Sentinel */

bi

J

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
=i, /* size of per—-interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
i

J

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_ name (), where name is the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(wvoid)
{

return PyModule_Create (&spammodule) ;

2.1.) C 5} C++ #& 3 Python 9

Extending and Embedding Python, £(F] 3.13.1

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage decla-
rations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDef structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may
abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init
function must return the module object to its caller, so that it then gets inserted into sys.modules.

When embedding Python, the PyInit_ spam() function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab (),
optionally followed by an import of the module:

#define PY_SSIZE_T CLEAN

#include <Python.h>

int
main (int argc, char *argvl])
{
PyStatus status;
PyConfig config;
PyConfig InitPythonConfig(&config);

/* Add a built-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1) ;

/* Pass argv[0] to the Python interpreter */
status = PyConfig_SetBytesString(&config, &config.program_name, argv[0]);
if (PyStatus_Exception (status)) {

goto exception;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
status = Py_InitializeFromConfig(&confiqg);
if (PyStatus_Exception(status)) {
goto exception;
}
PyConfig Clear (&config);

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spamn");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

// ... use Python C API here

return 0;

exception:

PyConfig_Clear (&config);
Py_ExitStatusException (status);

10 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.1

O e

Removing entries from sys.modules or importing compiled modules into multiple interpreters within a pro-
cess (or following a fork () without an intervening exec ()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule.c. This
file may be used as a template or simply read as an example.

O fHiE

Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details
on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chapter 3 5. C $2 C++ % 7.4) and additional information that
pertains only to building on Windows (chapter 3 % Windows . #4 C 4= C++ ¥% 7) for more information about
this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add a
line to the file Modules/Setup. local describing your file:

[spam spammodule.o }

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Make file there by running 'make Makefile’. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as
well, for instance:

[spam spammodule.o -1X11]

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input --- if you’re interested, have
a look at the implementation of the —c command line option in Modules/main.c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to the
Python function object (be careful to Py_INCREF () it!) in a global variable --- or wherever you see fit. For example,
the following function might be part of a module definition:

static PyObject *my_callback = NULL;

€ & A}

21. L) C g} C++ #E 3 Python 11

https://peps.python.org/pep-0489/

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{
PyObject *result = NULL;
PyObject *temp;

if (PyArg_ParseTuple (args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback) ; /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */

Py_INCREF (Py_None) ;

result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no
arguments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_Buildvalue ()
returns a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist) ;

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is “reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is "new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python, it
should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

12 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.1

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
is to call Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;

arglist = Py _BuildvValue(" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_Buildvalue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_Buildvalue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

[int PyArg ParseTuple (PyObject *arg, const char *format, ...); J

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual.
The remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

— LEIE I f) -

#define PY_SSIZE_T CLEAN
#include <Python.h>

2.1.) C 5} C++ #& 3 Python 13

Extending and Embedding Python, £(F] 3.13.1

int ok;

int i, 3j;

long k, 1;

const char *s;
Py_ssize_ t size;

ok = PyArg_ParseTuple(args, ""); /* [E% 5 % */
/* Python "W : f£() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple(args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

£('spam")

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;

n n

ok = PyArg_ParseTuple (args, ((ii) (11)) (1) ",
&left, &top, &right, &bottom, &h, &v);

/* A rectangle and a point */

/* Possible Python call:

£(((o, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+235) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char * const *kwlist, ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a
NULL-terminated list of strings which identify the parameters; the names are matched with the type information from
format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false
and raises an appropriate exception.

14 Chapter2. RERE=FTRBIKRTE

Extending and Embedding Python, £(F] 3.13.1

O il

Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY_SSIZE_T CLEAN
#include <Python.h>

static PyObject *
keywdarg parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %$s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —— It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg _methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
74
{"parrot", (PyCFunction) (void(*) (void))keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
}i

static struct PyModuleDef keywdargmodule = {
PyModuleDef HEAD_ INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&¢keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:

[Pyobject *Py_BuildValue (const char *format, ...); }

2.1.) C 5} C++ #& 3 Python 15

mailto:philbrick@hks.com

Extending and Embedding Python, £(F] 3.13.1

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_Buildvalue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to
return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue("") None
Py_Buildvalue ("i", 123) 123
Py_BuildValue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue("s", "hello") 'hello'
Py_BuildvValue ("y", "hello") b'hello'
Py_BuildValue ("ss", "hello", "world") ('hello', 'world')
Py_Buildvalue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_BuildValue (" () ") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 456)
Py_BuildValue (" (i,i)", 123, 456) (123, 456)
Py_Buildvalue("[i,11", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete are
used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free (). It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it creates
a conflict with reuse of the block through another malloc () call. This is called using freed memory. It has the same
bad consequences as referencing uninitialized data --- core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block
of memory, do some calculation, and then free the block again. Now a change in the requirements for the function
may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s
easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later
to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small
fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent
in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from
happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improve-
ment in speed or memory usage --- this is no hard fact however.) The disadvantage is that for C, there is no truly

16 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.1

portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc () and free () are available --- which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we'll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference
count which is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging
to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no further
references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run
the detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at
runtime.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly --- rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody “owns” an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an
owned reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference creates a
memory leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF ().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely’.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code --- in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has
in fact disposed of it.

A borrowed reference can be changed into an owned reference by calling Py_INCREF (). This does not affect the
status of the owner from which the reference was borrowed --- it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, such as PyLong_FromLong () and Py_Buildvalue (), pass ownership
to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object.
For instance, PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for instance
PyObject_GetAttrString (). The picture is less clear, here, however, since a few common routines are ex-
ceptions: PyTuple_GetItem(),PyList_GetItem(),PyDict_GetItem(),and PyDict_GetItemString ()
all return references that you borrow from the tuple, list or dictionary.

2 The metaphor of ”borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work --- the reference count itself could be in freed memory and may thus be reused
for another object!

21. L) C g} C++ #E 3 Python 17

Extending and Embedding Python, £(F] 3.13.1

The function PyImport_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the function borrows the reference from you ---
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple SetItem() and PyList_SetItem (). These functions take over ownership of
the item passed to them --- even if they fail! (Note that PyDict_SetItem() and friends don’t take over ownership
--- they are “"normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF () .

The object reference returned from a C function that is called from Python must be an owned reference --- ownership
is transferred from the function to its caller.

Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_ FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem(). The list owns references to all its items, so when item 1
is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a __del_ () method. If this class instance has a
reference count of 1, disposing of it will call its __del () method.

Since it is written in Python, the _ del () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is
accessible tothe __del () method, it could execute a statement to the effect of del 1ist [0], and assuming this
was the last reference to that object, it would free the memory associated with it, thereby invalidating item.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void
no_bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why his __del__ () methods would fail...

18 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.1

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_ BEGIN_ALLOW_THREADS, and to
re-acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use
the processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the
previous one:

void
bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
..some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL 154&

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL
only to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often
pass the objects they receive on to other function --- if each function were to test for NULL, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test for NULL only at the “source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py INCREF () and Py DECREF () do not check for NULL pointers --- however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers --- again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL --- in fact it guarantees that it is always a tuple*.

It is a severe error to ever let a NULL pointer “escape” to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter)
is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter
(in particular, module initialization functions) have to be declared using extern "C". It is unnecessary to enclose
the Python header files in extern "C" {...} --- they use this form already if the symbol ___cplusplus is defined
(all recent C++ compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type “collection” which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions
for direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them static, of course), provide an
appropriate header file, and document the C API. And in fact this would work if all extension modules were always
linked statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined

4 These guarantees don’t hold when you use the “old” style calling convention --- this is still found in much existing code.

21. L) C g} C++ #E 3 Python 19

Extending and Embedding Python, £(F] 3.13.1

in one module may not be visible to another module. The details of visibility depend on the operating system; some
systems use one global namespace for the Python interpreter and all extension modules (Windows, for example),
whereas others require an explicit list of imported symbols at module link time (AIX is one example), or offer a
choice of different strategies (most Unices). And even if symbols are globally visible, the module whose functions
one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declared stat ic, except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in section 7he Module’s Method Table and Initialization Function).
And it means that symbols that should be accessible from other extension modules must be exported in a different
way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: Capsules. A Capsule is a Python data type which stores a pointer (void*). Capsules can only be created and
accessed via their C API, but they can be passed around like any other Python object. In particular, they can be
assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function
could get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule.
And the various tasks of storing and retrieving the pointers can be distributed in different ways between the module
providing the code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char*); you're permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell
one unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

[modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only
if the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the
Capsule they load contains the correct C APL.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.

-

The exporting module is a modification of the spam module from section — 1# ffj # #&1#]. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which would
of course do something more complicated in reality (such as adding “spam” to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared static like everything else:

static int
PySpam_System(const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

€ & A}

20 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
if (!PyArg _ParseTuple (args, "s", &command))
return NULL;
sts = PySpam_System (command) ;
return PyLong FromLong(sts);

In the beginning of the module, right after the line

[#include <Python.h>

two more lines must be added:

#define SPAM MODULE
#include "spammodule.h'

The #define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_ API [PySpam_ System_ NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam API, "spam. C API", NULL);

if (PyModule_Add(m, " C _API", c_api_object) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

Note that PySpam_APT is declared static; otherwise the pointer array would disappear when PyInit_spam()
terminates!

The bulk of the work is in the header file spammodule.h, which looks like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef ___cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam_System NUM O

#define PySpam_System RETURN int

#define PySpam System PROTO (const char *command)

EET—3

2.1.) C 5} C++ #& 3 Python 21

Extending and Embedding Python, £(F] 3.13.1

(R L —5)
/* Total number of C API pointers */
#define PySpam_ API_pointers 1

#ifdef SPAM MODULE

/* This section is used when compiling spammodule.c */
static PySpam_System_ RETURN PySpam_System PySpam_System_PROTO;

#else

/* This section is used in modules that use spammodule's API */
static void **PySpam_API;

#define PySpam_System \
(* (PySpam_System RETURN (*)PySpam_System PROTO) PySpam API[PySpam System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_ Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (wvoid **)PyCapsule_Import ("spam. C_API", 0);
return (PySpam API != NULL) 2 0 : -1;

}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function
(or rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule) ;
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */

return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory
allocation and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.hand Objects/
pycapsule.c in the Python source code distribution).

22 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.1

[Ff#
2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code,
much like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some
details that you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a "base type” for all
Python objects. The PyObiject structure itself only contains the object’s reference count and a pointer to the object’s
“type object”. This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object.
These C functions are called “type methods”.

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type named Custom inside a C extension module custom:

O fHiE

What we’re showing here is the traditional way of defining stafic extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function,
which isn’t covered in this tutorial.

#define PY_SSIZE_T CLEAN

#include <Python.h>

typedef struct ({
PyObject_HEAD
/* Type-specific fields go here. */

} CustomObject;

static PyTypeObject CustomType = {
.0b_base = PyVarObject_ HEAD_ INIT (NULL, O0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

}i

static PyModuleDef custommodule = {
.m_base = PyModuleDef HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

}i

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;

(BT —E)

2.2. Defining Extension Types: Tutorial 23

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
if (m == NULL)
return NULL;

if (PyModule_ AddObjectRef (m, "Custom", (PyObject *) &CustomIype) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

J

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file
defines three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the custom type behaves: this is the CustomType struct, which defines a set of flags and function
pointers that the interpreter inspects when specific operations are requested.

3. How toinitialize the cust om module: thisis the PyInit_customfunction and the associated custommodule
struct.

The first bit is:

typedef struct ({
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and
defines a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these
can be accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to abstract
away the layout and to enable additional fields in debug builds.

O il

There is no semicolon above after the PyObject HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example,
here is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObject;

The second bit is the definition of the type object.

static PyTypeObject CustomType {
.0b_base = PyVarObject_HEAD_INIT (NULL, O0)

.tp_name = "custom.Custom",

.tp_doc = PyDoc_STR("Custom objects"),

.tp_basicsize

sizeof (CustomObject),
.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

}i

24 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, %[3.13.1

O e

We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject fields
that you don’t care about and also to avoid caring about the fields’ declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you
need them.

We're going to pick it apart, one field at a time:

[.obﬁbase = PyVarObject_HEAD_INIT (NULL, O0) J

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

[.tpﬁname = "custom.Custom", }

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ custom.Custom/()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = O,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize
is only used for variable-sized objects and should otherwise be zero.

O #HE

If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your
type first in its ___bases__, or else it will not be able to call your type’s __new__ () method without getting an
error. You can avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base
type does. Most of the time, this will be true anyway, because either your base type will be object, or else you
will be adding data members to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

[.tp_flags = Py_TPFLAGS_DEFAULT,]

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If
you need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

[.tpﬁdoc = PyDoc_STR("Custom objects"), }

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, £(F] 3.13.1

[.tp_new = PyType_GenericNew, J

Everything else in the file should be familiar, except for some code in PyInit_custom():

return;

if (PyType_Ready (&CustomType) < 0) }

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Custom instances by calling the Custom class:

>>> import custom
>>> mycustom = custom.Custom/()

That’s it! All that remains is to build it; put the above code in a file called custom.c,

[build-system]

requires = ["setuptools"]

build-backend = "setuptools.build meta"
[project]

name = "custom"

version = "1"

in a file called pyproject.toml, and

setup (ext_modules=[Extension ("custom", ["custom.c"])])

from setuptools import Extension, setup J

in a file called setup . py; then typing

[$ python -m pip install . }

in a shell should produce a file custom. so in a subdirectory and install it; now fire up Python --- you should be able
to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We'll
create a new module, custom2 that adds these capabilities:

#define PY_SSIZE_T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

€ & A}

26 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, £(F] 3.13.1

static void
Custom_dealloc (CustomObject *self)

(R L —5)

{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) ->tp_free ((PyObject *) self);
}
static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{
CustomObject *self;
self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode FromString("");
if (self->first == NULL) {
Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self) ;
return NULL;
}
self->number = 0;
}
return (PyObject *) self;
}
static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;
if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
&first, &last,
&self->number)
return -1;
if (first) {
Py_XSETREF (self->first, Py NewRef (first));
}
if (last) {
Py_XSETREF (self->last, Py_NewRef (last));
}
return 0;
}
static PyMemberDef Custom_members[] = {
{"first", Py_T OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", Py_T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", Py_T_INT, offsetof (CustomObject, number), O,
"custom number"},

{NULL} =y

/* Sentinel

b

static PyObject *

(BT —H)

2.2. Defining Extension Types: Tutorial

27

Extending and Embedding Python, £(F] 3.13.1

Custom_name (CustomObject *self, PyObject *Py_ UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}
return PyUnicode_FromFormat ("%S %S", self->first, self->last);
}
static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
b
{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {
.0b_base = PyVarObject_ HEAD_ INIT (NULL, O0)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
bi

static PyModuleDef custommodule = {
.m_base =PyModuleDef HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

Fi

PyMODINIT_FUNC
PyInit_custom2 (void)

{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;
m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;
if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomType)
Py_DECREF (m) ;
return NULL;
}
return m;
}

< 0)

{

(R L —5)

This version of the module has a number of changes.

28 Chapter 2. RERFE=ATREIRRE

Extending and Embedding Python, %[3.13.1

The custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct ({
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last
int number;

} CustomObject;

t name */

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free((PyObject *) self);

which is assigned to the tp_dealloc member:

[.tpﬁdealloc = (destructor) Custom_dealloc, J

This method first clears the reference counts of the two Python attributes. Py _XDECREF () correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s type might
not be CustomType, because the object may be an instance of a subclass.

O f#HE

The explicit cast to destructor above is needed because we defined Custom _dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argu-
ment. Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new imple-
mentation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self) ;
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, £(F] 3.13.1

and install it in the tp_new member:

[.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the _ new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we use
the tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to
initializer (a.k.a. tp_init inCor __init__ in Python) methods.

0 #HE

tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

[self = (CustomObject *) type->tp_alloc(type, O0); }

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

O fil

We didn’t fill the tp_alloc slot ourselves. Rather PyType_ Ready () fills it for us by inheriting it from our base
class, which is object by default. Most types use the default allocation strategy.

O e

If you are creating a co-operative tp_new (one that calls a base type’s tp_new or __new__ ()), you must not
try to determine what method to call using method resolution order at runtime. Always statically determine what
type you are going to call, and call its tp_new directly, or via type->tp_base->tp_new. If you do not do
this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
s&first, &last,
&self->number))
return -1;

if (first) {
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) {

€ & A}

30 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.1

(B E—H)
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;
}

return 0;

by filling the tp_init slot.

[.tpﬁinit = (initproc) Custom_init,

The tp_init slotis exposed in Pythonasthe _init__ () method. Itis used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either 0 on success or —1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module by
default doesnt call __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object.
It could have a destructor that causes code to be executed that tries to access the £irst member; or that destructor
could release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our
object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

» when we absolutely know that the reference count is greater than 1;

« when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our
type’s code;

« when decrementing a reference countin a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is
to define member definitions:

static PyMemberDef Custom_members[] = {
{"first", Py_T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", Py_T_OBJECT_EX, offsetof(CustomObject, last), O,
"last name"},
{"number", Py_T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

ti

and put the definitions in the tp_members slot:

[.tpﬁmembers = Custom_members, J

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the tp_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, £(F] 3.13.1

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic
Attribute Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members
are initialized to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("%S %$S", self->first, self->last);

The method is implemented as a C function that takes a Cust om (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as
well, but in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument
dictionary. This method is equivalent to the Python method:

def name (self) :
return " " % (self.first, self.last)

Note that we have to check for the possibility that our £irst and 1ast members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
by
{NULL} /* Sentinel */

}i

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

[.tp_methods = Custom_methods,]

Finally, we’ll make our type usable as a base class for subclassing. We've written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add
the Py_TPFLAGS_BASETYPE to our class flag definition:

[.tpﬁflags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE, }

Werename PyInit_custom() toPyInit_custom?2 (), update the module name in the PyModuleDef struct, and
update the full class name in the PyTypeObject struct.

Finally, we update our setup.py file to include the new module,

32 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, £(F] 3.13.1

from setuptools import Extension, setup
setup (ext_modules=|[
Extension ("custom", ["custom.c"]),
Extension ("custom2", ["custom2.c"]),

1)

and then we re-install so that we can import custom2:

[$ python -m pip install

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Custom example.
In the previous version of our module, the instance variables first and last could be set to non-string values or
even deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE_T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) ->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyUnicode FromString("");
if (self->first == NULL) {
Py_DECREF (self) ;
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self) ;
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;

HERET—TD

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, £(F] 3.13.1

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number)
return -1;

if (first) |

Py_SETREF (self->first, Py_NewRef (first));
}
if (last) {

Py_SETREF (self->last, Py_NewRef (last));

}
return 0;
b
static PyMemberDef Custom _members[] = {

{"number", Py_T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

Fi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)

{

return Py _NewRef (self->first);

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_SETREF (self->first, Py_NewRef (value));
return 0;

static PyObject *
Custom_getlast (CustomObject *self, woid *closure)
{

return Py_NewRef (self->last);

static int
Custom_setlast (CustomObject *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;

(R L —5)

(BT —H)

34 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, £(F] 3.13.1

Py_SETREF (self->last,
return 0;

static PyGetSetDef Custom_getsetters[] = {
{"first",
"first name",
{"last", (getter) Custom_getlast,
"last name", NULL},
{NULL} /* Sentinel */

(getter) Custom_getfirst,
NULL},

Fi

static PyObject *
Custom_name (CustomObject *self,

{

return PyUnicode_ FromFormat ("$S %sS",
}
static PyMethodDef Custom _methods[] = {

{"name", (PyCFunction) Custom_name,
"Return the name,
}I

{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL,
.tp_name = "custom3.Custom",

.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),

.ob_base =

.tp_itemsize = O,
Py_TPFLAGS_DEFAULT |
Custom_new,

.tp_flags =
.tp_new =
.tp_init = Custom_init,
.tp_dealloc =
.tp_members =

(initproc)
(destructor)
Custom_members,
.tp_methods =
.tp_getset =

Custom_methods,
Custom_getsetters,
bi

static PyModuleDef custommodule = {
PyModuleDef HEAD_INIT,
"custom3",

.m_base =
.m_name =
.m_doc =
.m_size = -1,

Fi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject
if (PyType_Ready (&CustomType)
return NULL;

*m;
< 0)

m = PyModule_Create (&custommodule) ;
if (m == NULL)

return NULL;

if (PyModule_AddObjectRef (m,
Py_DECREF (m) ;
return NULL;

"Custom",

(setter)

(setter)

self->first,

"Example module that creates an extension type.",

(R L —5)

Py_NewRef (value)) ;

Custom_setfirst,

Custom_setlast,

PyObject *Py_UNUSED (ignored))

self->last);

METH_NOARGS,
combining the first and last name"

0)

Py_TPFLAGS_BASETYPE,

Custom_dealloc,

(PyObject *) &CustomType) < 0) {

(BT —H)

2.2. Defining Extension Types: Tutorial

35

Extending and Embedding Python, £(F] 3.13.1

(R L —5)

return m;

To provide greater control, over the first and last attributes, we'll use custom getter and setter functions. Here
are the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value) ;
self->first = value;
Py DECREF (tmp) ;
return 0;

The getter function is passed a Custom object and a “closure”, which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed the Custom object, the new value, and the closure. The new value may be NULL, in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value
is not a string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
}i

and register it in the tp_getset slot:

[.tpfgetset = Custom_getsetters, }

The last item in a PyGet SetDef structure is the “closure” mentioned above. In this case, we aren’t using a closure,
SO wWe just pass NULL.

We also remove the member definitions for these attributes:

36 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.1

static PyMemberDef Custom_members[] = {
{"number", Py_T INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

}i

We also need to update the tp_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number)
return -1;

if (first) {
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_XDECREF () calls can be converted to Py_DECREF ()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to the setup.py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are
not zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes*. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,
however, we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee
that deallocating an instance of a string subclass won't call back into our objects.

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference
cycles.

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, £(F] 3.13.1

arbitrary attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,

our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY_SSIZE_T CLEAN
#include <Python.h>
#include <stddef.h> /* for offsetof() */

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, woid *arg)
{

Py _VISIT (self->first);

Py _VISIT (self->last);

return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode FromString("");

if (self->first == NULL) {

Py_DECREF (self);

return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF (self);

return NULL;

(BT —H)

38 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

{

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) A

Py_SETREF (self->first, Py_NewRef (first));
}
if (last) {

Py_SETREF (self->last, Py_NewRef (last));

¥
return 0;
}
static PyMemberDef Custom _members[] = {

bi

{"number", Py_T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)

{

return Py_NewRef (self->first);

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)

{

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_XSETREF (self->first, Py_NewRef (value));
return 0O;

static PyObject *
Custom_getlast (CustomObject *self, woid *closure)

{

return Py_NewRef (self->last);

static int
Custom_setlast (CustomObject *self, PyObject *value, void *closure)

(BT —H)

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, £(F] 3.13.1

{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_XSETREF (self->last, Py_NewRef (value));
return 0;
}
static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%S %$S", self->first, self->last);

static PyMethodDef Custom _methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
b
{NULL} /* Sentinel */

}i

static PyTypeObject CustomType = {
.0b_base = PyVarObject_ HEAD_ INIT (NULL, O0)
.tp_name = "custom4.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,
i

static PyModuleDef custommodule = {
.m_base = PyModuleDef HEAD_ INIT,
.m_name = "custom4",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,
}i

PyMODINIT_FUNC
PyInit_custom4 (void)

(R L —5)

(BT —H)

40 Chapter 2. RERE=FTREITRAE

Extending and Embedding Python, %[3.13.1

(R L —5)

PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "Custom", (PyObject *) &CustomIype) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arg)
{
int vret;
if (self->first) {
vret = visit (self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arqg);
if (vret != 0)
return vret;
}

return 0;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the
traversal method. The visit () function takes as arguments the subobject and the extra argument arg passed to the
traversal method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_vISIT () macro that automates calling visit functions. With py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, woid *arg)
{

Py _VISIT (self->first);

Py_VISIT (self->last);

return 0;

O fi

The tp_traverse implementation must name its arguments exactly visit and arg in order to use Py_VISIT ().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)

HEET—TD

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, £(F] 3.13.1

(R L —5)

Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0;

Notice the use of the Py_CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary
types while decrementing their reference counts. If you were to call Py_xDECREF () instead on the attribute before
setting it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute
again (especially if there is a reference cycle).

O f#E

You could emulate Py _CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t
try to micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from
the GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator
using PyObject_GC_UnTrack () and Custom_clear

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free((PyObject *) self);

Finally, we add the py_TPFLAGS_HAVE_GC flag to the class flags:

[.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py TPFLAGS_HAVE_GC, }

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we'd need to modify them for
cyclic garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the Py TypeObJject it needs. It can be difficult to share these PyTypeObject
structures between extension modules.

In this example we will create a SubList type that inherits from the built-in 1ist type. The new type will be
completely compatible with regular lists, but will have an additional increment () method that increases an internal
counter:

>>> import sublist
>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

>>> print (s.increment ())

€ & A}

42 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, £(F] 3.13.1

(B —1)
1
>>> print (s.increment ())
2

#define PY_SSIZE_T CLEAN
#include <Python.h>

typedef struct ({
PyListObject 1list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)

{
self->state++;
return PyLong FromLong (self->state);
}
static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},
bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)

{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0O;
}

static PyTypeObject SubListType = {
PyVarObject_ HEAD_ INIT (NULL, O)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof (SubListObject),

.tp_itemsize = 0,
.tp_flags = Py _TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,

.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef HEAD_ INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

Fi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;

€ & A}

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
if (m == NULL)
return NULL;

if (PyModule_ AddObjectRef (m, "SubList", (PyObject *) &SubListType) < 0) {

Py_DECREF (m) ;
return NULL;

return m;

J

As you can see, the source code closely resembles the Custom examples in previous sections. We will break down
the main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The
base type will already include the PyObject_ HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;

We see above how to call through to the __init__ () method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The tp_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can’t fill that field directly with a reference to PyList_Type; it should be done later in the
module initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject”* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

if (PyModule_AddObjectRef (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (m) ;
return NULL;

(BT —H)

44 Chapter 2. R{ERE=HATRAEIRFE

Extending and Embedding Python, £(F] 3.13.1

(R L —5)

return m;

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving
an existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () -- the allocation
function from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

[F#%
2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject ({
PyObject_ VAR _HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */

Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall_offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */

traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

€ & A}

2.3. Defining Extension Types: Assorted Topics 45

Extending and Embedding Python, £(F] 3.13.1

(R L —5)

/* Assigned meaning in release 2.1 */
/* rich comparisons */

richcmpfunc tp_richcompare;

/* weak reference enabler */

Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS _GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

N
[

*/

/* Type attribute cache version tag. Added in version

unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */

unsigned char tp_watched;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though -- if you have a type you want to define, the chances are
very good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers.
We won'’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields. It’s often easiest to find an example that includes the fields you need and then change the
values to suit your new type.

[const char *tp_name; /* For printing */

The name of the type -- as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

[Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has
some built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field
comes in. This will be dealt with later.

46

Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.1

[const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj._ doc___

to retrieve the doc string.

Now we come to the basic type methods -- the ones most extension types will implement.

2.3.1 Finalization and De-allocation

[destructor tp_dealloc;

1

This function is called when the reference count of the instance of your type is reduced to zero and the Python

interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here.

The object itself needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj—>o0bj_UnderlyingDatatypePtr);
Py_TYPE (obj) —>tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing any

member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{

PyObject_GC_UnTrack (obj) ;

Py_CLEAR (obj->other_ obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

J

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important

since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has

already been set. Any actions which a deallocator performs which may cause additional Python code to be executed

may detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way

to protect against this is to save a pending exception before performing the unsafe action, and restoring it when done.
This can be done using the PyErr_Fetch () and PyErr_Restore () functions:

static void
my_dealloc (PyObject *obj)
{

MyObject *self = (MyObject *) obj;
PyObject *cbresult;
if (self->my_callback != NULL) {

PyObject *err_ type, *err_value,

*err_traceback;

/* This saves the current exception state */

PyErr_Fetch (&err_type, &err_value,

cbresult =

if (cbresult == NULL)

&err_traceback);

PyObject_CallNoArgs (self->my_callback) ;

PyErr_WriteUnraisable (self->my_callback) ;

else
Py_DECREF (cbresult) ;

/* This restores the saved exception state */

€ & A}

2.3. Defining Extension Types: Assorted Topics

47

Extending and Embedding Python, £(F] 3.13.1

(R L —5)

PyErr_ Restore (err_type, err_value, err_ traceback);

Py_DECREF (self->my_callback) ;

}
Py_TYPE (obj) —>tp_free ((PyObject*) self) ;

O il

There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or
finalized by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its
reference count is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up
calling tp_dealloc again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead
use the new tp_finalize type method.

& wsE

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls str ().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobiject *obj)
{
return PyUnicode_ FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size) ;

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely identifying value for the object.

The tp_str handler is to str () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_st r is not specified, the t p_repr handler is used
instead.

DA 2 {1 ff e) i 9 -

static PyObject *
newdatatype_str (newdatatypeobject *obj)
{

return PyUnicode_ FromFormat ("Stringified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size) ;

48 Chapter 2. R{ERE=HATRAEIRFE

https://peps.python.org/pep-0442/

Extending and Embedding Python, %[3.13.1

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to
set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed
to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject*. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

/%® o000 %Y

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyObject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there
are many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or
how relevant data is stored.

When pyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object.
Each of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited
from their base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base
type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef ({

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from
a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name
field of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive
C types are supported, and access may be read-only or read-write. The structures in the table are defined as:

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python, £(F] 3.13.1

typedef struct PyMemberDef ({
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain a type code like Py_T_INT or Py_T_DOUBLE; the value
will be used to determine how to convert Python values to and from C values. The f1ags field is used to store flags
which control how the attribute can be accessed: you can set it to Py_READONLY to prevent Python code from setting
1t.

An interesting advantage of using the tp_members table to build descriptors that are used at runtime is that any
attribute defined this way can have an associated doc string simply by providing the text in the table. An application
can use the introspection API to retrieve the descriptor from the class object, and get the doc string using its __doc___
attribute.

As with the tp_methods table, a sentinel entry with a m1_name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only dif-
ference between the char* and PyObject * flavors of the interface. This example effectively does the same thing
as the generic example above, but does not use the generic support added in Python 2.2. It explains how the handler
functions are called, so that if you do need to extend their functionality, you’ll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

S 2A(E

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{

if (strcmp(name, "data") == 0)
{
return PyLong_FromLong (obj->data);

PyErr_ Format (PyExc_AttributeError,
"'%$.100s' object has no attribute '%.400s'",
Py_TYPE (obj) —>tp_name, name);

return NULL;

The tp_setattr handler is called when the __setattr__ () or __delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that
simply raises an exception; if this were really all you wanted, the tp_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

50 Chapter 2. RERE=FTRBIIRAE

Extending and Embedding Python, %[3.13.1

2.3.4 Object Comparison

[richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison
methods, like __1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE,Py_LT orPy_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (newdatatypeobject *objl,
{

PyObject *result;

int ¢,

sizel, size2;

/*

newdatatype omitted */

sizel =

size2 =

switch (op) {

case : ¢ = sizel < size2; break;
case c = sizel <= size2; break;
case : ¢ = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;
}

result = ¢ ? Py_True : Py_False;

Py_INCREF (result) ;
return result;

newdatatypeobject *obj2,

int op)

code to make sure that both arguments are of type

objl->o0bj_UnderlyingDatatypePtr->size;
obj2->obj_UnderlyingDatatypePtr->size;

2.3.5 Abstract Protocol Support

Python supports a variety of abstract ’protocols;’ the specific interfaces provided to use these interfaces are docu-

mented in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In par-
ticular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols
have been added over time. For protocols which depend on several handler routines from the type implementation,
the older protocols have been defined as optional blocks of handlers referenced by the type object. For newer pro-
tocols there are additional slots in the main type object, with a flag bit being set to indicate that the slots are present
and should be checked by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag
may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods
PySequenceMethods *tp_as_sequence;

*tp_as_number;

PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address
of a structure that implements the C type PyNumberMethods, PySequenceMethods, Or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each
of these in the Objects directory of the Python source distribution.

2.3. Defining Extension Types: Assorted Topics

51

Extending and Embedding Python, £(F] 3.13.1

[hashfunc tp_hash; }

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a
simple example:

static Py _hash_t
newdatatype_hash (newdatatypeobiject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

J

Py_hash_t is a signed integer type with a platform-varying width. Returning -1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

[ternaryfunc tp_call; J

This function is called when an instance of your data type is "called”, for example, if ob71 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello"'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the argu-
ments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments
are not supported.

Here is a toy tp_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *obj, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) {
return NULL;
}

result = PyUnicode_FromFormat (

)]
e
)]

"Returning -- value: [%d] argl: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

/+ BR#E */

getiterfunc tp_iter;

iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and

52 Chapter 2. RERAFE=FTHREITIKFT

Extending and Embedding Python, %[3.13.1

return NULL. tp_iter corresponds to the Python _ iter_ () method, while tp_iternext corresponds to the
Python _ next__ () method.

Any iterable object must implement the tp_iter handler, which must return an iferator object. Here the same
guidelines apply as for Python classes:

« For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should
be created and returned by each call to tp_iter.

« Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves -- and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting
an exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly
better performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

& sl
Documentation for the weakref module.

For an object to be weakly referenceable, the extension type must set the Py_TPFLAGS_MANAGED_WEAKREF bit of
the tp_flags field. The legacy tp_weaklistoffset field should be left as zero.

Concretely, here is how the statically declared type object would look:

static PyTypeObject TrivialType = {
PyVarObject_HEAD_ INIT (NULL, O)
/* ... other members omitted for brevity ... */
.tp_flags = Py_TPFLAGS_MANAGED_WEAKREF | ...,
bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()):

static void

Trivial_dealloc(TrivialObject *self)

{
/* Clear weakrefs first before calling any destructors */
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE (self)->tp_free((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, £(F] 3.13.1

if (!PyObject_TypeCheck (some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;

& wzE

Download CPython source releases.
https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed.
https://github.com/python/cpython

2.4 33 C B C++ WEEH
— il CPython) C st 2 — L ek st (B 41E Linux ERY . so f%, fE Windows L .pyd),
T HE H — #7481 X

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using setuptools, the correct filename is generated automatically.

The initialization function has the signature:

PyObject *PyInit_modulename (void)

It returns either a fully initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of the module. When using multi-phase-initialization, non-ASCII module names are allowed.
In this case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using
Python’s punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :
try:
suffix = b'_' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U ' + name.encode ('punycode') .replace(b'-", b' ")
return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions.
However, importing them requires using symbolic links or a custom importer, because by default only the function
corresponding to the filename is found. See the "Multiple modules in one library” section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with setuptools

Python 3.12 and newer no longer come with distutils. Please refer to the setuptools documentation at https:
//setuptools.readthedocs.io/en/latest/setuptools.html to learn more about how build and distribute C/C++ extensions
with setuptools.

2.5 BE Windows Lty C 1 C++ B3

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++,
and follows with more detailed background information on how it works. The explanatory material is useful for both
the Windows programmer learning to build Python extensions and the Unix programmer interested in producing
software which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual
C++.

54 Chapter 2. RERFE=ATREIRRE

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://peps.python.org/pep-0489/
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html

Extending and Embedding Python, %[3.13.1

O e

This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, 'x' will be the major version number and
'y ' will be the minor version number of the Python release you're working with. For example, if you are using
Python 2.2.1, xv will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the setuptools
package to control the build process, or do things manually. The setuptools approach works well for most extensions;
documentation on using setuptools to build and package extension modules is available in Building C and C++
Extensions with setuptools. If you find you really need to do things manually, it may be instructive to study the project
file for the winsound standard library module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and
data in the file’s code are changed to point to the actual locations in the program where the functions and data are
placed in memory. This is basically a link operation.

In Windows, a dynamic-link library (.d11) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point
to the functions and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The
linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library
is like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker
uses the information from the import library to build the lookup table for using identifiers that are not included in the
DLL. When an application or a DLL is linked, an import library may be generated, which will need to be used for
all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
Unix, you would not pass A. a to the linker for B. so and C. so; that would cause it to be included twice, so that B
and C would each have their own copy. In Windows, building A.d11 will also build A.1ib. You do pass A.1ib to
the linker for B and C. A.1ib does not contain code; it just contains information which will be used at runtime to
access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *;itdoes create
a separate copy.

2.5.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this
section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY.1ib to the linker. To build two DLLs, spam and ni
(which uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

2.5. BE Windows kg C 1 C++ #EF 55

https://github.com/python/cpython/tree/3.13/PCbuild/winsound.vcxproj

Extending and Embedding Python, £(F] 3.13.1

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain any
Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni .d11 (and .obj and . 1ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be
able to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvertxx. 1ib to the list of libraries.

56 Chapter 2. RERE=FTRBIIRAE

CHAPTER 3

EEXRHERER FH#r N CPython E{TERIER (runtime)

AIREAE, IO S, — RIS, (THAE Python Bl fEE R MARAGEST, B AU CPython 4T
BB 2R AR S A0 3 LS S8 AR B i I O AR

3.1 EHE App [Ei)\ Python

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching
a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by
embedding Python in it. Embedding provides your application with the ability to implement some of the functionality
of your application in Python rather than C or C++. This can be used for many purposes; one example would be to
allow users to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if
some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have
nothing to do with Python --- instead, some parts of the application occasionally call the Python interpreter to run
some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize().
There are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any
part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

& wsE

c-api-index
The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

57

Extending and Embedding Python, £(F] 3.13.1

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

#define PY_SSIZE_T CLEAN

#include <Python.h>

int

main (int argc, char *argv([])

{
PyStatus status;
PyConfig config;
PyConfig_InitPythonConfig (&config);

/* optional but recommended */
status = PyConfig_SetBytesString(&config, &config.program_name, argv[0]);
if (PyStatus_Exception(status)) {

goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {
goto exception;
}
PyConfig_Clear (&config);

PyRun_SimpleString ("from time import time,ctime\n"

"print ('Today is', ctime (time()))\n");
if (Py_FinalizeEx () < 0) {
exit (120);
}
return 0;
exception:

PyConfig Clear (&config);
Py_ExitStatusException (status);

O #HE

#define PY_SSIZE_T_CLEAN was used to indicate that Py_ssize_t should be used in some APIs instead
of int. It is not necessary since Python 3.13, but we keep it here for backward compatibility. See arg-parsing-
string-and-buffers for a description of this macro.

Setting PyConfig.program_name should be called before Py_InitializeFromConfig () to inform the inter-
preter about paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (),
followed by the execution of a hard-coded Python script that prints the date and time. Afterwards, the
Py_FinalizeEx () call shuts the interpreter down, followed by the end of the program. In a real program, you
may want to get the Python script from another source, perhaps a text-editor routine, a file, or a database. Getting
the Python code from a file can better be done by using the PyRun_SimpleFile () function, which saves you the
trouble of allocating memory space and loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At
the cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.

58 Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

Extending and Embedding Python, %[3.13.1

Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from
Python to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references
and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter,
you can refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY_SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argvl])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1]);

/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString(pModule, argv([2]);

/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) A
pArgs = PyTuple_New(argc - 3);
for (i = 0; i < argc - 3; ++1i)
pValue = PyLong_FromLong (atoi (argv[i + 31));
if (!pValue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;

(HERT—TD

3.1. ZEHE App [F# A Python 59

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
t
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pvalue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
t
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr Print ();
fprintf (stderr, "Call failed\n");
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
}
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
}
if (Py_FinalizeEx () < 0) {
return 120;
+

return 0;

This code loads a Python script using argv [11, and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):

print ("Will compute", a, "times", b)
c =0
for i in range (0, a):
c=c¢c+b
return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

J

Although the program is quite large for its functionality, most of the code is for data conversion between Python and
C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1]);

€ & A}

60 Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

Extending and Embedding Python, %[3.13.1

(el b —50
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);

/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

J

Once the script is loaded, the name we're looking for is retrieved using PyObject_GetAttrString (). If the name
exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds by
constructing a tuple of arguments as normal. The call to the Python function is then made with:

[pValue = PyObject_CallObject (pFunc, pArgs); }

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines
provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application
starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write some glue code
that gives Python access to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject™
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PyLong FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&§EmbModule) ;

J

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_TInitialize():

3.1. ZEHE App [F# A Python 61

Extending and Embedding Python, £(F] 3.13.1

numargs = argc;

PyImport_AppendInittab ("emb", &PyInit_emb);

|

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb

print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the
C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to compile
and link your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python in-
terpreter into your application, particularly because Python needs to load library modules implemented as C dynamic

extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y—config script which is generated
as part of the installation process (a python3-config script may also be available). This script has several options,

of which the following will be directly useful to you:

e pythonX.Y-config --cflags will give you the recommended flags when compiling:

-

$ /opt/bin/python3.1l1-config --cflags

——-03 -Wall

L

—-I/opt/include/python3.11 -I/opt/include/python3.11 -Wsign-compare -DNDEBUG -g —-fwrapv.

pythonX.Y-config —--1ldflags —--embed will give you the recommended flags when linking:

-

$ /opt/bin/python3.1l1-config —--1ldflags ——embed
-L/opt/lib/python3.11/config-3.11-x86_64-1linux-gnu -L/opt/lib -lpython3.11 -lpthread -

—1dl -lutil -1m

O il

To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the above

example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s
Makefile (use sysconfig.get_makefile filename () to find its location) and compilation options. In this
case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will want

to combine together. For example:

>>> import sysconfig

>>> sysconfig.get_config var ('LIBS")

'-lpthread -1dl -lutil'

>>> sysconfig.get_config_var ('LINKFORSHARED")

'-Xlinker -export-dynamic'

62

Chapter 3. EEXHFE AR E#k A\ CPython E{TiRIE (runtime)

APPENDIX A

7. %) X, shell [FHE Python $&/8 7 0. H i REYE ELafas ' AL B 7 sUes A T i AR XA 181

AR

o AR AR RIS I . e — B VCRCH 22 E AT (delimiter, BIAINESR. J5fR9%. E4
SREk=515%) [EI90, SURTERRE — (A4 Ads (decorator) 2 1%, ZMAFEAMERE, Z 9 X shell
HURHYTEGX Python $2/R7°7C.

. @ﬁ%{ Ellipsiss

abstract base class (1% JEEE(E])

g 2R HE) (XAEE ABC) 4t T —FHE AW %, VEEduck-typing (B5FHUE)) Wt 7e.
HABRA BT, 1502 hasater (O, AVBARSRRNEUR WA RS (1l F BE#T /73 (magic
method)) . ABC [EJFI[EJ#¢) subclass (FHiE]) , B MEREA H 55— class (JHEE]) , (A58
isinstance () } issubclass () ¥ik; H2(E abe FRE4HEIRH S04, Python A £[Fl) ABC,
IR ERIEHE (FE collections.abe 1) 7 (FE numbers 4). By (7€ 1o Bi4H) K import
FIRA AL (E importlib.abe Hi#) . RATPAREA abc fi# 7 H T ABC,

annotation ([EJf%)

— R BELAA Y class JEE. PR 2 ol n] E(EAT BB AT, FRAER, B U RAEEpe hine (Y
EHER) .

TEATEREE (runtime) , [80388 B00) (EURR Al A7 B, (H At . class BRI X E#R, &0 (E
WA AERR AL . class KU __annotations_ FRIREYES,

#5 2[Elvariable annotation. function annotation, PEP 484 F1 PEP 526, gtz %A HLohhEnyEI .
IBH A (ED R A {0 188 0 25 575 2 (E] annotations-howto.,

argument (5]%})

WY pR 2R BB 45 function (B{method) W{H. ©|8CE WifE:

o B4 7| # (keyword argument): TERANEI Fr, PAEKE]T (identifier, I name=) BHSEMIE]
#, o2 DA <+ 1 dictionary (7) [EIE M EIERS 3. B4, 3 F1 5 #ZPAF complex ()
L] o) [5 |

complex (real=3, imag=5)

complex (**{'real': 3, 'imag': 5})

63

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Extending and Embedding Python, £(F] 3.13.1

o 15 E 51 ¥ (positional argument): Je BT 51T B FUET | BOTAE— {5 B LA E 1R
B, () 1EE » 2 Wierable (AIEMAIE) HITCRBERE. Fln, 3705 #RAT
ERCENCIVATCIE &

complex (3, 5)
complex (* (3, 5))

5| BB S A e P R PR DS B, B SCICIE R i i AR A R, 5 () calls Biffi . 72
g b, ARAE S AR T AT ARG R — A5 18 HRPAS (i o i [s 0

Sy 2 ORI parameer (Z80) WH . % LHEET 58282 B 2EE, YAk PEP 362,

asynchronous context manager (JE[]2{E555H1%%)
— il 7] DL] async with BRI r RES YA, MERLEMEFRK __aenter_ () Fl
__aexit__ () method (%) A=y, H PEP 492 5] A,

asynchronous generator (JE[RIZBE:ZS)
— 1l &r [B{#asynchronous generator iterator (JE[FHEERSEULEE) BER . BEHERG MDA async
def ¥ FEM I FEK I\ (coroutine function), R EEME T yield HEX, GEAEM—FRIATH
J& async for [EIREIMHE,

T AT AR — IR P E A 28 R, (BRSO R, WA FRn Ak R A SEX
% (asynchronous generator iterator), H—FAF 0= ERENSHE, IR 528 ATsE, DA SR s,
=i

— AR B A ek U T BE A3 await 0, PAK async for Ml async with BdsX.

asynchronous generator iterator (JER]35E): 25 EURES)
—Aiil i asynchronous generator (FE[EMEIAERE) RAFTESL Y.

& 2 Masynchronous iterator (AE[FIEECRY), H B DA __anext__ () method #EHERYEE, €r[a]{H—
TE PSR4 (awaitable object), %A HATAERI B E L AR T8, HEBE]F—M@ yield
T yield GrEFRIRLT, [ERUEACERATIRGE (FLHE e S M B oy BRAR) ok
Rl E 4 SEIRE AT — M8 __anext () BIMEMTWT SRR A SRR, S G0 1ErH)y
HHAT. w521 PEP 492 fil PEP 525,

asynchronous iterable (] nf[F{CH1:)
—EY 1, B PAYE async for BRIAX M. WA EM _aiter_ () method [A] {#—
B asynchronous iterator (FE[FAHENLES). H PEP 492 5] A,

asynchronous iterator (JE[RI2BERES)
—HEVE __aiter_ () 1 __anext__ () method 4. _ anext_ () WhZE M —{Hawaitable (W]
GRRIME) o asyne for GFNTIEFR A EURERNY __anext__ () method fif [A S RF 14, HEI
‘B5| % stopAsyncIteration fil4h. H PEP 492 5| A

attribute ()&M)
— {1 B A B W (B, %R 22 Rz 2t £ P 40 B i3 5 (dotted expression) Y44 Fl g2 HE . 3l
an, WY o A& a, HIFZETEREDA 0.0 #EZ3 K.

WR—AYE T, ST — 4 A2 identifiers fif & 382 #h[E)FF (identifier) (1))@ M2 A
ATRERY, BN setattr (). 1505 bR A0 & T 1 406 32 5 P 285 20 B e B XA B, T i 7 i
getattr () KEEE .

awaitable (WZ54591t:)
—fE T DATE await 352 Aol il i 2 . & 0] AR — Ml coroutine (15 #2), B2 — (A _await__ ()
method ¥4, 5552 [E PEP 492,

BDFL
Benevolent Dictator For Life (45 {-28M##%), X 4% Guido van Rossum, Python f{#I3E# .

binary file (__#Ef7f§ZR)
— B BEERE IR 55 A bytes-like objects (JENLTCAER) W file object (REZRIPF) . —IENIREZRIIHI T
;ﬁt I)j:@{ﬁﬂﬁiﬁ ('rb', 'wb' ﬂ 'rb+!) %E@T’é% sys.stdin.buffer, sys.stdout.buffer,
PAJ io.BytesIO fll gzip.GzipFile EHi.

64 Appendix A. #iiEER

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Extending and Embedding Python, £(F] 3.13.1

w2 Eex file (CFRE), ER—MARRERIREA str WIHRRHEDITE.

borrowed reference (ff)J1]%18)
1& Python) C APL 1, f§ 12BN 28, Lz RS EA g S M2
M. ARz R E), B BE) A KR FEAF (dangling pointer), 4N, — K3 [A]IK (garbage
collection) W] ARG MW (11 et — Bl strong reference (12 1&), i sz {-85(E,

$borrowed reference WM py_INCREF () DASSE JRE#h (in-place) #[F|([Elstrong reference 21k 8t 55 A
W, BRAE Y A REE R AR — RS 2 B2 Bt EH(El. py_NewRef () BRI W] R ST — 1

Hstrong reference.

bytes-like object (REfic4lH ¥tk)
— i 5% 3% bufferobjects H HEEIRE H} C-contiguous B WP . BHIEFTA M bytes, bytearray il
array.array Y, PAIGEFZH R memoryview ¥4 . BN TCALE P FRT F A BERE 3807 Bk
RAEEE; S LA AR . R R BN RS socket (FEE) #ERK.

U TR A R T . [EESCSE R g R E S R E) [R BT R e
Eqﬁﬁ%%ﬁﬁﬁﬁﬂ@%@?#f@ﬁﬁbytearray, I/:/\lkbytearrayE’g]memoryviewD }iﬁﬁﬁ@ﬁg%@%ﬁ%ﬁ%ﬁ::ﬁ%ﬁiﬁi
R Y (TMESI BN TR])) T B35 bytes, PAK bytes PIFHY

memoryview,

bytecode (fyiJCA1RS)
Python [J5% 45 8% & 9% sk U AL TC AT, B2 Python £2:U7E CPython Bkt W FIRT#R k. %L
TCAIE L WO AR coye BT, DA RATRH — A R REETE Pt (v DR AR S5 AA 1
R E N CALE) . SR [EE S (intermediate language) | 48 [F) 2 47 4F — 1l virtual machine
(Elerges) b, s EIeies G fT B (17 CAHLAS S E A A28 6 (machine code). BEYEEMIE, 7
JCALAS sy _b S A R F]) Python [EfEMR BHEMER), BASREXEA IR AR Python 2 B 45

(LTCALAGAY 451 T ATE dis AR EIRT SO)

callable (n]WF-nl$y1}:)
— 1 callable ;2 F] DARLIF I 404, WU IRF AT REDA R ST A — A5 9 (i Rargument) -

[callable(argumentl, argument2, argumentN)

— ([l function BAEFE A ¥method F 2 callable, —fH7G EHAE __call__ () JEM class 22 B il 21
callable,

callback ([A[I:)
VEESS | 35 (3 08 A — 1 Bl A2 X (subroutine) pRX, e A AR A S e] S M LA T
class (Hi([E])
— I FH A 2 A 3 W AR . Class 1158 8l % € {07 method [1)7E 58, & L% method 7] A
TE class [EBI_EIET 4R
class variable (K([E/5%4%)
—fRIA7E class R EFE, HERZ HAETE class JEIK (GBI ZAE class [EEF) BB 588
closure variable (PH{e%4%})
e SN F I b i 28 FLAE S 1F 2R B IR A v % 3, N2 runtime f¢ 43 (172 Ay 44 25 [T AT -
Al PAE] nonlocal BSETAHEE AT R ALLE, B35 QSR 185 s oss S b X e B vT .

FlantE P AR A inner BREUH, x Ml print HR2 A B S &, HEH x e % &

def outer () :
x =0
def inner():
nonlocal x
x += 1

print (x)

return inner
.

H# codeobject.co_freevars J@ME (EVEFAMANML, (HEEWQEPHUSBIARE, WA RS T
A2 B b)), WS IR AR, AR = WM @AY A & & S

65

Extending and Embedding Python, £(F] 3.13.1

complex number (([EJ%)
—(HFRM PR E MR RNIETT, ST SO E Gl B B A —ERR 2 A . B
AT (-1 AP AR) RO EEGS, SLEEO M s A h g B E] 1, 76 TREER i 5[] 5. Python
BTHER SR, CRABRENTERERER; FRIeHE REN 5 g, Hluns+15.
FrEHE math B E)Y) T HARR00 AN EI, 550 cmatn A, (IS B A A2 — IR 3 o Fp) 3
IR . WRAREAZE RS E MR, AR GERE & /R T A2 b 20 B M

context ({#%5%)
This term has different meanings depending on where and how it is used. Some common meanings:

o The temporary state or environment established by a context manager via a with statement.

o The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

o —ff contextvars.Context Y. B [Flcurrent context,

context management protocol (5B ALE)

i with BORSPTIEIEY __enter_ () Ml _exit__ () Jrik. #a52[E PEP 343,
context manager ({555 H1%S)

An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable (fi5iE559))
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concur-
rent asynchronous tasks.

contiguous (&%)
15— 4518 [C-contiguous B & Fortran contiguous, BB @it ti[F 2B agin . E4E (zero-
dimensional) f{] 41 [#R /2 C M Fortran contiguous , 7 —#ft (one-dimensional) [#%1| /b, 4% T8 H W /ELERD
TR PR AR AR HES], TR S 72 1 2 BRI Y « #E 2 419 (multidimensional) C-contiguous [
Frh, Heat LR NE TR [A TE E RE, e — RS 8 kiRt ST, 7E Fortran contiguous
Wigrh, 55— R GEEE .

coroutine (i)
P IR (subroutine) 19— HIEMEHEAG LA . FIFRLS 2 5 (A I e A 5 — e
BERGR A, B DIE RS R R B A B AR 6. LI asyne def Bk
FIE. HaE2(E PEP 492,

coroutine function (FErAR)
—{E [l coroutine () PR, —ERHFERINEELL asyne def PR WES, EREEt
4 await. async for fll async with BT . SLEBHEF R PEP 492 5| A,

CPython

Python FE R 555 FUAZE B /E (canonical implementation), #%#E7i7E python.org I, [CPython | &1 #7
PR A, DA M B R B RE F R EAE, 40 Jython 5§ IronPython,

current context
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

decorator (Z:fiiz%)
— R, I R, S G ewrapper §EYE, # M)7 R =X 1) 8 () (function
transformation), ZEf#FIHE &L classmethod () Hl staticmethod () »

Hetian ik HUE R . DA e o FRAE R 3R R AR -

def f (arg):

f = staticmethod (f)

€ & A}

66 Appendix A. #iiEER

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Extending and Embedding Python, %[3.13.1

(B E—H)
@staticmethod
def f (arg):

Class WAFAEF A AR S, (EXEIRE LA H . B ffigs i ZE%, @2 EmAEFM class
FEFEIEIRH S

descriptor (}iiR7%)
EEFRT __get__ (). __set_ () B __delete_ () method 4. &—1H class J& 2 — i
WERIE, ERRRR A TE G e B v IR . R, (A ab SREUS . s ok EIRR R
¢, Gr7E a i) class T3P R A REE b i9W¢F, (HANSE b 2 — A, E'J*H%J‘E%E‘Jﬁi@%ﬁ method
ErpieEn SRS A AR R A LR Python (URHEE, WEIEMEFrZIhiem s, SLhst
g, . method. J&E (property). class method. [FJfE method, DA% super class (A23H([E]) B2,

B A 2% method B 2 51, w52 (E] descriptors B A S I 51

dictionary (5zilL)
—{| B i [#41 (associative array), H TR A8 G g BB . ST DURAEATHF A __hash_ () Fl
__eq__ () method f¥I{4F. #E Perl Hili FEEIHEE] (hash).

dictionary comprehension (ilLés & H5)
—REBE Y, AR T EMR A i AR e 2R, (B R SR DA — i 2 L]
results = {n: n ** 2 for n in range(10)} FAE—HFH, B TH o HIFE n

2, #52I[E] comprehensions

dictionary view (“HLEE#L)
% dict. keys (). dict.values() M dict.items (E%E’]#@{ﬁl:%ﬁ*ﬁ.%iﬁi*@’ﬁ bﬁ%ﬂz{ﬂ:?%
HPIHH B R, SRR B Eﬁfffﬁﬁ@fi@h}w@ﬂ i BEE 7 S A i ()
SRR list (E2%1)), ZEfH list (dictview) . FHZ[F] dict-views,

docstring ([EIW]2it)
—fR7E class, pRAHAA A, EES—MEE LB TR SO . MR EAEE AT IR 2
AT A R AR I, [T class, BRsUSURLALE) _doc__ k. D] s il DA%
#[F14 (introspection) AK[EVEE, PG e @4 R0) RH SR AR A HE AL

duck-typing (5§ %[F])
— TR R ER , BN RE AR Y BB E B R S B IE R s BUmT 2 12
method 5§ Pk 6 B AT BB . (TSR EHEARB [E—7- 1 ELny i e 1% —EG -, AR[E
E—ER BT) FEIER IR ZE, kO aE 2 LB (polymorphic
substitution) HCHE T A BTG . 16 THUEI R A type () BF isinstance () EATHIEL. (HEFE
VR, TETRIEIRT AR 46 2 58 & 28 [E] (abstract base class) ﬂ{ﬁ?ﬁo) SR, BiEHE EEA hasattr ()
WL, B EAFP B RTEAS -

EAFP
Easier to ask for forgiveness than permission. (FEREM W RAELES) B R Python 4
JEHS G e A R S B AT, B % RS %ﬁ?ﬁﬁﬂﬂfﬁﬁ%ﬁ% 128 7o 7 () LRt g JEL S
HAF O RIFETT 20 try Fl except BRI, EMHFFZHMFES (K140 C) % RIWLBYL JaA%TE
BT ¥

expression (R
— B AR EDR (AR . EAREE], —MEA e oy, SR, BEFE. EE TR
W S R AT PR SRR, T 2L O PR RE 1] i Eﬁi#z;ﬁé{ﬂinn HAFEE, FHERER
Python 35 5 WA HE R . S AN —statement (BGAT) AREHEER S, B0 while, BX
{H (assignment) 0 & BAZ, MiA A .

extension module (¥ 7 4l)
—fE DA C 8 C++ S B HA4L, B0 Python [¥) C APT SRERAZ.Cx S At Fl ARS8 T E)
f-string (f GzH8)

PA e r [EESE M TR SO EEBREE [f 78], BRI SOR AR . 2[F
PEP 498,

67

https://peps.python.org/pep-0498/

Extending and Embedding Python, £(F] 3.13.1

file object (KxKWik)
— S) A 222) (file-oriented) APL (Ul read () B{ write () % method) HHAEIT)E & IH
MR ARSERE E Rl 2, B RRIE) o 2 R ARG 52 ol L R B %) ol A7 i g
B (A /. SR sESRE R . socket (3R). 44 (pipe) 45) MIFEEL. A EY
WeARE 28 4% R M1 (file-like object) B % A (stream).

B L, A=MEEEYM: RGN =814 5. B —E 158 S MUF48 5. BMMIMELE io
WAL E SR . B YR R R open () B

file-like object (Jik§RW1l)
file object (REZEWIE) A FEF .

filesystem encoding and error handler (K2R MmUEHEL RS F)
Python fr{s F i) — Rl A A RN SR BE PR 20, I AMRAS K HVEZE R S, ALK Unicode %ifif§
FIEERSL.
R 56 2 B S AR L ZEL DR B R BT RIS T /NI 128 I TG . WNSRAE R R S s S e g it b A, HIJ
API {0 & 5% UnicodeError,

sys.getfilesystemencoding () ﬂ] sys.getfilesystemencodeerrors () @ﬁﬂ}ﬂﬁﬁ@f?ﬂﬁ%
B 5500 S A R 2 o B L PR X

filesystem encoding and error handler (%% 28 2 &% % A% F1 45 32 % ¥ 5K) & 7E Python [F) B I
i PyConfig_Read() @ﬁﬂiﬁﬂﬁ ﬁ%% filesystem_encoding, PA M PyConfig =

filesystem_errors,
Wai2[Ellocale encoding ([FI4WAE) o

finder (=HbgdY)
—fEPIE, EaEREIETEY import PBAL R loader (FARR) -

AR AGEE . TUIAIE F R B (meta path finder) ST] sys.meta_path, MiyA4€78 B F# %
(path entry finder) € ffi[f] sys.path_hooks.

%% 2[F finders-and-loaders F import1ib DA T fETE 40 .

floor division (] FIUEEERL:)
i) T ARy 2 B B T B B B R .) N U BRERE R T2 /. B, EE 11 /7 4
AL RE 2, Hfloat (FRE¥L) EFRVEFEIER 2.75 AL @ER, -11) // 4 WERRE
-3, WIEHE -2.75 #é F ML . 2 [F PEP 238,

free threading ([iT4%)
(E)-BRBATAEIEAL, 2 AT A 0 DAE) — 3385 o AT Python (i CALRG. BSR4 138 5
SIGHE, HE U R A TRAT Python GCALES. 2 PEP 703,

free variable (1 Hi5%)
Formally, as defined in the language execution model, a free variable is any variable used in a namespace
which is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the
name of the codeobject.co_freevars attribute, the term is also sometimes used as a synonym for closure
variable.

function (pf2X)
— R B, B REE A Y [l PR AR R R B 2 7| S, 1 2 [i
AR AT, i 2 Elparameter (281). method (J5%:), PAK function FEHi

function annotation (F&X[EIRE)
PR 22 gk BELE I — (M annotation ([E1FE).
o 2 VR o il A 2 (3 0 i, S ek ST I E S 2 W int 5180, EEAE M int 1]
oA -

def sum_two_numbers(a: int, b: int) -> int:
return a + b

e s EVRE A VA TE function HE (G REAT R R

68 Appendix A. #iiEER

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/

Extending and Embedding Python, £(F] 3.13.1

it 2[Elvariable annotation F1 PEP 484, Y45 WINGERIHEAR . WA EBYRIEEE T, Bazl

annotations-howto,

future
future PRI : from __ future__ import <feature>, @f5/R 4 el JIAFLEAE Python oR 3R 5%
A ot UE R HE A REE SRS, RS E Al . T future BHHRAET feamre (%
fie) PTRENI(E. #i import AR FB AR MOR(E, IRPT DA S — (T DI RE 2 (A I 1 R T 1 2
FEE T, PAREMFS e (SO A) mIEERH6eE:

>>> import _ future_

>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (3 [mlik)
R IR T B, A ILRERLA L. Python BUFFRLULITI, 2%l % B H 8 (reference
counting), DA M — 1 & [E) 4%] 0 B 22 IBAGEEE (reference cycle) [F¥8 b7 3% BIUL#% (cyclic garbage
collector) A&5¢ fi . B3 ISR] PAEF g AEAH 3 Haf g T4 i o

generator ([FJH:%%)
—A{E & [5l{E generator iterator (i%%ﬁ%%) MR B RAUR A IE R, AR 2T
@8 T yield MHA, GEEVE— I, EEAATH I for EE, BRI next 0 Hist, HEIH
FIH A — A .

B ARTRE T I ARE R —EEESR R, (AR, R RnE A SERE. B—H%
FWEEAREERE, IR B mNE, Dk,
generator iterator ([F2:%$FICES)
— il thgenerator ([EVA:2%) BR=FTESLIPI1F.
B vield EFRIEART, ERCAOCEHATIRE (OH6 RIS MO E T uy Bk, HEA
REK B RIERE, &g b mth) B e AT (BEARSERE R F R 2 8 B A i e =X AN)
generator expression ([F)/}: 2$#E5X)
— i W R S K B RERG IR, B EaE M for), T ES
TEE . HE AL — BRI it 7). A A e RS E A 2 R

>>> sum(i*i for i in range (10)) # Fhzfn 0, 1, 4, ... 81
285

generic function (7Z%IpX)
1 £ 2 M R AR B BRI X, % o X A [1) (BB VF R [(1 SR . P o] 3 (0 O A
1, 2R EEE A (dispatch algorithm) SE)E o

552 Flsingle dispatch (B—3HE) #sEEMH. functools.singledispatch () #Effi#sfl PEP
443,

generic type (JZ7UI(E))
— i B4 2 84k (parameterized) [Hjrype (BUE)); H 2 A, %2 1ist Ml dict. BH
FHA A B2 = FilE) 2

g2 BE 4 %E. PEP 483, PEP 484, PEP 585 fll typing Fi4.

GIL
#52(Elglobal interpreter lock (430 B 2E8548H) .

global interpreter lock (42h{ AR H)
CPython B T ROMER], T DARE DR B3 H8 U — I8BT4 BESLAT Python [byrecode ({2 7C#
) o EEAY A (ORER N EEAE, 0 dice) HB#bikEGEFT/FE (concurrent access)
&R, A% T DAfE ft CPython F)BE4E. 8w B (M LA, @M B a8 A L) KB 2 AT 4%
(multi-threaded), {HAR(E /2 S Edni 2 JE BEAS AR 28 RE[EHR (LA — KB P47 (parallelism).,

SR, A5 Le M4, M A a2 58 =y, Bk s e AT R A ol A (B S 45 g
(computationally intensive) AL REF, W DA GIL. H4h, FE#AT /O B, GIL 442 ey fifig .

69

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Extending and Embedding Python, £(F] 3.13.1

¢ Python 3.13 BHAATT DAMFEH —-disable-gil ZE R ENRIEM GIL. ff I S.IEE ST Python %, &)
A -x gil=0 KFATREXMS, BUEHE PYTHON_GIL= Ofgfﬁiii«éﬁﬁmﬁzitﬁ% HIIRETT A
B ENERXNEE, B0 CPU st B E A Y. B L HEn,
##2[F PEP 703,

hash-based pyc (ZfEZEHEN pyc)
— {7 TCALHG (bytecode) BT 77As , & (o A AR (EME AN J2 S HE DR U AR R M Be R IS Bl Re P, it e oAy
Wbk, #52(E pyc-invalidation.

hashable (] 3[EI))
WA — (N, s (A A aEH kR M8 (B 7F%— _hash__ () method), H.
] B HAR Y BEA R (B __eq__ () method), HREIE LT 4B, Hiss
(EFA A5 2] e E 2, e M 28 A A 7] A A (M

AT 3E[EI: (hashability) {—{H 44 1] F{E dictionary (i) AYSEEA set (FE4) KA, HEELE
4 REERAE L ERA A T 3B

K2 Wik Python A HT S EIRYY P1AG 2 nTAREIY s TARAGACH: (BN list 5K dictionary) [EJAVKE: WA
A S (B0 ple (JCAL) Al frozenset) , HUAHE MR ZAMER, EMAS A 205k
By PR A€ class EEH], HI5E L6 (4 Gl Bk (T A Y bTFﬁTE?FHtE%?HT%‘K
RSN (RAFEMEACIE), mEMREEERZA4E B EM 1d(

IDLE
Python f{] Integrated Development and Learning Environment (%% &5 B2 B EL S) . idle B —fH AR
) S A AR AR TR S . B Python PR HEES AT IUAS— el d it .

immportal (f33)
AR (Immortal objects) & PEP 683 5| A CPython B VEANH] .

QR — AP R, B4 s HORGEAN B e, R IR B R TR B GRS SRR k.
41, True il None ¥£ CPython A2 A .

immutable (An]%H1k)
— B EEE . AP AR FEER wple (JCAL) o B RABEBOEE
SR B [P (b ZER (o A, UM ZECEE ST — B A . B ZEE e S EME A by, P
BLFA (S, B4 dictionary (i) At —1E 5

import path (5] A¥K1%)
—EOE (4 ea B) WFE, ARLEN Bl AE import ALAHINE, Er@iparh based finder (E:jiH
eIt ey) MEBANAE . fE import P, ML ES)FEE KA sys.path, (HERFEM
(subpackage) 1M &, EMWAIREERKH LEMR _path__ B,

importing (5IA)
— AR . —ERALH Y Python RsUHE AT A B ILIEA , #0) — B4 H i) Python REsXAS{H] -

importer (5IA%})
—f REE 4k AR EWbR finder (SF4gis) tidloader (FALR) Y-

interactive (7. TiY)
Python A — i H.B)=C B %4, E%‘?iﬂhﬁf%Eﬁﬁﬁéﬁﬁﬁ?ﬁﬁ/\ﬁﬁﬁﬁhﬁ—t SERIRATE
MEHERCMEEHRE. REEH) oython, ANFEATLME 8 (W] HEHE i 7E VRSB Y 1538 B sk
B). malli s ds pug e n dEE ER M O (R help(X)) W 2 7B B AH B &

#HE5 FL tut-interac

interpreted (PLi21)
Python J—Fl (1SR S, TSRS 2 . il 40 T AT S, PRIV i TEA4LAS (bytecode)
SR I AFAE o Li‘%ﬂ“ﬁﬁnTﬁquU\E%WLﬁ, 1T AN 75 BB ST) — A TR, SRR BT
;.ﬁ‘%nn ml_(.r%tlﬁ%ﬁ:)%nn HAEERN B/ BRESEIN, R e R A TR .
[Elinteractive (TH. B

interpreter shutdown (P 2SEH)
‘H Python F{p#Rdi ZURBIPANE, B & A— R B, 5T BT A gl & g, ol
UITRE AR N 4% TR B SR EI R A5 1 . Bt 22 YRV 35 3 =))i 52 (garbage collecior). & REEIEBE (i Fl % A
E WG PR (destructor) 50555 | A [EIIF (weakref callback), [FJ A7 R0 . 76 BH PA R Br bk

70 Appendix A. #iiEER

https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

Extending and Embedding Python, £(F] 3.13.1

AT IR GBS A REHIS, FIEVE FF AR R T R R AP T (% RO TR ok L
o).

HARG A EZER, 2 _main_ BEHEUERGEITHEAR CARATE M.

iterable (W[[EMCHIf:)
— BB W A s B R PTERS B TS5 T BF I BE (B2 1ist, str
Al tuple) *ﬂ%lﬂﬁﬂlﬂ?ﬂﬁél B@ dict, WX, U\&M\Fﬁ%%ﬂ’ﬂﬂﬂ class)4, HEHRLE
class f5 __iter__ () method 8{ 2B Esequence (JT4) FEE M) __getitem__ () method, FZH{sti2
IERD:.

AIESC AT R for [FIREFNFF 2 HAL TR 2P S H (zip O« map () ..). & —fEAERY)
HAEES | g R A E# R iter O B, B EERZY O RE—MESTCE. ﬁl:lf:%%x.ﬂ%ﬁ%f%#
AEIEST— (one pass) FEE . M FAEMCERE, MWHA—EETIFN icer () S AFTEIEIE.
for BUAE A B HIEWREILE S, B Er @R R f 2 s, AT EIRE I R AR %
EWtEs. FiszFliterator (EUREY). sequence (JFH)) Flgenerator ([EVE#E),

iterator ([E}{2%)

— A FE R ER R Y E. EEPEIERERA __next_ () method (=244 T 18 45 (B 2 b X
next ()) GKFEIEERNEHATEH. SEAHA ERE, HI@5]% stopIteration B4k, Bt
W, ZERSEYEE S, W T(T8E _ next_ () method [t — 2N, %5 H & HK D] 5
StopIteration, [EMUHHIAEA M __iter_ () method, B €rEEHEUCEMIEAS, A AREHEE]
RESEAE T E 1, BT RAA K 2 o F H A T [E 035 6. —MIRE B 4h, 2E
#t Z i [Ef (multiple iteration passes) FURER M. — AW (B2 1ist) HERRIRK EHIELS
iter () BRETE for DB P EM, #elE—MaenEites. FHERESERILEHE (2R
ﬁ%ﬁﬁj,%%/\@ﬁ]%%muﬂﬁlﬁ'Wﬁﬂ%uﬂﬁ] — 1 £ 4) S R 1, AR AR —
[EREGRE

TE typeiter 3R] AFR 2 B £ E L.

CPython Eefi#fi: CPython [ER KN —b#s frtads [DRBAER _icer 0) M.
S AYERE, free-threading (FII#A7T44) CPython ARBEIR BB HATAE 4

key function (HpH)
i R 7 R 2 (collation function) J&—{R W] FFHY (callable) pRxC, & & [mlf#—{F FI A HESF (sorting)
S E P (ordering) AU . B, locale.strxfrm () Bl FARIEIAE B 1 M B IS & HE 7 18 61 A9 HE 7
.

Python Wi i1y #F 2 T A, #lH: 32 DA # ok XA 45 i o R A€ e s 8 7 38 B 4E min O
max () . sorted(). list.sort (). heapg.merge (). heapg.nsmallest ()., heapg.nlargest ()
Hl itertools.groupby () »

AR A S K. BN, str.lower () method] AFEEIA 4 /NG HE P i) S8 i
Ao B, MR WA DA 1ambda R A, B0 1ambda r: (r[01, r(2]). F34b,
operator.attrgetter (). operator.itemgetter () ﬂ] operator.methodcaller () Eﬁlﬁ;@@

BRI 3C (constructor) . BRI AR 2 A S ek X 461, S5 S EAnfTHER -

keyword argument (B85 19)
#t2(Flargument (5]3).

lambda
i B —expression (GEE L) R4 — M E 4 47[EFI = (inline function), A 3% pg =0 4% P 1Y sk (A

#37 lambda R FEEVE 2 lambda [parameters]: expression

LBYL
Look before you leap. (= JEMi&FT.) M 4 il S G e A TP s &8 3 22w, IR 5 S B
. B ENSELEAFP 0, BRGSO 2 it B UAAE.

TS, LBYL a7 [M [#&17] Z M5 A T 8EE/F (race condition)
EI/]}—LF?,R TﬁJﬂHU\—Fﬁz—tﬁ% if key in mapping: return mappinglkey] ﬂlﬁ]%% ’fﬁlﬁf/ﬁ‘zﬁf(ﬁlj
AR EAEER AT, 1€ mapping FREERT key, Wiz CH € K% 55 L DA (lock) =%
i F EAFP %35 7 s AARE] o

list (H3%1)
—{ Python [E&¥)sequence (JFH) . [EVE BRI T list, ‘B H BB A5 5) — M i 51

7

Extending and Embedding Python, £(F] 3.13.1

(array) TG — G455 51 (linked list), FHIEFFHOTER A FEFHEREEZ O,

list comprehension (£ 4|45 &5
— R T AR B B (87 5 T A TRy TR, (I BRI G R LA List [LAY 2)7 4. resule =
["{:#04x}"'.format (x) for x in range(256) if x % 2 == 0] @$~@$$ list, /E\ZEP@,
0% 255 M E), FrA e /SO O0x.). 1 THZBEMR . WREREE , Al range (256)
BT TCR A GO B

loader (EAZS)
—HREEHE AR . B EEFR AL 1load_module () B method (J5%). HASHEY
etlifinder (FAgge) BlE., WA 2E:

« finders-and-loaders

e importlib.abc.Loader

« PEP 302

locale encoding ([Ji 2515)
7£ Unix |, B2 LC_CTYPE [ElkZ EM 4. B PAH locale.setlocale (locale.LC_CTYPE,
new_locale) H{?y}io

7£ Windows [, ‘&2 ANSI Ui E (code page, fAlfll "cp1252").
Fr Android 1 VxWorks |, Python {ifi] "ut £-8" {EF @145 .
locale.getencoding () AJ DA ARERAS: (B 305 4 A .

.55 2% filesystem encoding and error handler

magic method (BEHT)77:)
special method ($¥kI5H) WI—83E1E R i .

mapping ()
— A, BB EE A, H A8 E abstract base classes (i 4 5K H(E])
collections.abc.Mapping B collections.abc.MutableMapping Fﬁ‘il’E‘ﬁiE’\J method, %’Eﬁﬂ@ffﬁ
dict., collections.defaultdict., collections.OrderedDict %[l collections.Counter,

meta path finder (JCI4{ETHRY)
—FEAE ¥ & sys.meta_path [BE [finder (FAGeE) o TCHIE TR L€ 8 B F 4 % (path
entry finder) FBH{HZAA]

B A TCEE R A P B AENY method, F52([F] importlib.abc.MetaPathFinder,

metaclass (JCHAE])
— 7 class [class. Class & &AL @ 37— class 2 Ff. —1f class dictionary (FH#), DAK—1H
base class (J:IKHAE]) 19513, Metaclass B 518 =058, [EH % class, K8
FEAEE T G ARt AR EAE . Python (RRE) JEAE A & BEEIE Y. H %11 metaclass. o1 il
FHERAFEN TR, HREFFERE, metaclass N DARALEIR BEHERME T Z. EMEHRT
EEVEAFE. BmaATaE k. BEY R ARG (singleton), DA 2 HABAYITH

T £ %3 AT DAYE metaclasses Z i 1R F) .

method (J57%)
—f7E class A #EEE AR . 14 method MV class FE31AG— (BB PERIEIY , HIE 0% 615
S O EEVE 5 Bargument (3190) (W5 WG B se1). 2 (Efunciion ($isX)
Flnested scope (EIRAE) .

method resolution order (Jji:fEbrIE)T)
D7 IR B SR e A R R B AR T, base class (BRI W@ AT . B Python H
2.3 WU E AR T AR AN, s python_2.3_mro,

module (EizH)
— £ Python A2 U1iY 44K BLAL (organizational unit) 1. BERHA —M a4 =W, B EER
¥y Python Hj{f. AAHLIE#E thimporting AR, A 2 Python,

it Epackage (B1F).

72 Appendix A. #iiEER

https://peps.python.org/pep-0302/

Extending and Embedding Python, %[3.13.1

module spec (BigHBI#%)
— A4 A [, B AR BB import A B & . ‘B2 importlib.machinery.ModuleSpec
H—fE B

G module-specs .

MRO
it 22 [Elmethod resolution order (JF7fEMTIET) -

mutable (n[5£4){}:)
RIS T DA A, (AR MR 1a 0 AEE2Eimmuiable (RT3 .

named tuple (Fif%c4)
7% [named tuple (Pff457041) | J2F51E tuple 4R AYTATHIEIDK class, HEAYA4R5] (indexable) JC
F] DA P4 A, 15 SR (E)B class 0 R] PAELA HA R 4

A L[F) 2 [F) 2 named tuple, FFEH time.localtime () fll os.stat () EMEME. H—HEF T2

sys.float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance (sys.float_info, tuple) # kind of tuple

True

£746 named tuple 2 [EIEAIE] (40 FB)). =2, —1F named tuple ta] PAGE—8 IE R class & 8
dar, K25 class @# K H tuple, HEFR TSN (named field) BIA] . 5@ %1 class 7] PAT T4
B, DMK H typing.NamedTuple RS , 0] A] kR =X (factory function) collections.
namedtuple () AEEN.. BE AN T —LLEESMY method, 154 method 7] 7EF 5y ok [Fl 8
i) named tuple H, HEVEFRFIAY .

namespace (#yZ4sil)
BRI o 2% 252 A dictionary (< HL) BEECVE. A I . Aty R EE i fr 24 25
MAEYI 1 (7E method Hr) oA SLIR A A 2% 25 . i 25 TS B By Lk A 4a o, RSO IBEAH AL
Bi4n, PR3 builtins.open Fl os.open () J&FiH B M A2 25 AR A% M . v 44 2 [T R B
Tl b I o 2 WA A A B — W R X, ARMG v I S] A bE . B0, & random.seed () 1§
itertools.islice () BRERFEN, B R A EREH random fl itertools BIAYEEE.

namespace package (i #2sMIEM)
— 1l PEP 420 package (£1F) , & HEEEE T2 (subpackage) i —fH 254k . v 4 a5 & Fnl fE
EAEM R, 1 LARKEE ARG R —Breguar packase (EREM) , HWEEMBEA

init.py BHE.
iz Emodule (F4) .

nested scope (HUHR1EMIR)
fEE)2 B8 41 7 5% (enclosing definition) HAGSAHEARE Sy . ZRBIBRIE], — 1 R A0SR 2 AE) — R R X
ek, MEMEREE2EINE R P Rss. s5Es, EESEET, SIR1E R E Rz
MR T A R . W AR e AR EVE VR I IO R A . TR, AR SR A A A 4
2SR EIEUL B A . nonlocal 2 FSHNEME I TE A,

new-style class (Fi\Ki[E)
—HEE2, CRIEBIAENA N class P14 I A1 class E#& . FEHIE Python fiuA i, AT H7ak
class 4 RE{ 1] Python #CHi1 . ZARMIIIEE, B2 _ slots . #fiiR#F (descriptor). J& 1 (property).
__getattribute_ (). class method (JHEIJ ¥:) F static method ([EJBE 7).

object (¥1i)
HARAE (BrsE) RuieE®RATE (method) WUEMIERL. BHIZITInew-siyle class (FHi I
[F]) (4 base class (FLICHIE).

optimized scope (JpfEALfR)IIR)
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter

73

https://peps.python.org/pep-0420/

Extending and Embedding Python, £(F] 3.13.1

optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package (£if})
—{[] Python [{module (FE41), B R DAL R4 (submodule) B /2B IR £ (subpackage)., I
W EmE, EFERA __path JHHER—H Python 4.

Syt & Eregular package (IEMIEAE) Fnamespace package (fir S MEE) .

parameter (Z8)
Tr function (PRZ) B{ method & 3% F 1Y — M v 4% B B4 (named entity), 500 3% KR BEEIE 20—
ffargument (518), SAERLEEEIFHRZM5 8. A HREAR RS HHAL:
« positional-or-keyword ({7 S BISEF) © 80— 0T DAZ e 45 5 w2 VEEI M 48 5 7| Scpl g)
518 BRSEIWTHREE, BIUPA N foo F bar:

[def func (foo, bar=None): ... }

« positional-only ({EFROZE) : H5H—MH L Re4% BEOL EAR AL T | . e E S 28 £
WM /70, W LAMERZ TR E R RO E 28, BIWUAT /Y posonlyl Hl posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

o keyword-only ({FREHSET) : FEHH—1H HAE AR S F R Rt pY 5 1 8. FEski X E R 2 8 %
o, AL (AT R ¥ 2 L (var-positional parameter) B & BLALRY * o0, AT DATEHAR)7
EFNESR T2, BIPATH) kw_onlyl Fl kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... }

o var-positional ({EREMCEAIE) - JEU—HBELMERF AR Bhiy 7 B 5 1 3 (TEC B 2 8,
LML ES M2 A . ERSERERTEH S MR E - AGERM, HIAT

args:

[def func (*args, **kwargs): ... J

o var-keyword ({EREHCEBST) AT HHILN TR EERE TS (o ts ez
?;J&Eﬁ%ﬁ%?%’l%ﬁZﬁl‘)o EHSHEERE S MAR T E N~ AEseny, Filan b
| F) kwargs .

ST AR | BUR AR s F5 0, 0T DAE)— 6585 e 1y 5 | R v TR A

5y it 2 D 55 F Wargument (5180) W H . LB E D5 82 82 M2 E, inspect.
Parameter class, function i, AN PEP 362,

path entry (#{€51H)
Eimport path (SIABEEE) HE)—MHGLE, Wipath based finder (HRBEEH D) T2HLOE
2Hesm 5 import [YREAT .

path entry finder (P85 H <-b2%)
Wi sys.path_hooks F1E—{H W[IFERY#{4: (callable) (& B—1Wpath entry hook) Jr [a] {8 f)— T finder
B RITE QAT PA— Wl path entry & (i5E4H o

B A B AR TE H A R B /E R method, #52[F] importlib.abc.PathEntryFinder,
path entry hook (&% H(E))

1E sys.path_hooks F KA —{H nIFFIY) {: (callable), 5 E HIE WAE— 45 E Hpath entry H
SR, Qe Epath entry finder (BEEIHH FHE) -

path based finder (FERERIRIISIHERS)
TR /LFEAE 4R & (meta path finder) Z— , "B GTE—fimport path T8 [.
path-like object (K& £¥1k)

—MHRRERRSRIERIYIE . BERAEW T AT AR — 0 RN AR str B bytes P, B2
E'ﬁf os.PathLike %KHEEI"J%F@FFD :@‘i@u?‘ﬂl«l os.fspath()]%[it, ﬁﬂﬁli% os.PathLike Tﬁ%l@]’\]#@

74 Appendix A. #iiEER

https://peps.python.org/pep-0362/

Extending and Embedding Python, %[3.13.1

ﬁiﬁﬂx}(%ﬁﬁ str ﬁ bytes Tﬁ%%?ﬁﬂ%ﬁf& M os.fsdecode () ﬁ os.fsencode () Eﬂﬁj\ﬁfﬂﬂ
AR st M bytes HI%5R . H PEP 519 5] A,

PEP
Python Enhancement Proposal (Python 3#[Fl#2%), PEP &—3 & #HEIR 304, & HEE] Python #FEHE
PEEEH, SR Python [— T DI BB S 5% DI RE M AR P R BRI . PEP % 42 L IR 1) 5 A7 KA 4
PAS AR ZE T BE) A S B

PEP [WAEAE H 1Y), REBEIEIH P ae A4 5. A b B A 5 R R 2 RIE, AT A
Python [FHESRIMFCE], 352Ul AR = 2kl . PEP 13 2 e et B e B Re) 3
.

#2([F PEP 1,

portion (34))
L S S (T OB zip R, 5B A8 — 16 4 S (namespace
package) H T E K, AN[H PEP 420 H)E %

positional argument ({5 5[8%)
52 (Flargument (5]3).

provisional API (‘%417 API)
AT APL 24, AR RR =X Y 0] 2 AH 25 (backwards compatibility) frair, #Ri#HERR 1) APL.
BESR MR E, REE M REE Y, M EEAgaERWEE, HRZ0mE AR
g, Wnfea BB AHANEE (2R) o 3505 5 FUR 6 S i [FA:
——HH APT YA A Z HI RSB e ARG 8 Rr , B A etk

RIS B AT APL, [a]4% A28 0 5 Tt e g B E) [A8 O MRE)) 28) — ST (] ol 3% B g [1
A58k F] BEFR H — 10) AN A R E) 52 .

T2 1R 20 A (s A v o X R O R) S A, Tl S R R A A TR) 2 B A B) s s T B R
=2 PEP 411 T fRE £ 404

provisional package (¥17£:1k)
#52[Elprovisional API (%47 API),

Python 3000
Pythonf-x FHARERE (RACARTAIER, FRES 3 BT R AE R AR K.) WAl A5
[Py3k].

Pythonic (Python JEK4T))
— AR B — BRSNS, BB T Python 55 5 I WEOE I FE, A& A HAREE R R
REFFERECAG . B, Python i R —REEE YL, A for BIARK, H—@EERYF
T A CEETEIRE . 2 i s EEG SRR M, FTRAREGE Python 1) A A Ry &
— R B R AR -

'a 3\
for i in range(len(food)):

L print (food[il]))
FHIBZ T, PARNIEERER . EHA Python JRA% :

P
for piece in food:

print (piece)

qualified name (FR & %H%)
— B R], B BRI — AL A 23 AE 3] s AL H 2 610 class. pRUEK method fY
(A2, 40 PEP 3155 i@ s, SR TEE M KA class 5, R E 24 R = A (4 44 Al AH) -

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname

HERET—TD

75

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

Extending and Embedding Python, £(F] 3.13.1

(B E—H)
A} C A}
>>> C.D.__qualname_
'C.D'
>>> C.D.meth.__qgualname
'C.D.meth'’

BRAG RBEHRE, T2 RE & & (fully qualified name) 23R %) S BB 7 PR BEAR , A FEATAT
MAZEM, Bl email .mime. text:

>>> import email.mime.text
>>> email.mime.text. name

'email.mime.text'

reference count (2 W51L)
R — WY 2 R E— A S IEETECT BRI 2R, B g RECE (deallocated), A
e {2 [7 ey (immortal) | [FIHEA AN G i 2 I8, R GE N G gfRiRile. 28
FIGE H7E Python FExUHE P B AR F], (HEERCPyhon BAEN) —MBSICE . FExUREEHATTT DAREY
getrefcount () bR [EIE—{R 47 1 14) 2 BB

regular package (IEBIEA)
—fE K package (B4F), BIA—MEA _init_ .py BEEMHE.

55 2 [Elnamespace package (f4 25BN,

REPL
[read-eval-print (read—eval-print loop) | [AHES, &2 9 X HiZ2% shell 19 —1F 4 1.
__slots__

1E class [FIFR— W E L, CFFHHECESEOEERZSH, AN E) dictionary (F41), 2K
AT, MR, (H bﬁ%%%ﬁﬁﬁﬂﬁ@ﬂ% oA B 45 IR A {1 i B o
(memory- crltlcal) (1 AR A E KRR T 5 S .

sequence (J3:41)
—AWliterable (FJIEMCHIE), BB _ getitem () special method (JR5k75VE), i iR #RT| K
VAR R ORI, [FlEs8 T _1en__ () method A [HI{E3% 5 5 A o *JH’J.@‘TM@JE
@Jﬁ list. str., tuple 9[2‘[] bytes, ﬁ%&%, ﬁﬁﬁk dict ’@j{% __getitem_ %I] len 0,
HE P E L (mapping) 1A 2751, /ﬁ\ﬁ?ﬁﬁiﬁ%@ﬂ?E%ﬁlﬁ‘]hashabiei@ A

% 2 HE(E (abstract base class) collections.abc.Sequence E 3 J — 1 50 & 51,
T{%ﬂ:ﬁ/\\ _getltem ﬂ] _len__ (), Ei“j}ﬂ? count (), index (). __contains__ () ﬂ]

__reversed__ EVEIIE%?E/TEEI’J?A. A DAEH register O MREMEE). o2 Bk T
FN B S nﬁﬁ%ﬁfﬁﬂi‘?&ﬂz

set comprehension (44540
— MBI, AR AT E A 1 h i 2 G e, [R A R DA — 1 set []
T;ﬁro results = {c for c in 'abracadabra' if c not in 'abc'}@’ﬁi#ﬁ]?% set: {'r"',
'd'}. F52(E] comprehensions.

single dispatch (¥.—3Jq)¥)
generic function (JZHMRE) FHEEM—FEIE, FEt, BEAERBEREE B B —5 | s 2L (E).
slice (VJJy)
— W, EREAE—Biequence (JFH) WHE—H0. BAL—BUI R 0752 00K N AT 9%

(subscript notation) [], #E4s 2, BIFEEFE 2 HMEHE 5, #lil variable_name[1:3:5],
TEFESE (M) FF9EmERS, i slice Y.

soft deprecated (KPEEIH)
P EEI G APTARFEREFLH OB RE s b, (R B RS h B e G2 e 42 . APL
3 ASCHAREEE el (RN & A At

EIFEEHAAR, SEEREAER AP AR S, A S5l
=5 F) PEP 387: #i:E .

76 Appendix A. #iiEER

https://peps.python.org/pep-0387/#soft-deprecation

Extending and Embedding Python, £(F] 3.13.1

special method (¥§5kJ51:)
—TE 4 Python [BRI) method, FI & S HAE BUEFNA T HREESE, BlAninyk. 278 method (144
Fher e BRTE AN 45 A Wi FIEE Spec1a1 method 7E specialnames H1 #EAHEIRH

statement (A=)
PR — B (suite, —ARXEG [EM]) PR—HY. BRI PLE—Eexpression (B
X)), MESHMET (FIif, while 5§ for) MEMELHEL —.

static type checker ([FJREXIFR57Y2S)
@ i 0 Python FEXASEI AT SMB T, REEIR i #EaR, B2 TR ERNEE., 5zl
[EJ32 7% (type hints) PAJ% typing 154 .

strong reference ([F1Z1R)
7t Python ffY) C API 1, [EIZIREBYFZ IR, Y HERG %2 BRI is . @28

Wl IEny py_TNcrEF () HOEEES2 R, [R2 BE%ERE py_pecrer () FEREIZ K,
Py_NewRef () B AT F R E. —(ES W EEI 2 . E, 7B B ES B m, WEAE

[E2 88 Y py_pECREF () R, DAERENR—H2 M.,
Ak Eborrowed reference (&2 M) .

text encoding (3L 4iH%)
Python H1f{) 57 E8 S —1# Unicode #EE) (code point) f741] (HEEAE U+0000 -- U+10FFFF Z 1) . &3
A E R — A, B EGT I E— A)T

ﬂ%~@jf?ﬂft1ﬁﬁ%ﬂf?ﬂ7 FRIE) [4afis), T 08 e e 5 3 r % e R AR) [RS
(decoding) |,

A ZREARIF ST PSR As (codecs), EMBEALREE [3745 1.

text file (I THER)
—MEREEEIAE A st e YIIFR)—1A file object (REZWIPE) o H, SCFREREER ERAFRA T
%ﬁé’] %k (byte-oriented datastream) [FJ€r [) i ¥l rext encoding (SCFHifls) o SCFRERMBI T4
%j{?ﬁ‘}":f (' ! ﬁ 'w') F;%JE@T%% sys.stdin., sys.stdout [/‘j\& io.StringIO E@E%o

Sii§2(Elbinary file (“HERER), Ee—MHREEFERE A 12T 40 1 (byres-like object) HIHE
ES//ILaN

triple-quoted string (= 5|3EEIFH)
o =558 () s EE 58 O) IEERER A — e . MR e MEIEA SR OLER 5 555 5B AT
HANhRE, HERHZIER, BMEEA . MR DATE T P8 R BE(E) (unescaped)
F RS SEFIEES 5%, 1M H & MAST5 (8 H #1487 T (continuation character) 5] ARSI 21T, BEHSE
A 4 5 (B 7 R R EVA

type (ZI[E])
—fi#l Python 4 {4 Z[FIEE T & A EER Y AEYaa — M AE. — Y20 ZE v]
PAHER) __class_ JEMEARLFH, DA type (obj) HKEEEK.

type alias (FUEIEI%)
— BN [F) 3w, B RS E 4 — R E)ST (identifier) AT
HIFIE)4 $ it a4 2 [FI32 = (type hint) RAG . Hl0:

(2
def remove_gray_shades (

colors: list([tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass

FIPARIIGERG, BERA AT

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:

pass

52 [typing F1 PEP 484, £ HIhAERITHIA .

77

https://peps.python.org/pep-0484/

Extending and Embedding Python, £(F] 3.13.1

type hint (%I[E25)
—MHannotation ([FfE), BH§E—ME. — class JB Mok — 1 o8& 2 2 8ok BHEE) T AE.
HIER RSB VER), A2 Python [EIfIfY), (HEM3E &R [Elk & % (static type checkers)fR A
JH, [EfEH D) IDE 52 A2 RERY 4> (completion) FIEEH# (refactoring) .
SIS class BERIER R R & Wi d) rRUEHE R, #80T AMEFT typing.get_type_hints ()
RAEHL .
2 typing fil PEP 484, A5 ILIHAEAGHEIL

universal newlines (j#)JH[ET5C)
— T R % SCFE TR (text stream) B9 53X, G LA Brg A1 [E R BE—f7 A &5 8 Unix 17 48 6
"\n'. Windows &% '\r\n' FI# Macintosh {&%] '\r'. #52[E PEP 278 fil PEP 3116, DAK
J* bytes.splitlines () [AFHINHIE.

variable annotation (523[FIRE)
—{W 5, class B annotation ([Ef#).

[EJFEsA K class BEPERE, RREEEIRIERY:

class C:
field: 'annotation'
s EVRBAI A IS EMR A (type hine): IR, 2R SR TSI IS 1ne () fi:
[count: int = 0 J

5 W EIRR Y REVAAE annassign B2 A FEARIY AR .

2 funciion annoration (V). PEP 484 il PEP 526, W IRErHig. MIRERAYRHE
T, 55 2[F) annotations-howto.,

virtual environment ([EERES)
— i o4 VEFR #f (cooperatively isolated) [/ TE24E, HERE Python (1) I 35 A1 FF2 A5 DA RN THA)
Python ¥([EVEF:, A& [—# R &t ATy H A Python JiE AR ATEIEA: T4

W2 venv,

virtual machine ([EJHEZS)
— e 4 RS T E 28R BB (computer). Python f[EEEMSS €117 Fh byrecode (17 TCHLIG) Hadas
T B 6 JOAHA .

Zen of Python (Python Z2[F])
Python TR I BRHT B 51 55, HLEIZAG B BRAR ARG A DL RE =« s 2nl A BB Ui 7
JUfBEA [import this| HHKF|E.

78 Appendix A. #iiEER

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

APPENDIX B

BARELEFIRA S 14

i SEEI] SO 7 Sphinx (—fE (E) Python [EIW SCIFFTERES O SCIFEERS) 6T reStructured Text 45
TR R AR R i

Uil Python B 5, i B 1155 1 T EIH SCAFBLE AR BB BT TR, AR ERIHR R, 7 57
reporting-bugs F{IfT, [EVEAH B, FAM A BGaHi B EE A

ECIE
« Fred L. Drake, Jr., 5l Python SC{4 T HALM A& DA — I A Ve
o A¥E reStructuredText F1 Docutils T.E.4H [Docutils B2 ;
o Fredrik Lundh ¢4, Sphinx #2ftBf¥) Alternative Python Reference wf3#| IS LT £ .

B.1 Python X8y & Ei&E M

¥4 A8 () Python & M35 . Python 5l 2 HEAN Python (EJ] SCPEETRUE . Python B gs[Ey 1A HE
AN ERE IO, 35 Misc/ACKS

TEFAE] Python A7 14458 g B Bk A 3 7 1 (R (A (BT SO - TRl BT B IR A g AL AP !

79

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS

Extending and Embedding Python, £(F] 3.13.1

80

Appendix B. Bji?i8£(FBAS #

appeENDIX G

i E IR

C.1 &icio

Python 2 H1 7 B S22 0 5 A R 97 B2 65 (CWI, R https://www.cwinl/) [/ Guido van Rossum & 1990
Guido {2 H FEAEH .

1995 4F, Guido Fr 4 J& ai N 55 i i B Z A 9T A 5] (CNRI, F, https://www.cnri.reston.va.us/) %548
fib ¥ Python i) TAFE, [EHEAREEEE) T 5%k il i) 22 {8 i AR

2000 4F 7. H, Guido I Python #%.0> [%% [% 1% £ BeOpen.com [ElJ#i,57. T BeOpen PythonLabs [& % . [
4+ H , PythonLabs [#| P i#%% %] Digital Creations (Bi[E] Zope Corporation; i, https://www.zope.org/), 2001
4, Python #XHS S & (PSF, 5 https://www.python.ore/psf/) BN, J&&—{HSEEHEFA Python £H R 1
W EREM AL IR A 448K . Zope Corporation S PSF) —{H& I & & .

Jir A 1 Python AR ZBHIERY (A B BRI EFE, 2(E) hups//opensource.org/) . M b, KEH{EAE4
By Python JiAS, o2 GPLAHZHY; LAR A4 G 25 A 1 22 .

BEREA FBE i waE GPL 18#&1% 7

09.0F 1.2 AHEMH 1991-1995 CWI s
132152 1.2 1995-1999 CNRI 2
1.6 1.5.2 2000 CNRI w
2.0 1.6 2000 BeOpen.com {5
1.6.1 1.6 2001 CNRI &
2.1 2.0+1.6.1 2001 PSF o
2.0.1 2.0+1.6.1 2001 PSF 2
2.1.1 2.142.0.1 2001 PSF 2
2.12 2.1.1 2002 PSF s
2.1.3 2.1.2 2002 PSF 2
22 PALE 2.1.1 2001 £4- PSF 2

O #HE

GPL MHAEARFREAZAE GPL T #(E] Python. N GPL, FiA 1) Python SZHEXR AT LA/ B ENE 4
BIRUAS, A —E BRI 5 5E AEIB IR . GPL AHZR W #ZHE(E5 Python 7] DAKS & HAt#E GPL %

81

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, £(F] 3.13.1

IR (I AT)

IR Z I AMRE T, A Guido F8E NIUAT, ifHE Le A iy B [ERE T fig.

C.2 FRFRHUHMFGXER Python BIEHIER

Python #CHFIEIR SUAF I HE R LR PSF 424 549

¢ Python 3.8.6 BitE, ERASCOFPRGEEG) . AR A AR S, B9 E 524 (dual licensed) i PSF 4%
WEA 41 VA K Zero-Clause BSD 3% 42 ,

A LERAA A Python I BN AR B B . T8 LU RBIT o B2 HE L AR U — B . B IS 2
BHERAR SR L, S B B3k i a9 34 L2t

C.2.1 ¥ PYTHON 3.13.1 §§ PSF 1%{E& 1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using Python
3.13.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.13.1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All Rights
Reserved" are retained in Python 3.13.1 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.13.1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
3.13.1.

4. PSF is making Python 3.13.1 available to Licensee on an "AS IS" basis.
PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 3.13.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.13.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.13.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By copying, installing or otherwise using Python 3.13.1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

82 Appendix C. &% EiRiE

Extending and Embedding Python, £(F] 3.13.1

C.2.2 Fj® PYTHON 2.0 §§ BEOPEN.COM 1Z#g 519
BEOPEN PYTHON BAUSFZHEA 4155 1 i

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FjA PYTHON 1.6.1 i CNRI S &3

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the

€ & A}

C.2. ARFERHUEMFXMERM Python B)&#IER 83

Extending and Embedding Python, £(F] 3.13.1

internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

(R L —5)

C.2.4 A PYTHON 0.9.0 £ 1.2 §Y) CWI {B#EEH

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

R T—TD

84 Appendix C. &% EiRiE

Extending and Embedding Python, £(F] 3.13.1

(R L —5)
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 F}* PYTHON 3.13.1 [FEA #FI#2X#E /Y ZERO-CLAUSE BSD #%##

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 MRk AR 1 B BN
A (AR SRR B SSCHE, 5UAE Python SEEATA rh)y 45 =)y W

C.3.1 Mersenne Twister

random B4 JIE N H _random C 3% 78 A =L & T PA http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html () F#REIREEBEAFERE. PAN 2 FEGREAE R se g -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

€ & A}

C.3. #ugFIakienyIR{E BB 85

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, £(F] 3.13.1

(R L —5)
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

socket Wi fiH] getaddrinfo () fll getnameinfo () B, BMFE WIDE 2% (https:/www.wide.ad.jp/)
(B, HAASTR] B S i 8 mb ol G -

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 JFEFH¥ socket fRFE

test.support.asynchat fll test.support.asyncore *ﬁlzﬂ@,é\w\?%% :

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the nam