numbers --- 數值的抽象基底類別

原始碼:Lib/numbers.py


numbers 模块 (PEP 3141) 定义了数字 抽象基类 的层级结构,其中逐级定义了更多的操作。 此模块中定义的类型都不可被实例化。

class numbers.Number

數值階層結構的基礎。如果你只想確認引數 x 是不是數值、並不關心其型別,請使用 isinstance(x, Number)

數值的階層

class numbers.Complex

這個型別的子類別描述了複數並包含適用於內建 complex 型別的操作。這些操作有:complexbool 的轉換、realimag+-*/**abs()conjugate()== 以及 !=。除 -!= 之外所有操作都是抽象的。

real

為抽象的。取得該數值的實數部分。

imag

為抽象的。取得該數值的虛數部分。

abstractmethod conjugate()

為抽象的。回傳共軛複數,例如 (1+3j).conjugate() == (1-3j)

class numbers.Real

相对于 ComplexReal 加入了只适用于实数的操作。

簡單的說,有 float 的轉換、math.trunc()round()math.floor()math.ceil()divmod()//%<<=>、和 >=

實數同樣提供 complex()realimagconjugate() 的預設值。

class numbers.Rational

Real 的子型別,並增加了 numeratordenominator 這兩種特性。它也會提供 float() 的預設值。

numeratordenominator 的值必須是 Integral 的實例且 denominator 要是正數。

numerator

為抽象的。

denominator

為抽象的。

class numbers.Integral

Rational 的子型別,並增加了 int 的轉換操作。為 float()numeratordenominator 提供了預設值。為 pow() 方法增加了求餘 (modulus) 和位元字串運算 (bit-string operations) 的抽象方法:<<>>&^|~

給型別實作者的註記

實作者需注意,相等的數值除了大小相等外,還必須擁有同樣的雜湊值。當使用兩個不同的實數擴充時,這可能是很微妙的。例如,fractions.Fraction 底下的 hash() 實作如下:

def __hash__(self):
    if self.denominator == 1:
        # Get integers right.
        return hash(self.numerator)
    # Expensive check, but definitely correct.
    if self == float(self):
        return hash(float(self))
    else:
        # Use tuple's hash to avoid a high collision rate on
        # simple fractions.
        return hash((self.numerator, self.denominator))

加入更多數值 ABC

當然,還有更多用於數值的 ABC,如果不加入它們就不會有健全的階層。你可以在 ComplexReal 中加入 MyFoo,像是:

class MyFoo(Complex): ...
MyFoo.register(Real)

實作算術操作

我们想要实现算术运算,因此混合模式运算要么调用一个开发者知道两个参数类型的实现,要么将两个参数转换为最接近的内置类型再执行运算。 对于 Integral 的子类,这意味着 __add__()__radd__() 应当被定义为:

class MyIntegral(Integral):

    def __add__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(self, other)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(self, other)
        else:
            return NotImplemented

    def __radd__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(other, self)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(other, self)
        elif isinstance(other, Integral):
            return int(other) + int(self)
        elif isinstance(other, Real):
            return float(other) + float(self)
        elif isinstance(other, Complex):
            return complex(other) + complex(self)
        else:
            return NotImplemented

Complex 的子類別有 5 種不同的混合型別操作。我將上面提到所有不涉及 MyIntegralOtherTypeIKnowAbout 的程式碼稱作「模板 (boilerplate)」。aComplex 之子型別 A 的實例 (a : A <: Complex),同時 b : B <: Complex。我將要計算 a + b

  1. 如果 A 定义了接受 b__add__(),一切都没有问题。

  2. 如果 A 回退至基础代码,它将返回一个来自 __add__() 的值,我们就没有机会为 B 定义更加智能的 __radd__(),因此基础代码应当从 __add__() 返回 NotImplemented。 (或者 A 可能完全不实现 __add__()。)

  3. 那么 B__radd__() 将有机会发挥作用。 如果它接受 a,一切都没有问题。

  4. 如果沒有成功回退到模板,就沒有更多的方法可以去嘗試,因此這裡將使用預設的實作。

  5. 如果 B <: A,Python 會在 A.__add__ 之前嘗試 B.__radd__。這是可行的,因為它是透過對 A 的理解而實作的,所以這可以在交給 Complex 之前處理好這些實例。

如果 A <: ComplexB <: Real 没有共享任何其他信息,那么内置 complex 的共享操作就是最适当的,两个 __radd__() 都将应用该操作,因此 a+b == b+a

由於大部分對任意給定類型的操作都十分相似的,定義一個為任意給定運算子生成向前 (forward) 與向後 (reverse) 實例的輔助函式可能會非常有用。例如,fractions.Fraction 使用了:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
    def forward(a, b):
        if isinstance(b, (int, Fraction)):
            return monomorphic_operator(a, b)
        elif isinstance(b, float):
            return fallback_operator(float(a), b)
        elif isinstance(b, complex):
            return fallback_operator(complex(a), b)
        else:
            return NotImplemented
    forward.__name__ = '__' + fallback_operator.__name__ + '__'
    forward.__doc__ = monomorphic_operator.__doc__

    def reverse(b, a):
        if isinstance(a, Rational):
            # Includes ints.
            return monomorphic_operator(a, b)
        elif isinstance(a, Real):
            return fallback_operator(float(a), float(b))
        elif isinstance(a, Complex):
            return fallback_operator(complex(a), complex(b))
        else:
            return NotImplemented
    reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
    reverse.__doc__ = monomorphic_operator.__doc__

    return forward, reverse

def _add(a, b):
    """a + b"""
    return Fraction(a.numerator * b.denominator +
                    b.numerator * a.denominator,
                    a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

# ...