The Python/C API
%) 3.11.8

Guido van Rossum and the Python development team

4 A 02, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 fiigr 3
L1 SRETREME . o 3
1.2 BIAREZ (include files) e 3
1.3 FAHAMMELE . e 4
L4 Wik, BIERISIESIE . . . 6

141 ZMEEHE . e 7
142 FE . ..o 10
L5 BAb e 10
1.6 HRAZUPYthon o e 11
A o 12
2 CAPI &tk 13
21 BBEMERARER M . . . o 13
2.1.1 Limited CAPL e 13
2.1.2 Stable ABL e 14
213 ZRRAPTHEEAMERE o o 14
214 FZRRAPLVEEDRIE o e 14
22 FEFBEIIE . . e 15
23 ZFRAPIIIEIZS . . . o e 15

3 The Very High Level Layer 39

4 B 45

5 BilshEn 47
5.1 Printingand clearing e e e e e e e e e 47
5.2 RaiSiNg XCePLIONS . . . v v v v o i e 48
5.3 ISSUIN@ WANINGS .« . v v v v e 50
54 Querying the error indicator oL L e 51
5.5 SignalHandling e 53
56 BIAMEED . . .o 54
ST BUAMIIE © o 55
5.8 Unicode Exception Objects o o i i e e e e e e e 55
5.9 Recursion Control e e e e e e e 56
5.10 Standard Exceptions e 57
5.11 Standard Warning Categories« .« v v it e e e e e e e e 59

6 T.H 61
6.1 HEERBTH . 61
6.2 ARHEEIL . . e 64
6.3 ATRE (Process) &M e 66

6.4 BIABIAL 66
6.5 Datamarshalling SUPPOIt o o e e e e e e e e e e e e e e 70
6.6 FMTEIEEEEEE e 71
6.6.1 Parsingargumentsl e e 71
6.6.2 Buildingvalues 77
6.7 FHEHEEELEIIL . . 79
6.8 PyHash API e e e e 81
6.9 Reflection L e 82
6.10 Codec registry and support functions oL 82
6.10.1 Codeclookup API. 83
6.10.2 Registry API for Unicode encoding error handlers 83
%Wk (Abstract Objects Layer) 85
7.1 ObjectProtocol e 85
7.2 FEIYREGE (Call Protocol) . o v v v v o o e e e e 89
721 tp_call THIE .« e 90
7.22 Vectorcall TH5E o o e e 90
723 WIPERRIAPL. ..o 91
724 TWEMUEHZ APL. . . . o e 94
7.3 Number Protocol L e e e e e e e e 94
7.4 Sequence Protocol e e e e e e e 97
7.5 Mapping Protocol e e e e e 99
7.6 [EMREMEE . . 100
7.7 M E Buffer Protocol) e 101
7.7.1 Bufferstructure e e e e 102
7.7.2 Bufferrequesttypes e 103
773 ComMPIEX QITAYS + .« v v v v o v e 106
7.7.4 Buffer-related functions oL 107
7.8 BERXEMEEE Buffer Protocol)o 108
Rt 109
8.1 ELBEMIM . . 109
8.1.1 TypeObjects e e 109
8.1.2 None W . . . 113
8.2 HBIMEMIM . . . e 113
8.2.1 EEBIMIME . . . e 113
8.2.2 Boolean (fH#K) W 116
8.2.3 JRELHL (Floating Point) M1 117
824 Complex Number Objects 119
83 A . . e 120
8.3.1 {VICAIMIME (Bytes Objects) v vt v e e 120
832 [ICALERSMIE: (Byte Array Objects) e 122
8.3.3 Unicode ¥ HAAMME e 123
834 JTAL (Tuple) MU . . . o 140
8.3.5 Struct Sequence Objectso e 141
8.3.6 List (HE4) WA . . . o 142
8.4 UM . o e 144
841 TFHLMIME . 144
8.42 SetObjects e 147
8.5 BRI . . . e 148
8.5.1 X (Function Objects) v v v v i e e e 148
8.5.2 EHITEYE (Instance Method Objects) oot 150
8.5.3 HEWM: Method Objects) o v i i e e e e e 150
8.5.4 Cell Wl . . o 151
8.5.5 REREEWIME 151
8.6 HAMMIME e 153
8.6.1 AEHZEWIME (File ObJeCts) o v o v i e e e 153
8.6.2 MAIMIMALAL . . . o 154

8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14

EIfee (Tterator) MEE . . o o o o
Descriptor (HiiR#8) ¥ . . . o o
VIR o e
MemoryView 14 e
BRI .
Capsules e e
Frame Objects o o e e e e e e e
[EA#E (Generator) W © . o o o o e
Coroutine (WHFR) W o o

Context Variables Objects e
DateTime ¥ e,
BEBRPILE .«

9 Initialization, Finalization, and Threads

Before Python Initialization e
Global configuration variables L e e e e e e e
Initializing and finalizing the interpreter oo
Process-wide parametersol
Thread State and the Global Interpreter Lock

10

11

9.1
9.2
9.3
9.4
9.5

9.6

9.7
9.8
9.9
9.10

9.5.1
9.5.2
9.53
9.54
9.5.5

Releasing the GIL from extensioncode
Non-Python created threads e
Cautions about fork() e e e e
FBE APL . . e
fRIE APL . . o e

Sub-interpreter SUPPOIt L Lo e e e e e e e e e e e e

9.6.1

Bugsandcaveats. e

Asynchronous Notifications v i i e e e e e e e e e e e
Profiling and Tracing e e e e e
Advanced Debugger Support e
Thread Local Storage Support o . e

9.10.1
9.10.2

Thread Specific Storage (TSS) APT
Thread Local Storage (TLS) APT e

Python Initialization Configuration

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

H

PyWideStringlList e e e e e e e e e e

PyStatus

PyPreConfig e e e e
Preinitialize Python with PyPreConfig o oo,
PyConfig e
Initialization with PyConfig e e
Isolated Configuration e e e e e e
Python Configuration L e
10.10 Python Path Configuration i e e
10.11 Py_RunMain() o o o e e e e
10.12 Py_GetArgcArgv() . . . o o o o e e e e e e e e e e
10.13 Multi-Phase Initialization Private Provisional APT

Al TR A B

AR

Allocator Domains e e e
Raw Memory Interface L e
Memory Interface e e e
Objectallocators o e e e
Default Memory Allocators o oL e e e e
Customize Memory AIlOcators o v v it e e e e e e e e e e e
Debug hooks on the Python memory allocators
The pymalloc allocator e

11.9.1

Customize pymalloc Arena Allocator

175
175
176
178
179
183
183
184
184
185
187
190
191
191
192
193
194
194
195

197
197
198
199
200
202
203
213
214
215
215
216
216
217

219
219
220
220
221
222
223
224
225
226
227

12

13

11.10 tracemalloc C API e e e e
0 T 1 [

Object Implementation Support
12.1 AEheap FAPTEHIM: . o o o e
122 BAYAEERE . . e e

12.2.1 Baseobjecttypesand macros oL
12.2.2 Implementing functions and methods L L.
12.2.3 Accessing attributes of exXtension types o i e e e
123 BEWILE . ..o
12.3.1 Quick Reference e
12.3.2 PyTypeObject Definition o e e
1233 PyObject Slots L e
12.3.4 PyVarObject SIots o o e e e e e
12.3.5 PyTypeObject SIots o o o e e e
12.3.6 Static TYPES . . . o o v o e e e e e e e e e e e e e e e e e
12377 Heap TYPES . . v v v v i e
12.4 Number Object StruCtUIeS o v v it e ettt e e e e e
12.5 Mapping Object Structures o v i v it e e e e e e e e e e e e e
12.6 Sequence Object StruCtUIes o v v v i e e e e e e e e
12.7 Buffer Object StruCtures v v v i i e e e e e e e e e e e e e e e e e
12.8 Async Object Structures o v v v v e e e e e e e e e e e e e e e e
12.9 Slot Type typedefs o . e
1200] . . . e e
12.11 Supporting Cyclic Garbage Collection it
12.11.1 Controlling the Garbage Collector State

APT 1 ABI g A 01

=%
g
*

L
I

Y Sealipe s
B.1 Python SCHFRUERRET . . - . o o o

BB RE

C.l BREBAYEE

C2 BIFIE AHAL =0 Python FUGEIMEER . . o o o o o oo
C2.1 MM PYTHON3.IL8 WY PSEFHMEAHT . o o o o o
C2.2 HJAPYTHON 2.0) BEOPEN.COM ZHEAHT o o o e s
C23 A PYTHON 1.6.1 f CNRI4ZHESHT . . o o o o e
C24 JIJAPYTHONO09.0 & 12 CWIHHEGH) oo
C2.5 JHj* PYTHON 3.11.8 [EJ 3¢ ¢HEJR X5 ZERO-CLAUSE BSD #24

C3 Wk ERRBS MR REBECH
C3.1 Mersenne TWIStEr 0 i e e e e e e e e e e e e e e
C.3.2 Sockets e e e e
C3.3 JE[AIHE socket JRFS . . . o o e
C3.4 Cookie BFHE o o e
C35 HMATEE . . .
C.3.6 UUencode Hil UUdecode PRT, . .« v v v v o o e e e e e e e e e e e s e e e s
C3.7 XML #EIEETTIEIY .
C3.8 test_epoll e e
C.3.9 Selectkqueue e e e e e e
C.3.10 SipHash24 e e e e e
C3.11 strtod BLdtoa e
C.3.12 OpenSSL e e
C3U3 expat. . . . o vt e e e e e e e
C3.14 Libfhi o e e e e
C3.15 zlib . . . e e e e
C.3.16 cfuhash e

229
229
230
230
232
235
236
237
241
242
243
243
261
261
261
263
264
265
266
266
268
270
272

275

277

C3.17
C3.18
C.3.19
C.3.20

D JhEE Y

#51

libmpdec e 311
W3C CUN HIEREM: - . o 311
Audioop e e e 312
ASYNCIO .« . v v vt e e e e e e e e e e e 312
315
317

vi

The Python/C API, £[F) 3.11.8

S A AE B 5 5 I SRR AL B2 1k A Python) C il C++ FEREEHHEGMT, S0 FEFE T A {1 i API (i
FFEX AT) . FF extending-index "FAMBMEILZ, b T BEEN—BER, HEEEE FEANER
API pF0,

Contents 1

The Python/C API, £[F) 3.11.8

2 Contents

CHAPTER 1

#Hir Python (19 1 F R BREE AT IRIAE 45 C R C+ B8 REEIAE 28 @ AA7HL Python 4%, #% API [a]fk
AR C+, (RIEIf R S, 8 315 HAB(E] Python/C APL, {i il Python/C APL A RIEA A A, 55—
82 EV 5 H RSB % A4 35 282 % 75 Python L3248 C B4, BV RER A WA HYE. 45 M
Jil)ﬂ%ﬁﬁﬁﬂﬁﬁ?ﬁﬁfﬁ Ho Python FEEIZ {4 5 & T8 B 74730 5 /0 ME F X o AR [E) embedding (A
;) Python,

A E AL — AN B A) PR IR AR, b T8k (cookbook) | ik RA R, A #fE T H W] DAfE—
ERRIE E A Bz, [EA AP R R Python i AFIHAMME AL, (Hik A Python Ry FEEIR
[LEIE S SeaiE

AR AR 2 7C Python, #12 APL s HRRAA AR MO, KZWim A Python A th ik
THRME o RO, PR IAE Bt Python i AT BRI FI AR 502 BT84 55 B0 7S T RE R M 47 38

1.1 REEE

WRARIEAE S 7Y 25| ALY CPython Hify C Ry, VRBEUETE PEP 7 g SRR R MR . HEm IR =
i) Python JUANUNAT, SELEHE Rl . EFAMR A CREE =7 oeiidl, RIALEIRE LA, BRIERE
PR AH B M E RS Python,

1.2 S| A\$&3E (include files)

{if] Python/C API By A7 ekt . ZREVAI AR Y 5 SAIEE DA i B4 7 AT E IR RE R 5 LA

#define PY SSIZE_T CLEAN
#include <Python.h>

i BER 75| ADL FERERITH: <stdio.h>. <string.h>,<errno.h>,<limits.h>. <assert.h>
M <stdlib.h> (WERATH).

ffiE): fijR Python W] REEr & S0 @i AL LU R igp AR MERE IR (W TH R LA (pre-processor), KL R34
JATESG | ML EHERR AR Z BT5|A Python . h.

https://peps.python.org/pep-0007/

The Python/C API, £[F) 3.11.8

BEEE| A Python.h 2 Bi# i3 PY_SSIZE_T_CLEAN, A BILEEMER, H52(E)2 b3 sk
HHMA,

BT Aq € 50t Python.h w LI & Al A4 A (73 ShE @ ERHERR IR S| ARYERSL) #ERA Py B0 _Py HIf.
PA _Py BHBEI 4 FRAL Python FEAEERMIN , ST #H AIECT . S B4 FEA /A i .

filE): FH A E FAE AT LA Py 8k _Py BIBHA M FE. B @ilinid BB N, e KamEEX
SAER 2K Python A ERIAEARNE, JE LEMUAS A BE & e PATE LU T A8 2 — B BRI HLfth 4 A6

T2 OE i 3 F W Python — 2 4222, #F Unix | & {7 * H[F prefix/include/pythonversion/
M exec_prefix/include/pythonversion/, H W prefix fll exec_prefix [Python [
configure EFIARWMESHERR, version & '$d.%d' $ sys.version_info[:2]. FE Windows |-,
FEHE A prefix/include 1, Hi prefix 235w 23585 (installer) {428 HIE.

LG NKEB, G (WRATA) H EE S gt i 5 A R BRAE (search path) 1. &% H[E]
WAE RIS b, AR #include <pythonX.Y/Python.h>; E@HELV-HEE I,
prefix NHI AT EREHETIRE exec_prefix MG ERH.

C+ [EERE, [APT Sl C2lE SR, (HARBRE 3 i A D B) extern "Cn
B, SETERATAL AR R BRAE R AT G C++ Y APL

1.3 FHMESR

Python FESFME HhE 58 TR MA I HESE, RZP0ERIEENMA MM M ($1inpy_RETURN_NONE),
HAb 2@ TR, DINER—2 258 msE.

PyMODINIT_ FUNC

Declare an extension module Py Init initialization function. The function return type is PyObject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".

The initialization function must be named Py Init_ name, where name is the name of the module, and should
be the only non-stat ic item defined in the module file. Example:

static struct PyModuleDef spam module = {
PyModuleDef_ HEAD_INIT,
.m_name = "spam",

bi

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spam_module) ;

}

L

Py_ABS (x)
[l x (A
T 3.3 SR A

Py_ALWAYS_INLINE
ZOR g a2 i AEREATE)R =X (static inline function), % 1T DAZIE & FIE)E AN A % B2l
e85 R R A BRI 28 Python B, B R MR A MERB EER B REATE R 5. i,
MSC T [S5 T 8 R 45 R R

H H 661 Py_ALWAYS_INLINE #5550 [FI 8 A7 [E) e X 7] R € BB 2210 MERE (B anfesCaS o/
) o FERAMER AT T, A i LR N BOE R

4 Chapter 1. &4

The Python/C API, £[F) 3.11.8

If Python is built in debug mode (if the Py_ DEBUG macro is defined), the Py_ ALWAYS_TNLINE macro
does nothing.

BT R A E L pigdi e .

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }]

TE 3.11 BUHT A
Py_CHARMASK (c)

51 HehZE 2 [-128, 127] 8 [0, 255] FEEEWFIoai#. EMELEH c MEE unsigned char
(EJ] {2

Py_DEPRECATED (version)
AR CER . EEULEBTER A2 wl.
i

[Py_DEPRECATED(3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

TE 3.8 BRUPISETE: SFid T MSVC (%
Py_GETENV (s)

LR getenv(s), fH W R A a4 H b EE T B (R a0 SR
Py_IgnoreEnvironmentFlag) HI[E[{# NULL,

%u
[t
‘—Q

Py_MAX (X,y)
M < iy 2 MR .
1E 3.3 BUHTnA.

Py_MEMBER_SIZE (type, member)
DA TCAHLE] BV [45 1 (type) member R/,

e 3.6 BB A

Py_MIN (X, y)
B = Fly Z I R/ME .
5 3.3 BUBTNA.

Py_NO_INLINE

BRI B, EEST C HEMINEE: BRI AFRMEN LTO+PGO HERA (7
2[F] bpo-33720).

Ik

[Py_NO_INLINE static int random(void) { return 4; }

TE 3.11 UHT A
Py STRINGIFY (x)
W x WEIF C 25, fill Py_STRINGIFY (123) &[[fi "123",

TE 3.4 BUHT A

Py_UNREACHABLE ()

TR T AT SR E B AR USRS AR, SO U BIANTE case REAIELINE T AT AT RE
) switch BRIARK Y default : Fh). FEMRWREA TN assert (0) B abort () AYHLIT
B

TEBE A (release mode) |, FAEE BhmiRanin b REME, [Ehkk A B k7 BURE US4y
Bz B4 AR I iR GCC] __builtin_unreachable () REFE,

Py_UNREACHABLE () HJ—fH &2, fE3—M4CR mE{HEF#HE _Py_NO_RETURN [H =
Z PR

13. FRAMER 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, £[F) 3.11.8

R FE B A A W] BE(EAE R RS Rl AR, RUARTSMEH IS 4. BInE(CRe s s 4~
ARG [T I A E . e EEET, B SRR IR . G SR [
AP PAMEH Py_FatalError ().

1E 3.7 BT

Py_UNUSED (arg)
% O A oR o 2R P R 2 MDA R A R AR . Bl int func(int a, int

Py_UNUSED (b)) { return a; }.

1E 3.4 WU
PyDoc_STRVAR (name, Str)

AL % (F] name f88, ATDATE SCHF TR T . A02R Python S ZE[EAT SO 5 i 15 E) F 22
, RRZEE A

W PEP 7 W TR, i PyDoc_ STRVAR EEI SO 5 W] DASE 3B E [EIA SO R f I () R B

Python.,
-
PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");
static PyMethodDef deque_methods[] = {
VIR
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
/).

}

PyDoc_STR (str)
(EVA5 5 B T HR AL — (R SO, RSO R I A s s e
W PEP 7 TN, i PyDoc_ STR 55 ST HI ASCIRAEIEIA SO H3 T L E Python,
il

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

1.4 9. REFSBHE

K % 8 Python/C API pi R A — (8l 2 5| # A N — A BUEIE] pyobiece iyl ey, HAER Mg
B2, 810 F R AL Python ¥4 AIHHES (opaque) ZERIZUE]. HMFERZBUREEI R, Python 555 DA]
() 2 EBEFTAT Python ¥4 Z4[E] (BIANKR(E . A AR AN S [45 Eg), PH e 1B % B C (B2
FoR. AR Python YI{AERIEAE A HERE (heap) 10 ARIKENEEIAPyOb ject BIEIRY A B 58 sl [F)
Respdy, HBEEM pyobject* BRI B, ME—mBI NS RIEWIE; dit e MER BRI,
e M s 2Efk Py Typeob ject Pif,

i Python ¥4 (H: %2 Python #3%) #A —HZUE] (type) Fl—1F 22 FR 514 (reference count), — {14
HAREEE T e EREE Y (Ban— s, —@ list 5{— M E R R EAE LR,
i types) o EPINEREEINTEAIBE], #A - WE LR EY R GBI E; fian, & (FME)
a 5 1] IR {2F-2 Python list ¥, PyList_Check (a) [FE.

6 Chapter 1. &4

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, £[F) 3.11.8

141 28E5#

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
”don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to take a
new reference to an object (i.e. increment its reference count by one), and Py_ DECREF () to release that reference
(i.e. decrement the reference count by one). The Py DECREF () macro is considerably more complex than the
incref one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to
be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator
takes care of releasing references for other objects contained in the object if this is a compound object type, such as
a list, as well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a
simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to
C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference
to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py._ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always create a new strong reference (i.e.
increment the reference count) of the object they return. This leaves the caller with the responsibility to call
Py_DECREF () when they are done with the result; this soon becomes second nature.

SEFTBFEER

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). "Owning a
reference” means being responsible for calling Py_ DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed---or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

RS, HIFI R A Y PR 2 I, AT AR B BRI (steal) YIS I, SCEEH . #
I A IR EWRE IR 2 R 4ok, ek UBUE BB A w2 I, B AR ESEaR.

RAGRA GRS, MAEESTEENGIINEPyList_SetItem() MPyTuple_SetItem(), B
B THIEHMZ W (HARZHIEH FTER wple 5 list (U2 M) o HEA 2068 B 2 S i 9 14 2k 8
(populate) tuple 5% list i 18, BN BEEMS I Flul, #57 wple (1, 2, "three") KRG
APAII R R (SE B e it sl st e a5 5 A R R)

14. Y. BEF0REHE 7

The Python/C API, £[F) 3.11.8

PyObject *t;

)i

, 0, PyLong_FromLong (1L));

, 1, PyLong_FromLong(2L));

, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem

3
t
t
PyTuple_SetItem(t

iBElPyLong FromLong () frlal{—HH 2, B WiPyTuple SetTtem () L. R4
HEH A, EES T2 BRI, @Y 2 BEsReE 2 Biffi i py_INCREF () FHEH
—HZ .

ff A% #h [F], PyTuple SetItem() 42 7 & tuple IH H) " — 5 ¥; PySequence_SetItem()
flpyobject_setItem () HELEHAL, tuple j2&—ff R A% (immutable) /)& RHHLE]. IRIERZ R
R E O SR tuple i Py Tuple_SetItem().

APAMIF PyList_New () MlPyList_SetItem () #iEs FNETEY) R SFUFEMG .

(LA TR v AR R B P 24 D7 YA AT S AN ple 1 Tist. 45— (B3 A B Py Bui 1avalue ()
WA C (ESr e REGMIE, 1 formar string 538 0 L1 iy R 5 T LA FI A F R i 550D (¢
U T SR)

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away ("have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target) ;
if (n < 0)
return -1;

for (i = 0; 1 < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
s
Py_DECREF (index) ;
3
return 0;

}

R 2 T (D A S T o B R B0 38 2 AR s 2 RS S A8 AR 2 % 2 IR BT RE A, (ELRTF
Z [{EY) 14 2 B R S A R4 2 IR A . IR AR B ERZAEIEN, Wl P 2 B IRs
1, VREISH 2 BUE B RO ME— 2 0. D YR 2 IR aE I R, WPyobject _GetItem()
MpySequence_GetItem(), KZMME—HM2H (FFUFREISMTEHE).

)2 BB TS e —(oR =X m] G 2 0 BRI n BR AR BE X - 39 £ (plumage)* (1E[E)5]
HAR B FH XY AE) * REEAC! FH, WRARMHPyList_GetItem () 4 list HEEE—1H
HH, WAGHAEHSE - (BRI PySequence_GetTtem () #[H— list HEFAHFKIEE (H
WU e MRS 190, VRIEE & HEa S Y 2 8.

8 Chapter 1. &4

The Python/C API, £[F) 3.11.8

PAF S — MR, (EVH Gl 4 55 ok AR — B i Nist tp I H AR — IR PyList _GetTtem(),
— KM PySequence_GetItem():

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
I3

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, nj;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {

value = PyLong_AsLong (item) ;

Py_DECREF (item) ;

if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

total += value;

}
else {

Py_DECREF (item); /* Discard reference ownership */
}

}

return total;

14. 4%, BELBIE 9

The Python/C API, £[F) 3.11.8

1.4.2 B[]

A7 WA A) R R ENE Python/C AP RS B 04 s KZ HU2 LY C AUE], fI4 int. long.
double il char*, —SLEbEREIE AR FA S ST RE) 1 ek X EOHT 1 140 24 (BT o e 4) ()
e, HARH TR R IAE B (A . 15 L0 SR & M7 3 g

type Py_ssize_t

Part of the Stable ABL — ffl #% £F 9% 09 %% 8 A , ffi 55 sizeof (Py_ssize_t) ==
sizeof (size_t)., C99 [El4 B /& FiE AU IT (size_t EMESFIELHAE) . ARFEME
#, #2[F PEP 353, PY_SSIZE_T MAX 2Py ssize t FEIfH I,

1.5 fl5p

WMRFEEFER SR EE, Python PRESE L5 TEHLGIA ;. KR EPLR B /NG 5 B HIR A PE 2, Sh1%
gggﬂ?g%mﬂ?ﬂqﬁ KL, BRI EMBEEE g, AR EE AR HEE B3 (stack trace) [1]
H

SRIM, HR C BREEERE], &34l %JA/EE'EETE’J g JEAE pR 1) SR A 5 A B AR R, A5 HI
Python/C API 1 {{ fir A7 s sUHR vl DAS [8551 40 . 87— R B B st e, B aralte — M ps, BEE
WA M2, B R R s . ﬁn%lﬁ%%jﬂ%al BT R e E R NULL AR
i -1, BRI s [IE] . A7 2 ek 2 &[] A AR true/false £558, false FoRefat. MR RN
IEH%EHHEE’J% AN AR I A AR R EE, MREMHPyErr_Occurred() %Eﬁ/ﬁﬂnﬁ’f‘k . mit
) ST Sk PH R st IE A ST

il SR B8 B e R B AT 25 A A7k 25 T (per- thread storage) HH A (15 AHE IATE BT 4% 0 A A b il
&S M) . MATAE T AR MR G —: B AEFIANSCR B A B A. M PyErr Occurred ()
ﬂﬁﬁﬁé#ﬁﬁﬁé%ﬁ: 9 N A EE%%WM@W%’JM%NH 5 H) [l NULL. 3 Ak
KRB RAEMRL: PyErr setsString() i AM (EEALE H%EI’J) % 52 B AR BE Y pR X
MPyErr_Clear () J2MARIERRGIIMKRE .

SEREIR B AR RE th = (FF 0T PAE) NULL 1) 0 RALSC: B ANRLIED. S G I AMEL A] . iE S
sys.exc_info ()) Python &5 HAMFE N &5 (H2BMEAME: Python #1437~ i Python try
.. except BAREFA A MBI, Wi C @RI BIINIRREHAEBISME C R IR, HEE
Fj2 Python (e B s 0 EEIR , ZEIE & EELEL sys . exc_info () MERSIEA.

AERE, A€ Python 1.5 BRls, 1€ Python 2 zCHS A7 HU(A1k B8 1Y & 38 HLSC 3R YUAT &% 40 4 1 7 52 I
sys.exc_info () K, blﬁl@Python%zitﬁ%lﬂﬁfﬁllﬁﬁ%‘@%ﬂk%? BEAh, MR USSR A8 T
AR EE e ARk, DA B S o ZOI DR AT AR A AT AR) B SIS AE , RE TT B HCIE L 25 1) 8
SMIREE - LTM%JH?J&I\FBEE%IEW%EPE’J%ﬁﬁ%?}%, ig LR e h 7 00 5 1) pR U 2 0 IR AE B B A 51
TSI R 5 B [) BN (stack frame) 2 BRAY(FIELD 13l AT R L i EIE =

4@%&%&& IR L) 573 — 18] R AR AT 2 SEAT 5 14 R M R A A P I o 5O A5 5 3% 1 B4k, 2R,
UMK B LR A B i3 . EEZEEEHaEmyrrs R, ERg—mesiants, HER
AR T — IS - S RIS gl oh, [EEIS B SR b 5 R i 2

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1
TR C R

10 Chapter 1. &4

https://peps.python.org/pep-0353/

The Python/C API, £[F) 3.11.8

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
I3
const_one = PyLong_FromLong (1L) ;
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

}

BGFRRTHE CRES B goto BUAAMFERN! BMA T APyErr_ExceptionMatches ()
%nPyErr Clear () HIEFAFZEMIBISN, VAKLAPy_XDECREF () HHCE HAr#EA Aol gEE] NULL ()2 18
(HELARR X Py_DECREF() EIBE| NULL 2 IR AT). 22, FIRNTHA 2 R
R b E] NULL DAGEHAEEE AN VER s Ak, mEEgiaE -1 (%), EHAAERE K
I 2 4% A s B

1.6 # A3\ Python

A Python H R IR A (AR IRTEAE) i L O i) — JHE ZAL B Python ELREARAY W1 4G H 5
m)ﬂﬁﬁ B, HLEm R e R BETE BRI A AL AR B
HARITI R R Py_Tnitialize (). BEYIRLHEARABAMNSE, EE7 R builtins,
_main__ M sys. EREPHMELL KRR (sys.path).

Py_Initialize() Ak [EZAT| 833 (script argument list) | (sys.argv). WHEMESEHITH
Python F2=UHEFRZE 48 8, HIWVEREPyConfig.argv MlPyConfig.parse_argv, g HPython #1744
LB E o

1.6. #& AR Python 11

The Python/C API, £[F) 3.11.8

TERZ AL (FHEZAE Unix F1 Windows |, [EVE4IEINEG AIR]), Py _Tnitialize () €% Python
pR 2 AT 38 Python BB W AR R AL B B e, [EFR 5 H B2 Python B %48 n A TAE RO E M
B RRG T AARA I R A . s B AN HE], & Er7E shell AR (BEEE M pATH) HikE
#E) python (ATHATIES, [EIEHACHE &R —HA[E 1ib/pythonx. v ¥ HEIWAHE (7 E

Flan, WRAE /usr/local/bin/python H1#% 3| Python FJ S FTAEZ, Tl K Tlﬁuﬁ" /usr/
local/lib/pythonx.y H. (FE FEMEFEMEEHRE [BHMH (fallback) | (&, #1E PATH FHA
F| & python AT ATRERIREAEF .) 8 A 2 0T DA 8 5 78 PR B 48 WO 7 25 I A7 (E] PYTHONHOME, 1§,
HEM L E PYTHONPATH FEAZIE I A8 mi i 4 A B AN H [E].

MABERBERX T AB BN Py Tnitialize () ZATFERY Py_SetProgramName (file) 23|
W%, FE R PYTHONHOME 134K 78 % & ([F) H PYTHONPATH {5 K46 ATE M B AR A BT . 75 8 52
RN ERERX N EEFE A WPy _GetPath (), Py_GetPrefix ()., Py _GetExecPrefix()
firy GetProgramFullPath () (&FPEFIE Modules/getpath.c),

W 7 B e[T 97 45 46 (uninitialize) | Python. 40, KEFFEX T AEAH L | B B 46 (PR IR
WFulPy Initialize()) 5% Mg M2 X i ¥ M0 5€ B¢ T ¥ Python {9 i 1) (F] AR 2 o ik Python 43 i
i, B ABRIE Py FinalizeEx () H5E . 14 Python & Hi J& it #1 45 15k BE, &
KNPy IsInitialized() € [{# true. 45 BH & L TjH E’JE%%R%T@%EE’J i 4 . nﬁ?I
B Py FinalizeEx () T~ € R Python E 348 /L Ur A sC B a8, B4 H Bl 4835 B alonl 3% sE a4
B4 Eer R f i

1.7 [RIEEE

Python T DAYE 8 B (] 22 5 42 AR08 B Al i e AL B A M A, 8 SO B AR e AT B B
(runtime) ¥ HN 5 BASY (overhead), HIHTEIHE T AEH B .

Python i i i 3 [EIM A 1) Misc/SpecialBuilds. txt LA — 87 £ T bR 8 i 10 52 5 51 3%
[2B F 2 Eti., RO R/ Foas B el o T B B R TR AT i . AN) HL A i o
TR foc i R B

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugto the . /configure command.
It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.

B TR IR 2 IR ST AL, B EATESMOMR A, #52(E Python [RETHE.

“E3E Py_TRACE_REFS KEIH S HBE (B2R#F --with-trace-refs #IH)., WHEHEK, B8
153 Py Ob ject bl i ZE S M L A AE A R (F Y 1 2 8 15] [E) 3 (circular doubly linked list), 4= 4)
et A HEEE. BB A B2 R, (EXEEXT, S84 EESE MR 2 1%,)

HHEZHMET, #52([E) Python JFIAAERAT I ¥ Misc/SpecialBuilds.txt,

12 Chapter 1. &4

CHAPTER 2

C APIIZ2EH

Python 1) C APL Y¢S5 7 [AR AN AL SR s PEP 387 vhr. SR C APT €1 25 A (H YR A (BilAngE 3.9 3
3.10) WMigEfl, (HRZ B LA SR AR RS RIZRRY , S5 SR MK APL, SEEBA APT s([Elk APT {#
B FH 0345wl 182 B o) IR A T

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see -F 4 7= % % 78 below). So, code compiled for Python 3.10.0 will work on 3.10.8
and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

WA R EI RTS8 4 B 2 AL A API (private APD), /2 _Py_InternalState, HIfE7EH T HUA (patch
release) FPHL AT RER L, AN E TR

21 BEMEAEAZEMLSE

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API —for example, embedding Python.

2.1.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API
AL Python . h 2 Bl E FeIL B 42 DU LU 32 R APL, [EJBk#E5Z KR API HUA.

Define Py_LIMITED_APT to the value of PY_VERSTON_HEX corresponding to the lowest Python version
your extension supports. The extension will work without recompilation with all Python 3 releases from the
specified one onward, and can use Limited API introduced up to that version.

B H A PY_VERSTON_HEX E4E, ANUNEIHE (hardcode) e/ MR EHA (11414t Python 3.10
1] 0x030A0000), PASEFEME IR Python RRASHES T4 sk e A7) DRI AR E

YRIZETT DAY Py_LIMITED_API %E3%([F] 3, @8l 0x03020000 (Python 3.2, 5| A T 3ZFR API fAHR
)

13

https://peps.python.org/pep-0387/

The Python/C API, £[F) 3.11.8

2.1.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.

The Stable ABI contains symbols exposed in the Limited API, but also other ones —for example, functions necessary
to support older versions of the Limited APL

7t Windows |, (i JJASE ABI) 9 78 JiE i% L #£ 3 python3.d11 TR 2 45 & A Y sk =0, il
python39.d11,

TERLEF-55 I, Python M2 4R(EINE VA abi3 £EEdy 4 AL ek UM ZE (B8 mymodule.abi3.so),
B IR SR AT AR ABL, FECRA ARG (BETRTA) &k, BlneH 3.10+ %2
B API 72 B 1 5 SE A € [EMR AU A 1 Python JiF Z22€ .

e ABL H T A ek VAR E R SUAFAE R Python 3L 2k, AR MEEIE 4. B e Ml
JRAE] C FEBEBEST (preprocessor) [5 -

2.1.3 R APl jEEFOPEEE

32K APy H e LRt BT Se 241K C APTIEAT T A T REMG A, (HRT RE B IR IERE -

BN, HigkpyLisc_GetItem() W, (HEW [RiE4] BEESMEryList _GET 1TEM() [EIRT A,
E AR BT AR B, DRIE)E o] AMCHE List 902 AR5 e A BEVEAT R

WREA EF% Py_LIMITED_API, — C APl e Al EE 4. 3% Py _LIMITED_API
SRR, ETRE % Python RIS RER OB S AR 2 M, (EnT RE @Ik RE .

A Py _LIMITED_APT EFE, Wl DAREMIRHE AR ABI 2R APL 7. 150l PASE 7% Python
MRARPERE, HEIRGIM AN E. (1 Py_LIMITED_APT i) —H5E, W LATERRE BUAS A 350
AT AT A, R B E% 1Y Python BUANH FHEEATRAS (prerelease).

214 ZPR APl FEEIF

Note that compiling with Py_ LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_APTI only covers definitions, but an API also includes other issues, such as expected
semantics.

Py_LIMITED_APT fBEYVA B 8 — 1 [2 6 FH 7E 81 Python HUAS R AY 5 1 BRI pR 5o 51 2 —1
BHAA#E % NULL AEE]S | #ur sk 30, £E Python 3.9 #1, NULL BIfEfQ 3424 T(E], {HAE Python 3.8 1,
SO E A, B8 NULL BUH 2 B (dereference) H A (crash). FHIAY 5 [HGE H R &5 HE (struct) 1)
WA o

B ERE, EAEF Py_LIMITED_APT Wf, —SgEREMRO H oA ErgibEm, BIEEe 228 API
B3B3

HUESE R, FAM R AT SR I AT A U Python LA SCGHIER T, ([F1H b 6 S A IRAS e A T
.

Mk AR NA MR BN APL) SCF, ME T2 B R 2R APL B ffi 4 @ %
Py LIMITED_APT, —SSf A RIIM & HNERMIFEN (2iFH 2 2mEt, R ma sl
K.

TR, 2R APL A —E 2R E W £ Python 3.8 Wi ffl Py_LIMITED_APT jf:fT 4 sk il W& 1 7o %
fgLA Python 3.12 5847, {HA—5EHELA Python 3.12 %32, 4HEE MRS E ABI LS E, B84 2R API
e e E HFAER .

14 Chapter 2. C API 8

The Python/C API, £[F 3.11.8

22 FHRIBER

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform” . They usually depend on the OS type and
processor architecture

R E 1) Python 375 H #A FALMELR R &1 & LT Python MU AABIHAR & ABI 197 X H
python.orqg FIFF L4 = 83771 Windows F1 macOS i A5 s i 5 (E.

2.3 TR API S

Currently, the Limited API includes the following items:

e PyAlter_Check ()

e PyArg Parse ()

* PyArg ParseTuple ()

* PyArg ParseTupleAndKeywords ()

e PyArg _UnpackTuple ()

* PyArg VaParse ()

* PyArg VaParseTupleAndKeywords ()
* PyArg ValidateKeywordArguments ()
* PyBaseObject_Type

* PyBool FromLong()

* PyBool_Type

* PyBuffer_ FillContiguousStrides ()
* PyBuffer FillInfo()

e PyBuffer_ FromContiguous ()

e PyBuffer GetPointer ()

* PyBuffer_ IsContiguous ()

* PyBuffer Release ()

e PyBuffer SizeFromFormat ()

* PyBuffer_ToContiguous ()

e PyByteArrayIter_Type

e PyByteArray_AsString()

* PyByteArray_ Concat ()

* PyByteArray_ FromObject ()

* PyByteArray_ FromStringAndSize ()
* PyByteArray_Resize()

* PyByteArray_Size ()

¢ PyByteArray_ Type

e PyBytesIter_Type

22. FREIBER 15

The Python/C API, %[3.11.8

PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_ FromFormatV ()
PyBytes_FromObject ()

PyBytes_FromString ()

PyBytes_FromStringAndSize ()

PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionWithKeywords
PyCFunction_Call ()
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEx ()
PyCFunction_Type
PyCMethod_New ()
PyCalllter_ New()
PyCalllter_ Type
PyCallable_Check ()
PyCapsule_Destructor
PyCapsule_GetContext ()
PyCapsule_ GetDestructor()
PyCapsule_GetName ()
PyCapsule_GetPointer ()
PyCapsule Import ()
PyCapsule_IsValid()
PyCapsule_New ()
PyCapsule_SetContext ()
PyCapsule SetDestructor()
PyCapsule_SetName ()
PyCapsule_SetPointer ()

PyCapsule_Type

16

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

PyClassMethodDescr_Type
PyCodec_BackslashReplaceErrors ()
PyCodec_Decode ()
PyCodec_Decoder ()
PyCodec_Encode ()
PyCodec_Encoder ()
PyCodec_IgnoreErrors ()
PyCodec_IncrementalDecoder ()
PyCodec_IncrementalEncoder ()
PyCodec_KnownEncoding ()
PyCodec_LookupError ()
PyCodec_NameReplaceErrors ()
PyCodec_Register ()
PyCodec_RegisterError()
PyCodec_ReplaceErrors ()
PyCodec_StreamReader ()
PyCodec_StreamWriter ()
PyCodec_StrictErrors ()
PyCodec_Unregister ()
PyCodec_XMLCharRefReplaceErrors ()
PyComplex_ FromDoubles ()
PyComplex_ImagAsDouble ()
PyComplex_RealAsDouble ()
PyComplex Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_ Type
PyDictIterKey_Type
PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New ()
PyDictProxy_Type
PyDictRevIterItem_ Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type

PyDictValues_Type

23.

ZMR APl BIFE

17

The Python/C API, %[3.11.8

e PyDict_Clear()

e PyDict_Contains ()

e PyDict_Copy ()

e PyDict_DelItem()

e PyDict_DelItemString()

e PyDict_GetItem()

e PyDict_GetItemString()

e PyDict_GetItemWithError ()
e PyDict_TItems ()

e PyDict_Keys ()

e PyDict_Merge ()

e PyDict_MergeFromSeq2 ()

e PyDict_New /()

e PyDict_Next ()

e PyDict_SetItem()

e PyDict_SetItemString()

e PyDict_Size/()

e PyDict_Type

e PyDict_Update ()

* PyDict_Values ()

* PyEllipsis_Type

¢ PyEnum_Type

* PyErr BadArgument ()

* PyErr BadInternalCall /()

* PyErr CheckSignals ()

* PyErr Clear /()

* PyErr_Display ()

* PyErr ExceptionMatches ()

* PyErr_ Fetch ()

* PyErr Format ()

e PyErr FormatV()

* PyErr GetExcInfo()

* PyErr GetHandledException ()
* PyErr GivenExceptionMatches ()
s PyErr NewException ()

* PyErr NewExceptionWithDoc ()
* PyErr NoMemory ()

e PyErr NormalizeException ()

* PyErr Occurred()

18 Chapter 2. C API 8

The Python/C API, [/ 3.11.8

* PyErr Print ()

* PyErr PrintEx()

e PyErr ProgramText ()

* PyErr ResourceWarning ()

* PyErr Restore()

* PyErr SetExcFromWindowsErr ()

e PyErr SetExcFromWindowsErrWithFilename ()
* PyErr SetExcFromWindowsErrWithFilenameObject ()
* PyErr SetExcFromWindowsErrWithFilenameObjects ()
* PyErr SetExcInfo()

* PyErr SetFromErrno ()

* PyErr SetFromErrnoWithFilename ()

* PyErr SetFromErrnoWithFilenameObject ()
* PyErr SetFromErrnoWithFilenameObjects ()
* PyErr SetFromWindowsErr ()

* PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

* PyErr SetImportError ()

e PyErr SetImportErrorSubclass ()

* PyErr SetInterrupt ()

* PyErr SetInterruptEx()

* PyErr_SetNone ()

* PyErr SetObject ()

* PyErr SetString()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()

* PyErr WarnEx ()

* PyErr WarnExplicit ()

* PyErr WarnFormat ()

* PyErr WriteUnraisable ()

e PyEval_AcquireLock ()

* PyEval AcquireThread()

e PyEval_CallFunction ()

* PyEval_CallMethod()

e PyEval_CallObjectWithKeywords ()

e PyEval_EvalCode ()

* PyEval_ EvalCodeEx ()

* PyEval_ EvalFrame ()

* PyEval_EvalFrameEx ()

2.3. TR API O 19

The Python/C API, £[F) 3.11.8

PyEval_GetBuiltins ()
PyEval_GetFrame ()
PyEval_GetFuncDesc ()
PyEval_GetFuncName ()
PyEval_GetGlobals ()
PyEval_GetLocals ()
PyEval_InitThreads ()
PyEval_ReleaseLock ()
PyEval_ReleaseThread()
PyEval_ RestoreThread()
PyEval_SaveThread/()
PyEval_ThreadsInitialized()
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BaseExceptionGroup
PyExc_BlockingIOError
PyExc_BrokenPipeError
PyExc_BufferError
PyExc_BytesWarning
PyExc_ChildProcessError
PyExc_ConnectionAbortedError
PyExc_ConnectionError
PyExc_ConnectionRefusedError
PyExc_ConnectionResetError
PyExc_DeprecationWarning
PyExc_EOFError
PyExc_EncodingWarning
PyExc_EnvironmentError
PyExc_Exception
PyExc_FileExistsError
PyExc_FileNotFoundError
PyExc_FloatingPointError
PyExc_FutureWarning
PyExc_GeneratorExit
PyExc_IOError
PyExc_ImportError

PyExc_ImportWarning

20

Chapter 2. C API 8

The Python/C API, £[F) 3.11.8

PyExc_IndentationError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_ModuleNotFoundError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError

PyExc_OverflowError

PyExc_PendingDeprecationWarning

PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_RecursionError
PyExc_ReferenceError
PyExc_ResourceWarning
PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsynclteration
PyExc_StopIteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError
PyExc_UnicodeError
PyExc_UnicodeTranslateError
PyExc_UnicodeWarning
PyExc_UserWarning

PyExc_ValueError

2.3.

TR API OE

21

The Python/C API, %[3.11.8

PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetCause ()
PyException_GetContext ()
PyException_GetTraceback ()
PyException_SetCause ()
PyException_SetContext ()
PyException_SetTraceback ()
PyFile_ FromFd()
PyFile_GetLine ()

PyFile _WriteObject ()
PyFile WriteString()
PyFilter_Type
PyFloat_AsDouble ()
PyFloat_FromDouble ()
PyFloat_FromString()
PyFloat_GetInfo ()
PyFloat_GetMax ()
PyFloat_GetMin ()
PyFloat_Type
PyFrameObject
PyFrame_GetCode ()
PyFrame_GetLineNumber ()
PyFrozenSet_New ()
PyFrozenSet_Type
PyGC_Collect ()
PyGC_Disable ()
PyGC_Enable ()
PyGC_IsEnabled()
PyGILState_Ensure ()
PyGILState_GetThisThreadState ()
PyGILState_Release()
PyGILState_ STATE
PyGetSetDef
PyGetSetDescr_Type
PyImport_AddModule ()

PyImport_AddModuleObject ()

22

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

e PyImport_AppendInittab ()

e PyImport_ExecCodeModule ()

* PyImport_ExecCodeModuleEx ()

e PyImport_ExecCodeModuleObject ()
* PyImport_ExecCodeModuleWithPathnames ()
e PyImport_GetImporter ()

e PyImport_GetMagicNumber ()

e PyImport_GetMagicTaqg ()

e PyImport_GetModule ()

* PyImport_GetModuleDict ()

e PyImport_Import ()

* PyImport_ImportFrozenModule ()

¢ PyImport_ImportFrozenModuleObject ()
e PyImport_ImportModule ()

e PyImport_ImportModuleLevel ()

* PyImport_ImportModuleLevelObject ()
e PyImport_ImportModuleNoBlock ()
* PyImport_ReloadModule ()

e PyIndex_Check ()

e PyInterpreterState

* PyInterpreterState_Clear /()

e PyInterpreterState_Delete ()

* PyInterpreterState_Get ()

* PyInterpreterState_GetDict ()

* PyInterpreterState_GetID()

* PyInterpreterState_New ()

* PyIter Check ()

* PyIter_ Next ()

e PyIter_Send()

e PyListIter_Type

e PyListRevIter_Type

e PyList_Append()

e PyList_AsTuple ()

e PyList_GetItem()

e PyList_GetSlice()

e PyList_Insert ()

* PyList_New/()

e PyList_Reverse()

e PyList_SetItem()

2.3. TR API O 23

The Python/C API, %[3.11.8

PyList_SetSlice ()
PyList_Size()

PyList_Sort ()

PyList_Type

PyLongObject
PyLongRangelIter_Type
PyLong_AsDouble ()
PyLong_AsLong()
PyLong_AsLongAndOverflow ()
PyLong_AsLongLong ()

PyLong AsLongLongAndOverflow()
PyLong_AsSize_t ()

PyLong AsSsize_t ()
PyLong_AsUnsignedLong ()
PyLong_AsUnsignedLongLong ()
PyLong_AsUnsignedLongLongMask ()
PyLong_AsUnsignedLongMask ()
PyLong_AsVoidPtr ()
PyLong_FromDouble ()
PyLong_FromLong ()
PyLong_FromLongLong ()
PyLong_FromSize_t ()

PyLong FromSsize_ t ()
PyLong_FromString()
PyLong_FromUnsignedLong ()
PyLong_FromUnsignedLongLong ()
PyLong_FromVoidPtr ()
PyLong_GetInfo ()
PyLong_Type

PyMap_Type

PyMapping_ Check ()

PyMapping GetItemString ()
PyMapping_HasKey ()
PyMapping HasKeyString ()
PyMapping Items ()
PyMapping_Keys ()

PyMapping Length ()
PyMapping_SetItemString ()

PyMapping Size ()

24

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

* PyMapping_ Values ()

* PyMem Calloc ()

* PyMem Free()

* PyMem Malloc ()

* PyMem Realloc ()

* PyMemberDef

* PyMemberDescr_Type

e PyMemoryView_ FromBuffer ()
* PyMemoryView_FromMemory ()
* PyMemoryView_FromObject ()
e PyMemoryView_ GetContiguous ()
s PyMemoryView_Type

e PyMethodDef

* PyMethodDescr_Type

e PyModuleDef

e PyModuleDef_Base

* PyModuleDef_ Init ()

* PyModuleDef_ Type

e PyModule_ AddFunctions ()

* PyModule AddIntConstant ()
* PyModule_ AddObject ()

e PyModule_AddObjectRef ()

* PyModule_AddStringConstant ()
* PyModule_ AddType ()

s PyModule_Createl ()

e PyModule_ ExecDef ()

e PyModule FromDefAndSpecZ ()
* PyModule_GetDef ()

e PyModule_GetDict ()

e PyModule_GetFilename ()

* PyModule_GetFilenameObject ()
* PyModule_GetName ()

e PyModule_GetNameObject ()

e PyModule_GetState()

* PyModule New ()

e PyModule_NewObject ()

e PyModule_SetDocString()

e PyModule_Type

e PyNumber_Absolute ()

2.3. TR API O 25

The Python/C API, %[3.11.8

PyNumber_Add ()

PyNumber_And ()

PyNumber_ AsSsize_t ()
PyNumber_Check ()
PyNumber_Divmod ()
PyNumber_Float ()
PyNumber_ FloorDivide ()
PyNumber_InPlaceAdd()
PyNumber_ InPlaceAnd()
PyNumber_InPlaceFloorDivide ()
PyNumber_ InPlaceLshift ()
PyNumber_InPlaceMatrixMultiply ()
PyNumber_InPlaceMultiply ()
PyNumber_InPlaceOr ()
PyNumber_InPlacePower ()
PyNumber_InPlaceRemainder ()
PyNumber_InPlaceRshift ()
PyNumber_InPlaceSubtract ()
PyNumber_InPlaceTrueDivide ()
PyNumber_InPlaceXor ()
PyNumber_Index ()
PyNumber_Invert ()
PyNumber_Long ()
PyNumber_Lshift ()

PyNumber_ MatrixMultiply ()
PyNumber Multiply ()
PyNumber_Negative ()
PyNumber_Or ()
PyNumber_Positive ()
PyNumber_Power ()
PyNumber_Remainder ()
PyNumber_ Rshift ()
PyNumber_Subtract ()
PyNumber__ToBase ()
PyNumber_TrueDivide ()
PyNumber_Xor ()
PyOS_AfterFork ()
PyOS_AfterFork_Child()

PyOS_AfterFork_Parent ()

26

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

* PyOS_BeforeFork ()

* PyOS_CheckStack ()

* PyOS_FSPath ()

* PyOS_InputHook

* PyOS_InterruptOccurred ()

* PyOS_double_to_string()

* PyOS_getsig()

e PyOS_mystricmp ()

* PyOS_mystrnicmp ()

* PyOS_setsiqg()

* PyOS_sighandler_ t

* PyOS_snprintf ()

* PyOS _string_to_double ()

* PyOS_strtol ()

e PyOS_strtoul ()

* PyOS_vsnprintf ()

s PyObject

* PyObject.ob_refcnt

e PyObject.ob_type

e PyObject_ASCII()

* PyObject_AsCharBuffer ()

* PyObject_AsFileDescriptor ()
* PyObject_AsReadBuffer ()

e PyObject_AsWriteBuffer()

s PyObject_Bytes ()

e PyObject_Call ()

* PyObject_CallFunction()

* PyObject_CallFunctionObjArgs ()
e PyObject_CallMethod()

* PyObject_CallMethodObjArgs ()
* PyObject_CallNoArgs ()

* PyObject_CallObject ()

* PyObject_Calloc/()

* PyObject_CheckBuffer ()

e PyObject_CheckReadBuffer ()
* PyObject_ClearWeakRefs ()

e PyObject_CopyData ()

* PyObject_DelItem()

* PyObject_DelItemString()

2.3. TR API O 27

The Python/C API, %[3.11.8

PyObject_Dir ()
PyObject_Format ()
PyObject_Free ()
PyObject_GC_Del ()
PyObject_GC_IsFinalized/()
PyObject_GC_IsTracked()
PyObject_GC_Track()
PyObject_GC_UnTrack ()
PyObject_GenericGetAttr ()
PyObject_GenericGetDict ()
PyObject_GenericSetAttr()
PyObject_GenericSetDict ()
PyObject_GetAIlIter()
PyObject_GetAttr()
PyObject_GetAttrString/()
PyObject_GetBuffer ()
PyObject_GetItem()
PyObject_GetIter()
PyObject_HasAttr ()
PyObject_HasAttrString()

PyObject_Hash ()

PyObject_HashNotImplemented ()

PyObject_Init ()
PyObject_InitVar()
PyObject_IsInstance()
PyObject_IsSubclass ()
PyObject_IsTrue ()
PyObject_Length ()
PyObject_Malloc ()
PyObject_Not ()
PyObject_Realloc ()
PyObject_Repr ()
PyObject_RichCompare ()
PyObject_RichCompareBool ()
PyObject_SelflIter ()
PyObject_SetAttr()
PyObject_SetAttrString/()
PyObject_SetItem()

PyObject_Size ()

28

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

* PyObject_Str()

e PyObject_Type ()

* PyProperty_ Type

¢ PyRangelIter_Type

* PyRange_Type

* PyReversed_Type

* PySeqlter_New/()

* PySeqglter_ Type

e PySequence_Check ()

* PySequence_Concat ()

e PySequence_Contains ()
e PySequence_Count ()

s PySequence_DelItem()
* PySequence_DelSlice ()
* PySequence_Fast ()

e PySequence_GetItem()
* PySequence_GetSlice ()
* PySequence_In()

e PySequence_InPlaceConcat ()
* PySequence_InPlaceRepeat ()
* PySequence_Index ()

e PySequence_Length ()

* PySequence_List ()

* PySequence_Repeat ()

* PySequence_SetItem()
e PySequence_SetSlice ()
s PySequence_Size ()

* PySequence_Tuple ()

e PySetIter_Type

* PySet_Add()

e PySet_Clear()

* PySet_Contains ()

e PySet_Discard()

e PySet_New ()

s PySet_Pop ()

e PySet_Size()

e PySet_Type

e PySlice_AdjustIndices ()

* PySlice_GetIndices ()

2.3. TR API O 29

The Python/C API, %[3.11.8

e PySlice_GetIndicesEx ()

e PySlice_New/()

e PySlice_ Type

e PySlice_Unpack ()

e PyState_AddModule ()

s PyState_ FindModule ()

* PyState_RemoveModule ()

e PyStructSequence_Desc

* PyStructSequence_Field

* PyStructSequence_GetItem/()
e PyStructSequence_New ()

e PyStructSequence_NewType ()
e PyStructSequence_SetItem()
* PyStructSequence_UnnamedField
* PySuper_Type

* PySys_AddWarnOption ()

* PySys_AddWarnOptionUnicode ()
* PySys_AddXOption ()

* PySys_FormatStderr ()

* PySys_FormatStdout ()

* PySys_GetObject ()

* PySys_GetXOptions ()

* PySys_HasWarnOptions ()

* PySys_ResetWarnOptions ()

* PySys_SetArgv ()

* PySys_SetArgvEx ()

* PySys_SetObject ()

* PySys_SetPath ()

* PySys_WriteStderr()

* PySys_WriteStdout ()

* PyThreadState

* PyThreadState_Clear ()

e PyThreadState_Delete ()

* PyThreadState_Get ()

* PyThreadState_GetDict ()

* PyThreadState_GetFrame ()

e PyThreadState_GetID()

e PyThreadState_GetInterpreter()

* PyThreadState_New ()

30 Chapter 2. C API 8

The Python/C API, [/ 3.11.8

PyThreadState_SetAsyncExc ()
PyThreadState_Swap ()
PyThread_GetInfo()

PyThread ReInitTLS ()
PyThread_acquire_lock ()
PyThread_acquire_lock_timed()
PyThread_allocate_lock ()
PyThread_create_key ()
PyThread _delete_key ()
PyThread delete_key value ()
PyThread_exit_thread()
PyThread_free_lock ()
PyThread_get_key_value ()
PyThread_get_stacksize ()

PyThread_get_thread_ident ()

PyThread_get_thread_native_id()

PyThread_init_thread()
PyThread_release_lock()
PyThread_set_key_value ()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_tss_alloc()
PyThread_tss_create()
PyThread_tss_delete ()
PyThread_tss_free()
PyThread_ tss_get ()
PyThread tss_is_created()
PyThread_ tss_set ()
PyTraceBack_Here ()
PyTraceBack_Print ()
PyTraceBack_Type
PyTuplelIter_Type
PyTuple_ GetItem()
PyTuple_GetSlice ()
PyTuple_New()

PyTuple Pack ()
PyTuple_SetItem()
PyTuple_Size ()

PyTuple_Type

23.

ZMR APl BIFE

31

The Python/C API, %[3.11.8

PyTypeObject

PyType_ClearCache ()
PyType_FromModuleAndSpec ()
PyType_FromSpec ()
PyType_FromSpecWithBases ()
PyType_GenericAlloc ()
PyType_GenericNew ()
PyType_GetFlags ()
PyType_GetModule ()
PyType_GetModuleState ()
PyType_GetName ()
PyType_GetQualName ()
PyType_GetSlot ()
PyType_IsSubtype()
PyType_Modified()

PyType_Ready ()

PyType_Slot

PyType_Spec

PyType_Type
PyUnicodeDecodeError_Create ()
PyUnicodeDecodeError_GetEncoding ()
PyUnicodeDecodeError_GetEnd/()
PyUnicodeDecodeError_GetObject ()
PyUnicodeDecodeError_GetReason ()
PyUnicodeDecodeError_GetStart ()
PyUnicodeDecodeError_SetEnd/()
PyUnicodeDecodeError_SetReason ()
PyUnicodeDecodeError_SetStart ()
PyUnicodeEncodeError_GetEncoding ()
PyUnicodeEncodeError_GetEnd/()
PyUnicodeEncodeError_GetObject ()
PyUnicodeEncodeError_GetReason ()
PyUnicodeEncodeError_GetStart ()
PyUnicodeEncodeError_SetEnd()
PyUnicodeEncodeError_SetReason ()
PyUnicodeEncodeError_SetStart ()
PyUnicodelIter_Type
PyUnicodeTranslateError_GetEnd()

PyUnicodeTranslateError GetObject ()

32

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()
PyUnicode_Append ()
PyUnicode_AppendAndDel ()
PyUnicode_AsASCIIString/()
PyUnicode_AsCharmapString ()
PyUnicode_AsDecodedObject ()
PyUnicode_AsDecodedUnicode ()
PyUnicode_AsEncodedObject ()
PyUnicode_AsEncodedString ()
PyUnicode_AsEncodedUnicode ()
PyUnicode_AsLatinlString()

PyUnicode_AsMBCSString ()

PyUnicode_AsRawUnicodeEscapeString ()

PyUnicode_AsUCS4 ()
PyUnicode_AsUCS4Copy ()
PyUnicode_AsUTF16String()
PyUnicode_ AsUTF32String ()
PyUnicode_AsUTF8AndSize ()
PyUnicode_AsUTF8String ()
PyUnicode_AsUnicodeEscapeString()
PyUnicode_AsWideChar ()
PyUnicode_AsWideCharString/()
PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCII ()
PyUnicode_DecodeCharmap ()
PyUnicode_DecodeCodePageStateful ()
PyUnicode_DecodeFSDefault ()
PyUnicode_DecodeFSDefaultAndSize ()

PyUnicode_DecodeLatinl ()

23.

ZMR APl BIFE

33

The Python/C API, %[3.11.8

PyUnicode_DecodeLocale ()

PyUnicode_DecodeLocaleAndSize ()

PyUnicode_DecodeMBCS ()

PyUnicode_DecodeMBCSStateful ()

PyUnicode_DecodeRawUnicodeEscape ()

PyUnicode_DecodeUTF16 ()

PyUnicode_DecodeUTFl6Stateful ()

PyUnicode_DecodeUTF32 ()

PyUnicode_DecodeUTF32Stateful ()

PyUnicode_DecodeUTF7()
PyUnicode_DecodeUTF7Stateful ()
PyUnicode_DecodeUTF8 ()

PyUnicode_DecodeUTF8Stateful ()

PyUnicode_DecodeUnicodeEscape ()

PyUnicode_EncodeCodePage ()
PyUnicode_EncodeFSDefault ()
PyUnicode_EncodeLocale ()
PyUnicode_FSConverter()
PyUnicode_FSDecoder ()
PyUnicode_Find/()
PyUnicode_FindChar ()
PyUnicode_Format ()
PyUnicode_FromEncodedObject ()
PyUnicode_ FromFormat ()
PyUnicode_FromFormatV ()
PyUnicode_FromObject ()
PyUnicode_FromOrdinal ()
PyUnicode_FromString()
PyUnicode_FromStringAndSize ()
PyUnicode_FromWideChar ()
PyUnicode_GetDefaultEncoding ()
PyUnicode_GetLength ()
PyUnicode_GetSize ()
PyUnicode_InternFromString()
PyUnicode_InternImmortal ()
PyUnicode_InternInPlace ()
PyUnicode_IsIdentifier()
PyUnicode_Join ()

PyUnicode_Partition ()

34

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

PyUnicode_RPartition ()
PyUnicode_RSplit ()
PyUnicode_ReadChar ()
PyUnicode_Replace ()
PyUnicode_Resize ()
PyUnicode_RichCompare ()
PyUnicode_Split ()
PyUnicode_Splitlines()
PyUnicode_Substring()
PyUnicode_Tailmatch ()
PyUnicode_Translate ()
PyUnicode_Type
PyUnicode_WriteChar ()
PyVarObject
PyVarObject.ob_base
PyVarObject.ob_size
PyWeakReference
PylWeakref_GetObject ()
PyWeakref NewProxy ()
PyWeakref_NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type

Py _AddPendingCall ()

Py AtExit ()

Py BEGIN_ALLOW_THREADS
Py _BLOCK_THREADS
Py_BuildValue ()
Py_BytesMain ()
Py_CompileString/()
Py_DecRef ()
Py_DecodeLocale ()

Py END_ALLOW_THREADS
Py_EncodeLocale ()
Py_EndInterpreter()
Py_EnterRecursiveCall ()
Py _Exit ()
Py_FatalError ()

Py_FileSystemDefaultEncodeErrors

23.

ZMR APl BIFE

35

The Python/C API, %[3.11.8

Py_FileSystemDefaultEncoding
Py Finalize()

Py FinalizeEx ()
Py_GenericAlias ()
Py_GenericAliasType

Py _GetBuildInfo ()
Py_GetCompiler ()
Py_GetCopyright ()

Py GetExecPrefix()
Py_GetPath()

Py _GetPlatform()

Py GetPrefix()
Py_GetProgramFullPath ()
Py_GetProgramName ()
Py_GetPythonHome ()
Py_GetRecursionLimit ()
Py _GetVersion ()
Py_HasFileSystemDefaultEncoding
Py_IncRef ()
Py_Initialize()

Py InitializeEx()
Py_Is()

Py_IsFalse()

Py IsInitialized()
Py_IsNone ()

Py _IsTrue ()

Py _LeaveRecursiveCall ()
Py Main()
Py_MakePendingCalls ()
Py_NewInterpreter()
Py_NewRef ()

Py _ReprEnter()
Py_ReprLeave ()
Py_SetPath()

Py SetProgramName ()
Py_SetPythonHome ()
Py_SetRecursionLimit ()
Py _UCS4

Py _UNBLOCK_THREADS

36

Chapter 2. C API 8

The Python/C API, [/ 3.11.8

e Py_UTF8Mode

* Py VaBuildValue ()
* Py Version

* Py XNewRef ()

* Py _buffer

e Py_intptr_t

* Py ssize_t

e Py_uintptr_t

* allocfunc

* binaryfunc

* descrgetfunc

* descrsetfunc

* destructor

* getattrfunc

* getattrofunc

s getiterfunc

* getter

* hashfunc

* initproc

* inquiry

s iternextfunc

* lenfunc

* newfunc

* objobjargproc

* objobjproc

* reprfunc

e richcmpfunc

* setattrfunc

* setattrofunc

* setter

* ssizeargfunc

* ssizeobjargproc
* ssizessizeargfunc
* ssizessizeobjargproc
* symtable

* ternaryfunc

* traverseproc

* unaryfunc

s visitproc

2.3. TR API O 37

The Python/C API, £[F) 3.11.8

38 Chapter 2. C API 8

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input,and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.

int Py_Madin (int argc, wchar_t **argv)

Fart of the Stable ABI. The main program for the standard interpreter. This is made available for programs
which embed Python. The argc and argv parameters should be prepared exactly as those which are passed to
a C program’s main () function (converted to wchar_t according to the user’s locale). It is important to note
that the argument list may be modified (but the contents of the strings pointed to by the argument list are not).
The return value will be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits
due to an exception, or 2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py_ InspectFlag is not set.

int Py_BytesMain (int argc, char **argv)

Fart of the Stable ABI since version 3.8. Similar to Py_Main () but argv is an array of bytes strings.

1E 3.8 UFTNA.
int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.
int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.
int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to
NULL.

39

The Python/C API, £[F) 3.11.8

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop (), otherwise return the re-
sult of PyRun_SimpleFile(). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If filename is NULL, this function uses " 2?2 " as the filename. If closeit
is true, the file is closed before PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the
PyCompilerFlags* argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main___ module according to the flags argument.
If _ _main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

#%(E): On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.ps1 and sys.ps?2. filename is decoded from the filesystem
encoding and error handler.

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys .ps1 and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)

Part of the Stable ABI. Can be set to point to a function with the prototype int func (void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the
terminal. The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt
with other event loops, as done in the Modules/_tkinter. c in the Python source code.

40 Chapter 3. The Very High Level Layer

The Python/C API, £[F) 3.11.8

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char¥)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s
prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of in-
put from the provided standard input file, returning the resulting string. For example, The readl ine module
sets this hook to provide line-editing and tab-completion features.

The result must be a string allocated by PyMem_RawMalloc () or PyMem_RawRealloc (), or NULL if
an error occurred.

T 3.4 5% 55 The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem Realloc ().

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)

EI4% 15 #rey 4 P&, This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
B & 18 #ay % H&., Execute Python source code from s in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse
the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

WI{244: #ray 488, This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set
to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit)
E1% 15 #rey 4 P&, This is a simplified interface to PyRun_FileExFlags () below, leaving flags set
to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
%15 #rhY 4 R& ., This is a simplified interface to PyRun_FileExFlags () below, leaving closeit set
to 0.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals,
int closeit, PyCompilerFlags *flags)
B 4&4E: #Fa49 4 P8, Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

1% 44 : #7849 % H& , Part of the Stable ABI This is a simplified interface to Py CompileStringFlags ()
below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

W 1% 1A #4948, This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags,
int optimize)
w1318 #ag4 &, Parse and compile the Python source code in sir, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should
be Py_eval_ input,Py_file_input,or Py_single_input. The filename specified by filename is
used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

41

The Python/C API, £[F) 3.11.8

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

1E 3.4 JEGHT A
PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags, int optimize)
ERAE: #ay4RE, Like Py CompileStringObject (), but filename is a byte string decoded from

the filesystem encoding and error handler.

1 3.2 BUHT A
PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)

EAR{E: #rag % P&, Part of the Stable ABI. This is a simplified interface to PyEval_EvalCodeEx (),
with just the code object, and global and local variables. The other arguments are set to NULL.

PyObject *PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const ¥*kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

E) 1% 14 - #7644 4 P& . Part of the Stable ABI. Evaluate a precompiled code object, given a particular environment
for its evaluation. This environment consists of a dictionary of global variables, a mapping object of local
variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments
and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
EIMR1E: #hy 4 B&, Part of the Stable ABL Evaluate an execution frame. This is a simplified interface to
PyEval_FEvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
EI{E44: #7849 %P4, Part of the Stable ABI. This is the main, unvarnished function of Python interpretation.
The code object associated with the execution frame f is executed, interpreting bytecode and executing calls
as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

TE 3.4 Hi i) 5% 5 This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString ().

intPy_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_ CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString ().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modifica-
tiondue to from __ future_ import is discarded.

int cf_flags
Compiler flags.

42 Chapter 3. The Very High Level Layer

The Python/C API, £[F) 3.11.8

int c£_feature_version
¢f_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flagissetin cf_flags.
TE 3.8 IRISETE: ik of feature_version ff{57 .

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as "true division” according to PEP
238.

43

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0238/

The Python/C API, £[F) 3.11.8

44 Chapter 3. The Very High Level Layer

cHAPTER 4

A) B S B Python 114 2 BGHTH
void Py_ INCREF (PyObject *0)

Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

U bR 30 R4 7] % e T (in-place) BEFIFIE] 4 12, Py NewRef () Rz] A 27 B (E)

%08,
When done using the object, release it by calling Py DECREF ().
A2 REE] NULL; AR HEE B A2 NULL, s Py_XINCREE ().
Do not expect this function to actually modify o in any way.
void Py_XINCREF (PyObject *0)
Similar to Py_ TNCREF (), but the object o can be NULL, in which case this has no effect.
B R Py _XNewRef (),
PyObject *Py_NewRef£ (PyObject *0)

Part of the Stable ABI since version 3.10. Create a new strong reference to an object: call Py TNCREF () on
o0 and return the object o.

When the strong reference is no longer needed, Py_DECREF () should be called on it to release the reference.
YIE o REEEI NULL; #0123 o W[PAEI NULL, HIffiffiPy_xNewRef ().
S5 <[]

Py_INCREF (obj) ;
self->attr = obj;

AT DARS I

[self—>attr = Py_NewRef (obj) ;

FiEsFlpy_INCREF (),
1E 3.10 BUGHTIN A

45

The Python/C API, £[F) 3.11.8

PyObject *Py_XNewRe£ (PyObject *0)
Part of the Stable ABI since version 3.10. BiPy_NewRef () JE{L, {B#{4: o 7 PAEI NULL,
WERYIF o E NULL, HIJ3Z ek 0[] {4 NUL L,
1E 3.10 BT

void Py_DECREF (PyObject *0)

Release a strong reference to object o, indicating the reference is no longer used.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deal-
location function (which must not be NULL) is invoked.

1 R A B AR IR 1 ek i [E g B 4 1
WA EEE NULL; WURARATEE B AR NULL, s Py _XDECREF (),

Do not expect this function to actually modify o in any way.

% . The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
witha __del__ () method is deallocated). While exceptions in such code are not propagated, the exe-
cuted code has free access to all Python global variables. This means that any object that is reachable from
a global variable should be in a consistent state before Py DECREF () is invoked. For example, code to
delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py DECREF () for the temporary variable.

void Py_XDECREF (PyObject *0)
Similar to Py_ DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF () applies here as well.

void Py_CLEAR (PyObject *0)

Release a strong reference for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF (), except that the argument is also set to NULL. The
warning for Py_ DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

void Py_IncRef (PyObject *0)
Part of the Stable ABIL Indicate taking a new strong reference to object o. A function version of
Py_XINCREF (). It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)
Fart of the Stable ABI. Release a strong reference to object o. A function version of Py_ XDECREF (). It can
be used for runtime dynamic embedding of Python.

AR B EEAEEESZOEBEM H: Py Dealloc(). _Py_ForgetReference ().
_Py_NewReference () PANEIEE _Py_RefTotal,

46 Chapter 4. £BB518

CHAPTER D

Bl5h R

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL
if they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_ * functions return 1
for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should rot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

#iE): The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that
is not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has
therefore stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.
void PyErr_ PrintEx (int set_sys_last_vars)

Part of the Stable ABI. Print a standard traceback to sys . stderr and clear the error indicator. Unless the
error is a SystemEx1it, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

47

The Python/C API, £[F) 3.11.8

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_ Print ()
Part of the Stable ABL. PyErr_PrintEx (1) fIE4.

void PyErr_WriteUnraisable (PyObject *obj)
Fart of the Stable ABI. Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is

impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)

Fart of the Stable ABIL This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need
not create a new strong reference to it (e.g. with Py TNCREF ()). The second argument is an error message;
it is decoded from 'utf-8"'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Fart of the Stable ABI. This function is similar to PyErr_SetString () butlets you specify an arbitrary
Python object for the “value” of the exception.

PyObject *PyErr_Format (PyObject *exception, const char *format, ...)

1% 14 : 4% [F) NULL, Part of the Stable ABI This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyUnicode_FromFormat (). format is an ASCII-
encoded string.

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
EME1E: 4852 [F] NULL, Part of the Stable ABI since version 3.5. Same as PyErr_Format (), but taking

ava_list argument rather than a variable number of arguments.

TE 3.5 BUHT A
void PyErr_SetNone (PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()

Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject *PyErr_NoMemory ()

w iR fE: 4 7 NULL, Part of the Stable ABIL This is a shorthand for
PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can
write return PyErr_NoMemory () ; when it runs out of memory.

48 Chapter 5. f§i|5nEHE

The Python/C API, £[F) 3.11.8

PyObject *PyErr_SetFromErrno (PyObject *type)

E%14: 4% [FE] NULL. Partof the Stable ABI. This is a convenience function to raise an exception when
a C library function has returned an error and set the C variable errno. It constructs a tuple object whose
first item is the integer errno value and whose second item is the corresponding error message (gotten from
strerror ()),andthencallsPyErr_SetObject (type, object). OnUnix, whenthe errno value
is EINTR, indicating an interrupted system call, this calls PyErr_ CheckSignals (), and if that set the
error indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system
call can write return PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
EI4% 44 : 48.% [F] NULL, Part of the Stable ABI. Similarto PyErr_SetFromErrno (), with the additional

behavior that if filenameObject is not NULL, it is passed to the constructor of fype as a third parameter. In the
case of OSError exception, this is used to define the £i 1ename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
1G7 A I S NULL, Part of the Stable ABI since version 3.7. Similar to
PyErr SetFromErrnoWithFilenameObject (), but takes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

TE 3.4 BOHT A
PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

= % fEr B R NULL., Part of the Stable ABL Similar to
PyErr_SetFromErrnoWithFilenameObject (), but the filename is given as a C string. file-
name is decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

EIM& 14 : 48 % [F) NULL. Part of the Stable ABI on Windows since version 3.7. This is a convenience function
toraise WindowsError. If called with ierr of 0, the error code returned by a call to GetLastError () is
used instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error
code given by ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value
and whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

1 : Windows.,

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
G S T N NULL., Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

W : Windows,

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

AR A AR NULL, Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is de-
coded from the filesystem encoding (os.fsdecode ()) and passed to the constructor of OSError as a
third parameter to be used to define the £ilename attribute of the exception instance.

% : Windows,
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

AR A B R NULL, Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is
passed to the constructor of OSError as a third parameter to be used to define the £i lename attribute of
the exception instance.

% : Windows,

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename?2)

5.2. Raising exceptions 49

The Python/C API, £[F) 3.11.8

AR A 4R NULL, Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_ SetExcFromWindowsErrWithFilenameObject (), butaccepts a second filename object.

1 : Windows,
TE 3.4 BUBTIA.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char
*filename)

w AR fE: 48R NULL, Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilename (), with an additional parameter specifying the excep-
tion type to be raised.

1 : Windows,
PyObject *PyErr_SetImportError (PyObject ¥msg, PyObject *name, PyObject *path)
E) % 18: 4% [F) NULL, Part of the Stable ABI since version 3.7. This is a convenience function to raise

ImportError. msg will be set as the exception’s message string. name and path, both of which can be
NULL, will be set as the ImportError’s respective name and path attributes.

e 3.3 BRI
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)

E1& 14 : 48 % [FI NULL. Partof the Stable ABI since version 3.6. Muchlike PyErr Set ImportError ()
but this function allows for specifying a subclass of ImportError to raise.

AE 3.6 BB A

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exceptionis nota SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

1E 3.4 BRI

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)

Part of the Stable ABI since version 3.7. Like PyErr SyntaxLocationObject (), but filename is a
byte string decoded from the filesystem encoding and error handler.

TE 3.2 JCHT A

void PyErr_SyntaxLocation (const char *filename, int lineno)

Fart of the Stable ABI. Like PyErr_SyntaxLocationEx (), butthe col_offset parameter is omitted.

void PyErr_BadInternalCall ()

Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_SystemError,
message), where message indicates that an internal operation (e.g. a Python/C API function) was invoked
with an illegal argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually
printed, nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its
normal exception handling (for example, Py_ DECREF () owned references and return an error value).

50 Chapter 5. f§i|5nEHE

The Python/C API, £[F) 3.11.8

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Fart of the Stable ABL Issue a warning message. The category argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning Cate-
gories.

For information about warning control, see the documentation for the warnings module and the —W option
in the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

TE 3.4 BUB A

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Part of the Stable ABI. Similar to PyErr_ WarnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.
int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)

Part of the Stable ABI. Function similar to PyErr_ WarnEx (), butuse PyUnicode_FromFormat () to
format the warning message. format is an ASClII-encoded string.

15 3.2 BT

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)

Part of the Stable ABI since version 3.6. Function similar to PyErr_WarnFormat (), but category is
ResourceWarning and it passes source to warnings .WarningMessage.

e 3.6 BT

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()

EMEAE: 45 F %88, Part of the Stable ABI. Test whether the error indicator is set. If set, return the exception
type (the first argument to the last call to one of the PyErr_Set * functions or to PyErr_Restore ()). If
not set, return NULL. You do not own a reference to the return value, so you do not need to Py DECREF ()
it.

The caller must hold the GIL.

#i[E): Do not compare the return value to a specific exception; use PyErr ExceptionMatches ()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a
class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Part of the Stable ABI. Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (),

exc). This should only be called when an exception is actually set; a memory access violation will occur
if no exception has been raised.

5.4. Querying the error indicator 51

The Python/C API, £[F) 3.11.8

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)

Fart of the Stable ABI. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Fart of the Stable ABI. Retrieve the error indicator into three variables whose addresses are passed. If the error
indicator is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be NULL even when the type object is not.

#[E): This function is normally only used by code that needs to catch exceptions or by code that needs to
save and restore the error indicator temporarily, e.g.:

s Y
{
PyObject *type, *value,
PyErr_Fetch (&type,

*traceback;
&value, &traceback);

/* ... code that might produce other errors ... */
PyErr_Restore (type,

value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Fart of the Stable ABI. Set the error indicator from the three objects. If the error indicator is already set, it is
cleared first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL
value or traceback. The exception type should be a class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call takes away a reference to each object: you
must own a reference to each object before the call and after the call you no longer own these references. (If
you don’t understand this, don’t use this function. I warned you.)

#5(E): This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_ NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Part of the Stable ABI. Under certain circumstances, the values returned by PyErr_Fetch () below can
be “unnormalized”, meaning that *exc is a class object but *val is not an instance of the same class. This
function can be used to instantiate the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

#E): This function does not implicitly set the __t raceback___ attribute on the exception value. If setting
the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val,

}

tb);

PyObject *PyErr_GetHandledException (void)

Part of the Stable ABI since version 3.11. Retrieve the active exception instance, as would be returned by
sys.exception (). This refers to an exception that was already caught, not to an exception that was
freshly raised. Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception
state.

#[E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetHandledException ()

52

Chapter 5. f§i|5nEHE

The Python/C API, £[F) 3.11.8

to restore or clear the exception state.

e 311 BOFTIA.

void PyErr_SetHandledException (PyObject *exc)

Part of the Stable ABI since version 3.11. Set the active exception, as known from sys.exception ().
This refers to an exception that was already caught, not to an exception that was freshly raised. To clear the
exception state, pass NULL.

#[E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException ()
to get the exception state.

15 311 BRI

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI since version 3.7. Retrieve the old-style representation of the exception info, as
known from sys.exc_info (). This refers to an exception that was already caught, not to an excep-
tion that was freshly raised. Returns new references for the three objects, any of which may be NULL.
Does not modify the exception info state. This function is kept for backwards compatibility. Prefer using
PyErr_GetHandledException().

#(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetExcInfo () to restore or
clear the exception state.

e 3.3 BUHTIA.
void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Part of the Stable ABI since version 3.7. Set the exception info, as known from sys.exc_info (). This
refers to an exception that was already caught, not to an exception that was freshly raised. This function steals
the references of the arguments. To clear the exception state, pass NULL for all three arguments. This function
is kept for backwards compatibility. Prefer using PyErr_ SetHandledException ().

#i(E): This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () toread
the exception state.

1E 3.3 JUHT A

JE 3.11 Jiu 5% T: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals
references of all three arguments.

5.5 Signal Handling

int PyErr_CheckSignals ()
Fart of the Stable ABI. This function interacts with Python’s signal handling.
If the function is called from the main thread and under the main Python interpreter, it checks whether a signal

has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

5.5. Signal Handling 53

The Python/C API, £[F) 3.11.8

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns —1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr_ CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

#[E): The default Python signal handler for STGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Part of the Stable ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

#i(E): This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int sighum)

Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time
PyErr_CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers to be
invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to interrupt
an operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFLor signal.SIG_IGN), it will
be ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, O is returned. The
error indicator is never changed by this function.

#5(El: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

e 3.10 BOFTIA.

int PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value —1 disables the feature; this is the initial state. This is equivalentto signal.set_wakeup_f£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

TE 3.5 fiR {52 5 On Windows, the function now also supports socket handles.

5.6 BIshE

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

B {§ 44 : #7849 %8 . Part of the Stable ABI. This utility function creates and returns a new exception class. The
name argument must be the name of the new exception, a C string of the form module.classname. The
base and dict arguments are normally NULL. This creates a class object derived from Except ion (accessible
in C as PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate

54

Chapter 5. f§i|5nEHE

The Python/C API, £[F) 3.11.8

base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject
*dict)

IR A #7494 0%, Part of the Stable ABL Same as PyErr NewException (), except that the new
exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the
exception class.

e 3.2 JHTIA.

5.7 ISt

PyObject *PyException_GetTraceback (PyObject *ex)
B4R 1A - #7404 % B& . Part of the Stable ABI. Return the traceback associated with the exception as a new refer-
ence, as accessible from Python through the __traceback___ attribute. If there is no traceback associated,
this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Fart of the Stable ABI. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
B4R 45 ey % B&, Part of the Stable ABIL. Return the context (another exception instance during whose
handling ex was raised) associated with the exception as a new reference, as accessible from Python through
the __context___ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Part of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
EIM&1E: # ey 488, Part of the Stable ABIL Return the cause (either an exception instance, or None, set
by raise ... from ...) associated with the exception as a new reference, as accessible from Python
through the __cause___ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Part of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The __suppress_context___ attribute is implicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

EIM& 14 #7849 4 8&, Part of the Stable ABL Create a UnicodeDecodeError object with the attributes
encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
EIM&14: #8944, Part of the Stable ABL Return the encoding attribute of the given exception object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

5.7. BIshmtF 55

The Python/C API, £[F) 3.11.8

PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
EIARAE: #8444, Part of the Stable ABI. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Part of the Stable ABI. Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return O on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Fart of the Stable ABI. Set the start attribute of the given exception object to start. Return O on success, —1
on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Part of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Fart of the Stable ABI. Set the end attribute of the given exception object to end. Return 0 on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
B4R 1A #8494 P&, Part of the Stable ABI. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Fart of the Stable ABL Set the reason attribute of the given exception object to reason. Return 0 on success,
—1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall (const char *where)

Fart of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS_CheckStack (). If this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

¥E 3.9 W52 58 This function is now also available in the limited API.

56 Chapter 5. f§i|5nEHE

The Python/C API, £[F) 3.11.8

void Py_LeaveRecursiveCall (void)
Part of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall (). Must be called once for
each successful invocation of Py_EnterRecursiveCall ().

FE 3.9 11455 55 : This function is now also available in the limited API.

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protect-
ing the stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this
functionality. Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Fart of the Stable ABI. Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objectsreturn { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_ repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Part of the Stable ABIL. Ends a Py _ReprEnter ().
Py_ReprEnter () that returns zero.

Must be called once for each invocation of

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the
variables:

C Name Python Name [EIfi#
PyExc_BaseException BaseException .
PyExc_Exception Exception |8, 1
PyExc_ArithmeticError ArithmeticError L2 5K,
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError
PyExc_ConnectionAbortedE
PyExc_ConnectionError
PyExc_ConnectionRefusedE
PyExc_ConnectionResetErr

ChildProcessError
ConnectionAbortedError
ConnectionError
ConnectionRefusedError
ConnectionResetError

PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError

PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError

InterruptedError
IsADirectoryError
KeyError

BET—H

5.10. Standard Exceptions

57

The Python/C API, £[F) 3.11.8

R 1-EEL—8

C Name

Python Name

PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_ModuleNotFoundErro
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedErro
PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_RecursionError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_StopAsynclteration
PyExc_StoplIteration
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError
PyExc_UnicodeError
PyExc_UnicodeTranslateEr
PyExc_ValueError
PyExc_ZeroDivisionError

KeyboardInterrupt
LookupError
MemoryError
ModuleNotFoundError
NameError
NotADirectoryError
NotImplementedError
OSError
OverflowError
PermissionError
ProcessLookupError
RecursionError
ReferenceError
RuntimeError
StopAsynclteration
StopIteration
SyntaxError
SystemError
SystemExit

TabError
TimeoutError
TypeError
UnboundLocalError
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
ValueError
ZeroDivisionError

£ 33 W #H o om A

PyExc_BlockingIOError,

PyExc_BrokenPipeError,

PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError

PyExc_FileExistsError,
PyExc_IsADirectoryError,

PyExc_FileNotFoundError,
PyExc_NotADirectoryError,

PyExc_ProcessLookupError fll PyExc_TimeoutError £7F PEP 3151 #5| A

TE 3.5 UM PyExc_StopAsyncIteration fl PyExc_RecursionError,

TE 3.6 IGHIMA: PyExc_ModuleNotFoundError,

These are compatibility aliases to PyExc_OSError:

C Name

PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError

TE 3.3 fRAY%2 5 These aliases used to be separate exception types.

([l

! This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.

PyExc_ConnectionResetError,
PyExc_InterruptedError,
PyExc_PermissionError,

58

Chapter 5

. BIShREER

https://peps.python.org/pep-3151/

The Python/C API, £[F) 3.11.8

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all

the variables:

C Name

Python Name [Ef#

PyExc_Warning
PyExc_BytesWarning
PyExc_DeprecationWarning
PyExc_FutureWarning
PyExc_ImportWarning
PyExc_PendingDeprecationWarning
PyExc_ResourceWarning
PyExc_RuntimeWarning
PyExc_SyntaxWarning
PyExc_UnicodeWarning
PyExc_UserWarning

Warning g

BytesWarning
DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

TE 3.2 MU PyExc_ResourceWarning
(EIfig -

3 This is a base class for other standard warning categories.

5.11. Standard Warning Categories

59

The Python/C API, £[F) 3.11.8

60 Chapter 5. f§i|5nEHE

CHAPTER O

A e R 0] T ACAT R T AT, WS B C RV T -7 22l [E14: (portable). 7 C il
Python module (#%4H). PABHATER 5 [#(EIE A C i) EAHE - Python FHHI(E4E

6.1 ERZFEIA

PyObject *PyOS_FSPath (PyObject *path)
EI{RAE: #a9%B&, Part of the Stable ABI since version 3.6. Return the file system representation for path.
If the object is a str or bytes object, then a new strong reference is returned. If the object implements
the os.PathLike interface, then __ fspath__ () is returned as long as it is a str or bytes object.
Otherwise TypeError is raised and NULL is returned.

1 3.6 JUHT A

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard 1/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) is true. If the global flag Py TnteractiveFlagqg is true,
this function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>"'or '??7?"'.

void PyOS_BeforeFork ()

Fart of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state before
a process fork. This should be called before calling fork () or any similar function that clones the current
process. Only available on systems where fork () is defined.

#gfe: The C fork () call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_BeforeFork ().

1E 3.7 ORI

void PyOS_AfterFork_Parent ()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after a
process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

61

The Python/C API, £[F) 3.11.8

s The C fork () call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Parent ().

1E 3.7 BOH A
void PyOS_AfterFork_Child ()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork (), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter.
Only available on systems where fork () is defined.

#ge: The C fork () call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Child ().

e 3.7 BOHT A
W%
os.register_at_fork () allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().
void PyOS_AfterFork ()

Part of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork;
this should be called in the new process if the Python interpreter will continue to be used. If a new executable
is loaded into the new process, this function does not need to be called.

Tr 3.7 iz 45 9% : This function is superseded by Py0S_AfterFork Child().

int PyOS_CheckStack ()
Fart of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK
will be defined automatically; you should never change the definition in your own code.

typedef void (*PyOS_sighandler_t)(int)
Part of the Stable ABI.

PyOS_sighandler_t PyOS_getsig (inti)
Part of the Stable ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t h)
Fart of the Stable ABI. Set the signal handler for signal i to be 4; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)
Fart of the Stable ABI since version 3.7.

% fe. This function should not be called directly: wuse the PyConfig API with the
PyConfig_SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py _PreTInitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape
error handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence
can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead
of decoding them.

62 Chapter 6. TR

The Python/C API, £[F) 3.11.8

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to
(size_t) -1 on memory error or setto (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see
filesystem encodingand filesystem errors membersof PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
W%

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

TE 3.5 BUF A
TE 3.7 fR Y52 5 : The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

¥E 3.8 R By & The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Part of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and
error handler. 1If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem_Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_posissetto (size_t) —1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see
filesystem encodingand filesystem_errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

g fe: This function must not be called before Pyihon is preinitialized and so that the LC_CTYPE locale
is properly configured: see the Py _PreInitialize () function.

hz%:

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
1E 3.5 BOHT A

T 3.7 fiR /5% 58 The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

FE 3.8 MR OB 5 E: The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero.

6.1. ERAMIRA 63

The Python/C API, £[F) 3.11.8

6.2 ZREAN

These are utility functions that make functionality from the sy s module accessible to C code. They all work with
the current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
EIAE4E: 14 H % 0&, Part of the Stable ABL Return the object name from the sys module or NULL if it
does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns O on success, —1 on error.
void PySys_ResetWarnOptions ()
Fart of the Stable ABIL Reset sys.warnoptions to an empty list. This function may be called prior to
Py_Initialize().
void PySys_AddWarnOption (const wchar_t *s)
Part of the Stable ABIL This API is kept for backward compatibility: setting PyConfig.warnoptions
should be used instead, see Python Initialization Configuration.

Append s to sys.warnoptions. This function must be called prior to Py_Tnitialize () in order to
affect the warnings filter list.

5 3.1 2 B E .

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Part of the Stable ABIL This API is kept for backward compatibility: setting PyConfig.warnoptions
should be used instead, see Python Initialization Configuration.

Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warningsin Py_Tnitialize () to be effective, but can’t be called until enough
of the runtime has been initialized to permit the creation of Unicode objects.

1E 3.1 iRz AR BEE .

void PySys_SetPath (const wchar_t *path)

Part of the Stable ABIL This API is kept for backward compatibility: setting PyConfig.
module_search_pathsand PyConfig.module search_paths_set should be used instead, see
Python Initialization Configuration.

Set sys.path to a list object of paths found in path which should be a list of paths separated with the
platform’s search path delimiter (: on Unix, ; on Windows).

e 3.11 ez .

void PySys_WriteStdout (const char *format, ...)
Part of the Stable ABI. Write the output string described by format to sys.stdout. No exceptions are
raised, even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less -- after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted ”%s” formats should occur; these should
be limited using ”%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for ”%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
Part of the Stable ABIL. As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

64 Chapter 6. TR

The Python/C API, £[F) 3.11.8

void PySys_FormatStdout (const char *format, ...)

Part of the Stable ABIL Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

1E 3.2 BT

void PySys_FormatStderr (const char *format, ...)
Part of the Stable ABIL. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.

1E 3.2 ORI
void PySys_AddXOption (const wchar_t *s)
Fart of the Stable ABI since version 3.7. This API is kept for backward compatibility: setting PyConfig.

xopt ions should be used instead, see Python Initialization Configuration.

Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize ().

1E 3.2 BT A
1 311 iR HE .
PyObject *PySys_GetXOptions ()

W42 4E: £ %4 P&, Part of the Stable ABI since version 3.7. Return the current dictionary of —X options,
similarly to sys._xoptions. On error, NULL is returned and an exception is set.

15 3.2 UHT A

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on
failure.

If any hooks have been added, formar and other arguments will be used to construct a tuple to pass. Apart
from N, the same format characters as used in Py_ BuildValue () are available. If the built value is not a
tuple, it will be added into a single-element tuple. (The N format option consumes a reference, but since there
is no way to know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py_ssize t, regardless of whether
PY SSIZE_ T CLEAN was defined.

sys.audit () performs the same function from Python code.

TE 3.8 UHT A

T 3.8.2 R\ %# 5 Require Py_ssize_t for # format characters. Previously, an unavoidable deprecation
warning was raised.
int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this APT are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py_Initialize (). When called after runtime initialization, existing
audit hooks are notified and may silently abort the operation by raising an error subclassed from Exception
(other errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

58— NP 7S | B FEA% F 4 sys . addaudithook,

6.2. ZFEHR 65

https://peps.python.org/pep-0578/

The Python/C API, £[F) 3.11.8

typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)

The type of the hook function. event is the C string event argument passed to Py Sys_Audit (). args
is guaranteed to be a Py TupleObject. userData is the argument passed to PySys_AddAuditHook().

1 3.8 JUHT A

6.3 1752 (Process) ¥l

void Py_FatalError (const char *message)

Fart of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_AP I macro is defined.

T 3.9 fi A5 5 Log the function name automatically.

void Py_Exit (int status)

Fart of the Stable ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard
C library function exit (status). If Py_FinalizeEx () indicates an error, the exit status is set to 120.

JE 3.6 iR {)5# 8 Errors from finalization no longer ignored.

int Py _AtExit (void (*func)())

Part of the Stable ABI. Register a cleanup function to be called by Py FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit () returns O; on failure, it returns —1. The cleanup func-
tion registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

6.4 SIAR#

PyObject *PyImport_ImportModule (const char *name)

B4R 18 . #7494 B8, Part of the Stable ABI. This is a wrapper around Py Tmport_ Tmport () which takes
aconst char* asan argument instead of a PyOb ject*.

PyObject *PyImport_ImportModuleNoBlock (const char *name)

) 1% fA: # 89 % B&., Part of the Stable ABL This function is a deprecated alias of
PyImport_ImportModule ().

1E 3.3 R %4 TE: This function used to fail immediately when the import lock was held by another thread.
In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s
special behaviour isn’t needed anymore.

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
EI4& A #7494 88, Import a module. This is best described by referring to the built-in Python function

_ _import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for ___import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

66 Chapter6. TH

The Python/C API, £[F) 3.11.8

PyObject *PyImport_ImportModuleLevelObject (PyObject ¥*name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)
IR {H: #rhh % B& . Part of the Stable ABI since version 3.7. Import a module. This is best described by
referring to the built-in Python function __import__ (), as the standard __import__ () function calls
this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for ___import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

TE 3.3 JEGHTmA.

PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)
EI{ZAE . #ray 4 P&, Part of the Stable ABI. Similar to PyImport_ImportModulelLevelObject (),
but the name is a UTF-8 encoded string instead of a Unicode object.

TE 3.3 HiAl) 5 5 Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
{244 - #7449 %84, Part of the Stable ABL This is a higher-level interface that calls the current “import hook
function” (with an explicit level of 0, meaning absolute import). It invokes the ___import__ () function from
the __builtins__ of the current globals. This means that the import is done using whatever import hooks
are installed in the current environment.

This function always uses absolute imports.

PyObject *PyImport_ReloadModule (PyObject *m)
I {RA4 : #0488, Part of the Stable ABI. Reload a module. Return a new reference to the reloaded module,
or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleObject (PyObject *name)
= 4% 15: fE A 484, Part of the Stable ABI since version 3.7. Return the module object corresponding
to a module name. The name argument may be of the form package.module. First check the modules
dictionary if there’s one there, and if not, create a new one and insert it in the modules dictionary. Return
NULL with an exception set on failure.

#(E): This function does not load or import the module; if the module wasn’t already loaded, you will get
an empty module object. Use Py Import_ImportModule () or one of its variants to import a module.
Package structures implied by a dotted name for name are not created if not already present.

e 3.3 UHTIA.

PyObject *PyImport_AddModule (const char *name)
IR E: 4 H 488 . Part of the Stable ABI. Similar to Py Import_AddModuleObject (), but the name
is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

EIM& A4 : #7184 % B8, Part of the Stable ABL Given a module name (possibly of the form package .module)
and a code object read from a Python bytecode file or obtained from the built-in function compile (), load
the module. Return a new reference to the module object, or NULL with an exception set if an error occurred.
name is removed from sys.modules in error cases, even if name was already in sys.modules on en-
try to PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules
is dangerous, as imports of such modules have no way to know that the module object is an unknown (and
probably damaged with respect to the module author’s intents) state.

The module’s __spec___and __loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s ___1oader___ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s ___file_ attribute will be set to the code object’s co_filename. If applicable,
__cached__ will also be set.

6.4. SIARH 67

The Python/C API, £[F) 3.11.8

This function will reload the module if it was already imported. See Py Import_ReloadModule () for
the intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

Seealso Py Import_ExecCodeModuleEx () and Py Import_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)

EI 4R - #7449 4 88, Part of the Stable ABI. Like Py Import_ExecCodeModule (),butthe _ file_
attribute of the module object is set to pathname if it is non-NULL.

S5 R PyImport_ExecCodeModuleWithPathnames ().
PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)

EI{ZAE 0 #7449 % P& . Part of the Stable ABI since version 3.7. Like Py Import_ExecCodeModuleEx (),
but the ___cached___ attribute of the module object is set to cpathname if it is non-NULL. Of the three
functions, this is the preferred one to use.

1E 3.3 JUHT A

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char
*pathname, const char *cpathname)

EI AR 1E . #7849 % P&, Part of the Stable ABI. Like Py Import_ExecCodeModuleObject (), but name,
pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the value for
pathname should be from cpathname if the former is set to NULL.

1E 3.2 BT A

TF 3.3 iU %EEE: Uses imp . source_from_cache () in calculating the source path if only the bytecode
path is provided.

long PyImport_GetMagicNumber ()

Part of the Stable ABI. Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic
number should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns —1 on
error.

TE 3.3 A5 AR AR e -1
const char *PyImport_GetMagicTag ()

Fart of the Stable ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys.implementation.cache_tag is authoritative and should be used instead
of this function.

1 3.2 UHT A
PyObject *PyImport_GetModuleDict ()

EI{Z44 : & % B4, Part of the Stable ABIL Return the dictionary used for the module administration (a.k.a.
sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject *name)
EI{E4E: #ah %8, Part of the Stable ABI since version 3.8. Return the already imported module with the
given name. If the module has not been imported yet then returns NULL but does not set an error. Returns
NULL and sets an error if the lookup failed.

1E 3.7 BUHA.

PyObject *PyImport_GetImporter (PyObject *path)
W ARAE: Fray & B&. Part of the Stable ABL Return a finder object for a sys.path/pkg.__path__
item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached,
traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no hook

could; this tells our caller that the path based finder could not find a finder for this path item. Cache the result
in sys.path_importer_cache. Return a new reference to the finder object.

68 Chapter6. TH

https://peps.python.org/pep-3147/

The Python/C API, £[F) 3.11.8

int PyImport_ImportFrozenModuleObject (PyObject ¥*name)

Part of the Stable ABI since version 3.7. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and —1 with an exception set if the initialization failed. To access the imported module on
a successful load, use Py Tmport_ ImportModule (). (Note the misnomer --- this function would reload
the module if it was already imported.)

TE 3.3 MUHT A
TE 3.4 fiRA)5E5E: The ___file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Part of the Stable ABIL. Similar to PyTmport_ImportFrozenModuleObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h,is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;

}i

T 3.11 HU %2 5: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))
Part of the Stable ABI. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around Py Import_ExtendInittab (), returning —1 if the table could not be extended. The
new module can be imported by the name name, and uses the function initfunc as the initialization function
called on the first attempted import. This should be called before Py_Tnitialize ().

struct _inittab

Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an
array of these structures in conjunction with Py Tmport_ExtendInittab () to provide additional built-in
modules. The structure consists of two members:
const char *name
The module name, as an ASCII encoded string.
PyObject *(*init func)(void)
Initialization function for a module built into the interpreter.
int PyImport_ExtendInittab (struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py Tnitialize ().

If Python is initialized multiple times, PyImport_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

6.4. SIARH 69

The Python/C API, £[F) 3.11.8

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)

Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.
void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.
PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)

%44 : #7494 18, Return a bytes object containing the marshalled representation of value. version indicates
the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
B 1§45 #8948, Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

B {248 #4494 84 . Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read from
the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data
in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you
won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

1% 14 0 #7449 % B4, Return a Python object from the data stream in a byte buffer containing len bytes pointed
to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

70 Chapter 6. TR

The Python/C API, £[F) 3.11.8

6.6 BlfTSIRBENE

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (),
PyArg_ParseTupleAndKeywords (), and PyArg _Parse (), all use format strings which are used to
tell the function about the expected arguments. The format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage
for the returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

* Formats suchas y* and s* filla Py_buf fer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable
data being resized or destroyed. As aresult, you havetocall PyBuffer Release () after you have finished
processing the data (or in any early abort case).

e The es, es#, et and et # formats allocate the result buffer. You have to call PyMem_Free () after you
have finished processing the data (or in any early abort case).

¢ Other formats take a str or a read-only bytes-like object, such as bytes, and provide a const char *
pointer to its buffer. In this case the buffer is "borrowed”: it is managed by the corresponding Python object,
and shares the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray,
but also some read-only objects such as memoryview of bytes.

Besides this bf_releasebuf fer requirement, there is no check to verify whether the input object is im-
mutable (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the
data).

f#[F): For all # variants of formats (s#, y#, etc.), the macro PY_SSIZE_T_CLEAN must be defined be-
fore including Python.h. On Python 3.9 and older, the type of the length argument is Py_ssize t if the
PY_SSIZE_T_CLEAN macro is defined, or int otherwise.

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must
not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

6.6. HIHSIBEEBEHE [

The Python/C API, £[F) 3.11.8

#E): This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the O& format with PyUnicode FSConverter () as converter.

TE 3.5 fift %2 5 Previously, TypeError was raised when embedded null code points were encountered in
the Python string.

s* (str fibytes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py buf fer structure provided by
the caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted
to C strings using 'ut £-8"' encoding.

s# (str, read-only bytes-like object) [const char *, Py _ssize_ t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one a
pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'ut £-8"' encoding.

z (str 5§ None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str. bytes-like object B None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_buffer
structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, Py _ssize_ t]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

y (ME#{bytes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.

TE 3.5 R %A T Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only bytes-like object) [const char *, Py _ssize_t]
This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *]
Requires that the Python object is a byt es object, without attempting any conversion. Raises TypeError
if the object is not a bytes object. The C variable may also be declared as PyOb ject*.

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a bytearray object, without attempting any conversion. Raises
TypeError if the object is nota bytearray object. The C variable may also be declared as PyOb ject*.

u (str) [const Py_UNICODE *]
Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Unicode characters. You
must pass the address of a Py_ UNICODE pointer variable, which will be filled with the pointer to an existing
Unicode buffer. Please note that the width of a Py UNICODE character depends on compilation options (it is
either 16 or 32 bits). The Python string must not contain embedded null code points; if it does, a ValueError
exception is raised.

T 3.5 A5 T Previously, TypeError was raised when embedded null code points were encountered in
the Python string.

HACRAS 3.3 BATERE M, & MR 3.12 74514 . : Part of the old-style Py, UNICODE API,; please

migrate to using PyUnicode AsWideCharString ().

u# (str) [const Py_UNICODE *, Py ssize t]
This variant on u stores into two C variables, the first one a pointer to a Unicode data buffer, the second one
its length. This variant allows null code points.

72 Chapter6. TH

The Python/C API, £[F) 3.11.8

HAERAS 3.3 AR, A5 e BAR 3.12 985[% . : Part of the old-style Py UNTCODE API, please

migrate to using PyUnicode_AsWideCharString().

Z (str of None) [const Py_UNICODE *]
Like u, but the Python object may also be None, in which case the Py UNICODE pointer is set to NULL.

RS 3.3 AR, & 3R 3.12 9854 . : Part of the old-style Py, UNTCODE API,; please

migrate to using PyUnicode AsWideCharString ().

Z# (str or None) [const Py_UNICODE *, Py _ssize_t]
Like u#, but the Python object may also be None, in which case the Py UNICODE pointer is set to NULL.

HACRAS 3.3 AR, A5 E BMR 3.12 FF5% . : Part of the old-style Py, UNTCODE API, please

migrate to using PyUnicode AsWideCharString ().

U (str) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError
if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

w* (W] i§{ 85 bytes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py_buffer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call
PyBuffer_ Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer]
This variant on s is used for encoding Unicode into a character buffer. It only works for encoded data without
embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_ Free ()
to free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer]
Same as es except that byte string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the byte string object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
This variant on s# is used for encoding Unicode into a character buffer. Unlike the es format, this variant
allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text
will be encoded in the encoding specified by the first argument. The third argument must be a pointer to an
integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

6.6. B3I HBBENE 73

The Python/C API, £[F) 3.11.8

et# (str,bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the imple-
mentation assumes that the byte string object uses the encoding passed in as parameter.

B

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny int without overflow checking, stored ina C unsigned char.

h (int) [short int]
H—1# Python = #iti#([EIiY C 1) short int,

H (int) [unsigned short int]
#§—1 Python B BHEINY C Y unsigned short int, WHELBALMEGEIARA.
i (int) [int]
#%—1 Python ##(FIA C 1) int.
I (int) [unsigned int]
#—1H Python B HIE(FIR, C) unsigned int, WEBFEMEHRA.
1 (int) [long int]
#4—1# Python #& ¥ ()5 C i long int.
k (int) [unsigned long]
1 Python B HIH(FIR, C) unsigned long, WEHAMRE S (A7
L (int) [long long]
%1 Python #&#{##[FIi{ C i) long long.
K (int) [unsigned long long]
1 Python FEHUHEIY C ¥ unsigned long long, METEAR M AIARA .
n (int) [Py_ssize_t]
—1 Python ¥ [Fp C 1Py _ssize t.
c (bytes i EJ¥[E] 1) bytearray) [char]
Convert a Python byte, represented as a bytes or bytearray object of length 1, to a C char.
16 3.3 IHJSEE: fuFF bytearray Pt
Cc (EFs[El 11 str) [int]

Convert a Python character, represented as a st r object of length 1,toa C int.

f (float) [float]

#—1# Python 77 ZE#UE(FI 1 C f:c:type:float.
d (float) [double]

1 —1# Python % BES#[E] %, C f¥):c:type:double.

D (complex) [Py_complex]
—1H Python [FIEE) R, C A Py_complex &ikE.

74 Chapter6. TH

The Python/C API, £[F) 3.11.8

Hivhtt

o (¥ff) [PyObject *]

Store a Python object (without any conversion) in a C object pointer. The C program thus receives the actual
object that was passed. A new strong reference to the object is not created (i.e. its reference count is not
increased). The pointer stored is not NULL.

o! (%) [typeobject, PyObject *]

Store a Python object in a C object pointer. This is similar to O, but takes two C arguments: the first is the
address of a Python type object, the second is the address of the C variable (of type PyOb ject *) into which
the object pointer is stored. If the Python object does not have the required type, TypeError is raised.

os (Wtk) [converter, anything]

Convert a Python object to a C variable through a converter function. This takes two arguments: the first is
a function, the second is the address of a C variable (of arbitrary type), converted to void*. The converter
function in turn is called as follows:

[status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

If the converter returns Py_ CLEANUP__SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this
second call, the object parameter will be NULL; address will have the same value as in the original call.

TE 3.1 5T il A Py_CLEANUP_SUPPORTED,

p (bool) [int]

Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false
integer value. Sets the int to 1 if the expression was true and O if it was false. This accepts any valid Python
value. See truth for more information about how Python tests values for truth.

1E 3.3 JHT A

(items) (tuple) [matching-items]

The object must be a Python sequence whose length is the number of format units in items. The C arguments
must correspond to the individual format units in ifems. Format units for sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done --- the most significant bits are silently truncated when the receiving field is too small to receive
the value (actually, the semantics are inherited from downcasts in C --- your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value --- when an optional argument is not specified,
PyArg ParseTuple () does not touch the contents of the corresponding C variable(s).

PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argu-
ment list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must
always be specified before $ in the format string.

TE 3.3 JEHTmA.

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg ParseTuple () raises).

6.6. HIHSIBEEBEHE 7

The Python/C API, £[F) 3.11.8

The list of format units ends here; the string after the semicolon is used as the error message instead of the
default error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When
the PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

APl HR

int PyArg_ParseTuple (PyObject *args, const char *format, ...)

Part of the Stable ABI. Parse the parameters of a function that takes only positional parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)

Part of the Stable ABI. Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a
variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject ¥kw, const char *format, char *keywords[],
)

Part of the Stable ABI. Parse the parameters of a function that takes both positional and keyword parameters
into local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty
names denote positional-only parameters. Returns true on success; on failure, it returns false and raises the
appropriate exception.

TE 3.6 R4 . Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject ¥kw, const char *format, char
*keywords[], va_list vargs)

Part of the Stable ABI. Identical to PyArg ParseTupleAndKeywords (), except thatitaccepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject*)

Fart of the Stable ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only
needed if PyArg_ ParseTupleAndKeywords () is not used, since the latter already does this check.

TE 3.2 JUHT A

int PyArg_Parse (PyObject *args, const char *format, ...)

Part of the Stable ABI. Function used to deconstruct the argument lists of “old-style” functions --- these are
functions which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3.
This is not recommended for use in parameter parsing in new code, and most code in the standard interpreter
has been modified to no longer use this for that purpose. It does remain a convenient way to decompose other
tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Fart of the Stable ABI. A simpler form of parameter retrieval which does not use a format string to specify the
types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.

76 Chapter 6. TR

The Python/C API, £[F) 3.11.8

The variables which correspond to optional parameters not given by args will not be filled in; these should be
initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg ParseTuple():

[PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject *Py_BuildValue (const char *format, ...)

E AR5 #7449 % &, Part of the Stable ABI. Create a new value based on a format string similar to those
accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or NULL
in the case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size O or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated
memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py _BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str 5 None) [const char *]
Convert a null-terminated C string to a Python str object using 'ut £-8"' encoding. If the C string
pointer is NULL, None is used.

s# (str { None) [const char *, Py_ssize t]
Convert a C string and its length to a Python str object using 'ut£-8"' encoding. If the C string
pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

6.6. HIHSIBEEBEHE ”

The Python/C API, £[F) 3.11.8

y# (bytes) [const char *, Py _ssize t]

This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is

returned.

z (str B None) [const char *]

N s #HFE .

z# (str o None) [const char *, Py _ssize t]

1 s# FHIA

u (str) [const wchar_t *]

Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode

object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, Py _ssize t]

Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the

Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str 5 None) [const char *]
A s #H .

U# (str 5{ None) [const char *, Py _ssize t]
M s# MIHE .
i (int) [int]
#5—1# C i) int #H[E]E Python H#{4: .
b (int) [char]
#—1H C) char @[F)Y Python B 54,
h (int) [short int]
He—1 C 1) short int E[FIE Python B84,

1 (int) [long int]
#§—MH C 1y Long int HEIR Python FHYI(F:

B (int) [unsigned char]

H—1f C 1) unsigned char HE[FILY Python ¥ #hy{4:.

H (int) [unsigned short int]
W—1 C) unsigned short int E[EJY Python B #{4:.

I (int) [unsigned int]

H—18 C) unsigned int E[FIEY Python sy

k (int) [unsigned long]
#—1i C) unsigned long E[EI;Y Python ¥ #i{4:.

L (int) [long long]
#—1f C 1) long long {H[FI Python {4,

K (int) [unsigned long long]
44— C f) unsigned long long E[EJAY Python #8d{t:.

n (int) [Py_ssize_ t]
W—1W CfPy_ssize_t H[EFI{ Python ¥,

c (EPEEI 11 bytes) [char]
H—M C AT int BE Python HEEEl—f) bytes.

Cc (RIEE 1/ str) [int]

A C AR E—EFITH int BERK Python FHREEE—11 str.
d (float) [double]

#§—1 C ¥y double #(EIL Python 725 HL .

£ (float) [float]
#—1f C iy £loat #EH[EIAY Python 7B,

78

Chapter 6.

IR

The Python/C API, £[F) 3.11.8

D (complex) [Py_complex *]
#—1MH C 1 Py_complex & ffEI Python [F1#.

o (#1k) [PyObject *]
Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incre-
mented by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the
call producing the argument found an error and set an exception. Therefore, Py Buildvalue () will
return NULL but won'’t raise an exception. If no exception has been raised yet, SystemError is set.

S (#1F) [PyObject *]
F o A .

N (#11F) [PyObject *]
Same as O, except it doesn’t create a new strong reference. Useful when the object is created by a call to
an object constructor in the argument list.

o& (Yfk) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything
(which should be compatible with void*) as its argument and should return a “new” Python object, or
NULL if an error occurred.

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (1ist) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item
to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_VaBuildValue (const char *format, va_list vargs)

EI 1R 48 ey 4 B8, Part of the Stable ABL Identical to Py_BuildValue (), except that it accepts a
va_list rather than a variable number of arguments.

6.7 FRE MBIt

B E R ORI A - e

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Part of the Stable ABIL. Output not more than size bytes to str according to the format string format and the
extra arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
Fart of the Stable ABI. Output not more than size bytes to str according to the format string format and the
variable argument list va. Unix man page vsnprintf (3).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C func-
tions do not.

The wrappers ensure that str[size-1] is always '\O' upon return. They never write more than size bytes

(including the trailing '\0') into str. Both functions require that str != NULL, size > 0, format !=
NULL and size < INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL,
0, ...) which would determine the necessary buffer size.

B AL (rv) A5 S8 ok R A R T

e When 0 <= rv < size, the output conversion was successful and rv characters were written to st (ex-
cluding the trailing ' \O0' byte at str[rv]).

6.7. FREMAEEXL 79

The Python/C API, £[F) 3.11.8

* When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been

needed to succeed. str[size—1]1s '"\0"' in this case.

e When rv < 0, "something bad happened.” str[size—-1]1is "\0"' in this case too, but the rest of st is

undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

unsigned long PyOS_strtoul (const char *str, char **ptr, int base)

Fart of the Stable ABI. Convert the initial part of the string in str to an unsigned long value according
to the given base, which must be between 2 and 36 inclusive, or be the special value 0.

Leading white space and case of characters are ignored. If base is zero it looks for a leading Ob, 0o or 0x to
tell which base. If these are absent it defaults to 1 0. Base must be 0 or between 2 and 36 (inclusive). If ptr
is non-NULL it will contain a pointer to the end of the scan.

If the converted value falls out of range of corresponding return type, range error occurs (errno is set to
ERANGE) and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.

See also the Unix man page strtoul (3).

1E 3.2 BT

long PyOS_strtol (const char *str, char **ptr, int base)

Fart of the Stable ABI. Convert the initial part of the string in str to an 1ong value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

Same as PyOS_strtoul (), butreturn a 1ong value instead and LONG_MAX on overflows.

See also the Unix man page strtol (3).

1E 3.2 BT

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)

Fart of the Stable ABIL. Convert a string s to a double, raising a Python exception on failure. The set of
accepted strings corresponds to the set of strings accepted by Python’s f1oat () constructor, except that s
must not have leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1 . 0 if the string is not a
valid representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first uncon-
verted character. If no initial segment of the string is the valid representation of a floating-point number, set
*endptr to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return —1 . 0. In both cases, set *endpt r to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

15 3.1 A

char *PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)

Part of the Stable ABI. Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbe oneof 'e', 'E', "£','F', 'g', 'G" or 'r'. For 'r"', the supplied precision must
be 0 and is ignored. The ' r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O, or Py_DTSF_ALT,
or-ed together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

80

Chapter6. TH

The Python/C API, £[F) 3.11.8

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () "4 specifier for details.

If prype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,
Py_DTST_INFINITE, or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or
not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

1E 3.1 BGHTIA.

int PyOS_stricmp (const char *s1, const char *s2)

Case insensitive comparison of strings. The function works almost identically to st rcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it
ignores the case.

6.8 PyHash API

See also the Py TypeObject . tp_hash member.
type Py_hash_t
Hash value type: signed integer.

e 3.2 HTIA.
type Py_uhash_t

Hash value type: unsigned integer.

1 3.2 BUFTnA.
type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef ().
const char *name
Hash function name (UTF-8 encoded string).
const int hash_bits

Internal size of the hash value in bits.

const int seed_bits
Size of seed input in bits.

1E 3.4 BUBTmA.
PyHash_FuncDef *PyHash_GetFuncDef (void)
Get the hash function definition.

hE%:
PEP 456 ~Secure and interchangeable hash algorithm™.
£ 3.4 BUBTINA.

6.8. PyHash API 81

https://peps.python.org/pep-0456/

The Python/C API, £[F) 3.11.8

6.9 Reflection

PyObject *PyEval_GetBuiltins (void)
EI{Z44 : 4 F 484, Part of the Stable ABI Return a dictionary of the builtins in the current execution frame,
or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals (void)
{244 : 14] %4 P& . Part of the Stable ABI. Return a dictionary of the local variables in the current execution
frame, or NULL if no frame is currently executing.

PyObject *PyEval_GetGlobals (void)
©) %14 12] % B& . Part of the Stable ABL Return a dictionary of the global variables in the current execution
frame, or NULL if no frame is currently executing.

PyFrameObject *PyEval_GetFrame (void)

%15 158 %88, Part of the Stable ABL Return the current thread state’s frame, which is NULL if no
frame is currently executing.

Hig RPyThreadState GetFrame (),

const char *PyEval_GetFuncName (PyObject *func)
Part of the Stable ABI. Return the name of func if it is a function, class or instance object, else the name of
Sfuncs type.

const char *PyEval_GetFuncDesc (PyObject *func)
Fart of the Stable ABI. Return a description string, depending on the type of func. Return values include

LR)

”()” for functions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Part of the Stable ABI. Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first
in the list of search functions.

int PyCodec_Unregister (PyObject *search_function)
Fart of the Stable ABI since version 3.10. Unregister a codec search function and clear the registry’s cache.
If the search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on
error.

e 3.10 HUHTIA.

int PyCodec_KnownEncoding (const char *encoding)

Fart of the Stable ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
1R 1A #e9 % B&, Part of the Stable ABL Generic codec based encoding APL.

object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
EIM&A4: #0448, Part of the Stable ABL Generic codec based decoding APL
object is passed through the decoder function found for the given encoding using the error handling method de-

fined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

82 Chapter 6. TR

The Python/C API, £[F) 3.11.8

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.
PyObject *PyCodec_Encoder (const char *encoding)

EI{Z4E: #FH ey 4B, Part of the Stable ABL Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)
EI{Z4E: #F ey 4B, Part of the Stable ABIL. Get a decoder function for the given encoding.

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
EI &1 #7449 % B8, Part of the Stable ABL. Getan IncrementalEncoder object for the given encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
EI &1 0 #7449 % B8, Part of the Stable ABL. Get an IncrementalDecoder object for the given encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
EI{E44 : #8495 88, Part of the Stable ABL Geta St reamReader factory function for the given encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
EI{EAE : #7895 88, Part of the Stable ABL Geta St reamWriter factory function for the given encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Fart of the Stable ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
EIMEAE: #hy %P8, Part of the Stable ABIL Lookup the error handling callback function registered under
name. As a special case NULL can be passed, in which case the error handling callback for “strict” will be
returned.
PyObject *PyCodec_StrictErrors (PyObject *exc)
=114 : 4852 [F) NULL. Part of the Stable ABI. Raise exc as an exception.
PyObject *PyCodec_IgnoreErrors (PyObject *exc)
EI{E4E: #0495 8&, Part of the Stable ABI. Ignore the unicode error, skipping the faulty input.
PyObject *PyCodec_ReplaceErrors (PyObject *exc)
EI{E4E: #8495 8&, Part of the Stable ABL Replace the unicode encode error with ? or U+FFFD.
PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
%44 : #7849 % 8& . Part of the Stable ABL Replace the unicode encode error with XML character references.
PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)

IR 1E: #6494 8&, Part of the Stable ABIL Replace the unicode encode error with backslash escapes (\x,
\u and \U).

6.10. Codec registry and support functions 83

The Python/C API, £[F) 3.11.8

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
B4R 18 - #7649 % B& . Part of the Stable ABI since version 3.7. Replace the unicode encode error with \N{ . . . }
escapes.

TE 3.5 UHT A

84 Chapter 6. TR

CHAPTER /

Z {8 (Abstract Objects Layer)

A gL o xCEE Python P A EAE R, ML BUE, sl B Bz BRI Y - 3UE (B0 B i 3 Flak
FA AR . AR A B EDRE A &S] %8 Python [EJ# (exception).

& 2 R AR AN BE N R IEFERI AR AL 1 (Bn—M i PyList_New () BSLH list p4F), 1 H AR g I8
H [FA i s [E—2e 9k NULL f91{H.

7.1 Object Protocol

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_ Not Implemented from within a C function (that is, create a new strong
reference to NotImplemented and return it).

Py_PRINT_RAW

Flag to be used with multiple functions that print the object (like PyObject_Print () and
PyFile_WriteObject ()). If passed, these function would use the str () of the object instead of the
repr ().

int PyObject_Print (PyObject *o, FILE *fp, int flags)

Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py PRINT _RAIW; if given, the str () of the object is written instead
of the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)

Fart of the Stable ABI. Returns 1 if o has the attribute atfr_name, and 0 otherwise. This is equivalent to the
Python expression hasattr (o, attr_name). This function always succeeds.

#[E): Exceptions that occur when this calls ___getattr__ () and __getattribute_ () methods are
silently ignored. For proper error handling, use PyObject_GetAttr () instead.

85

The Python/C API, £[F) 3.11.8

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Part of the Stable ABL. This is the same as PyOb ject__HasAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyOb ject*.

#i[E): Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () meth-
ods or while creating the temporary str object are silently ignored. For proper error handling, use
PyObject_GetAttrString () instead.

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)
%18 #hY % B4, Part of the Stable ABL Retrieve an attribute named attr_name from object 0. Returns the
attribute value on success, or NULL on failure. This is the equivalent of the Python expression o . attr_name.
PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
EI{R4E: #hy % B8, Part of the Stable ABL This is the same as PyObject_GetAttr (), but attr_name
is specified as a const char* UTF-8 encoded bytes string, rather than a PyOb ject*.
PyObject *PyObject_GenericGetAttr (PyObject *o, PyObject *name)

EIM& 18 : #9408, Part of the Stable ABI. Generic attribute getter function that is meant to be put into a
type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO
as well as an attribute in the object’s ___dict___ (if present). As outlined in descriptors, data descriptors take
preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is
raised.

int PyObject_SetAttr (PyObject *0, PyObject *attr_name, PyObject *v)

Part of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise
an exception and return —1 on failure; return O on success. This is the equivalent of the Python statement
o.attr_name = wv.

If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using
PyObject_DelAttr (), but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *Vv)
Fart of the Stable ABI. This is the same as PyOb ject_SetAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
FPart of the Stable ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and
if found it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the
attribute is set or deleted in the object’s __dict___ (if present). On success, O is returned, otherwise an
AttributeError israised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
This is the same as PyObject_DelAttr (), but attr_name is specified as a const char* UTF-8 en-
coded bytes string, rather than a PyObject*.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)
EI{R4E: #ra4 % P&, Part of the Stable ABI since version 3.10. A generic implementation for the getter of a
__dict__ descriptor. It creates the dictionary if necessary.

This function may also be called to get the __dict___ of the object 0. Pass NULL for confext when call-
ing it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

86 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

On failure, returns NULL with an exception set.

1 3.3 BUFTIA.
int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)

Part of the Stable ABI since version 3.7. A generic implementation for the setter of a ___dict___ descriptor.
This implementation does not allow the dictionary to be deleted.

1 3.3 BOFA.
PyObject **_PyObject_GetDictPtr (PyObject *obj)

Return a pointer to __dict__ of the object obj. If there isno __dict
exception.

, return NULL without setting an

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
EIR1E: #hY % R& . Part of the Stable ABL Compare the values of o] and 02 using the operation specified
by opid, which must be one of Py_ LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <,
<=, ==, =, >, or >= respectively. This is the equivalent of the Python expression o1 op 02, where op is
the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Fart of the Stable ABL. Compare the values of o/ and o2 using the operation specified by opid, like
PyObject_RichCompare (), butreturns —1 on error, O if the result is false, 1 otherwise.

#iE): If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ
and 0 for Py_ NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)
Fart of the Stable ABIL Format obj using format_spec. This is equivalent to the Python expression
format (obj, format_spec).

format_spec may be NULL. In this case the call is equivalent to format (ob7j) . Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)
EI{E4E: #7894 08, Part of the Stable ABL Compute a string representation of object o. Returns the string

representation on success, NULL on failure. This is the equivalent of the Python expression repr (o). Called
by the repr () built-in function.

JE 3.4 JiR %% 55 This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject *PyObject_ASCII (PyObject *0)
W24 #ay40& ., Part of the Stable ABL As PyObject_Repr (), compute a string representation of
object o, but escape the non-ASCII characters in the string returned by PyObject_Repr () with \x, \u or
\U escapes. This generates a string similar to that returned by PyObject_Repr () in Python 2. Called by
the ascii () built-in function.

PyObject *PyObiject_Str (PyObject *0)
EI4R 1A #4448, Part of the Stable ABI. Compute a string representation of object o. Returns the string

representation on success, NULL on failure. This is the equivalent of the Python expression str (o). Called
by the str () built-in function and, therefore, by the print () function.

TE 3.4 Hi i) 5% 5 This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject *PyObject_Bytes (PyObject *0)
EI{E4E: #FHay%0&, Part of the Stable ABL Compute a bytes representation of object 0. NULL is returned
on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when o is not

7.1. Object Protocol 87

The Python/C API, £[F) 3.11.8

an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes
object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Fart of the Stable ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise
return 0. In case of an error, return —1.

If cis is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa____subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls._ _mro

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Part of the Stable ABI. Return 1 if inst is an instance of the class cIs or a subclass of cIs, or 0 if not. On error,
returns —1 and sets an exception.

If cis is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

Ifclshasa _instancecheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of c¢Is if its class is a subclass of cIs.

An instance inst can override what is considered its class by havinga __class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga __bases___
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Fart of the Stable ABI. Compute and return the hash value of an object 0. On failure, return —1. This is the
equivalent of the Python expression hash (o).
T 3.2 iU %4 T : The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *0)
Part of the Stable ABIL Set a TypeError indicating that type (o) is not hashable and return —1. This
function receives special treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the
interpreter that it is not hashable.

int PyObject_IsTrue (PyObject ¥0)
Fart of the Stable ABI. Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent
to the Python expression not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Fart of the Stable ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent
to the Python expression not o. On failure, return —1.

PyObject *PyObject_Type (PyObject *0)

EI 4R 1E . #7449 %8, Part of the Stable ABL. When o is non-NULL, returns a type object corresponding to the
object type of object 0. On failure, raises SystemError and returns NULL. This is equivalent to the Python
expression t ype (o) . This function creates a new strong reference to the return value. There’s really no reason
to use this function instead of the Py_ TYPE () function, which returns a pointer of type Py TypeOb ject*,
except when a new strong reference is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)

Return non-zero if the object o is of type type or a subtype of fype, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

88 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, £[F) 3.11.8

Py_ssize_t PyObject_Length (PyObject *0)
FPart of the Stable ABI. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, —1 is returned. This is the equivalent to the Python
expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)
Return an estimated length for the object 0. First try to return its actual length, then an estimate using

__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent
to the Python expression operator.length_hint (o, defaultvalue).
1 3.4 BOHmA.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
E1E45: #4494 P&, Part of the Stable ABL Return element of o corresponding to the object key or NULL
on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject ¥*key, PyObject *v)
Fart of the Stable ABI. Map the object key to the value v. Raise an exception and return —1 on failure; return
0 on success. This is the equivalent of the Python statement o [key] = wv. This function does not steal a
reference to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Part of the Stable ABI. Remove the mapping for the object key from the object 0. Return -1 on failure. This
is equivalent to the Python statement del o[key].

PyObject *PyObject_Dir (PyObject *0)
EI{E44: #7849 %88, Part of the Stable ABL This is equivalent to the Python expression dir (o), returning
a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error. If the
argument is NULL, this is like the Python dir (), returning the names of the current locals; in this case, if no
execution frame is active then NULL is returned but PyErr_ Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)
E R 45 #ray % B&, Part of the Stable ABL This is equivalent to the Python expression iter (o). It
returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObiject_GetAIter (PyObject *0)
B4R 1A . #7449 % B& ., Part of the Stable ABI since version 3.10. This is the equivalent to the Python expression
aiter (o). Takes an AsyncIterable object and returns an AsyncIterator for it. This is typically a

new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError and returns
NULL if the object cannot be iterated.

1t 3.10 BOFTIA.

7.2 120y 1% 5F (Call Protocol)

CPython 3738 W T A [RlFRIRFE AU 1 7€ © p_call F11 vectorcall ([iIERY),

7.2. HEOiE5E (Call Protocol) 89

The Python/C API, £[F) 3.11.8

7.21 tp_call %7

B tp_call WHEEIZ EEIEREATEINA . sZI% T (slot) By &5 (E):

[PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs); }

B R —(EPF Y € i — 1 tuple (JTAH) FRALE S8, —MH dict FoRBHEETS |8, B Python FEx{
547y callable (*args, **kwargs). args WhZENEI NULL (WUREGS#, &6 H-—#%5 wple)
EAREE S F5 19, kwargs W] PAJE NULL.

B EBIAME GV p_call), tp_new Fltp_init HIEEREET [
ffifipyobject _call () BHAbF = API ZRIFIY—{E)1}

7.2.2 Vectorcall if§F

TE 3.9 BUHTIA.
Vectorcall 15 5 275 PEP 590 #5| AR, T8 o =T 1Y SR ORI I 1 2

EERVER) L AR e e Y44 3%, CPython JAETERIFE nY & o i 1] il B vectorcall, #X1fT, EEIAZ
— R . BEAh, B S R B E R tp_call (AR Pyobject_call()). HI,
—1f 3 4% vectorcall FFAEIB A HEEtp_call, BbAh, MR &, WIEYErF T EH 2
ARG o 9 E 1 H A AR s 2 tp_call #@Elpyvectorcall call (). iEf{afg—HEm:

it 5237 vectorcall FHEIBEHEERAHIFREFRM co_call,

AR (EEENY vectorcall L pp_call 18, FEASHERZ ELAE vectorcall . BTN, ANSEHEIT I 2 75 2545 | S FIE)
args tuple (5|9oc4l) F1 kwargs dict (B85 |8, IREIEAE vectorcall FiEIG .

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS _HAVE_VECTORCALL flag and setting
tp_vectorcall_offset tothe offsetinside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

* callable JZF59FWENY B M1

o args Jt—{il C §E 5 PS] (array), 485008 5 | 98L% i
PSS e REVES 8, S {E T AR NULL.

* nargsf JEOLE S 1B EOE N LT RE &A1
PY_VECTORCALIL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments
from nargsf, use PyVectorcall_NARGS ().

o kwnames &40 & W7 B8 52 5 | B4 H8 1 tuple;
[EVAJRE], w2 kwargs FHLAGHHE, BUH FUMERTFH (str 8L FHEWEG), EHEM
WHRAEER. (R EA #7513, FRE kwnames W DA NULL %

PY_VECTORCALL_ARGUMENTS_OFFSET

UN2RAE vectorcall (Y nargsf 51 ¥HSEE T IR,) FUdF e 35 BRI 0k args [-1] M. ([E)4)
R, args SR PG IE T (A2 0) B 7 /1 M 2 Bl args [E’Jﬁ

¥R PyObject_VectorcallMethod (), BRI SEERETHERE args [0] Widlts:.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY VECTORCALIL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make
their onward calls (which include a prepended self argument) very efficiently.

1 3.8 JUHT A

90 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

https://peps.python.org/pep-0590/

The Python/C API, £[F) 3.11.8

I — fE FLAE T vectorcall B W) {7, 15 At R 0 Ay 0 — R B R o APT AP pR X
PyObject_Vectorcall () i %Eﬂiﬁxﬁiﬁ’j

i [E: 1t CPython 3.8 1, vectorcall APL I AH B ek =X B & DA #F BA BH IE [E) (9 44 i 2 i
_PyObject_Vectorcall._Py_TPFLAGS_HAVE_VECTORCALL._PyObject_VectorcallMethod.
_PyVectorcall_Function. _PyObject_CallOneArg. _PyObject_CallMethodNoArgs,.
_PyObject_CallMethodOneArg, jiig 4k, PyObject_VectorcallDict , PA
_PyObject_FastCallDict £ FREZML. 35 2687 Z AL A o 58, B W i B i 7 4 iy ()
e

S [El
el p_call W, B WF W OR 2 ¥ 0 [E: CPython ¥ A I mp_call 1) W 1Y & i

Py _EnterRecursiveCall () MlPy_LeaveRecursiveCall ().

PR S5 A8 T A E T vectorcall [T NY © g I L 5 AE 52 B IR E 8 {85)] Py_EnterRecursiveCall

Py_LeaveRecursiveCall ,

Vectorcall 512 API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)

7 —f vectorcall nargsf T, |05 B B ER MR . A AF [A -

[(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

SRTMT, MEMEF] PyVectorcall NARGS pRZCDATH ISR ESLIE .
1 3.8 OB A

vectorcallfunc PyVectorcall_Function (PyObject *op)

WA op R3Z3% vectorcall & (HEIBUEIA LIRS E BHIALIR), sl NULL, 01, [{ERF
1FAE op W) vectorcall B FEIE . 151 pR U 5 [455 71

B K Z HEME op 2 B X & vectorcall K 8 Ik L H ¥, W P& B Mg A

PyVectorcall Function (op) != NULL JREEL.
1 3.9 OB A
PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)
WY callable ffjvectorcall func, HAED|HOHE#SE | #5453 EIRA tuple 1 dict ¥R 45

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py TPFLAGS HAVE_VECTORCALL flag and it does not fall back to
tp_call.

1E 3.8 JHT A

7.2.3 YEray API

A1 22 {18 ek AT 4 2T IY Python 1) 7F o 251 o5 X 16 HL 5 | SR EIET R0 mu] 49y 2 S 9%) FEU T TR X T A
A2 tp_call 5 vectorcall, [T [EInT AEEVEIEiEAT, s — 0@ AR HEA ERHE .

TR TR 2 ESEER SR AR .

7.2. HEOiE5E (Call Protocol) 91

The Python/C API, £[F) 3.11.8

BT callable args kwargs
PyObject_Call () PyObject * tuple dict/NULL
PyObject_CallNoArgs () PyObject * --- ---
PyObject_CallOneArqg () PyObject * —{@¥{4 -
PyObject_CallObject () PyObject * tuple/NULL ---
PyObject_CallFunction () PyObject * format —-
PyObject_CallMethod () Y + char* format ---
PyObject_CallFunctionObjArgs () PyObject * TH[ET[# -
PyObject_CallMethodObjArgs () Yt + 258 B AT | ===
PyObject_CallMethodNoArgs () Y + 2458 — —
PyObject_CallMethodOneArg () Y + 25 —{FE 14 ==
PyObject_Vectorcall () PyObject * vectorcall vectorcall
PyObject_VectorcallDict () PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod () B8 + 4% vectorcall vectorcall

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject ¥*kwargs)
ER1E: #ra9 %88, Part of the Stable ABL 1Y —{#]I 4 Python #){4: callable, Fft#H tuple args
JIr e i A5 | BB e 3 kwargs T 46 1) BS54

args WWEAE NULL; WNSRARTFLS [#, 55045 wple. R AFEBE TS 4,) kwargs 7]
PAE) NULL,

IR] (A R, B 2R Bk 5 | 3 — {1) AN o] (8 NULL
B4 Python .5 callable (*args, **kwargs).
PyObject *PyObject_CallNoArgs (PyObject *callable)

EIARAA: #rhy % P&, Part of the Stable ABI since version 3.10. WEN—{# AT IEAY) Python #4114 callable
EIARPHAATATS | 8. A5 | BEnY Python RTIFIY) {411 5 A R0 2K

JST R [l 5 AR, s e AR | 38— 31 A [l e NUILL
e 3.9 BUBTMA.
PyObject *PyObiject_CallOneArg (PyObject *callable, PyObject *arg)

EARE: Arag . WEN—(E T IER) Python 41{4: callable [EIFfE s IE 4 — M8 (085 | arg TMIEA BY
TG

JS T] 5 AR, mE S BB | 38— 31 A1) [e NUILL
1E 3.9 BUHTA.
PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)

ER1E: a9 %88, Part of the Stable ABL 1Y —{#] LI 1) Python #){4: callable, Pt tuple args
Fréb e s 8. R RFEEA G #, [args W PA[E] NULL.

I S R BfE S O | 58— 5 SNE) | {8 NULL .
BEE R Python HE 5 callable (*args) .

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

EIM&1E: #ag 488, Part of the Stable ABL FEH—# A IE0Y 14 Python #{4: callable, P 8a] 5811
CHl¥. L CHIHEM Py _Buildvalue () AR IR AAHA . M0 AE NULL, FRR[E
PR AR EETE

SR S S BlfE SR RS | 5% — (8 5 SNE) R {8 NULL .
BEE N Python HE callable (*args) .

WE, MRARBEA Pyobject* 58, HlPyObject_CallFunctionObjArgs () &5 —{f Tk
TS

1E 3.4 iRAYEE: B8 format HIBEIEH# char * Wik,

92 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)

EIMRAA: #0408, Part of the Stable ABL WY obj Ptk F1 24 [E] name 17 method [EIPH 7% 05t Al 5 11
CHl#, B CHl#tpry Buildvalue () M FHAHEAR, ERERA M tuple.

R P AE] NULL, 7R B SR | 8
IR [AE S BE R BORES | 58— 5 /NE) =] {8 NULL.
1B 4HE N Python & 1 obj.name (argl, arg2, ...).

HE, WRIRHEEA pyobject* 5#, QlPyobject_CallMethodObjArgs () s 7— 5 P
FpEiEECN

TE 3.4 [TE: name F format PREIC A char * B,
PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)

EIM&AE: #ray %88, Part of the Stable ABL WERY—([W] WEAY 34 Python $114: callable, P40 v 8419
PyObject* 5|8, iELE5|#UE AN BAE NULL R0 . Bgnl 58 (1) S HORE L.

JE R LA o S RS | {151 SNE e 8 NULL.
BEER Python T callable (argl, arg2, ...).
PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)
EMEAE: #9488, Part of the Stable ABIL FENL Python ¥ obj 1 #)—1i method, H:H' method 44 Fi§

H1 name 1) Python FERMIFARE . WRFIY I & f A7 B T 821 Pyobject* HI#f. 15245 B2 DA
{7 EAE NULL %001, H3Ce] 8800 2 ORI

JRCTI R [l (B R, e S B 5 | 38— {1) NED [8 NULLL.
PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)

ASH AR AT S | 1Y Python 7 {4F obj H1#)—1 method, ' method £ Fi i name 111 Python =
BYIFAE -

B R [SR ol O AR | %1 31 SME [{8 NULL.,
1E 3.9 BUH A

PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

A 25— {13 5| 0 arg I Python 494 obj i) —{H method, H:ri method 4 %%t name 11
Python “FHRYIIF4ASE -

IR IR e SBR[— {1 (1 SPE] {8 NULL,
e 3.9 BUBTINA.

PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

If: MY — 8 7] 1Y (%) Python #)2F callable., Bf{#5| 3Bl vectorcall func WFHE . AN callable
vectorcall, AI)'E & B IEWEITEIAE callable W) vectorcall BR= .

BT [(4 SR sl O RO 5 | — {1 491 SN [m] {8 NULL
TE 3.9 JRHTIA.

PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

it 21 LA E vecrorcall T 5 H A [O 25 | BORIEIY callable, {H-€7 i E DA 3t kwdict 4% 3 AR
TSI args A R A& 07 BT HE

e TRl , ARE RO AT [T R, e A TEREI D C AR
—AZAEER 5 | st EEAEELES 801 uple A B .

1E 3.9 BUHTIA.

7.2. HEOiE5E (Call Protocol) 93

The Python/C API, £[F) 3.11.8

PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)
Call a method using the vectorcall calling convention. The name of the method is given as a Python string
name. The object whose method is called is args/0], and the args array starting at args[I] represents the
arguments of the call. There must be at least one positional argument. nargsf is the number of positional
arguments including args[0], plus PY_VECTORCALL_ARGUMENTS_OFFSET if the value of args[0]
may temporarily be changed. Keyword arguments can be passed just like in PyOb ject_Vectorcall ().

If the object has the Py TPFLAGS_METHOD_DESCRIPTOR feature, this will call the unbound method
object with the full args vector as arguments.

JRCT R] (A SR, sl SR B 5 | {1) SN] 8 NULLL.
1E 3.9 BT

7.2.4 IR0 %{E AP

int PyCallable_Check (PyObject *0)

Part of the Stable ABL H5EW{ o ZGERIIE . AR (2 nTng a4 4 3 1, HC At ET [l
0o dE fIl BRI A I R

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Part of the Stable ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.
1 3.8 RAY5E T : Returns 1 if o is an index integer.

PyObject *PyNumber_Add (PyObject *ol, PyObject *02)
EIM& A4 #7184 %88, Part of the Stable ABL Returns the result of adding o] and 02, or NULL on failure. This
is the equivalent of the Python expression o1 + o02.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
B4R 1A #hY % B& ., Part of the Stable ABL Returns the result of subtracting 02 from o, or NULL on failure.
This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)
EI{E4E : #7494 18, Part of the Stable ABL Returns the result of multiplying o/ and 02, or NULL on failure.
This is the equivalent of the Python expression o1 * o2.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
EI{R4E: #ah %8, Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication on
ol and 02, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.

TE 3.5 BUHTINA.

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject *02)
EIM&E: #hy % R& ., Part of the Stable ABL Return the floor of ol divided by 02, or NULL on failure. This
is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject *02)
B4R 14 . #7449 4 B8, Part of the Stable ABI. Return a reasonable approximation for the mathematical value of
ol divided by 02, or NULL on failure. The return value is "approximate” because binary floating point numbers

are approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. This is the equivalent of the Python expression o1 / o02.

94 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

PyObject *PyNumber_Remainder (PyObject *ol, PyObject ¥02)
B4R 1A #7894 B8, Part of the Stable ABI. Returns the remainder of dividing ol by 02, or NULL on failure.
This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject *02)
EI{EA8 : #4494 B&, Part of the Stable ABI. See the built-in function divmod () . Returns NULL on failure.
This is the equivalent of the Python expression divmod (o1, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject ¥02, PyObject *03)
B {244 #rhy %88, Part of the Stable ABL See the built-in function pow () . Returns NULL on failure. This
is the equivalent of the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored,
pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)
B4R 1A FraY % B&, Part of the Stable ABL Returns the negation of o on success, or NULL on failure. This
is the equivalent of the Python expression —o.

PyObject *PyNumber_Positive (PyObject *0)
B4R 1A #7449 % B& . Part of the Stable ABI. Returns o on success, or NULL on failure. This is the equivalent
of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
EI4R 18 #7694 8, Part of the Stable ABI. Returns the absolute value of o, or NULL on failure. This is the
equivalent of the Python expression abs (o).

PyObject *PyNumber_Invert (PyObject *0)
EI{RA4 : #7948, Part of the Stable ABI. Returns the bitwise negation of o on success, or NULL on failure.
This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift (PyObject *ol, PyObject *02)
EI{RAE . #7494 04, Part of the Stable ABI. Returns the result of left shifting o/ by 02 on success, or NULL
on failure. This is the equivalent of the Python expression o1 << 02.

PyObject *PyNumber_Rshift (PyObject *ol, PyObject *02)
B4R 1A #7449 % B8, Part of the Stable ABI. Returns the result of right shifting ol by 02 on success, or NULL
on failure. This is the equivalent of the Python expression o1 >> o02.

PyObject *PyNumber_And (PyObject *01, PyObject ¥02)
EIARAE . FraYy %8, Part of the Stable ABI. Returns the "bitwise and” of o/ and 02 on success and NULL
on failure. This is the equivalent of the Python expression o1 & o2.

PyObject *PyNumber_Xor (PyObject *o1, PyObject ¥02)
EI{EAE: # ey % B&, Part of the Stable ABL Returns the “bitwise exclusive or” of ol by 02 on success, or
NULL on failure. This is the equivalent of the Python expression o1 ~ o2.

PyObject *PyNumber_Oxr (PyObject *ol, PyObject *¥02)
EIMRAE: #7849 %88, Part of the Stable ABI. Returns the “bitwise or” of o] and 02 on success, or NULL on
failure. This is the equivalent of the Python expression o1 | 02.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject ¥02)
{244 . #7449 4% P&, Part of the Stable ABL Returns the result of adding o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 += o2.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
B4R 1A #hY % B& ., Part of the Stable ABL Returns the result of subtracting 02 from o, or NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent of the Python statement 01 -= 02.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject *¥02)
B4R 1A #7449 % B& . Part of the Stable ABIL Returns the result of multiplying ol and 02, or NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent of the Python statement 01 *= o02.

7.3. Number Protocol 95

The Python/C API, £[F) 3.11.8

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
EIM&A4: #hy 488, Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication on
ol and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of
the Python statement o1 @= o2.

£ 3.5 BUBTNA.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject ¥02)
B4R 1A #7494 88, Part of the Stable ABI. Returns the mathematical floor of dividing ol by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol //= o2.

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
EI{E4E: #6948, Part of the Stable ABL Return a reasonable approximation for the mathematical value
of ol divided by 02, or NULL on failure. The return value is ”approximate” because binary floating point
numbers are approximate; it is not possible to represent all real numbers in base two. This function can return
a floating point value when passed two integers. The operation is done in-place when ol supports it. This is
the equivalent of the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
EI{E4E : #7494 84, Part of the Stable ABIL Returns the remainder of dividing o/ by 02, or NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject *PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)

EA&4E . #7449 % B& ., Part of the Stable ABIL See the built-in function pow () . Returns NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 **= 02
when 03 is Py_ None, or an in-place variant of pow (o1, 02, o03) otherwise. If 03 is to be ignored, pass
Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *¥02)
IR 1A #9488, Part of the Stable ABL Returns the result of left shifting o/ by 02 on success, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol <<= 02.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *¥02)
EI1& 1A #7849 % B4, Part of the Stable ABI. Returns the result of right shifting o/ by 02 on success, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol >>= o02.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject ¥02)
E1E 15 #rah 4B, Part of the Stable ABIL. Returns the “bitwise and” of ol and 02 on success and NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol &= o2.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
B4R 4E: ey % B&, Part of the Stable ABI. Returns the "bitwise exclusive or” of ol by 02 on success, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol "~= o2.

PyObject *PyNumber_InPlaceOr (PyObject *0ol, PyObject *02)
EIMR 1A #4488, Part of the Stable ABL Returns the "bitwise or” of ol and 02 on success, or NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
|= o2.

PyObject *PyNumber_Long (PyObject *0)
B4R 1A #7hY % B& . Part of the Stable ABI. Returns the o converted to an integer object on success, or NULL
on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject *0)
EIM&1E: #ay4 B8, Part of the Stable ABL Returns the o converted to a float object on success, or NULL
on failure. This is the equivalent of the Python expression f1oat (o).

96 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

PyObject *PyNumber__Index (PyObject *0)
E4R 1A #a9 % 8., Part of the Stable ABIL Returns the o converted to a Python int on success or NULL
with a TypeError exception raised on failure.

JE 3.10 i 1Y)%# 55 The result always has exact type int. Previously, the result could have been an instance
of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)
B4R 1A . #7469 % B8 . Part of the Stable ABI. Returns the integer n converted to base base as a string. The base
argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker

of 'Ob', '0o"',or '0x"', respectively. If n is not a Python int, it is converted with PyNumber_Index ()
first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Part of the Stable ABI. Returns o converted to a Py_ssize_ t value if o can be interpreted as an integer. If

the call fails, an exception is raised and —1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError
or OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to
PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
Part of the Stable ABI since version 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and O otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Part of the Stable ABI. Return 1 if the object provides the sequence protocol, and O otherwise. Note that

it returns 1 for Python classes witha __getitem__ () method, unless they are dict subclasses, since in
general it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *¥0)

Py_ssize_t PySequence_Length (PyObject *0)
Part of the Stable ABL Returns the number of objects in sequence o on success, and —1 on failure. This is
equivalent to the Python expression 1len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject *02)
EIARAE . FraYy %8, Part of the Stable ABI Return the concatenation of ol and 02 on success, and NULL
on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *0, Py_ssize_t count)
EIMRAE . #7444 8. Part of the Stable ABI. Return the result of repeating sequence object o count times, or
NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *ol, PyObject *02)

w4218 #ra4 4B, Part of the Stable ABI. Return the concatenation of o/ and 02 on success, and NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python expression
ol += o2.

PyObject *PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
EI{EAE: #H ey 4B, Part of the Stable ABL Return the result of repeating sequence object o count times,
or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of the Python
expression o *= count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t 1)

EIME4E: #8948, Part of the Stable ABL Return the ith element of o, or NULL on failure. This is the
equivalent of the Python expression o [1].

7.4. Sequence Protocol 97

The Python/C API, £[F) 3.11.8

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
B4R 1A . #7649 % B& . Part of the Stable ABI. Return the slice of sequence object o between i/ and i2, or NULL
on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)

Fart of the Stable ABI. Assign object v to the ith element of o. Raise an exception and return —1 on failure;
return O on success. This is the equivalent of the Python statement o [1] = wv. This function does not steal
a reference to v.

If v is NULL, the element is deleted, but this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_t 1)
Fart of the Stable ABI Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *Vv)
Fart of the Stable ABI. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statement o [11:12] = w.

int PySequence_DelSlice (PyObject *0, Py_ssize_t il, Py_ssize_t i2)
Part of the Stable ABI. Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the
equivalent of the Python statement del o[il:i2].

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Part of the Stable ABI. Return the number of occurrences of value in o, that is, return the number of keys
for which o [key] == value. On failure, return —1. This is equivalent to the Python expression o.
count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Fart of the Stable ABI. Determine if o contains value. If an item in o is equal to value, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Part of the Stable ABI. Return the first index i for which o [1] == wvalue. On error, return —1. This is
equivalent to the Python expression o. index (value).

PyObject *PySequence_List (PyObject *0)

B4R 448 Fray 4 B&., Part of the Stable ABL Return a list object with the same contents as the sequence
or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the Python
expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *¥0)
EI1R1E: #ray 4 B&, Part of the Stable ABI Return a tuple object with the same contents as the sequence
or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be
constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *0, const char *m)

EI{E44 : #7404 % 8. Part of the Stable ABL Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)

Returns the length of o, assuming that o was returned by PySequence Fast () and that
o is not NULL. The size can also be retrieved by calling PySequence_Size () on o, but
PySequence_Fast_GET_SIZE () is faster because it can assume o is a list or tuple.

98 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t 1)
w444 : 1% H %484, Return the ith element of o, assuming that o was returned by Py Sequence_Fast (),
o0 is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast ()
and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject *PySequence_ITEM (PyObject *o, Py_ssize_t 1)
© 4% 1E: # 89 % B, Return the ith element of o or NULL on failure. Faster form of

PySequence_GetItem () but without checking that PySequence_Check () on o is true and with-
out adjustment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem(),PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Part of the Stable ABI. Return 1 if the object provides the mapping protocol or supports slicing, and 0 oth-
erwise. Note that it returns 1 for Python classes with a __getitem__ () method, since in general it is
impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Part of the Stable ABI. Returns the number of keys in object o on success, and —1 on failure. This is equivalent
to the Python expression 1len (o).

PyObject *PyMapping_Get ItemString (PyObject *o, const char *key)
E AR 1E: #aYy 4 B&, Part of the Stable ABI. This is the same as PyObject_GetItem(), but key is
specified as a const char* UTF-8 encoded bytes string, rather than a PyOb ject*.

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Part of the Stable ABL This is the sameas PyOb ject_SetItem(),butkeyisspecifiedasaconst char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_DelItem (PyObject *o, PyObject *key)
This is an alias of PyObject_DelItem().

int PyMapping_DelItemString (PyObject *o, const char *key)
This is the same as PyObject_DelItem (),butkeyisspecifiedasaconst char* UTF-8 encoded bytes
string, rather than a PyOb ject*.

int PyMapping_HasKey (PyObject *0, PyObject *key)

Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

#iF): Exceptions which occur when this calls __getitem__ () method are silently ignored. For proper
error handling, use PyObject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)

Part of the Stable ABI. This is the same as PyMapping HasKey (),butkeyisspecifiedasa const char*
UTF-8 encoded bytes string, rather than a PyOb ject*.

7.5. Mapping Protocol 99

The Python/C API, £[F) 3.11.8

HE): Exceptions that occur when this calls __getitem__ () method or while creating the temporary st r
object are silently ignored. For proper error handling, use PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
EIARAE: #0495 08, Part of the Stable ABL On success, return a list of the keys in object 0. On failure,
return NULL.

TE 3.7 iR 5 : Previously, the function returned a list or a tuple.
PyObject *PyMapping_Values (PyObject *0)

EI{RAE: #rhYy 4 P&, Part of the Stable ABIL On success, return a list of the values in object 0. On failure,
return NULL.

T 3.7 fiR /%% 58 : Previously, the function returned a list or a tuple.
PyObject *PyMapping_Items (PyObject *0)

EI4& 18 #ay % &, Part of the Stable ABL On success, return a list of the items in object o, where each
item is a tuple containing a key-value pair. On failure, return NULL.

TE 3.7 fRAY 52 5 : Previously, the function returned a list or a tuple.

7.6 X2 inmE

7 {2 P A EUR 2 R 2

int PyIter_ Check (PyObject *0)
Part of the Stable ABI since version 3.8. IR o WAL &M EIEL Py Iter Next () H)E#IEE
(non-zero), 75 HII[BIfE O, 35 {1 B X — 7 FHATII)

int PyAIter_Check (PyObject *0)
Part of the Stable ABI since version 3.10. TR o B AsyncIterator Wik, HIFMEIEE, &
HIlE 0. JE 6 pR =X — & S AT .
1 3.10 fBGHTMA.

PyObject *PyIter_Next (PyObject *0)

EIMRAE . #0488, Part of the Stable ABL [A[{E[EISE o (T —{F{H. RIEPyIter Check (), #
Y ZE R —RENC S (P Ededs) . WSREG R0, AEE NULL HARBERI S, AR AR
RIAH Fpgg A g, Al NuLL [EEIEF 51

Zimm - HERREREER, CRCHE aRiEk:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
s

Py_DECREF (iterator);

if (PyErr_Occurred()) {
(BHET—1)

100 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

(B E—H)
/* propagate error */
}
else {
/* continue doing useful work */

}

type PySendResult
MRFrRpPyIter_send () ARERIIFIE (enum) (.
TE 3.10 OB A
PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Part of the Stable ABI since version 3.10. ¥§ arg {55 E|EURES iter . [A]{4:
o WREREHA B HI[E PYGEN_RETURN, [0l {8358 presult |7 {4 .
o WREICSHEVE (vield) BIF] PYGEN_NEXT., [EVE(HBER presult [7]{H
o QIR EMLEET | 255 4 HI[E] PYGEN_ERROR. presult £ 5% E[F] NULL,
e 3.10 OB A

7.7 #&:41%F (Buffer Protocol)

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array . array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

* on the producer side, a type can export a “buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

 on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array . array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write () only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto () need write access to the
contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg_ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer_Release () must be called when the buffer isn’t needed anymore. Failure to do so
could lead to various issues such as resource leaks.

7.7. 4R (Buffer Protocol) 101

The Python/C API, £[F) 3.11.8

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of
memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Part of the Stable ABI (including all members) since version 3.11.

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location
within the underlying physical memory block of the exporter. For example, with negative st rides the
value may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically

released (i.e. reference count decremented) and set to NULL by PyBuffer Release (). The field is
the equivalent of the return value of any standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this
scheme.

Py_ssize_t 1len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying mem-
ory block. For non-contiguous arrays, it is the length that the logical structure would have if it were
copied to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buffer
has been obtained by a request that guarantees contiguity. In most cases such a request will be
PyBUF_SIMPLE or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRI TABLE flag.

Py _ssize_t itemsize

Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-
NULL format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but i temsi ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the
consumer can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard i temsize and assume itemsize ==

const char *£format

A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

102 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, st rides and suboffsets MUST be NULL.
The maximum number of dimensions is given by PyBUF_MAX_NDIM.

Py_ssize_t *shape
Anarrayof Py_ssize_t of length ndimindicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsize MUST beequal to Ien.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special atten-
tion. See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_ t of length ndim giving the number of bytes to skip to get to a new element
in each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

Constants:
PyBUF_MAX_ NDIM
The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers

of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently
set to 64.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer ().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

7.7. $&:41% %€ (Buffer Protocol) 103

The Python/C API, £[F) 3.11.8

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob7j, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be I'd to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I'd to any of the flags except PyBUF_SIMPLE. The latter already implies format B (un-
signed bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

| Request shape | strides | suboffsets |

yes yes if needed
PyBUF_INDIRECT

yes yes NULL
PyBUF_STRIDES

yes NULL | NULL
PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

104 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

Request | shape | strides = suboffsets contig |
yes yes NULL C
PyBUF_C_CONTIGUOUS
yes yes NULL F
PyBUF_F_CONTIGUOUS
yes yes NULL Cui F
PyBUF_ANY_CONTIGUOUS
PyBUF_ND yes NULL NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity.

PyBuffer IsContiguous () to determine contiguity.

The consumer would have to call

| Request | shape | strides | suboffsets | contig readonly | format |

yes yes if needed U 0 yes
PyBUF_FULL

yes yes if needed U 150 yes
PyBUF_FULL_RO

yes yes NULL U 0 yes
PyBUF_RECORDS

yes yes NULL U 180 yes
PyBUF_RECORDS_RO

yes yes NULL U 0 NULL
PyBUF_STRIDED

yes yes NULL U 180 NULL
PyBUF_STRIDED_ RO

yes NULL | NULL C 0 NULL
PyBUF_CONTIG

yes NULL | NULL C 180 NULL
PyBUF_CONTIG_RO

7.7. 4R (Buffer Protocol)

105

The Python/C API, £[F) 3.11.8

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, bu £ can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

if ndim <= O:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. In suboffsets representa-
tion, those two pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be
located anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];

€ & A}

106 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

The Python/C API, £[F) 3.11.8

(L —5)
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];
}
I3

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Fart of the Stable ABI since version 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyOb ject_GetBuffer () will succeed. This function always succeeds.
int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Fart of the Stable ABI since version 3.11. Send a request to exporter to fill in view as specified by flags. If the

exporter cannot provide a buffer of the exact type, it MUST raise Buf ferError, set view—>0bj to NULL
and return —1.

On success, fill in view, set view—>obj to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view—>0bj MAY refer to this object instead of
exporter (See Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (),
similar to malloc () and free(). Thus, after the consumer is done with the buffer,
PyBuffer Release () must be called exactly once.

void PyBuffer_Release (Py_buffer *view)

Part of the Stable ABI since version 3.11. Release the buffer view and release the strong reference (i.e. decre-
ment the reference count) to the view’s supporting object, view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (const char *format)

Part of the Stable ABI since version 3.11. Return the implied i temsize from format. On error, raise an
exception and return -1.

1E 3.9 BUHTIA.

int PyBuffer_IsContiguous (const Py_buffer *view, char order)
Fart of the Stable ABI since version 3.11. Return 1 if the memory defined by the view is C-style (orderis 'C")
or Fortran-style (order is 'F ') contiguous or either one (order is 'A"). Return 0 otherwise. This function
always succeeds.

void *PyBuffer_GetPointer (const Py_buffer *view, const Py_ssize_t *indices)
Fart of the Stable ABI since version 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view—>ndim indices.

int PyBuffer_ FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Fart of the Stable ABI since version 3.11. Copy contiguous len bytes from buf to view. fort canbe 'C' or
'"F' (for C-style or Fortran-style ordering). 0 is returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)

Part of the Stable ABI since version 3.11. Copy len bytes from src to its contiguous representation in buf. order
canbe 'C' or 'F' or 'A"' (for C-style or Fortran-style ordering or either one). 0 is returned on success, —1
on error.

This function fails if len != src->len.

7.7. 4R (Buffer Protocol) 107

The Python/C API, £[F) 3.11.8

int PyObject_CopyData (PyObject *dest, PyObject *src)

Fart of the Stable ABI since version 3.11. Copy data from src to dest buffer. Can convert between C-style and
or Fortran-style buffers.

0 is returned on success, —1 on error.

void PyBuffer FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,
char order)

Part of the Stable ABI since version 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order
is 'C' or Fortran-style if order is 'F ") array of the given shape with the given number of bytes per element.

int PyBuffer FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int
flags)

Fart of the Stable ABI since version 3.11. Handle buffer requests for an exporter that wants to expose buf of
size len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless
buf has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view->ob7j to a new reference to exporter and return 0. Otherwise, raise BufferError,
set view->obj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.8 B & 415 F (Buffer Protocol)

1 3.0 i EuEE .

75 2 pR 52 Python 2 v [85 xUAR M 5 1o 2 | APT —354r . #F Python 3 ot 3% sk CLESANAEAE, (Hig sk
SR A BAAMI A 2.x B AS. BMFHEH X & & B W AR, (HE (M ek e R i
i (export) 4 fiy i R FT 48 U PR A% A6 A B0

i, B & AR W pyobject _GetBuffer () (E{ & PA y* B w* & X &5 (format code) W
WpyArg ParseTuple () ZAVRI) 1Y 4% 1 [5 [(buffer view), DA Bz 4 fiiy [18] W] 4 e
TRy PyBuffer Release () .

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABL [alf— {35 [i) 1] iV BE 7 0 i A 2 MERGRC ARG 0L B RO 5 87 ol 5 [BLb 7]
YR — Bt (single-segment) “FICARM /T . DR EIE 0, [EVK buffer st ERCIRBENIE . A%
buffer_len 3¢ AR E WRE . B -1 E7ESRRIRE TypeError,

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABL [a] {8 —flil £ 1] €0 5 (1 5 OBl Z MERRCIR S AL B TEER . oby 5| Bl JH SR i —
BT AR . SRR 0, (B buffer i@ ERCARRE AL E . HF buffer_len 3 [E4EE R
B, [mlfE -1 [EEE R E TypeError,

int PyObject_CheckReadBuffer (PyObject *0)
Part of the Stable ABL 15 o 37 & ¥l— Fy Bl g B lm i, AUl 1, A mE 0, B R —E
AT .
AR, wx PR B R R R O [, (B ELWF AR 0 R R A 0) SR ol . BB S et

& S Pyobject_GetBuffer (),

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABL || {845 jis) i SRR A8 O/ B HIE . obj 5 [B SR B —) B O S [/i -
IR E 0, [T buffer 32 ERTARBEAIE, HAF buffer_len g DB HEARE ., [l -1 B
R E TypeError,

108 Chapter 7. #Z ¥4 B (Abstract Objects Layer)

CHAPTER 8

S FE B h 68 54 B 1 7 S8 1 Python 39 PFE, 6 GERERO M (M A6 PIEL RS A HED
5, AURARGE Python Bt e Bt Bl — A Aol i R I E A EN o, ANER— i B P
AN PyDi ce_check () ACHER— WU R BB . KSR Python Py HEY”

(family tree)”,

B MEAART AL WU AR A T AR, (B2 B2 AE NULL. AUEF NULL
A AT BE 1 MRC TR B A R ORI EL e S B I

8.1 EuEWftF

MBLYE AR Python ZU[E)Y) 4B LA (singleton) #){;: None.

8.1.1 Type Objects

type PyTypeObject
Fart of the Limited API (as an opaque struct). The C structure of the objects used to describe built-in types.
PyTypeObject PyType_Type
Fart of the Stable ABI. This is the type object for type objects; it is the same object as t ype in the Python
layer.
int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return O in all other cases. This function always succeeds.
int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return O in all
other cases. This function always succeeds.
unsigned int PyType_ClearCache ()

Fart of the Stable ABI. Clear the internal lookup cache. Return the current version tag.

109

The Python/C API, £[F) 3.11.8

unsigned long PyType_GetFlags (PyTypeObject *type)
Part of the Stable ABIL Return the tp_ £ 1ags member of type. This function is primarily meant for use with

Py_LIMITED_APT; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

e 3.2 ORI
TE 3.4 JR {5255 The return type is now unsigned long rather than long.
void PyType_Modified (PyTypeObject *type)
Fart of the Stable ABL Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.
int PyType_HasFeature (PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.
int PyType_IS_GC (PyTypeObject *o0)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.
int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Part of the Stable ABI. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on
b. Call PyObject_IsSubclass () todo the same check that issubclass () would do.
PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
EME1E: #7894 B8, Part of the Stable ABI Generic handler for the tp_alloc slot of a type object. Use
Python’s default memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.
PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject ¥*kwds)
EI{E4E: #ay%0&, Part of the Stable ABIL Generic handler for the tp_new slot of a type object. Create
a new instance using the type’s tp_alloc slot.
int PyType_Ready (PyTypeObject *type)
Fart of the Stable ABI. Finalize a type object. This should be called on all type objects to finish their initial-

ization. This function is responsible for adding inherited slots from a type’s base class. Return O on success,
or return —1 and sets an exception on error.

#§[E): If some of the base classes implements the GC protocol and the provided type does not include
the Py TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS_HAVE_GC in its flags then it
must implement the GC protocol itself by at least implementing the tp_ t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)
1R 1E: #7489 %8&, Part of the Stable ABI since version 3.11. Return the type’s name. Equivalent to getting
the type’s __name___ attribute.

75 3.11 HEHTA.

PyObject *PyType_GetQualName (PyTypeObject *type)
R 1E: #7494 B4, Part of the Stable ABI since version 3.11. Return the type’s qualified name. Equivalent
to getting the type’s ___qualname___ attribute.

e 3.1 JRHTIA.
void *PyType_GetSlot (PyTypeObject *type, int slot)
Fart of the Stable ABI since version 3.4. Return the function pointer stored in the given slot. If the result

is NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters.
Callers will typically cast the result pointer into the appropriate function type.

See PyType_Slot.slot for possible values of the slor argument.

110 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

TE 3.4 BUHTIMA.
TE 3.10 iUEETE: Py Type_ GetSlot () cannow accept all types. Previously, it was limited to heap types.
PyObject *PyType_GetModule (PyTypeObject *type)

Part of the Stable ABI since version 3.10. Return the module object associated with the given type when the
type was created using Py Type_FromModuleAndSpec ().

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may
be a subclass of the intended class, and subclasses are not necessarily defined in the same module as their
superclass. See PyCMet hod to get the class that defines the method. See Py Type_ GetModuleByDef ()
for cases when PyCMethod cannot be used.

e 3.9 BUHTIMA.
void *PyType_GetModuleState (PyTypeObject *type)

Part of the Stable ABI since version 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule_ GetState () onthe result of PyType GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.

If the rype has an associated module but its state is NULL, returns NULL without setting an exception.

e 3.9 BUHTIMA.
PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)
Find the first superclass whose module was created from the given PyModuleDe f def, and return that module.

If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule GetState () to get module state from slot
methods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed
using the PyCMet hod calling convention.

e 311 BUFTIA.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.

PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)
EI4R 1A #7104 % B&, Part of the Stable ABI since version 3.10. Creates and returns a heap type from the spec
(Py_TPFLAGS_HEAPTYPE).

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead.
If that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for
each class individually.

This function calls PyType_Ready () on the new type.

1E 3.9 BUBTIA.

TE 3.10 fit)52 5 The function now accepts a single class as the bases argument and NULL as the tp_doc
slot.

8.1. XY 111

The Python/C API, £[F) 3.11.8

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)

w 4% 4E: # 84 % B&, Part of the Stable ABI since version 3.3. & g p
PyType_FromModuleAndSpec (NULL, spec, bases),
1E 3.3 BUHT A

PyObject *PyType_FromSpec (PyType_Spec *spec)
I {RAG - #7149 %04, Part of the Stable ABL Z{Ei* PyType_FromSpecWithBases (spec, NULL) .

type PyType_Spec
Part of the Stable ABI (including all members). Structure defining a type’s behavior.

const char *PyType_Spec .name
Name of the type, used to set Py TypeObject . tp_name.

int PyType_Spec.basicsize

int PyType_Spec.itemsize

Size of the instance in bytes, used to set Py TypeObject.tp_basicsize and PyTypeObject.
tp_itemsize.

int PyType_Spec.flags
Type flags, used to set PyTypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, Py Type_ FromSpecWithBases () sets it auto-
matically.

PyType_Slot *PyType_Spec.slots
Array of PyType_S1ot structures. Terminated by the special slot value {0, NULL}.

type PyType_Slot
Fart of the Stable ABI (including all members). Structure defining optional functionality of a type, containing
a slot ID and a value pointer.

int PyType_Slot.slot

A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject,
PyNumberMethods, PySequenceMethods, PyMappingMethods and
PyAsyncMethods with an added Py__ prefix. For example, use:

* Py_tp_dealloctoset PyTypeObject.tp_dealloc

* Py_nb_addtoset PyNumberMethods.nb_add

* Py_sqg_lengthtoset PySequenceMethods.sq length
The following fields cannot be set at all using Py Type_ Spec and PyType_Slot:

e tp_dict

* tp_mro

* tp_cache

* tp_subclasses

* tp_weaklist

* tp_vectorcall

* tp_weaklistoffset (see PyMemberDef)

* tp_dictoffset (see PyMemberDef)

* tp_vectorcall_offset (see PyMemberDef)

112 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid
issues, use the bases argument of Py Type_FromSpecWithBases () instead.

TE 3.9 fRAY%E T : Slots in PyBuf ferProcs may be set in the unlimited API.

JE 311 R W: b _getbuffer and bf_releasebuffer are now available under the limited
API.

void ¥*PyType_Slot .pfunc

The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_ tp_doc may not be NULL.

8.1.2 None ¥4

Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject *Py_None

The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py_RETURN_NONE

Properly handle returning Py_ None from within a C function (that is, increment the reference count of None
and return it.)

8.2 HEMF
8.2.1 B

All integers are implemented as “long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number.
Use PyErr_Occurred () to disambiguate.
type PyLongObject
Part of the Limited API (as an opaque struct). This subtype of PyOb ject represents a Python integer object.
PyTypeObject PyLong_Type
Fart of the Stable ABI. This instance of Py TypeObject represents the Python integer type. This is the same
object as int in the Python layer.
int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject. This function always
succeeds.
int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject. This function
always succeeds.
PyObject *PyLong_FromLong (long v)
W& A #aY % P&, Part of the Stable ABI. Return a new PyLongObject object from v, or NULL on
failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

8.2. EBEYH 113

The Python/C API, £[F) 3.11.8

PyObject *PyLong_FromUnsignedLong (unsigned long v)
ERAA: #4494 B&, Part of the Stable ABL Return a new PyLongObject object from a C unsigned
long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
& A4 #7849 %0, Part of the Stable ABI. Return a new PyLongObject objectfromaC Py_ssize_t,
or NULL on failure.

PyObject *PyLong_FromSize_t (size_t V)
%18 #7849 %04, Part of the Stable ABL Return a new PyLongObject object froma C size_t, or
NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
IR . #8494 B&, Part of the Stable ABL Return anew PyLongOb ject object froma C long long,
or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
EI{R4E . #4408, Part of the Stable ABL Return a new PyLongObject object from a C unsigned
long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)
EIM& A4 #0448, Part of the Stable ABL Return a new PyLongOb ject object from the integer part of
v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

B4R 1A #4649 %8, Part of the Stable ABIL. Return a new PyLongOb ject based on the string value in str,
which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character
in str which follows the representation of the number. If base is 0, str is interpreted using the integers definition;
in this case, leading zeros in a non-zero decimal number raises a ValueError. If base is not 0, it must be
between 2 and 36, inclusive. Leading spaces and single underscores after a base specifier and between digits
are ignored. If there are no digits, ValueError will be raised.

hs%:

Python methods int .to_bytes () and int.from_bytes () toconverta PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyOb ject_CallMethod ().

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)
I 1R1E: #ey48&, Convert a sequence of Unicode digits in the string u to a Python integer value.

1E 3.3 BT A
PyObject *PyLong_FromVoidPtr (void *p)

EMEAE: #ray 48, Part of the Stable ABL Create a Python integer from the pointer p. The pointer value
can be retrieved from the resulting value using PyLong AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Fart of the Stable ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject,
first callits __index__ () method (if present) to convertittoa PyLongObject.

Raise OverflowError if the value of obj is out of range for a long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

YE 3.8 5T : Use __index_ () if available.

TE 3.10 Jjt i) 5% 5 This function will no longer use __int__ ().

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Fart of the Stable ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject,
first call its __index__ () method (if present) to convertittoa PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1
as usual.

114 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

YE 3.8 iR5EHE: Use __index_ () if available.

7E 3.10 JiR[¥)%% 55 This function will no longer use __int__ ().
long long PyLong_AsLongLong (PyObject *obj)

Part of the Stable ABL Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a long long.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

YE 3.8 U5 T: Use __index_ () if available.

7E 3.10 Jit i) 5% 5 This function will no longer use __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Part of the Stable ABL Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcall its __index___ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1
as usual.

Returns —1 on error. Use PyErr_ Occurred () to disambiguate.

1E 3.2 BCHT A

YE 3.8 5T : Use __index_ () if available.

TE 3.10 Jit i) 5% 5 This function will no longer use __int__ ().
Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Fart of the Stable ABL Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Fart of the Stable ABIL Return a C unsigned long representation of pylong. pylong must be an instance
of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)

Part of the Stable ABI. Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t)—1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)

Fart of the Stable ABI. Return a C unsigned long long representation of pylong. pylong must be an
instance of PyL.ongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_ Occurred () to disambiguate.

TE 3.1 MUAY5E 5. A negative pylong now raises OverflowError, not TypeError.

8.2. EBEYH 115

The Python/C API, £[F) 3.11.8

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Fart of the Stable ABL Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.
TF 3.8 fiuy5E s : Use __index__ () if available.
1 3.10 iR %) 5# 55 : This function will no longer use __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Part of the Stable ABI. Return a C unsigned long long representation of obj. If obj is not an instance
of PyLongObject, firstcall its __index__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long)-1onerror. Use PyErr_Occurred () to disambiguate.
YE 3.8 5T : Use __index_ () if available.
TE 3.10 Jjt i) 5% 55 This function will no longer use __int__ ().

double PyLong_AsDouble (PyObject *pylong)

Part of the Stable ABIL. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns -1 .0 on error. Use PyErr_ Occurred () to disambiguate.
void *PyLong_AsVoidPtr (PyObject *pylong)
Fart of the Stable ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted,

an OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2.2 Boolean (#i#k) ¥

Python H1{¥) boolean & AR THEEUL AR B BN . N5 Py_False fl Py_True Wiffl boolean, [t—H%
F4) 8 57 AN ET R 6 2 EVASSE 2 boolean., {H 51| L4 (macro) 2 1]) .

PyTypeObject PyBool_Type

Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python boolean type; it is the same
object as bool in the Python layer.

int PyBool_Check (PyObject *0)
W o WAIFEPyBool Type R E(E. U4 & BHeT.
PyObject *Py_False

Python [f] False Y. WHIIHEG M. 1E3 M (reference) FHHL FAA A Z R ALY Bk
(O] LR

PyObject *Py_True

Python) True YJ{4. WHHEE M. 162 BEHEC R ZRIH A (B R 2y
Py_RETURN_FALSE

R mfE Py_False, [FHEEMWHINE RS G,

116 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Py_RETURN_TRUE
fEeka Nl py_True, [ELEFEMHEINE NS A
PyObject *PyBool_FromLong (long v)

EIMRE: #hh %88, Part of the Stable ABL R v I B BE(E W] {#i—1f Py_True B Py_False
BT 2.

8.2.3 FE & (Floating Point) ¥4

type PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
Part of the Stable ABI. This instance of Py TypeOb ject represents the Python floating point type. This is
the same object as £1oat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyF1loatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. This function
always succeeds.

PyObject *PyFloat_FromString (PyObject *str)
B4R 18 Frhy % B&., Part of the Stable ABL Create a PyFloatObject object based on the string value
in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)
EIM& A4 . #ray %08, Part of the Stable ABL Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Part of the Stable ABI. Return a C doub1e representation of the contents of pyfloat. If pyfloat is not a Python
floating point object but hasa ___float__ () method, this method will first be called to convert pyfloat into
afloat. If float__ () is not defined then it falls back to _ _index__ (). This method returns —1.0
upon failure, so one should call PyErr_Occurred () to check for errors.

¥E 3.8 Jiu5EHE: Use __index_ () if available.
double PyFloat_AS_DOUBLE (PyObject *pyfloat)

Return a C double representation of the contents of pyfloat, but without error checking.
PyObject *PyFloat_GetInfo (void)

EI4R 18 Fray % B& ., Part of the Stable ABL Return a structseq instance which contains information about
the precision, minimum and maximum values of a float. It’s a thin wrapper around the header file f1oat . h.

double PyFloat_GetMax ()
Fart of the Stable ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Fart of the Stable ABI. Return the minimum normalized positive float DBL_MIN as C double.

8.2. EBEYH 117

The Python/C API, £[F) 3.11.8

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte
strings. The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double
from such a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the
2-byte format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to
the IEEE 754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision
format, although the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and
attempting to unpack a bytes string containing an IEEE INF or NaN will raise an exception.

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

TE 3.11 BUFTIA.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first,
atp). The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor,
or O on little endian processor.

Return value: 0 if all is OK, —1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

* What this does is undefined if x is a NaN or infinity.

* -0.0and +0. 0 produce the same bytes string.

int PyFloat_Pack2 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in
little-endian format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The
PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on
little endian processor.

Return value: The unpacked double. On error, thisis =1 .0 and PyErr_Occurred () is true (and an exception
is set, most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.

double PyFloat_Unpack2 (const unsigned char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.

double PyFloat_Unpack4 (const unsigned char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.

double PyFloat_Unpack8 (const unsigned char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

118 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the APL.

type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

Return the sum of two complex numbers, using the C Py_ complex representation.
Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)

Return the difference between two complex numbers, using the C Py_ comp 1 ex representation.
Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_ compex representation.
Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Return the product of two complex numbers, using the C Py_ compex representation.
Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

Return the quotient of two complex numbers, using the C Py_ comp1ex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp 1 ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
Fart of the Stable ABI. This instance of PyTypeObject represents the Python complex number type. It is
the same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function
always succeeds.

int PyComplex_CheckExact (PyObject *p)

Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This
function always succeeds.

8.2. EBEYH 119

The Python/C API, £[F) 3.11.8

PyObject *PyComplex_FromCComplex (Py_complex v)
EI{&44: #8948, Create a new Python complex number object from a C Py_ complex value.

PyObject *PyComplex_FromDoubles (double real, double imag)
EI4R 18 #7849 % B8, Part of the Stable ABI. Return a new PyComp 1exOb ject object from real and imag.

double PyComplex_RealAsDouble (PyObject *op)
Fart of the Stable ABI. Return the real part of op as a C double.
double PyComplex_ImagAsDouble (PyObject *op)
Part of the Stable ABI Return the imaginary part of op as a C double.
Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py complex value of the complex number op.
If op is not a Python complex number object but hasa ___complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () isnot defined then it falls back

to_ float_ ().If __float__ () isnotdefined then it falls back to __index__ (). Upon failure, this
method returns —1 . O as a real value.

e 3.8 S s MR ARV __index_ ().

8.3 Rl

J¥ IV — R EAE AT — BB S 1 BOE I R Python 55 A R E ZUEN A1 .

8.3.1 (¥ (Bytes Objects)

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
Fart of the Stable ABI. This instance of PyTypeObject represents the Python bytes type; it is the same
object as bytes in the Python layer.

int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.

PyObject *PyBytes_FromString (const char *v)
EMEAE: #ag %M, Part of the Stable ABL Return a new bytes object with a copy of the string v as value
on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
EIAR1E: #4494 B&, Part of the Stable ABIL Return a new bytes object with a copy of the string v as value
and length /en on success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)

EI{E4E : #1449 % P&, Part of the Stable ABL Take a C print £ () -style format string and a variable number
of arguments, calculate the size of the resulting Python bytes object and return a bytes object with the values
formatted into it. The variable arguments must be C types and must correspond exactly to the format characters
in the format string. The following format characters are allowed:

120 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

| Format Characters | Type Comment
%% n/a The literal % character.
$C int A single byte, represented as a C int.
sd int EEAE printf(wd").'
$u unsigned int LB print £ ("su") Paee 211
$1d long LEfEHN print £ (" %ld") !
$1lu unsigned long LEfEHN print £ ("$1u").!
Szd Py _ssize_t Z{EHA printf ("$zd").!
$zu size_t LN print £ ("Szu") !
%3 int LN print £ ("%sim) !
$x int LB print £ ("gx").!
%s const char* A null-terminated C character array.
$p const void* The hex representation of a C pointer. Mostly equivalent to

printf ("$p") except that it is guaranteed to start with the
literal Ox regardless of what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
EI{ZAE: #7494 P&, Part of the Stable ABI. Identical to PyBytes_ FromFormat () except that it takes
exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
IR 1A #4944, Part of the Stable ABL Return the bytes representation of object o that implements the
buffer protocol.

Py_ssize_t PyBytes_Size (PyObject ¥0)
Fart of the Stable ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Similar to PyBytes_Size (), but without error checking.

char *PyBytes_AsString (PyObject *0)
Fart of the Stable ABI. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of 1en (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It mustnotbe deallocated. If o is not a bytes object
atall, PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)
Similar to PyBytes_AsString (), but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Part of the Stable ABL Return the null-terminated contents of the object obj through the output variables buffer

and length. Returns 0 on success.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1
and a ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes
objectatall, PyBytes AsStringAndSize () returns —1 and raises TypeError.

JE 3.5 R I¥ 5 T Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

! For integer specifiers (d, u, Id, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. IRyl 121

The Python/C API, £[F) 3.11.8

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new
object cannot be created, the old reference to bytes will still be discarded and the value of *byfes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Fart of the Stable ABI. Create a new bytes object in *byfes containing the contents of newpart appended to
bytes. This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes
object; don’t use this if the bytes may already be known in other parts of the code. It is an error to call this
function if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an
Ivalue (it may be written into), and the new size desired. On success, *bytes holds the resized bytes object and
0 is returned; the address in *byfes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 {iu i EF¥4% (Byte Array Objects)

type PyByteArrayObject
This subtype of PyOb ject represents a Python bytearray object.

PyTypeObject PyByteArray_ Type
FPart of the Stable ABI. This instance of Py TypeOb ject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check (PyObject *0)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject *PyByteArray_FromObject (PyObject *0)
B4R 14 - #7449 488 . Part of the Stable ABI Return a new bytearray object from any object, o, that implements
the buffer protocol.

PyObject *PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
EI {44 #7494 P&, Part of the Stable ABL Create a new bytearray object from string and its length, len. On
failure, NULL is returned.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)
ER1E: # 0y 4 F& . Part of the Stable ABL Concat bytearrays a and b and return a new bytearray with the
result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Part of the Stable ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString (PyObject *bytearray)

Part of the Stable ABL Return the contents of byfearray as a char array after checking for a NULL pointer.
The returned array always has an extra null byte appended.

122 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Part of the Stable ABI. Resize the internal buffer of bytearray to len.

EX

These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_AS_STRING (PyObject *bytearray)

Similar to PyByteArray AsString (), but without error checking.
Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)

Similar to PyByteArray_Size (), but without error checking.

8.3.3 Unicode ¥t E1{RE
Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

» “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most
efficient representation allowed by the implementation.

e "legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py UNICODE* representation; you will have to
call PyUnicode READY () on them before calling any other API.

f#[E): The “legacy” Unicode object will be removed in Python 3.12 with deprecated APIs. All Unicode objects will
be “canonical” since then. See PEP 623 for more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
type Py_UCS4
type Py_UCS2
type Py_UCS1

Fart of the Stable ABI. These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py UCS4.

1E 3.3 ORI

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

TE 3.3 Y55 5 In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

type PyASCIIObject

8.3. FI¥% 123

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/

The Python/C API, £[F) 3.11.8

type PyCompactUnicodeObject
type PyUnicodeObject

These subtypes of PyOb ject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

£ 3.3 BUBTNA.

PyTypeObject PyUnicode_Type
Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python Unicode type. It is exposed
to Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:
int PyUnicode_Check (PyObject *obj)
Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.
int PyUnicode_CheckExact (PyObject *obj)
Return true if the object obj is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *unicode)
Ensure the string object o is in the ”canonical” representation. This is required before using any of the access

macros described below.

Returns 0 on success and -1 with an exception set on failure, which in particular happens if memory allocation
fails.

1E 3.3 U A
WA 310 B AHEEM H, & 83 W4 3.12 &%, : This API will be removed with

PyUnicode_FromUnicode ().

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *unicode)

Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the ”canonical”
representation (not checked).

e 3.3 BOBTmA.
Py_UCSI] *PyUnicode_1BYTE_DATA (PyObject *unicode)
Py_UCS2 *PyUnicode_2BYTE_DATA (PyObject *unicode)
Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_READY () has been called be-
fore accessing this.

1E 3.3 BUFTNA.
PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

1E 3.3 BT A
HAEHAS 3.10 ARSI, & B RA 3.12 H#%FR . : PyUnicode WCHAR_KIND EL[E.
int PyUnicode_KIND (PyObject *unicode)

Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Uni-
code object uses to store its data. unicode has to be a Unicode object in the “canonical” representation (not
checked).

124 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

TE 3.3 JHT A
void *PyUnicode_DATA (PyObject *unicode)

Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the “canonical” repre-
sentation (not checked).

TE 3.3 BUFTmA.
void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

TE 3.3 BUHTIN A
Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

1E 3.3 BUHTA.
Py_UCS4 PyUnicode_READ_CHAR (PyObject *unicode, Py_ssize_t index)

Read a character from a Unicode object unicode, which must be in the “canonical” representation. This is less
efficient than PyUnicode READ () if you do multiple consecutive reads.

e 3.3 BUFTIA.
Py_UCS4 PyUnicode_MAX_ CHAR_VALUE (PyObject *unicode)

Return the maximum code point that is suitable for creating another string based on unicode, which must be
in the “canonical” representation. This is always an approximation but more efficient than iterating over the
string.

£ 3.3 BUBTINA.
Py_ssize_t PyUnicode_GET_SIZE (PyObject *unicode)

Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as
2 units). unicode has to be a Unicode object (not checked).

E A 3.3 BAHERE ([, 158 B As 3.12 1888 . : Part of the old-style Unicode API, please migrate
to using PyUnicode_ GET_LENGTH ().
Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *unicode)

Return the size of the deprecated Py_ UNICODE representation in bytes. unicode has to be a Unicode object
(not checked).

E IR A 3.3 BAHERE (T, A% & H As 3.12 %% . : Part of the old-style Unicode API, please migrate

to using PyUnicode_ GET_LENGTH ().

Py_UNICODE *PyUnicode_AS_UNICODE (PyObject *unicode)
const char *PyUnicode_AS_DATA (PyObject *unicode)

Return a pointer to a Py UNICODE representation of the object. The returned buffer is always terminated
with an extra null code point. It may also contain embedded null code points, which would cause the string to
be truncated when used in most C functions. The AS_DATA form casts the pointer to const char*. The
unicode argument has to be a Unicode object (not checked).

TE 3.3 fi Y %% 5 This function is now inefficient -- because in many cases the Py_UNICODE represen-
tation does not exist and needs to be created -- and can fail (return NULL with an exception set). Try to
port the code to use the new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or
PyUnicode_READ ().

HIEHAS 3.3 B AHEREATH , 15 B ARAR 3.12 5% . : Part of the old-style Unicode API, please migrate

to using the PyUnicode_nBYTE_DATA () family of macros.

8.3. FI¥% 125

The Python/C API, £[F) 3.11.8

int PyUnicode_IsIdentifier (PyObject *unicode)

Fart of the Stable ABIL Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

T 3.9 W45 55 The function does not call Py_FatalError () anymore if the string is not ready.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.
int Py _UNICODE_ISLINEBREAK (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a linebreak character.
int Py_UNICODE_ISDECIMAL (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT (Py_ UCS4 ch)

Return 1 or 0 depending on whether c#h is a digit character.
int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA (Py_UCS4 ch)

Return 1 or 0 depending on whether c/ is an alphabetic character.
int Py_UNICODE_ISALNUM (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is an alphanumeric character.
int Py_UNICODE_ISPRINTABLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as "Other” or ”Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sys . stdout
or sys.stderr.)

These APIs can be used for fast direct character conversions:
Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)

Return the character ch converted to lower case.

TE 3.3 W2 4% #%[E)fH: This function uses simple case mappings.
Py_UCS4 Py_UNICODE_TOUPPER (Py_UCS4 ch)

Return the character ch converted to upper case.

1r 3.3 Jinz 45 9% : This function uses simple case mappings.

126 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Py_UCS4 Py_UNICODE_TOTITLE (Py_UCS4 ch)
Return the character ch converted to title case.

TE 3.3 W2 45 #%[E)fH: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_U/CS4 ch)

Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UCS4 ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)
Return the character ch converted to a double. Return —1 . O if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= O0xDBFF).

Py _UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC00 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
E1E1E: #7849 % 88, Create a new Unicode object. maxchar should be the true maximum code point to be

placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

1 3.3 BUBTmA.
PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
B 1% {5 # #49 4 B&., Create a new Unicode object with the given kind (possible values are

PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an
array of size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the
buffer is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range,
it will be transformed into UCS1 (PyUnicode_1BYTE_KIND).

1E 3.3 BOHT A
PyObject *PyUnicode_FromStringAndSize (const char *str, Py_ssize_t size)
1% 1E: #0484, Part of the Stable ABI. Create a Unicode object from the char buffer str. The bytes will

be interpreted as being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL,
the return value might be a shared object, i.e. modification of the data is not allowed.

If str is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode_New (), and will be removed in Python 3.12.

8.3. IRyl 127

The Python/C API, £[F) 3.11.8

PyObject *PyUnicode_FromString (const char *str)

1R 1A #7849 % B8 Part of the Stable ABI. Create a Unicode object from a UTF-8 encoded null-terminated

char buffer str.

PyObject *PyUnicode_FromFormat (const char *format, ...)

{244 : #7849 % B& . Partof the Stable ABI. Take a C print £ () -style format string and a variable number of
arguments, calculate the size of the resulting Python Unicode string and return a string with the values formatted
into it. The variable arguments must be C types and must correspond exactly to the format characters in the
format ASClI-encoded string. The following format characters are allowed:

| Format Characters | Type | Comment |
% n/a The literal % character.
%C int A single character, represented as a C int.
sd int L5 A printf("/d").'
su unsigned int LEfEHN print £ ("su").!
$1d long LAEA print £ (" 91@1").1
$1i long B print £ ("$11").!
$1lu unsigned long LN print £ ("$1u").!
$11d long long SEfEA print £("%11d").!
$111 long long LB print £ ("%$114") !
$1lu unsigned long long LEfEHN print £ ("$11u").!
szd Py ssize_ t SEfEHA print £ ("%zd") !
$zi Py _ssize_t SEN print £ ("S$zim) !
Szu size t LA print £ ("S$zu").!
%3 int LB print £ ("%im).!
$x int LEEN print £ ("%x").!
%s const char* A null-terminated C character array.
$p const void* The hex representation of a C pointer. Mostly

o° o° oe
(@i

<

0n

o° o

el

PyObject*
PyObject*
PyObject*, const char*

PyObject*
PyObject*

equivalent to print £ ("$p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s print £ yields.

The result of calling ascii ().

— Unicode 4.

A Unicode object (which may be NULL) and a
null-terminated C character array as a second
parameter (which will be used, if the first parameter is
NULL).

The result of calling PyObject_Str ().

The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

i)

number of bytes for "%s

The width formatter unit is number of characters rather than bytes. The precision formatter unit is

" and "$V" (if the PyObject * argument is NULL), and a number of characters
for "SA", "SU", "$S", "SR" and "$V" (if the PyObject * argument is not NULL).

T 3.2 MUY 5 5 Support for "$11d" and "$11u" added.
TE 3.3 JRA5# T Support for "$1i", "$11i" and "%$z1i" added.
TE 3.4 iR %2 5 . Support width and precision formatter for "%s", "$A", "$U", "$V", "$S", "SR" added.

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)

EMEAE : #4288, Part of the Stable ABL. Identical to PyUnicode FromFormat () except that it takes

exactly two arguments.

! For integer specifiers (d, u, 1d, 1i, lu, 11d, 1li, 1lu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

Chapter 8. BEYIHRB

The Python/C API, £[F) 3.11.8

PyObject *PyUnicode_FromObject (PyObject *obj)
W25 #7494 8&, Part of the Stable ABIL Copy an instance of a Unicode subtype to a new true Unicode
object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong reference to the
object.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
EIM&A4: #8494, Part of the Stable ABI Decode an encoded object obj to a Unicode object.
bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the

error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Part of the Stable ABI since version 3.7. Return the length of the Unicode object, in code points.

e 3.3 JHTIA.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise
returns the number of copied characters.

TE 3.3 OB A
Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.

Return the number of written character, or return —1 and raise an exception on error.

TE 3.3 BUFTNA.
int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)

Fart of the Stable ABI since version 3.7. Write a character to a string. The string must have been created
through PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be
shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

TE 3.3 OB A
Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Fart of the Stable ABI since version 3.7. Read a character from a string. This function checks that unicode
is a Unicode object and the index is not out of bounds, in contrast to PyUnicode_ READ_CHAR (), which
performs no error checking.

e 3.3 B NA.
PyObject *PyUnicode_Substring (PyObject *unicode, Py_ssize_t start, Py_ssize_t end)

EIMRAE : ey %88, Part of the Stable ABI since version 3.7. Return a substring of unicode, from character
index start (included) to character index end (excluded). Negative indices are not supported.

TE 3.3 JEHTImA.

8.3. FI¥% 129

The Python/C API, £[F) 3.11.8

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Part of the Stable ABI since version 3.7. Copy the string unicode into a UCS4 buffer, including a null character,
if copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is
smaller than the length of unicode). buffer is returned on success.

1E 3.3 BCHT A
Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *unicode)

Part of the Stable ABI since version 3.7. Copy the string unicode into a new UCS4 buffer that is allocated using
PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.

1E 3.3 I A

Deprecated Py_UNICODE APlIs

HAEHA 3.3 AR HN , 15 & A A 3.12 gk,

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.

PyObject *PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)

E 1R 1A #8494 B4, Create a Unicode object from the Py_UNICODE buffer u of the given size. u may be
NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before
using any of the access macros such as PyUnicode KIND ().

HAWE R A 3.3 B AHEEMH, & 8 WA 3.12 F 5. : Part of the old-style Unicode API,

please migrate to using PyUnicode_FromKindAndData (), PyUnicode_FromWideChar (), or
PyUnicode_New ().
Py_UNICODE *PyUnicode_AsUnicode (PyObject *unicode)

Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE* representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.

HAERAS 3.3 BAHERE T, 56 B AS 3.12 L5, : Part of the old-style Unicode API, please mi-
grate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar ()
or similar new APIs.

Py_UNICODE *PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)

Like PyUnicode _AsUnicode (), but also saves the Py UNICODE () array length (excluding the extra
null terminator) in size. Note that the resulting Py, UNICODE* string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.

TE 3.3 JRGHTmA.
A 3.3 BAHEREEH , A%E B A 3.12 155 . : Part of the old-style Unicode API, please mi-

grate to using PyUnicode_AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar ()
or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Fart of the Stable ABI. Return the size of the deprecated Py UNICODE representation, in code units (this
includes surrogate pairs as 2 units).

130 Chapter 8. Eig¥i¥E

https://peps.python.org/pep-0393/

The Python/C API, £[F) 3.11.8

AR 3.3 S ANHERE ([, A5-€ H RAS 3.12 45 [%: . : Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH ().

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t length, const char *errors)

EARAE: Fray & B&. Part of the Stable ABI since version 3.7. Decode a string from UTF-8 on Android
and VxWorks, or from the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors
is NULL. str must end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 Mode.
hs%:
Py_DecodeLocale () BT\,

1E 3.3 BT

TE 3.7 5% 8 The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py_DecodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)

B 4% fH: @ by % B&, Part of the Stable ABI since version 3.7. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

1 3.3 BUHTA.
PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)

E R4 #hY % P&, Part of the Stable ABI since version 3.7. Encode a Unicode object to UTF-8 on
Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors
is NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).

This function ignores the Python UTF-8 Mode.
wz%:

Py_EncodeLocale () BT\,

£ 3.3 BUBTNA.

JE 3.7 iR %4 T : The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py__EncodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

8.3. FI¥% 131

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python/C API, £[F) 3.11.8

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should
be used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be
used, passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject *obj, void *result)

Fart of the Stable ABI. ParseTuple converter: encode str objects -- obtained directly or through the os.
PathLike interface -- to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output
as-is. result must be a PyBytesObject* which must be released when it is no longer used.

1 3.1 OB A
TE 3.6 fiRM{ %R Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)

Fart of the Stable ABI. ParseTuple converter: decode bytes objects -- obtained either directly or indirectly
through the os.PathLike interface -- to str using PyUnicode_DecodeFSDefaultAndSize ();
str objects are output as-is. result must be a PyUnicodeOb ject* which must be released when it is no
longer used.

1 3.2 OB A
TE 3.6 fiRM{ 55 FE: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *str, Py_ssize_t size)

EI4R 1A #7hY 4 B& ., Part of the Stable ABI. Decode a string from the filesystem encoding and error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

hE%:
Py_DecodeLocale () iz,

TE 3.6 U525 : Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject *PyUnicode_DecodeFSDefault (const char *str)

EIEAE: #8494, Part of the Stable ABL Decode a null-terminated string from the filesystem encoding
and error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.

JE 3.6 fREYEET: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)

R ST I L B S < Part of the Stable ABI Encode a Unicode object to
Py_FileSystemDefaultEncoding with the Py_FileSystemDefaultEncodeErrors
error handler, and return bytes. Note that the resulting bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to encode a string to the current locale encoding, use
PyUnicode_EncodeLocale ().

hz%:

Py_EncodeLocale () iz,

132

Chapter 8. BEYIHRB

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, £[F) 3.11.8

TE 3.2 JUHT A

¥E 3.6 RIS H: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *wstr, Py_ssize_t size)

B4R 1A #4494 B& ., Part of the Stable ABI. Create a Unicode object from the wchar_t buffer wstr of the
given size. Passing —1 as the size indicates that the function must itself compute the length, using wcslen ().
Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *wstr, Py_ssize_t size)

Fart of the Stable ABIL. Copy the Unicode object contents into the wchar_t buffer wstr. At most size
wchar_t characters are copied (excluding a possibly trailing null termination character). Return the number
of wchar_t characters copied or —1 in case of an error.

When wstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.

Note that the resulting wchar_t * string may or may not be null-terminated. It is the responsibility of the caller
to make sure that the wchar_t* string is null-terminated in case this is required by the application. Also,
note that the wchar_t* string might contain null characters, which would cause the string to be truncated
when used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Fart of the Stable ABI since version 3.7. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding
the trailing null termination character) into *size. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions. If size is NULL and
the wchar_t* string contains null characters a ValueError is raised.

Returns a buffer allocated by PyMem_New (use PyMem_ Free () to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

TE 3.2 JUHT A

TE 3.7 [54T : Raises a ValueError if size is NULL and the wchar_t * string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file sys-
tem calls should use PyUnicode_ FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is "strict” (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

8.3. IRyl 133

The Python/C API, £[F) 3.11.8

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *str, Py_ssize_t size, const char *encoding, const char *errors)
EI{E4E: #aY %8, Part of the Stable ABIL Create a Unicode object by decoding size bytes of the encoded
string str. encoding and errors have the same meaning as the parameters of the same name in the st r () built-
in function. The codec to be used is looked up using the Python codec registry. Return NULL if an exception
was raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

B4R {4 # a4 % B&, Part of the Stable ABL Encode a Unicode object and return the result as Python
bytes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *str, Py_ssize_t size, const char *errors)
EIMR1E: #ray 488, Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-8
encoded string szr. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful (const char *str, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)

w 1% fE: #H o4y % B&., Part of the Stable ABL If consumed is NULL, behave like
PyUnicode_DecodeUTFS8 (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will
not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)
EI{E4E: #FHay%0&, Part of the Stable ABL Encode a Unicode object using UTF-8 and return the result as
Python bytes object. Error handling is "strict”. Return NULL if an exception was raised by the codec.

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)

Part of the Stable ABI since version 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and
store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no
size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless
of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

1E 3.3 OB A
T 3.7 JR{)%# 8 The return type is now const char * rather of char *.
TE 3.10 Jit) %% 55 This function is a part of the limited API.

const char *PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

1E 3.3 JUHTIA.

T 3.7 MUY %4 55 The return type is now const char * rather of char *.

134 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

E 1% 14 #7484 % B4 . Part of the Stable ABI. Decode size bytes from a UTF-32 encoded buffer string and return
the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

B 4% fH: # by % B&., Part of the Stable ABL If consumed is NULL, be-
have like PyUnicode_DecodeUTF32 (). If consumed is not NULL,
PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences
(such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number
of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)

B {44 : #7489 % P& Part of the Stable ABIL Return a Python byte string using the UTF-32 encoding in native
byte order. The string always starts with a BOM mark. Error handling is "strict”. Return NULL if an exception
was raised by the codec.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

I {& 44 : #7849 288 . Part of the Stable ABL Decode size bytes from a UTF-16 encoded buffer string and return
the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to ”strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

8.3. FIlh¥ 135

The Python/C API, £[F) 3.11.8

PyObject *PyUnicode_DecodeUTF16Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

w 4% 4E: #H o4y % B&, Part of the Stable ABIL If consumed is NULL, be-
have like PyUnicode_DecodeUTF16 (). If consumed is not NULL,
PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte sequences
(such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored in consumed.
PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

& 44 : #7894 B4, Part of the Stable ABL Return a Python byte string using the UTF-16 encoding in native
byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception
was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject *PyUnicode_DecodeUTF7 (const char *str, Py_ssize_t size, const char *errors)
EIM&1E: #ray 488, Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-7
encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF7Stateful (const char *str, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

w 1% fA: # 49 % P&, Part of the Stable ABL If consumed is NULL, behave like
PyUnicode_DecodeUTE7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sec-
tions will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been
decoded will be stored in consumed.

Unicode-Escape Codecs

These are the "Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
EIM& A4 #7844 88, Part of the Stable ABL Create a Unicode object by decoding size bytes of the Unicode-
Escape encoded string sfr. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
&4 : #7894 B8, Part of the Stable ABL Encode a Unicode object using Unicode-Escape and return the
result as a bytes object. Error handling is "strict”. Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the "Raw Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)

EIRA4: #7489 %%, Part of the Stable ABI Create a Unicode object by decoding size bytes of the Raw-
Unicode-Escape encoded string sfr. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)

TR AE : #ay %04, Part of the Stable ABL Encode a Unicode object using Raw-Unicode-Escape and return
the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

136 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.
PyObject *PyUnicode_DecodeLatinl (const char *str, Py_ssize_t size, const char *errors)
ER1E: #ra9 4 B&, Part of the Stable ABI Create a Unicode object by decoding size bytes of the Latin-1
encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_AsLatinlString (PyObject *unicode)

E1R 18 #hy B4, Part of the Stable ABI. Encode a Unicode object using Latin-1 and return the result as
Python bytes object. Error handling is "strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *str, Py_ssize_t size, const char *errors)

A #4Y9% B8, Part of the Stable ABL Create a Unicode object by decoding size bytes of the ASCII
encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
ER1E: #8494 B&., Part of the Stable ABIL Encode a Unicode object using ASCII and return the result as
Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode
and decode characters. The mapping objects provided must support the __getitem__ () mapping interface;
dictionaries and sequences work well.

These are the mapping codec APIs:

PyObject *PyUnicode_DecodeCharmap (const char *str, Py_ssize_t length, PyObject *mapping, const char
*errors)

EI{Z4E: #aY 488, Part of the Stable ABL Create a Unicode object by decoding size bytes of the encoded
string str using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes -- ones which cause a LookupError, as well as ones which get mapped to None,
OxFFFE or '\ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)

EIM&1H: #rhh 488, Part of the Stable ABL Encode a Unicode object using the given mapping object and
return the result as a bytes object. Error handling is "strict”. Return NULL if an exception was raised by the
codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as "undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *unicode, PyObject *table, const char *errors)

EI4% 15 #7894 08, Part of the Stable ABIL Translate a string by applying a character mapping table to it
and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

8.3. FI¥% 137

The Python/C API, £[F) 3.11.8

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.
PyObject *PyUnicode_DecodeMBCS (const char *str, Py_ssize_t size, const char *errors)
EI A& 1E: #0988, Part of the Stable ABI on Windows since version 3.7. Create a Unicode object by
decoding size bytes of the MBCS encoded string sfr. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeMBCSStateful (const char *str, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

EI{EAE : #7464 %8, Part of the Stable ABI on Windows since version 3.7. If consumed is NULL, behave like
PyUnicode_DecodeMBCS (). If consumed is not NULL, PyUnicode_DecodeMBCSStateful ()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.
PyObject *PyUnicode_AsMBCSString (PyObject *unicode)
IR #ra4 4 B8, Part of the Stable ABI on Windows since version 3.7. Encode a Unicode object using
MBCS and return the result as Python bytes object. Error handling is "strict”. Return NULL if an exception
was raised by the codec.
PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

CI{EAE: #7849 %88, Part of the Stable ABI on Windows since version 3.7. Encode the Unicode object using
the specified code page and return a Python bytes object. Return NULL if an exception was raised by the codec.
Use CP_ACP code page to get the MBCS encoder.

1E 3.3 BUBT A

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.
PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)
EIM&AE: #0494, Part of the Stable ABI. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)
EIEAE: #hy % 8. Part of the Stable ABI. Split a string giving a list of Unicode strings. If sep is NULL,
splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most
maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.
PyObject *PyUnicode_Splitlines (PyObject *unicode, int keepends)
EI{E4E: #8948, Part of the Stable ABI Split a Unicode string at line breaks, returning a list of Unicode

strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters are not included
in the resulting strings.

138 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)
EI1R 1A #F ey % B&., Part of the Stable ABI Join a sequence of strings using the given separator and return
the resulting Unicode string.
Py_ssize_t PyUnicode_Tailmatch (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)
Fart of the Stable ABI. Return 1 if substr matches unicode [start :end] at the given tail end (direction
== —1 means to do a prefix match, direction == 1 a suffix match), O otherwise. Return -1 if an error occurred.
Py_ssize_t PyUnicode_Find (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)

Part of the Stable ABI. Return the first position of substrinunicode [start : end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the index
of the first match; a value of —1 indicates that no match was found, and -2 indicates that an error occurred
and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int
direction)

Part of the Stable ABI since version 3.7. Return the first position of the character ch in
unicode[start:end] using the given direction (direction == 1 means to do a forward search, direc-
tion == —1 a backward search). The return value is the index of the first match; a value of —1 indicates that
no match was found, and -2 indicates that an error occurred and an exception has been set.

1E 3.3 JEHTA.
T 3.7 W58 58 start and end are now adjusted to behave like unicode [start:end].
Py_ssize_t PyUnicode_Count (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)

Part of the Stable ABIL Return the number of non-overlapping occurrences of substr in
unicode [start:end]. Return —1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t
maxcount)
EI{RAG . #4494 84, Part of the Stable ABIL Replace at most maxcount occurrences of substr in unicode with
replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.
int PyUnicode_Compare (PyObject *left, PyObject *right)
Part of the Stable ABI. Compare two strings and return —1, 0, 1 for less than, equal, and greater than, respec-
tively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *unicode, const char *string)

Fart of the Stable ABL. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than,
equal, and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets
the input string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.
PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
B4R 14 : #7 by 4 B& . Part of the Stable ABI. Rich compare two Unicode strings and return one of the following:
e NULL in case an exception was raised
e Py _True or Py_False for successful comparisons
e Py NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT,and Py_ LE.
PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
& 44 : #70Y % B8, Part of the Stable ABL Return a new string object from format and args; this is analogous

Q

to format % args.

8.3. FIlh¥ 139

The Python/C API, £[F) 3.11.8

int PyUnicode_Contains (PyObject *unicode, PyObject *substr)

Fart of the Stable ABI. Check whether substr is contained in unicode and return true or false accordingly.
substr has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **p_unicode)

Fart of the Stable ABIL Intern the argument *p_unicode in place. The argument must be the address of
a pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is
the same as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and
creating a new strong reference to the interned string object), otherwise it leaves *p_unicode alone and
interns it (creating a new strong reference). (Clarification: even though there is a lot of talk about references,
think of this function as reference-neutral; you own the object after the call if and only if you owned it before
the call.)
PyObject *PyUnicode_InternFromString (const char *str)

W 4% 1E: ey % &, Part of the Stable ABL. A combination of PyUnicode FromString () and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned,
or a new ("owned”) reference to an earlier interned string object with the same value.

8.3.4 jt# (Tuple) ¥if¥

type PyTupleObject
This subtype of PyOb ject represents a Python tuple object.
PyTypeObject PyTuple_Type
Fart of the Stable ABI. This instance of PyTypeOb ject represents the Python tuple type; it is the same
object as tuple in the Python layer.
int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.
PyObject *PyTuple_New (Py_ssize_t len)
EIM&E: #8908, Part of the Stable ABL Return a new tuple object of size len, or NULL on failure.
PyObject *PyTuple_Pack (Py_ssize_tn, ...)
w1315 a4 0&, Part of the Stable ABIL Return a new tuple object of size n, or NULL on failure. The
tuple values are initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2,
a, Db) isequivalentto Py_Buildvalue (" (00)", a, b).
Py_ssize_t PyTuple_Size (PyObject *p)
Fart of the Stable ABI. Take a pointer to a tuple object, and return the size of that tuple.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
EI{E4E: 1A %88, Part of the Stable ABL Return the object at position pos in the tuple pointed to by p. If
pos is negative or out of bounds, return NULL and set an IndexError exception.
PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
B &1E: 1R 488, Like PyTuple GetItem(),butdoes no checking of its arguments.
PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
B4R 18 Frhy % B4, Part of the Stable ABIL. Return the slice of the tuple pointed to by p between low and

high, or NULL on failure. This is the equivalent of the Python expression p [low:high]. Indexing from the
end of the list is not supported.

140 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Fart of the Stable ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return —1 and set an IndexError exception.

#[E]: This function “steals” a reference to o and discards a reference to an item already in the tuple at the
affected position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_SetItem (), butdoes no error checking, and should only be used to fill in brand new tuples.

#5[E]: This function “steals” a reference to o, and, unlike PyTuple SetItem(), does not discard a
reference to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do nor use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL,
and raises MemoryError or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject *PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
& 44 : #7489 %18, Part of the Stable ABI Create a new struct sequence type from the data in desc, described
below. Instances of the resulting type can be created with Py St ruct Sequence_New ().
void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.
int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)

The same as PyStruct Sequence_InitType, but returns 0 on success and —1 on failure.

TE 3.4 JEHT A

type PyStructSequence_Desc
Fart of the Stable ABI (including all members). Contains the meta information of a struct sequence type to
create.
const char *name

Name of the struct sequence type.

const char *doec

Pointer to docstring for the type or NULL to omit.
PyStructSequence_Field *£ields

Pointer to NULL-terminated array with field names of the new type.
intn_in_sequence

Number of fields visible to the Python side (if used as tuple).

8.3. FI¥% 141

The Python/C API, £[F) 3.11.8

type PyStructSequence_Field
Part of the Stable ABI (including all members). Describes a field of a struct sequence. As a struct se-
quence is modeled as a tuple, all fields are typed as PyOb ject*. The index in the fields array of the
PyStructSequence_Desc determines which field of the struct sequence is described.
const char *name
Name for the field or NULL to end the list of mnamed fields, set to
PyStructSequence_UnnamedField to leave unnamed.
const char *doc

Field docstring or NULL to omit.

const char *const PyStruct Sequence_UnnamedField
Part of the Stable ABI since version 3.11. Special value for a field name to leave it unnamed.
F£ 3.9 W ¥ 5 50 The type was changed from char *.
PyObject *PyStructSequence_New (PyTypeObject *type)
B4R 18 #7444 88, Part of the Stable ABIL Creates an instance of fype, which must have been created with
PyStructSequence_NewIype ().
PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
E{R4E: fE A %4 P&, Part of the Stable ABI Return the object at position pos in the struct sequence pointed
to by p. No bounds checking is performed.
PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
E{E4E: A 48, Macro equivalent of Py St ructSequence_GetItem().
void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Part of the Stable ABIL Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_ SET_TTEM/(), this should only be used to fill in brand new instances.

H(E]: This function “steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Similar to Py St ruct Sequence_SetItem (), butimplemented as a static inlined function.

#5E): This function “steals” a reference to o.

8.3.6 List (&%) Wit

type PyListObject
This subtype of PyOb ject represents a Python list object.
PyTypeObject PyList_Type

Part of the Stable ABI. This instance of Py TypeOb ject represents the Python list type. This is the same
object as 1ist in the Python layer.

int PyList_Check (PyObject *p)

2R p 21 list Py FalaE 2 tist ZUENY 7 RUEI EEO], el e true. 35 18 ek KR & AT -
int PyList_CheckExact (PyObject *p)

WA p S0 list PPEAR 2 list ZUENFRUEI BB, Rl true. 5318 o8& XK 0E € BT .

142 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

PyObject *PyList_New (Py_ssize_t len)
EI1R 1A # 894 B&., Part of the Stable ABIL Return a new list of length len on success, or NULL on failure.

#iE): If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem () or expose the object to Python code before setting all
items to a real object with PyList_SetItem().

Py_ssize_t PyList_Size (PyObject *list)
Fart of the Stable ABI. Return the length of the list object in /ist; this is equivalent to len (1ist) on a list
object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Hipyrist Size () JEfl, {HEMGEERAGT

PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)
%44 4& A 4 8%, Part of the Stable ABI. Return the object at position index in the list pointed to by list.
The position must be non-negative; indexing from the end of the list is not supported. If index is out of bounds
(<0 or >=len(list)), return NULL and set an IndexError exception.

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t 1)
E {244 4% F 4B, Similarto PyList_GetItem (), but without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)

Fart of the Stable ABI. Set the item at index index in list to item. Return 0 on success. If index is out of bounds,
return —1 and set an IndexError exception.

H#5[F): This function ”steals” a reference to ifem and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists
where there is no previous content.

H5E): This macro “steals” a reference to item, and, unlike PyList_SetTItem (), does not discard a refer-
ence to any item that is being replaced; any reference in /ist at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Fart of the Stable ABI. Insert the item item into list /ist in front of index index. Return 0 if successful; return
-1 and set an exception if unsuccessful. Analogousto 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Fart of the Stable ABIL. Append the object item at the end of list /isz. Return 0 if successful; return —1 and set
an exception if unsuccessful. Analogous to 1ist.append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
EI{&4E: #hY %88, Part of the Stable ABI Return a list of the objects in list containing the objects berween
low and high. Return NULL and set an exception if unsuccessful. Analogousto 1ist [low:high]. Indexing
from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)

Part of the Stable ABI. Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list
(slice deletion). Return 0 on success, —1 on failure. Indexing from the end of the list is not supported.

8.3. FI¥% 143

The Python/C API, £[F) 3.11.8

int PyList_Sort (PyObject *list)
Part of the Stable ABI. Sort the items of list in place. Return 0 on success, —1 on failure. This is equivalent to
list.sort ().

int PyList_Reverse (PyObject *list)
Fart of the Stable ABI. Reverse the items of list in place. Return 0 on success, —1 on failure. This is the
equivalent of 1ist.reverse ().

PyObject *PyList_AsTuple (PyObject *list)
IR 44 : #7 4% % B8 . Part of the Stable ABI. Return a new tuple object containing the contents of /ist; equivalent
to tuple (list).

8.4 FaRUIfF
8.4.1 Y

type PyDictObject
pyObject ARG —1{F Python F I+,

PyTypeObject PyDict_Type
Part of the Stable ABL PyTypeObject BH|{t3E—1{# Python FF=#AIEE . I Ed Python Jg 1A dict
[l —{E 11

int PyDict_Check (PyObject *p)
#r p e EF M B M) 7 2 A8 B R el e crue o SRR SRR B Er AT L)

int PyDict_CheckExact (PyObject *p)
2 p T HEER & — Wi TR E B, J I crue. SeR AR UCER @ HUAT IR

PyObject *PyDict_New ()
IR 1E: #8484, Part of the Stable ABL Return a new empty dictionary, or NULL on failure.

PyObject *PyDictProxy_New (PyObject *mapping)
EI{44 : #raY %88, Part of the Stable ABI. Return a t ypes .MappingProxyType object for a mapping
which enforces read-only behavior. This is normally used to create a view to prevent modification of the
dictionary for non-dynamic class types.

void PyDict_Clear (PyObject *p)
Part of the Stable ABI. Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Part of the Stable ABI. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression key in p.

PyObject *PyDict_Copy (PyObject *p)
EIM& 14 #hy 4 B8, Part of the Stable ABI Return a new dictionary that contains the same key-value pairs
asp.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Fart of the Stable ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn’t,
TypeError will be raised. Return 0 on success or —1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)

Fart of the Stable ABI. This is the same as PyDict_SetItem (), butkey is specified asa const char*
UTF-8 encoded bytes string, rather than a PyOb ject*.

144 Chapter 8. BEiEW4B

The Python/C API, £[F) 3.11.8

int PyDict_DelItem (PyObject *p, PyObject *key)
Fart of the Stable ABL. Remove the entry in dictionary p with key key. key must be hashable; if it isn’t,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or —1 on
failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Part of the Stable ABI. This is the same as PyDict_DelTtem (), butkey is specified as a const char*
UTF-8 encoded bytes string, rather than a PyOb ject*.

PyObject *PyDict_GetItem (PyObject *p, PyObject *key)
EIM& 14 1 B % B8, Part of the Stable ABL Return the object from dictionary p which has a key key. Return
NULL if the key key is not present, but without setting an exception.

H(E): Exceptions that occur while this calls __hash__ () and __eqg__ () methods are silently ignored.
Prefer the PyDict_GetItemWithError () function instead.

TE 3.10 R A% %% 5 Calling this API without GIL held had been allowed for historical reason. It is no longer
allowed.

PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)
EIE A &8 %88, Part of the Stable ABL Variant of PyDict_GetItem() that does not suppress
exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an exception
set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)
EIMEAE: 4) %88, Part of the Stable ABI. This is the same as PyDict_Get Item (), but key is specified
asa const char* UTF-8 encoded bytes string, rather than a PyOb ject*.

H5(E: Exceptions that occur while this calls __hash__ () and __eq__ () methods or while creating the
temporary str object are silently ignored. Prefer using the PyDict_GetItemWithError () function
with your own PyUnicode_FromString () key instead.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
{244 : 14 F) 4 B4, Thisis the same as the Python-level dict . setdefault (). If present, it returns the
value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with value defaultobj
and defaultobj is returned. This function evaluates the hash function of key only once, instead of evaluating it
independently for the lookup and the insertion.

1 3.4 BHTINA.

PyObject *PyDict_Items (PyObject *p)
EIMR1E: #hh 488, Part of the Stable ABL Return a PyListObject containing all the items from the
dictionary.

PyObject *PyDict_Keys (PyObject *p)
EIAR A #a4 % R&, Part of the Stable ABIL Return a PyListObject containing all the keys from the
dictionary.

PyObject *PyDict_Values (PyObject *p)
EZ4E: #a9 4% P&, Part of the Stable ABL Return a PyListObject containing all the values from the
dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)
Fart of the Stable ABIL Return the number of items in the dictionary. This is equivalent to len (p) on a
dictionary.

8.4. BEUH 145

The Python/C API, £[F) 3.11.8

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)

Fart of the Stable ABL Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by
ppos must be initialized to O prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyOb ject* variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its
value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

PRI

g
PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

}

L J

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

p
PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;
}
Py_DECREF (o) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)

Fart of the Stable ABI. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a
dictionary, or any object supporting PyMapping_Keys () and PyObject_GetItem (). If override is
true, existing pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if
there is not a matching key in a. Return O on success or —1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)

Part of the Stable ABI. This is the same as PyDict_Merge (a, b, 1) in C, and is similar to a.
update (b) in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence
of key value pairs if the second argument has no “keys” attribute. Return 0 on success or —1 if an exception
was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq?2, int override)

Fart of the Stable ABI. Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seg2:

(BFET—H

Chapter 8. BEYIHRB

The Python/C API, £[F) 3.11.8

(B —1)
if override or key not in a:
alkey] = value
8.4.2 Set Objects
This section details the public API for set and frozenset objects. Any functional-
ity not listed below is best accessed wusing either the abstract object protocol (including
PyObject_CallMethod(), PyObject_RichCompareBool (), PyObject_Hash(),

PyObject_Repr (), PyObject_IsTrue (), PyObject_Print (), and PyObject_GetIter()) or
the abstract number protocol (including PyNumber_And (), PyNumber_Subtract (), PyNumber_Or (),
PyNumber_Xor(), PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (),
PyNumber_InPlaceOr (),and PyNumber_InPlaceXor ()).
type PySetObject
This subtype of PyOb ject is used to hold the internal data for both set and frozenset objects. It is like
aPyDictObject inthatitis a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.
PyTypeObject PySet_Type
Fart of the Stable ABI. This is an instance of Py TypeOb ject representing the Python set type.
PyTypeObject PyFrozenSet_Type
Fart of the Stable ABI. This is an instance of Py TypeObject representing the Python frozenset type.
The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.
int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype. This function always
succeeds.
int PySet_CheckExact (PyObject *p)
Return true if p is a set object but not an instance of a subtype. This function always succeeds.

e 3.10 HUHTIA.
int PyAnySet_CheckExact (PyObject *p)
Return true if pisa set objector a frozenset object but not an instance of a subtype. This function always
succeeds.
int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype. This function always succeeds.
PyObject *PySet_New (PyObject *iterable)
E1R1E: #7849 % B4, Part of the Stable ABL Return a new set containing objects returned by the iterable.
The iterable may be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable. The constructor is also useful for copying a set (c=set (s)).
PyObject *PyFrozenSet_New (PyObject *iterable)

EIM&A4: #h4 488, Part of the Stable ABL Return a new frozenset containing objects returned by the
iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL
on failure. Raise TypeError if iterable is not actually iterable.

8.4. BEUH 147

The Python/C API, £[F) 3.11.8

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Part of the Stable ABIL Return the length of a set or frozenset object. Equivalent to len (anyset).
Raises a SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Part of the Stable ABI. Return 1 if found, O if not found, and —1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise a TypeError if the key is unhashable. Raise SystemError if anyser is not a set,
frozenset, or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Part of the Stable ABL. Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem/() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or —1 on failure. Raise a TypeError if the key is unhashable. Raise a

MemoryError if there is no room to grow. Raise a SystemError if sef is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or

its subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Part of the Stable ABIL Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error
is encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable.
Unlike the Python discard () method, this function does not automatically convert unhashable sets into
temporary frozensets. Raise SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
W& {h: #ay % P&, Part of the Stable ABL Return a new reference to an arbitrary object in the ser, and
removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if set is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)

Fart of the Stable ABL. Empty an existing set of all elements. Return O on success. Return —1 and raise
SystemError if set is not an instance of set or its subtype.

8.5 EINMIfF

8.5.1 HRX. M1+ (Function Objects)

A LE4F TR Python bR pR o

type PyFunctionObject
IR R C it

PyTypeObject PyFunction_Type
EAe Py Typeobject HEH], HALET Python pixUZL[F], Python FExUikit& niE i types.
FunctionType i E.

int PyFunction_Check (PyObject *0)

WA o BRI (MEG PyFunction Type WZUE]) HI[A1E# true. Z2HUNEAE NULL, JHLER
XA FE AT .

148 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

PyObject *PyFunction_New (PyObject *code, PyObject *globals)

ER AR ATy Rk, (SRR NS code MBI R M PF . globals WhIE 2 — {7 A B3
RE(EIFF I A s i 7

The function’s docstring and name are retrieved from the code object. __module___isretrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname___is set to the same value as
the code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)

w 4R fh: #4849 % B&, As PyFunction_New (), but also allows setting the function object’s
__qualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname_
attribute is set to the same value as the code object’s co_qualname field.

1 3.3 BUFTIA.
PyObject *PyFunction_GetCode (PyObject *op)

ERAE: PR SR (] AR U A B Y R X op.
PyObject *PyFunction_GetGlobals (PyObject *op)

ERAE PR SRR (] S A g R X A B Y R X 1 op
PyObject *PyFunction_GetModule (PyObject *op)

EM& 14 5 A 4 8%, Return a borrowed reference to the __module___ attribute of the function object op.
It can be NULL.

This is normally a st ring containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults (PyObject *op)

EARE: A 4R ERY T op B5 I BTEERRE, &L —ES A 2851 30 wple (JoA)
8¢ NULL,

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
B R op W95 | SRR . defaults Wo7H 2 Py_None 5—1{H tuple.
5|%% SystemError HAERBUR I -1,

PyObject *PyFunction_GetClosure (PyObject *op)

EEAE R 2R [U op AHBABRY PAEY, BT AR NULL SO —fE L E cell P14
I) tuple.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
A A E R A op BRI P, closure 1L 7H)2 Py_None Bz —fE & cell #){F#Y tuple.
5|3 systemError HAFRBUIREIIE -1,
PyObject *PyFunction_GetAnnotations (PyObject *op)
AR A SR R op ARE, BT DAE— 8 AT 8 B R (mutable) FHLEY NULL,
int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
% R op WIAREIE], annotations Wa7E &7 #18}, Py_None,
51¥% systemError HAERMIRF I -1,

8.5. ARYH 149

The Python/C API, £[F) 3.11.8

8.5.2 BEHlFHEWHE (Instance Method Objects)

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunction to a class object.
It replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
PyTypeObject [EHI3 Python B HEHEl. EAE /BT (expose) £ Python FE,
int PyInstanceMethod_Check (PyObject *0)

M o B—MHEMFEWHE (BEEPyInstanceMethod _Type) Al[{H true, 28 HANE]
NULL. JEeRis AR & AT

PyObject *PyInstanceMethod_New (PyObject *func)

EARAE: Ay S8, IR EHIEY I, fune [EWEREATWFIICE, TR A5 0 R
func pRF AL EHIFI .

PyObject *PyInstanceMethod_Function (PyObject *im)
R PR SRR, BRI BT im B R
PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)
EIRAE: R 4B, E4E (macro) UK Py InstanceMethod _Function (), ZW T ERIGH .

8.5.3 FiE¥* (Method Objects)

5 LEIE)%s 65X (bound function) (4. Ty kA e G145 21— 18 (i 1 3 e S E g . RE&S 5 vk
(E&E#—EER k) e AT,

PyTypeObject PyMethod_Type

B PyTypeobject BRI F Python R[], BEAEE types.MethodType A B4 Python 2
=

int PyMethod_Check (PyObject *0)
W o 2— MY (REEPyMethod Type) M true. SHULEARE NULL. HRALEZ
G REHAT

PyObject *PyMethod_New (PyObject *func, PyObject *self)

EARAE: Ared S0k, MBI E I, func REEUEREATIEM 0, self [ElRZ 07 ik REEI S0
Blo AETTVEFIIRE, func & G HFI . self MZHARE NULL,

PyObject *PyMethod_Function (PyObject *meth)
MR R SR [B E JTVE meth W&
PyObject *PyMethod_GET_FUNCTION (PyObject *meth)
=R A SR B PyMethod _Function (), 2T SRR
PyObject *PyMethod_Self (PyObject *meth)
MR R R B EI DTV meth (1 E .
PyObject *PyMethod_GET_SELF (PyObject *meth)
AR R R BN PyMethod _Self (), BN T Himtae.

150 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

8.5.4 Cell ¥at%

"Cell” Yy A BE BB AR I8 2 BE (reference) (W42 0. R AR RIE RRIVIAE B, KR ErA R cell ¥ {HE]
THAFRZAE TN 2 BGZ B REH stack frame F) [af a1 53 000 5 AR P Ak cell 200, ERIEE
SN T Rz M. AP IBGZEIRE , T cell H LS RUMETITAE cell W) PFEA LY . SE i cell YFI LRSI
(de-reference) 75 24 R (2 TCAHA (byte-code) 3% 5 FAIURFA G HEI LIRS M. cell YR Aty 7T
REA KA -
type PyCellObject
Cell YT Z C &t
PyTypeObject PyCell_Type
SHHE cell PRy (HEUE].
int PyCell_Check (PyObject *ob)
W2 ob J&—fH cell PRI MEEUE; ob WAURE NULL. ek =4 & 3T .
PyObject *PyCell_New (PyObject *ob)
AR Ay 5. BEIE— S ob HIHT cell Y. ZOTPAE NULL,
PyObject *PyCell_Get (PyObject *cell)
EARE: Ay s, [cell A cell.
PyObject *PyCell_GET (PyObject *cell)
AR AR SRR M cell Y1 cell INEVE, (HURAARTE cell 2 753F NULL [E] HE—{H cell #{4.
int PyCell_Set (PyObject *cell, PyObject *value)
i cell Pyft: cell VA SEE) value. S FEBUTATE cell YFEHIEIA S M. value 7] PAE] NULL.
cell WAARE NULL; QUAREARR M8 cell PRI RIE —1. AR e M [E o,
void PyCell_SET (PyObject *cell, PyObject *value)

cell Y114 cell B E] value, KNErifFcs Eater, EHREIEIT T Em; cel WAEEE
NULL [F H[E—1# cell #114:.

8.5.5 EA MMM

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.

type PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of Py TypeOb ject representing the Python code object.

int PyCode_Check (PyObject *co)
Return true if co is a code object. This function always succeeds.

int PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject *PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyObject
*code, PyObject *consts, PyObject *names, PyObject *varnames, PyObject
*freevars, PyObject *cellvars, PyObject *filename, PyObject *name, PyObject
*qualname, int firstlineno, PyObject *linetable, PyObject *exceptiontable)

218 #7494 8. Return a new code object. If you need a dummy code object to create a frame, use
PyCode_NewEmpty () instead. Calling PyCode_New () directly will bind you to a precise Python version
since the definition of the bytecode changes often. The many arguments of this function are inter-dependent in
complex ways, meaning that subtle changes to values are likely to result in incorrect execution or VM crashes.
Use this function only with extreme care.

8.5. ARYH 151

The Python/C API, £[F) 3.11.8

T 3.11 fit)%2 5 : Added qualname and exceptiontable parameters.

PyCodeObject *PyCode_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int kwonlyargcount, int
nlocals, int stacksize, int flags, PyObject *code, PyObject
*consts, PyObject *names, PyObject *varnames, PyObject
*freevars, PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

w1245 #4944 P4, Similar to PyCode New (), but with an extra "posonlyargcount” for positional-only
arguments. The same caveats that apply to PyCode_New also apply to this function.

1E 3.8 BUHT A
IE 3.11 JR)5# 5 Added qualname and exceptiontable parameters.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
EI421E: #h4 4 8& ., Return a new empty code object with the specified filename, function name, and first
line number. The resulting code object will raise an Except ion if executed.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)
Return the line number of the instruction that occurs on or before byte_offset and ends after it. If you
just need the line number of a frame, use PyFrame_GetLineNumber () instead.
For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location (PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line,

int *end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at

byte_offset. Sets the value to 0 when information is not available for any particular element.

Returns 1 if the function succeeds and O otherwise.

1 3.11 BUFTmA.
PyObject *PyCode_GetCode (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_code'). Returns a strong reference to a
PyBytesObject representing the bytecode in a code object. On error, NULL is returned and an excep-
tion is raised.

This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.

TE 3.1 OB A.
PyObject *PyCode_GetVarnames (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_varnames'). Returns a new reference to a
PyTupleObject containing the names of the local variables. On error, NULL is returned and an exception
is raised.

TE 3.11 BUHT A
PyObject *PyCode_GetCellvars (PyCodeObject *co)
Equivalent to the Python code getattr (co, 'co_cellvars'). Returns a new reference to a

PyTupleObject containing the names of the local variables that are referenced by nested functions. On
error, NULL is returned and an exception is raised.

18 311 BCHTmA.
PyObject *PyCode_GetFreevars (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_freevars'). Returns a new reference to a
PyTupleObject containing the names of the free variables. On error, NULL is returned and an excep-
tion is raised.

15 311 BRI

152 Chapter 8. Eig¥i¥E

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, £[F) 3.11.8

8.6 Hih¥fF

8.6.1 =¥+ (File Objects)

iE L8 APL 2 MR [EI AR 29 1) Python 2 C API [fz/)MELHE (minimal emulation), “E53% 25 MO C AEHE R
A HE R 4218 /O (FILE*) B 4% . 1E Python 3 ', SRR MTIHTAY 1o B, EAERIER AT
AR VO P T 2R T IR s URE LR AP ERE C e, FEMN A T Y(E
eI AR = A 1o APLL

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding,
const char *errors, const char *newline, int closefd)

EI{E4E: #7189 % P&, Part of the Stable ABI. Create a Python file object from the file descriptor of an already
opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering
can be -/ to use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For
a more comprehensive description of the arguments, please refer to the 10 . open () function documentation.

B R Python HRVCAH H WA, M MBI R SRR RIIA R O g A%
FERE (BIanE R e A A TN o

15 3.2 XA SETE: 280 name JETE .
int PyObject_AsFileDescriptor (PyObject *p)
Part of the Stable ABL [{#E p BB RS RAASAEE int. QURYARZ RS, RIREHAL. g
s, RIREIPRRY £ileno () Jrik (ARAFAE); #EJ Vb ZH I — MR, EAEERE SR
TRASE IR 3 19 ME e 2 AR [e — 1
PyObject *PyFile_GetLine (PyObject *p, int n)
W% 1E: #Hay % P&, Part of the Stable ABL Equivalent to p.readline ([n]), this function reads one
line from the object p. p may be a file object or any object with a readline () method. If n is O, exactly one
line is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will be read from
the file; a partial line can be returned. In both cases, an empty string is returned if the end of the file is reached
immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is raised if the
end of the file is reached immediately.
int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)
io.open_code () MIEHATEIAZEBIL AL IR (handler) HHEH 2 ¥
The handler is a function of type:
typedef PyObject *(*Py_OpenCodeHookFunction)(PyObject*, void*)
Equivalent of PyObject * (*) (PyObject *path, void *userData), where path is guar-
anteed to be PyUnicodeObject.

userData FEEEHE EIEE PR (hook function) H . H A AT RE G 1A A FY B A TERBE (runtime) FF-NL
Epaat, RPN B B 4245 17 Python R AE.

P A ULEIE ok 2 e A A R Y, DR e e /e A T I A B, BRdEEMeEmE
W R4S BUAE sys . .modules PRI,

Once a hook has been set, it cannot be removed or replaced, and later «calls to
PyFile_SetOpenCodeHook () will fail. On failure, the function returns -1 and sets an exception
if the interpreter has been initialized.

JEPy_Initialize () ZHIFEIY IR EL4ER .
A | o | 35— (M FER%ZFF (auditing event) setopencodehook.,
1E 3.8 BUHT A

8.6. Hih¥i¥ 153

The Python/C API, £[F) 3.11.8

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
FPart of the Stable ABIL. Write object obj to file object p. The only supported flag for flagsis Py_ PRINT_RAI;
if given, the st r () of the object is written instead of the repr (). Return 0 on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)

Part of the Stable ABL 5§ A s BRI po HRIIRFMIE O, R E -1, [Eesed
I BISMRE.

8.6.2 EilMirEH

PyTypeObject PyModule_Type
Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python module type. This is exposed
to Python programs as t ypes .ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.

PyObject *PyModule_NewObject (PyObject *name)
IR AG : #7 4 % B8 . Part of the Stable ABI since version 3.7. Return a new module object with the __name_

attribute set to name. The module’s __name_ ,_ doc_ ,_ package_ ,and __ loader___ attributes
arefilled in (all but __name___ are set to None); the caller is responsible for providinga ___file_ attribute.

TE 3.3 BUHTA.
TE 34 RIS _ package_ Ml _ loader__ #f#%[F] None,

PyObject *PyModule_New (const char *name)
EIAR A #hy %88, Part of the Stable ABIL Similar to PyModule NewObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)

{244 : 1% K] 4 B& . Part of the Stable ABI. Return the dictionary object that implements module’s namespace;
this object is the same as the ___dict___ attribute of the module object. If module is not a module object (or
a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly ma-
nipulate a module’s ___dict__.
PyObject *PyModule_GetNameObject (PyObject *module)

EIAR A #1844 B&, Part of the Stable ABI since version 3.7. Return module’s __name___ value. If the
module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.

TE 3.3 BUFTA.

const char *PyModule_GetName (PyObject *module)
Part of the Stable ABIL Similar to PyModule GetNameObject () but return the name encoded to
'utf-8"'.

void *PyModule_GetState (PyObject *module)
Fart of the Stable ABI. Return the “state” of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef (PyObject *module)

Fart of the Stable ABI. Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

154 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

PyObject *PyModule_GetFilenameObject (PyObject *module)
B4R 1A #7849 % B& ., Part of the Stable ABI. Return the name of the file from which module was loaded using
module’s __file_ attribute. If this is not defined, or if it is not a unicode string, raise SystemError and
return NULL; otherwise return a reference to a Unicode object.

TE 3.2 BUHTMA.

const char *PyModule_GetFilename (PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetFilenameObject () butreturn the filename encoded
to 'utf-8’.

e 32 [RZAWEIH: PyModule_GetFilename () raises UnicodeEncodeError on unencodable
filenames, use PyModule_ GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See
building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the
resulting module object, or request “multi-phase initialization” by returning the definition struct itself.
type PyModuleDef
Part of the Stable ABI (including all members). The module definition struct, which holds all information
needed to create a module object. There is usually only one statically initialized variable of this type for each
module.
PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_ HEAD_INIT.

const char *m_name

Name for the new module.

const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py_ssize_ tm_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in
multiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ £ ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m__size is required for multi-phase initializa-
tion.

W 2R R PEP 3121,
PyMethodDef *m_methods

A pointer to a table of module-level functions, described by PyMethodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot *m_slots

An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.

TE 3.5 fRAY% 5 Prior to version 3.5, this member was always set to NULL, and was defined as:

8.6. Hith¥hi¥ 155

https://peps.python.org/pep-3121/

The Python/C API, £[F) 3.11.8

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_si ze is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

TE 3.9 fR Y% 5 No longer called before the module state is allocated.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Like PyTypeObject . tp_clear, this function is not always called before a module is deallocated.
For example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_ free is called directly.

TE 3.9 fR Y% T No longer called before the module state is allocated.

freefunc m_£free
A function to call during deallocation of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_si ze is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

TE 3.9 fRAY%2 5 No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-
phase initialization”, and uses one of the following two module creation functions:
PyObject *PyModule_Create (PyModuleDef *def)
B 4R 4 # 4y % BE&, Create a new module object, given the definition in def. This behaves like
PyModule_Createl () with module_api_version set to PYTHON_API_VERSION.
PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)

B4R 18 . #7449 4 B8, Part of the Stable ABI. Create a new module object, given the definition in def, assuming
the API version module_api_version. If that version does not match the version of the running interpreter, a
RuntimeWarning is emitted.

#iE): Most uses of this function should be using PyModule_Create () instead; only use this if you are
sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule_ AddObjectRef ().

156 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is cre-
ated, and the execution phase, when it is populated. The distinction is similar tothe __new___ () and __init__ ()

methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection -- as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_GetState ()),or its contents (such as the module’s __dict__ orindividual
classes created with Py Type_ FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:

PyObject *PyModuleDef_Init (PyModuleDef *def)

IR 4E: 15 A % B&, Part of the Stable ABI since version 3.5. Ensures a module definition is a properly
initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
1E 3.5 BT
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot
int slot
A slot ID, chosen from the available values explained below.

void *value

Value of the slot, whose meaning depends on the slot ID.
1E 3.5 BUFTIA.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynam-
ically adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type

8.6. Hith¥hi¥ 157

https://peps.python.org/pep-0451/

The Python/C API, £[F) 3.11.8

instances may be returned if the PyModuleDef has non-NULL m_traverse,m_clear, m_free; non-
zero m__size; or slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly,
for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
=) 4% {5 # a9 % B&. Create a new module object, given the definition in def and the Module-

Spec spec. This behaves like PyModule FromDefAndSpec2 () with module_api_version set to
PYTHON_API_VERSION.

1E 3.5 BUHTIA.
PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)

EIM&AE: #7849 % 18, Part of the Stable ABI since version 3.7. Create a new module object, given the definition
in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does not match
the version of the running interpreter, a Runt imeWarning is emitted.

#5[E): Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this
if you are sure you need it.

1E 3.5 UHTA.
int PyModule_ExecDef (PyObject *module, PyModuleDef *def)

Fart of the Stable ABI since version 3.7. Process any execution slots (Py_mod_exec) given in def.

TE 3.5 HUHT A

int PyModule_SetDocString (PyObject ¥module, const char *docstring)

Fart of the Stable ABI since version 3.7. Set the docstring for module to docstring. This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.

16 3.5 RUHTAILA.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Part of the Stable ABI since version 3.7. Add the functions from the NULL terminated functions array
to module. Refer to the PyMethodDef documentation for details on individual entries (due to the lack
of a shared module namespace, module level “functions” implemented in C typically receive the module
as their first parameter, making them similar to instance methods on Python classes). This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.

e 3.5 UHTIA.

158 Chapter 8. Eig¥i¥E

https://peps.python.org/pep-0489/

The Python/C API, £[F) 3.11.8

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution

slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Fart of the Stable ABI since version 3.10. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return —1.

Return NULL if value is NULL. It must be called with an exception raised in this case.

FREHER -

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;
I3
. J

The example can also be written without checking explicitly if obj is NULL:

-

static int
add_spam (PyObject *module,
{

int value)

PyObject *obj = PyLong_FromLong(value);
int res PyModule_AddObjectRef (module,
Py_XDECREF (obj) ;

return res;

= "spam", obj);

Note that Py_ XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

TE 3.10 JBUHTIA.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI. Similar to PyModule_ AddObjectRef (), but steals a reference to value on success
(if it returns 0).

The new PyModule_ AddObjectRef () function is recommended, since it is easy to introduce reference
leaks by misusing the PyModule_AddObject () function.

#iE): Unlike other functions that steal references, PyModule_AddObject () only releases the reference
to value on success.

This means that its return value must be checked, and calling code must Py_ DECREF () value manually on
error.

R

static int
add_spam (PyObject *module,
{

int value)

PyObject *obj
if (obj

PyLong_FromLong (value) ;
== NULL) {

(EFET—3

8.6. HithvintF

159

The Python/C API, £[F) 3.11.8

(L —5)
return -1;
}
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_DECREF (obj) ;
return -1;
}
// PyModule_ AddObject () stole a reference to obj:
// Py _DECREF (obj) is not needed here
return 0;
I3
“ J
The example can also be written without checking explicitly if obj is NULL:
(static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_XDECREF (obj) ;
return -1;
}
// PyModule_ AddObject () stole a reference to obj:
// Py _DECREF (obj) 1is not needed here
return 0;
I3
. J

Note that Py_XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Fart of the Stable ABI. Add an integer constant to module as name. This convenience function can be used
from the module’s initialization function. Return —1 on error, O on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Fart of the Stable ABI. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return —1 on error, O on
success.

PyModule_AddIntMacro (module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

PyModule_AddStringMacro (module, macro)
Add a string constant to module.

int PyModule_AddType (PyObject *module, PyTypeObject *type)

Part of the Stable ABI since version 3.10. Add a type object to module. The type object is finalized by calling
internally PyType_Ready (). The name of the type object is taken from the last component of tp_name
after dot. Return —1 on error, O on success.

TE 3.9 JUHTMA.

160 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can

be created from a single definition.

PyObject *PyState_FindModule (PyModuleDef *def)
E 1R 1A 1% A %8, Part of the Stable ABI Returns the module object that was created from def for the
current interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Part of the Stable ABI since version 3.3. Attaches the module object passed to the function to the interpreter
state. This allows the module object to be accessible via PyState_ FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative
import mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return 0 on success or -1 on failure.

1E 3.3 ORI

int PyState_RemoveModule (PyModuleDef *def)

Fart of the Stable ABI since version 3.3. Removes the module object created from def from the interpreter
state. Return O on success or -1 on failure.

The caller must hold the GIL.
TE 3.3 WUHT A

8.6.3 [Fft2E (Iterator) ¥4

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIlter_Type
Part of the Stable ABIL Type object for iterator objects returned by PySegIter_New () and the one-
argument form of the iter () built-in function for built-in sequence types.
int PySeqIter_Check (PyObject *op)
Return true if the type of op is PySegIter_Type. This function always succeeds.
PyObject *PySeqIter_New (PyObject *seq)
B 1R4E: a9 4 B& . Part of the Stable ABI. Return an iterator that works with a general sequence object,
seq. The iteration ends when the sequence raises IndexError for the subscripting operation.
PyTypeObject PyCallIter_Type
Part of the Stable ABI. Type object for iterator objects returned by PyCallIter New () and the two-
argument form of the iter () built-in function.
int PyCallIter_Check (PyObject *op)
Return true if the type of op is PyCallIter_ Type. This function always succeeds.

8.6. Hith¥hi¥ 161

The Python/C API, £[F) 3.11.8

PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)
B4R 1A #6948, Part of the Stable ABI. Return a new iterator. The first parameter, callable, can be any

Python callable object that can be called with no parameters; each call to it should return the next item in the
iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor (###A28) ¥k

"Descriptor” AR YL B W, EMAAERBEY 1) dictionary () .
PyTypeObject PyProperty_Type
Part of the Stable ABL [z descriptor ZU[FIfZLEI 14
PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
EIMRAE: #8494 8. Part of the Stable ABL
PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
E1R 18 #8948, Part of the Stable ABL
PyObject *PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
ER 1A #8948, Part of the Stable ABL
PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
EMEE: G2,
PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
ER 18 #8948, Part of the Stable ABL
int PyDescr_IsData (PyObject *descr)

AR descriptor Y114 descr iR 12— ERB MR I EIERAE, sk MR BRI E — M EALR
[0, descr WZEE)—1il descriptor ¥j{f; [Efg gt .

PyObject *PyWrapper_New (PyObject*, PyObject*)
EI{EAE: #8948, Part of the Stable ABI.

8.6.5 YK ¥

PyTypeObject PySlice_Type
Fart of the Stable ABI. The type object for slice objects. This is the same as s1ice in the Python layer.
int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL. This function always succeeds.
PyObject *PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
EI{Z4E: #7449 % P&, Part of the Stable ABL Return a new slice object with the given values. The start, stop,
and step parameters are used as the values of the slice object attributes of the same names. Any of the values

may be NULL, in which case the None will be used for the corresponding attribute. Return NULL if the new
object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step)

Part of the Stable ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.

T 3.2 JiR X %# 55 : The parameter type for the slice parameter was PyS1iceObject * before.

162 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Fart of the Stable ABI. Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and

step indices from the slice object slice assuming a sequence of length length, and store the length of the slice
in slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

#[E): This function is considered not safe for resizable sequences. Its invocation should be replaced by a
combination of PyS1ice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) <o
—0) |
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

JE 3.2 JR{)5# 55 : The parameter type for the slice parameter was PyS1iceObject * before.

£ 3.6.1 Ry % T If Py_LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () is implemented
as a macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and
step are evaluated more than once.

TE 3.6.1 Rz A% EH: If Py_LIMITED_APT is set to the value less than 0x03050400 or between

0x03060000and 0x03060100 (notincluding) PySlice_GetIndicesEx () isadeprecated function.
int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)

Fart of the Stable ABI since version 3.7. Extract the start, stop and step data members from a slice object as

C integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the

start and stop values less than PY_SSIZE_T_MINtoPY_SSIZE_T_MIN, and silently boost the step values
less than —PY_SSIZE_T_MAXto -PY_SSIZE_T_ MAX.

Return —1 on error, 0 on success.
1E 3.6.1 U A
Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)

Part of the Stable ABI since version 3.7. Adjust start/end slice indices assuming a sequence of the specified
length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.

1E 3.6.1 BBUHTIA.

8.6. Hih¥i¥ 163

The Python/C API, £[F) 3.11.8

Ellipsis Object

PyObject *Py_Ellipsis
The Python E111ipsis object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts. Like Py_None it is a singleton object.

8.6.6 MemoryView ¥4

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.
PyObject *PyMemoryView_FromObject (PyObject *obj)
E1E 18 a4 488, Part of the Stable ABI. Create a memoryview object from an object that provides the
buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write, otherwise
it may be either read-only or read/write at the discretion of the exporter.
PyBUF_READ
Flag to request a readonly buffer.
PyBUF_WRITE
Flag to request a writable buffer.

PyObject *PyMemoryView_ FromMemory (char *mem, Py_ssize_t size, int flags)
EIM& 14 #hy 408, Part of the Stable ABI since version 3.7. Create a memoryview object using mem as the
underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.

1 3.3 BOHTA.

PyObject *PyMemoryView_FromBuffer (const Py_buffer *view)
EI4R 15 a4 B&, Part of the Stable ABI since version 3.11. Create a memoryview object wrapping the
given buffer structure view. For simple byte buffers, PyMemoryView FromMemory () is the preferred
function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)

EI{RAE: #ray % B& ., Part of the Stable ABIL Create a memoryview object to a contiguous chunk of memory
(in either ’C’ or "F’ortran order) from an object that defines the buffer interface. If memory is contiguous, the
memoryview object points to the original memory. Otherwise, a copy is made and the memoryview points to
a new bytes object.

buffertype can be one of PyBUF_READ or PyBUF_WRITE.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if

the memoryview has been created by one of the functions PyMemoryView_FromMemory () or
PyMemoryView_FromBuffer (). mview must be a memoryview instance.

164 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

8.6.7 53 WBYH

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check (PyObject *ob)

Return true if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_CheckRef (PyObject *ob)

Return true if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (PyObject *ob)

Return true if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref_NewRef (PyObject *ob, PyObject *callback)
B &8 #a9 % H&., Part of the Stable ABL Return a weak reference object for the object ob. This will
always return a new reference, but is not guaranteed to create a new object; an existing reference object may be
returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also
be None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL,
this will return NULL and raise TypeError.

PyObject *PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
B4R 1A . #7049 % B& . Part of the Stable ABI. Return a weak reference proxy object for the object ob. This will
always return a new reference, but is not guaranteed to create a new object; an existing proxy object may be
returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also
be None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL,
this will return NULL and raise TypeError.

PyObject *PyWeakref_GetObject (PyObject *ref)

EI{Z4E: &0 %4 M& ., Part of the Stable ABI Return the referenced object from a weak reference, ref. If the
referent is no longer live, returns Py_None.

#i[E): This function returns a borrowed reference to the referenced object. This means that you should always
call Py_ TNCREF () on the object except when it cannot be destroyed before the last usage of the borrowed
reference.

PyObject *PyWeakref_GET_OBJECT (PyObject *ref)
EIM&1E: 44 488, Similar to PyWeakref GetObject (), but does no error checking.
void PyObject_ClearWeakRefs (PyObject *object)
Fart of the Stable ABI. This function is called by the tp_deal1oc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

8.6.8 Capsules

Refer to using-capsules for more information on using these objects.

18 3.1 BUBTINA.

type PyCapsule
This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

8.6. Hih¥i¥ 165

The Python/C API, £[F) 3.11.8

type PyCapsule_Destructor
Part of the Stable ABI. The type of a destructor callback for a capsule. Defined as:

[typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.
PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
E1R 15 ey %88, Part of the Stable ABI. Create a PyCapsule encapsulating the pointer. The pointer
argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Import ().
void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Fart of the Stable ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule
names.
PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Part of the Stable ABI. Return the current destructor stored in the capsule. On failure, set an exception and
return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Part of the Stable ABI. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char *PyCapsule_GetName (PyObject *capsule)
Fart of the Stable ABI. Return the current name stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.
void *PyCapsule_Import (const char *name, int no_block)

Part of the Stable ABI. Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule
must match this string exactly.

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
Tr 3.3 MUY % 5. no_block has no effect anymore.

int PyCapsule_IsValid (PyObject *capsule, const char *name)

Part of the Stable ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL,
passes PyCapsule_CheckExact (),hasanon-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

166 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

In other words, if PyCapsule_IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Part of the Stable ABI. Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Part of the Stable ABI. Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)

Part of the Stable ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Fart of the Stable ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject
Fart of the Limited API (as an opaque struct). The C structure of the objects used to describe frame objects.

There are no public members in this structure.

T 3.11 fiRA{ 5 55 The members of this structure were removed from the public C API. Refer to the What's
New entry for details.

The PyEval_GetFrame () and PyThreadState_GetFrame () functions can be used to get a frame object.
See also Reflection.
PyTypeObject PyFrame_Type
The type of frame objects. It is the same object as t ypes . FrameType in the Python layer.
T 3.11 R[4 54 5 Previously, this type was only available after including <frameobject . h>.
int PyFrame_Check (PyObject *obj)
Return non-zero if obj is a frame object.

T 3.11 JiR) %% 55 Previously, this function was only available after including <frameobject .h>.

PyFrameObject *PyFrame_GetBack (PyFrameObject *frame)

Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
1E 3.9 BUHTIMA.

PyObject *PyFrame_GetBuiltins (PyFrameObject *frame)
Get the frame’s f_builtins attribute.

Return a strong reference. The result cannot be NULL.

1E 311 BOFTIA.

8.6. Hith¥hi¥ 167

The Python/C API, £[F) 3.11.8

PyCodeObject *PyFrame_GetCode (PyFrameObject *frame)
Part of the Stable ABI since version 3.10. Get the frame code.
Return a strong reference.

The result (frame code) cannot be NULL.

1E 3.9 T

PyObject *PyFrame_GetGenerator (PyFrameObject *frame)

Get the generator, coroutine, or async generator that owns this frame, or NULL if this frame is not owned by
a generator. Does not raise an exception, even if the return value is NULL.

Return a strong reference, or NULL.

1 3.1 JRHTIA.
PyObject *PyFrame_GetGlobals (PyFrameObject *frame)
Get the frame’s f_globals attribute.

Return a strong reference. The result cannot be NULL.

1 3.11 JRHTIA.
int PyFrame_GetLasti (PyFrameObject *frame)
Get the frame’s f_lasti attribute.

Returns -1 if frame.f_lasti is None.

1 3.11 JRHTIA.
PyObject *PyFrame_GetLocals (PyFrameObject *frame)
Get the frame’s f_locals attribute (dict).

Return a strong reference.

e 311 ORI

int PyFrame_GetLineNumber (PyFrameObject *frame)
Fart of the Stable ABI since version 3.10. Return the line number that frame is currently executing.

8.6.10 [Fl4 2% (Generator) ¥

[EVAE 25142 Python JI B BIE)AE ZRE1A 2] (generator iterator) {44, & M3 & 7 w8 (EVA Er{E)AE A) b
:—&5{5@?@ Wﬁm%@ﬁiﬁﬂ?ﬂquGeniNew () ﬁPyGeanewWi thQualName () o

type PyGenObject

FREAS I C Hit .
PyTypeObject PyGen_Type

SL{EA: SR (S TR E A
int PyGen_Check (PyObject *ob)

2R ob J&—fHEIES (generator) PN B ; ob AAZHURE] NULL. B eR A2 € AT .
int PyGen_CheckExact (PyObject *ob)

W ob (HAIEZPyGen_Type RIEEEAE; ob MEANE NULL, IR A2 & e T .
PyObject *PyGen_New (PyFrameObject *frame)

EARAE: Ay rd. B frame Yy Sz el E— B EAE SR, MR e BGE — ¥ frame
A2 IR (reference). 5|#ZEAF) NULL,

PyObject *PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)

AR Hreh &, ELN frame Wy E L W — g B A g4, HP __name_ Al
__qualname__ #%[E] name 1 qualname. I ok 3 € BUGE — 8 #f frame 12 M. frame 5| $h 78
AE NULL,

168 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

8.6.11 Coroutine (iB12) Wi

£ 3.5 BUHTNA.
Coroutine #J {42 ARLEPA async B §H A 2 1Y ek =X i [B P 14«
type PyCoroObject
JII% coroutine ¥ C 45
PyTypeObject PyCoro_Type
Bl coroutine 4 {43 & (1) FL I 4 .
int PyCoro_CheckExact (PyObject *ob)
W ob AU ZPyCoro_ Type RIFEHE(E; ob EAF NULL. HeR=UAE G894 TR .

PyObject *PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)

EARAE: Frag Rk, FEY frame W4 A S E) 8] —E #7) coroutine ¥y, HH _ name_ Al
__qualname__ #%([E] name I qualname. I p& =& HBUS—8 % frame [{)2 I (reference). frame 5|
HuhEAE NULL,

8.6.12 Context Variables Objects

TE 3.7 BUFT A
e 3.7.1 A5

#§E): In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers
instead of PyContext, PyContextVar,and PyContextToken, e.g..

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (wvoid) ;

2 A5 7 bpo-34762,

This section details the public C API for the contextvars module.

type PyContext
The C structure used to represent a contextvars.Context object.

type PyContextVar
The C structure used to represent a contextvars.ContextVar object.

type PyContextToken

The C structure used to represent a contextvars. Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.

Type-check macros:

int PyContext_CheckExact (PyObject *0)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

8.6. Hih¥i¥ 169

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, £[F) 3.11.8

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)

Return true if o is of type PyContext Token_ Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New (void)

B34 #Heg% 8., Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)

IR {A: #7894 84, Create a shallow copy of the passed ctx context object. Returns NULL if an error has
occurred.

PyObject *PyContext_CopyCurrent (void)

EI{%14: #rey 4 B&, Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns O on success, and —1 on error.
int PyContext_Exit (PyObject *ctx)

Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)

%15 #0484, Create anew ContextVar object. The name parameter is used for introspection and
debug purposes. The def parameter specifies a default value for the context variable, or NULL for no default.
If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)

Get the value of a context variable. Returns —1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

e default_value, if not NULL;
¢ the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
B4 #7894 0%, Set the value of var to value in the current context. Returns a new token object for this
change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)

Reset the state of the var context variable to that it was in before PyContextVar Set () that returned the
token was called. This function returns 0 on success and —1 on error.

170 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

8.6.13 DateTime ¥4

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the
header file datetime .h must be included in your source (note that this is not included by Python . h), and the
macro PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro
puts a pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.
type PyDateTime_Date

This subtype of PyOb ject represents a Python date object.

type PyDateTime_DateTime
This subtype of PyOb ject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyOb ject represents a Python time object.

type PyDateTime_Delta
This subtype of PyOb ject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of Py TypeOb ject represents the Python date type; it is the same objectas datetime.date
in the Python layer.

PyTypeObject PyDateTime_DateTimeType
This instance of Py TypeOb ject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

PyTypeObject PyDateTime_TimeType
This instance of Py TypeOb ject represents the Python time type; it is the same objectas datetime.time
in the Python layer.

PyTypeObject PyDateTime_DeltaType
This instance of Py TypeOb ject represents Python type for the difference between two datetime values; it
is the same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType
This instance of PyTypeObject represents the Python time zone info type; it is the same object as
datetime.tzinfo in the Python layer.

HAFFH UTC 2631 (singleton) FryE 4 :

PyObject *PyDateTime_TimeZone_UTC
EEEZE7S UTC R84, 2 datetime.timezone.utc fHE R,
e 3.7 O

MEgEE S

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob
must not be NULL. This function always succeeds.

int PyDate_CheckExact (PyObject *ob)
N ob IWBIFIFlPyDateTime_DateType, HEH true, ob AfEEI NULL, &k — & &84T

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime DateTimeType or a subtype of
PyDateTime_DateTimeType. ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact (PyObject *ob)

WA ob WAIFIFIPyDateTime_DateTimeType, HI[EE true, ob AE[FI NULL, B KX —E €
AT«

8.6. Hith¥hi¥ 171

The Python/C API, £[F) 3.11.8

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob
must not be NULL. This function always succeeds.

int PyTime_CheckExact (PyObject *ob)
W ob ZLEFPyDateTime TimeType, HI[E/{E true, ob ANEE NULL, & ER—E @HAIT
8.

int PyDelta_Check (PyObject *ob)

Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob
must not be NULL. This function always succeeds.

int PyDelta_CheckExact (PyObject *ob)
N ob AFIFPyDateTime_DeltaType, H|E/{EH true, ob AEE NULL, iaff =X —F €iiT
.

int PyTZInfo_Check (PyObject *ob)

Return true if ob is of type PyDateTime_ TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact (PyObject *ob)
R ob AEElPyDateTime TZInfoType, HIA/{E true, ob AEEI NULL, S{HMER—F &
T

YR EAR

PyObject *PyDate_FromDate (int year, int month, int day)
EARE: Frehsa, PEREAEEES. H. HY datetime.date,

PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int
usecond)

EARE: Fray 4, BlE—FEAEEEE. A, B, B 2. B Y datetime . datetime,

PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

MR Areg 40, [IE—EARESE. H. H. B 4r. b foRbEE fold (RERIHTED) mdf

datetime.datetime,

1 3.6 BUHTA.
PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)
ERAE: ey 4, RIE—HAEER. 0. B, MY datetime . date.
PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
EARE: Hreh 0. I EAREER . 4. FP. BUPPER fold (RFRIHTE]) M#I{F datetime . time.
e 3.6 BUFTNA.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)

EARAE: #Fey 48, [EfH—{f datetime.timedelta ¥, FARL T RE. PEMMA .,
ﬁﬁ:ﬂ‘;‘%iﬁﬁc (normalization) PATE AL A R ORI R BUAT iR datetime . timedelta Yt EnY 6
[EJ.

PyObject *PyTimeZone_FromOffset (PyObject *offset)

B #rag g, [l —f datetime.timezone Y, EHARM4MWEEIMEED offser 5|8
FR o

e 3.7 BOH A
PyObject *PyTimeZone_FromOf fsetAndName (PyObject *offset, PyObject *name)
MR Frag sk, W datetime.timezone Y, HIEIE MW & ofser 51N,

4 tzname name.,

1E 3.7 ORI

172 Chapter 8. Eig¥i¥E

The Python/C API, £[F) 3.11.8

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
M ARGy, [FIIERE .

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
W Gy, [EIERE, 713 12,

int PyDateTime_GET_DAY (PyDateTime_Date *0)
M HY, [FERE, ¢ 1% 31,

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)
Il /N, [EIIEHE %, 1 0 %) 23,

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)
g, [EIERSH, 1 0 51 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
MRy, EIERH, 780 3] 59,

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
MRS, EIEREH, 78 0 5 999999,

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *0)
[a] {1 fold, 0 1)IEEEs,
e 3.6 HUHTIMA.

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_DateTime *0)
[{8 tzinfo (T]fEZ None).
1E 3.10 JRHTIA.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_ Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *0)
[l 8N, [EIERES, 4E 0 3 23,

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
sy g, [EIEREH, 18 0) 59,

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
iRy, [EIEREH, 1% 0 %) 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
RS, [ELERES, 4E 0 3] 999999.

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *0)
[{3 fold, [F0 =k 1 fy1E%HL,
1 3.6 OB

PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)
|84 tzinfo (T]fESE None).,
1 3.10 BOFTIA.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:

8.6. Hith¥hi¥ 173

The Python/C API, £[F) 3.11.8

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
PA -999999999 %I 999999999 7] 1) & i 2 =X] i R 8

1E

3.3 OB

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
PA O 21| 86399 7] i) B i oK] (AP B

1E

3.3 WUHT A

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
PA O F1| 999999 2] iy B BOE X [l (AP 2

g

3.3 BT

[T 77 41 EE/E DB APT [4

PyObject *PyDateTime_FromTimestamp (PyObject *args)
#HE— B AEIEL datetime.datetime. fromtimestamp () W5 #oC

EEE T R SO E

4, 2 [EE s —FE) datetime . datetime ¥,
PyObject *PyDate_FromTimestamp (PyObject *args)

EIMRE: eG4, 4T — S ELEAS datetime . date. fromtimestamp () M|,
SEEAME-—{H 1) datetime.date P{t.

8.6.14 BFHRTRYIH

POt T S A B EHE R B @ A(E, HEiA W -- GenericAlias #] Union, M4 GenericAlias 24
B (expose) %5 C.

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)
Part of the Stable ABI since version 3.9. 7337 — il GenericAlias ¥ 4, %% [&] i FF 1l Python)

2L 2

types.GenericAlias class. origin il args 5| 4> [E)5% € T GenericAlias [_ origin_

Bl

Y

args__ JBM. origin EZ YR PyTypeobject* H args WA PyTupleObject* Bf

L7 PyObject*. WIRMA) args A2 M tuple (JuAL) , HI € By —f R 1§ wple H
o Wi/ ms kgt Bt ARIME origin A2 EZUE], Kt
AR, GenericAlias { _ _parameters_ BYE®H _ args_ [EMHHLZEST (constructed
lazily). & JHRE, 58— Fil/ME R E NULL,

AT 2 11— 1 43 S L ENZ AL (generic) 131

__args__ @HGRIE (args,)

-

.

static PyMethodDef my_obj_methods[] = {

// Other methods.

{"__class_getitem

", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}
I3
L4
The data model method __class_getitem_ ().
1E 3.9 OB A

PyTypeObject Py_GenericAliasType
Part of the Stable ABI since version 3.9. Py_GenericAlias () FrEEZYER C BUE]. Z4Ej* Python

H1) types.GenericAlias,

1E

3.9 BUBTIA.

174

Chapter 8. BEYIHRB

CHAPTER 9

Initialization, Finalization, and Threads

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py_Tnitialize () function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:
* Configuration functions:
— PyImport_AppendInittab ()
— PyImport_ExtendInittab ()
— PyInitFrozenExtensions ()
— PyMem SetAllocator ()
— PyMem_SetupDebugHooks ()
— PyObject_SetArenaAllocator ()
— Py_SetPath()
— Py SetProgramName ()
— Py_SetPythonHome ()
— Py SetStandardStreamEncoding ()
— PySys_AddWarnOption ()
— PySys_AddXOption ()
— PySys_ResetWarnOptions ()
¢ Informative functions:
— Py _IsInitialized()
— PyMem_GetAllocator ()

— PyObject_GetArenaAllocator ()

175

The Python/C API, £[F) 3.11.8

Py_GetBuildInfo()

Py_GetCompiler ()
— Py _GetCopyright ()
— Py_GetPlatform()
— Py _GetVersion ()

« Utilities:
— Py_DecodeLocale ()

¢ Memory allocators:

— PyMem_RawMalloc ()

PyMem_RawRealloc ()

PyMem RawCalloc ()

— PyMem_ RawFree ()

f#E): The following functions should not be called before Py_Tnitialize(): Py EncodeLocale (),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py _GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_TInitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b
sets Py BytesWarningFlagto 1 and —bb sets Py BytesWarningFlag to 2.

int Py_BytesWarningFlag

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.

1 —b BEIEHBUE .

int Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).
fh —d j#IHEL PYTHONDEBUG BIEB 3 E .

int Py_DontWriteBytecodeFlag

If set to non-zero, Python won’t try to write . pyc files on the import of source modules.
th -B j#IHEL PYTHONDONTWRITEBYTECODE BRIZEB I E .

int Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_module and frozenmain programs.

int Py_ HashRandomizationFlag
N ER R 8 B PYTHONHASHSEED i s & [Fl— i %S e HI % E) 1.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

176 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

int Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

i —E S -T 8 HE0E
int Py_InspectFlag

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

i -1 BEJEEL PYTHONINSPECT BRI S MG E .

int Py_InteractiveFlag
i -1 BRIEHEBUE .
int Py_IsolatedFlag

Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the
user’s site-packages directory.

ft 1 EIERLE.
#E 3.4 LB,

int Py_LegacyWindowsFSEncodingFlag

If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.

RIS 8 PYTHONLEGACYWINDOWSFSENCODING i i [F)— il JE 2% =k HI 5
E%%‘%ﬁﬁ PEP 529,
1 fH: Windows.,
int Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
W2 L PEP 528,
1# fH : Windows.,

int Py_NoSiteFlag

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

H —s BRIHRE .
int Py_NoUserSiteDirectory
Don’t add the user site-packages directoryto sys.path.

i —s 2EIE. HEIFEL PYTHONNOUSERSITE FRBSE S # 5F o
int Py_OptimizeFlag
i -0 j#IHHEL PYTHONOPTIMI ZE FEIE 2 8L E .

int Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.
Hi —q BEIHROE .«
TE 3.2 HTIA.

int Py_UnbufferedStdioFlag

Force the stdout and stderr streams to be unbuffered.

A —u H:JHEL PYTHONUNBUFFERED ¥RIE 4 sk 2 -

9.2. Global configuration variables 177

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, £[F) 3.11.8

int Py_VerboseFlag

Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

i —v 3¢ JHEL PYTHONVERBOSE BEIE S M E .

EAVAN

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Fart of the Stable ABI. Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, _ _main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

#[E]): On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-
Python uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Fart of the Stable ABI. This function works like Py_Tnitialize () if initsigsis 1. If initsigs is 0, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.

intPy_IsInitialized()

Fart of the Stable ABIL Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py_FinalizeEx () is called, this returns false until Py Tnitialize () is called again.

int Py_FinalizeEx ()

Part of the Stable ABI since version 3.6. Undo all initializations made by Py_Tnitialize () and sub-
sequent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter ()
below) that were created and not yet destroyed since the last call to Py_Tnitialize (). Ideally, this frees
all memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling
Py_TInitialize () again first). Normally the return value is 0. If there were errors during finalization
(flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__ () methods) to fail when they depend on other objects (even functions) or mod-
ules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory
allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in
circular references between objects is not freed. Some memory allocated by extension modules may not be
freed. Some extensions may not work properly if their initialization routine is called more than once; this can
happen if an application calls Py _Tnitialize () and Py _FinalizeEx () more than once.

518 — AR5 [B RS SHF coython._PySys_ClearAuditHooks.
T 3.6 JHT A

void Py_Finalize ()

Fart of the Stable ABI. This is a backwards-compatible version of Py_FinalizeEx () that disregards the
return value.

178 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This API is kept for backward compatibility: setting PyConfig.stdio_encoding and PyConfig.
stdio_errors should be used instead, see Python Initialization Configuration.

This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding
and error handling to use with standard IO, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the
environment variable does not work.

encoding and/or errors may be NULL to use PY THONIOENCOD ING and/or default values (depending on other
settings).
Note that sys.stderr always uses the "backslashreplace” error handler, regardless of this (or any other)

setting.

If Py_FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls
toPy_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
e 3.4 BOHmA.
5 3.1 i A E .
void Py_SetProgramName (const wchar_t *name)
Fart of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.program _name

should be used instead, see Python Initialization Configuration.

This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted
to wide characters). This is used by Py_GetPath () and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is 'python'. The argument should
point to a zero-terminated wide character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
5 3.1 2 A E .
wchar_t *Py_GetProgramName ()
Fart of the Stable ABI. Return the program name set with Py_ Set ProgramName (), or the default. The
returned string points into static storage; the caller should not modify its value.
This function should not be called before Py Tnitialize (), otherwise it returns NULL.

¥E 3.10 R[5 T : It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetPrefix ()

Part of the Stable ABIL Return the prefix for installed platform-independent files. This is derived through a
number of complicated rules from the program name set with Py_ Set ProgramName () and some environ-
ment variables; for example, if the program name is ' /usr/local/bin/python', the prefixis ' /usr/
local'. The returned string points into static storage; the caller should not modify its value. This corresponds
to the prefix variable in the top-level Makefile and the ——prefix argument to the configure script
at build time. The value is available to Python code as sys.prefix. Itis only useful on Unix. See also the
next function.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

JE 3.10 iR {5 B : 1t now returns NULL if called before Py Tnitialize ().

9.4. Process-wide parameters 179

The Python/C API, £[F) 3.11.8

wchar_t *Py_GetExecPrefix ()

Fart of the Stable ABIL Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with Py Set ProgramName () and some envi-
ronment variables; for example, if the program name is ' /usr/local/bin/python’', the exec-prefix is
'/usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_prefix variable in the top-level Makefile and the ——exec-prefix argu-
ment to the configure script at build time. The value is available to Python code as sys .exec_prefix.
It is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

7 3.10 JR 52 58 It now returns NULL if called before Py ITnitialize ().

wchar_t *Py_GetProgramFullPath ()

Part of the Stable ABIL Return the full program name of the Python executable; this is computed as a side-
effect of deriving the default module search path from the program name (set by Py SetProgramName ()
above). The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.executable.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

I 3.10 R %% ¥ It now returns NULL if called before Py Tnitialize ().

wchar_t *Py_GetPath ()

Part of the Stable ABI. Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a series
of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and macOS, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually
is) modified later to change the search path for loading modules.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

¥E 3.10 iR %2 8 : It now returns NULL if called before Py Tnitialize ().

void Py_SetPath (const wchar_t*)

Fart of the Stable ABI since version 3.7. This API is kept for backward compatibility: setting PyConfig.
module_search_pathsand PyConfig.module search_paths_set should be used instead, see
Python Initialization Configuration.

Set the default module search path. If this function is called before Py Initialize (), then
Py_GetPath () won't attempt to compute a default search path but uses the one provided instead. This
is useful if Python is embedded by an application that has full knowledge of the location of all modules. The
path components should be separated by the platform dependent delimiter character, which is ' : ' on Unix
and macOS, '; ' on Windows.

This also causes sys.executable to be set to the program full path (see
Py_GetProgramFullPath()) and for sys.prefix and sys.exec_prefix to be empty. It

180

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

is up to the caller to modify these if required after calling Py Tnitialize ().
Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.
TE 3.8 f [t 4% 5 : The program full path is now used for sys .executable, instead of the program name.
£ 3.11 [z & BEE .
const char *Py_GetVersion ()

Part of the Stable ABI. Return the version of this Python interpreter. This is a string that looks something like

["3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]1"]

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys.version.

See also the Py_ Version constant.

const char *Py_GetPlatform ()

Fart of the Stable ABI. Return the platform identifier for the current platform. On Unix, this is formed from
the official” name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is ' sunos5'. OnmacOS,itis 'darwin’'.
On Windows, itis 'win'. The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as sys.platform.

const char *Py_GetCopyright ()

Fart of the Stable ABI. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'’

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char *Py_GetCompiler ()

Part of the Stable ABI. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

["[GCC 2.7.2.2]" }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys .version.

const char *Py_GetBuildInfo ()

Fart of the Stable ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

["#67, Aug 1 1997, 22:34:28" }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_ SetArgvEx (int argc, wchar_t **argy, int updatepath)

Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argvand PyConfiqg. safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s
main () function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialize sys . argv, a fatal condition is signalled using
Py FatalError().

9.4. Process-wide parameters 181

The Python/C API, £[F) 3.11.8

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .
path according to the following algorithm:

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the
script is located is prepended to sys.path.

» Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configura-
tion.

#iE): Itis recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass O as updatepath, and update sys . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called PySys_SetArgv (), for example using:

[PyRun_SimpleString("import sys; sys.path.pop(0)\n");

1E 3.1.3 BT
1E 3.1 2 AR BEE .

void PySys_ SetArgv (int argc, wchar_t **argv)

Part of the Stable ABIL This API is kept for backward compatibility: setting PyConfig.argv and
PyConfig.parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter
was started with the —T.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configura-
tion.

Tr 3.4 M Y% 55 The updatepath value depends on —1T.
1 3.1 RZ EBEEH.

void Py_SetPythonHome (const wchar_t *home)

Fart of the Stable ABI This API is kept for backward compatibility: setting PyConfig.home should be
used instead, see Python Initialization Configuration.

Set the default "home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

1E 3.1 Rz A BEE .

wchar_t *Py_GetPythonHome ()

Part of the Stable ABIL Return the default "home”, that is, the value set by a previous call to
Py_SetPythonHome (), or the value of the PYTHONHOME environment variable if it is set.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

7E 3.10 JR 52 58 It now returns NULL if called before Py Tnitialize ().

182

Chapter 9. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, £[F) 3.11.8

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/L may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). Thelockis also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

J

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
. Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

f#[E): Calling system I/0 functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z1ib and hashlib modules release the GIL
when compressing or hashing data.

9.5. Thread State and the Global Interpreter Lock 183

The Python/C API, £[F) 3.11.8

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afore-
mentioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C APIL. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically.
The typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created auto-
matically by Py Tnitialize()). Python supports the creation of additional interpreters (using
Py_NewInterpreter ()), but mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both
on how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the “current” thread remains means any locks held by other threads will never be released. Python
solves this for os . fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending
or embedding Python, calling fork () directly rather than through os. fork () (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os. fork () does. This means finalizing all other Py ThreadState objects belonging to the current inter-
preter and all other PyInterpreterState objects. Due to this and the special nature of the "main” interpreter,

fork () should only be called in that interpreter’s “main” thread, where the CPython global runtime was originally
initialized. The only exception is if exec () will be called immediately after.

184 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

9.5.4 g API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:
type PyInterpreterState

Part of the Limited API (as an opaque struct). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few
other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState

Fart of the Limited API (as an opaque struct). This data structure represents the state of a single thread. The
only public data member is:

PylInterpreterState *interp
This thread’s interpreter state.

void PyEval_InitThreads ()
Fart of the Stable ABI. Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.

e 3.9 RS ek U E A S AT S0

T 3.7 W54 58 : This function is now called by Py_Tnitialize (), so you don’t have to call it yourself
anymore.

TE 3.2 fRAY % 5 : This function cannot be called before Py_Tnitialize () anymore.
1 3.9 iz EHEIH.

int PyEval_ThreadsInitialized()

Part of the Stable ABIL. Returns a non-zero value if PyEval_TInitThreads () hasbeen called. This func-
tion can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when
running single-threaded.

TE 3.7 Y525 The GIL is now initialized by Py_Tnitialize ().
1E 3.9 M2 AAEEI.

PyThreadState *PyEval_SaveThread ()

Fart of the Stable ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Part of the Stable ABI. Acquire the global interpreter lock (if it has been created) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

Hi(E]: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

PyThreadState *PyThreadState_Get ()

Part of the Stable ABIL Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

9.5. Thread State and the Global Interpreter Lock 185

The Python/C API, £[F) 3.11.8

PyThreadState *PyThreadState_Swap (PyThreadState *tstate)

Part of the Stable ABI. Swap the current thread state with the thread state given by the argument zstate, which
may be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()

Part of the Stable ABI. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by a
thread as long as each call is matched with a call to PyGILState_Release (). In general, other thread-
related APIs may be used between PyGILState_Ensure () and PyGILState_Release () calls as
long as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py _BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState_Ensure () was called, and
must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure ()
must save the handle for its call to PyGTIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

#5(E): Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

void PyGILState_Release (PyGILState_STATE)
Part of the Stable ABI. Release any resources previously acquired. After this call, Python’s state will be the

same as it was prior to the corresponding PyGILState Ensure () call (but generally this state will be
unknown to the caller, hence the use of the GILState API).

Everycallto PyGILState Ensure () must be matched byacallto PyGILState Release () onthe
same thread.

PyThreadState *PyGILState_GetThisThreadState ()
Part of the Stable ABI. Get the current thread state for this thread. May return NULL if no GILState API

has been used on the current thread. Note that the main thread always has such a thread-state, even if no
auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()

Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

TE 3.4 JEGHTImA.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS

Part of the Stable ABIL This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread () ;. Note that it contains an opening brace; it must be matched with a fol-
lowing Py END_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_END_ALLOW_THREADS

Fart of the Stable ABI. This macro expands to PyEval_RestoreThread (_save); }. Note that it
contains a closing brace; it must be matched with an earlier Py_ BEGIN_ALLOW_THREADS macro. See
above for further discussion of this macro.

186 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

Py_BLOCK_THREADS

Fart of the Stable ABI. This macro expands to PyEval_RestoreThread (_save) ;: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS

Fart of the Stable ABI. This macro expands to _save = PyEval_SaveThread () ;: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.5 {Kp& API

All of the following functions must be called after Py_Tnitialize ().
JE 3.7 5T Py_Initialize () now initializes the GIL.

PylnterpreterState *PyInterpreterState_New ()

Fart of the Stable ABI. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.

%]??*@Z:Pﬁ%%@iﬂ@%&%@ cpython.PyInterpreterState_New,

void PyInterpreterState_Clear (PylnterpreterState *interp)

Part of the Stable ABI. Reset all information in an interpreter state object. The global interpreter lock must be
held.

5B AP A | B B % S35 cpython . PyInterpreterState_Clear,

void PyInterpreterState_Delete (PylnterpreterState *interp)

Fart of the Stable ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to Py InterpreterState_Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)

Fart of the Stable ABI. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Part of the Stable ABI. Reset all information in a thread state object. The global interpreter lock must be held.

TE 3.9 R %% 58 This function now calls the PyThreadState.on_delete callback. Previously, that
happened in PyThreadState_Delete ().

void PyThreadState_Delete (PyThreadState *tstate)

Part of the Stable ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState_Clear ().

void PyThreadState_DeleteCurrent (void)

Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)
Fart of the Stable ABI since version 3.10. Get the current frame of the Python thread state tstate.

Return a strong reference. Return NULL if no frame is currently executing.
Wi R PyEval_GetFrame (),

tstate NW][E] NULL,

1E 3.9 BUHA.

9.5. Thread State and the Global Interpreter Lock 187

The Python/C API, £[F) 3.11.8

uint64_t PyThreadState_GetID (PyThreadState *tstate)
FPart of the Stable ABI since version 3.10. Get the unique thread state identifier of the Python thread state fstate.

tstate ZNA[[E] NULL,
TE 3.9 BUHTINA.

PyInterpreterState *PyThreadState_GetInterpreter (PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the interpreter of the Python thread state zstate.
tstate A~ W] [E] NULL,

1E 3.9 BUHTIA.
void PyThreadState_EnterTracing (PyThreadState *tstate)

Suspend tracing and profiling in the Python thread state tstate.

Resume them using the PyThreadState_LeaveTracing () function.

e 311 BOFTIA.

void PyThreadState_LeaveTracing (PyThreadState *tstate)

Resume tracing and profiling in the Python thread state #state suspended by the
PyThreadState EnterTracing () function.

See also PyEval_ SetTrace () and PyEval_SetProfile () functions.

5 311 BT
PyInterpreterState *PyInterpreterState_Get (void)
Fart of the Stable ABI since version 3.9. Get the current interpreter.
Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.

The caller must hold the GIL.
1E 3.9 WUHT A

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)

Fart of the Stable ABI since version 3.7. Return the interpreter’s unique ID. If there was any error in doing so
then —1 is returned and an error is set.

The caller must hold the GIL.
TE 3.7 BGHT A

PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)

Fart of the Stable ABI since version 3.8. Return a dictionary in which interpreter-specific data may be stored.
If this function returns NULL then no exception has been raised and the caller should assume no interpreter-
specific dict is available.

This is not a replacement for PyModule_GetState (), which extensions should use to store interpreter-
specific state information.

TE 3.8 JHT A

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PyInterpreterFrame *frame, int
throwflag)

Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current
exception.

TE 3.9 fiRf{) 5% 5 The function now takes a fstate parameter.

FE 311 R By & The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

188 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)

Get the frame evaluation function.
See the PEP 523 ”Adding a frame evaluation API to CPython”.
TE 3.9 BCHTIA.

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 ”Adding a frame evaluation API to CPython”.
1E 3.9 JBHTIA.

PyObject *PyThreadState_GetDict ()

EI {44 : 1% A %88, Part of the Stable ABIL Return a dictionary in which extensions can store thread-specific
state information. Each extension should use a unique key to use to store state in the dictionary. It is okay
to call this function when no current thread state is available. If this function returns NULL, no exception has
been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Fart of the Stable ABIL. Asynchronously raise an exception in a thread. The id argument is the thread id of
the target thread; exc is the exception object to be raised. This function does not steal any references to exc.
To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

TE 3.7)58 58 The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Fart of the Stable ABI. Acquire the global interpreter lock and set the current thread state to zstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

#iE): Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

7= 3.8 i my & Updated to be consistent with PyFEval_ RestoreThread(),
Py _END_ALLOW_THREADS (), and PyGILState_ Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have
not been initialized).
void PyEval_ReleaseThread (PyThreadState *tstate)

Fart of the Stable ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The zstate argument, which must not be
NULL, is only used to check that it represents the current thread state --- if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquireLock ()
Fart of the Stable ABIL. Acquire the global interpreter lock. The lock must have been created earlier. If this
thread already has the lock, a deadlock ensues.

IE 3.2 Hx 2 1% #% [F) : This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

9.5. Thread State and the Global Interpreter Lock 189

https://peps.python.org/pep-0523/
https://peps.python.org/pep-0523/

The Python/C API, £[F) 3.11.8

#iE): Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

7= 3.8 i my & Updated to be consistent with PyFEval_ RestoreThread(),
Py _END_ALLOW_THREADS (), and PyGILState_ Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

void PyEval_ReleaseLlock ()
Fart of the Stable ABI. Release the global interpreter lock. The lock must have been created earlier.

I 3.2 Ht Z 1% #% [F) A: This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The "main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
aprocess. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The PyInterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and de-
stroy them using the following functions:

PyThreadState *Py_NewInterpreter ()

Fart of the Stable ABI. Create a new sub-interpreter. This is an (almost) totally separate environment for the
execution of Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtins,___main__ and sys. The table of loaded modules
(sys.modules) and the module search path (sys.path) are also separate. The new environment has no
sys.argv variable. It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.
stderr (however these refer to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API
functions, the global interpreter lock must be held before calling this function and is still held when it returns;
however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows:

¢ For modules using multi-phase initialization, e.g. PyModule_ FromDefAndSpec (), a separate
module object is created and initialized for each interpreter. Only C-level static and global variables
are shared between these module objects.

» For modules using single-phase initialization, e.g. PyModule Create (), the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squir-
reled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized
and filled with the contents of this copy; the extension’s init function is not called. Objects in the mod-
ule’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see
Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx () and Py_Tnitialize ();in that case, the

190 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

extension’s initmodule function is called again. As with multi-phase initialization, this means that
only C-level static and global variables are shared between these modules.

void Py_EndInterpreter (PyThreadState *tstate)

Part of the Stable ABIL. Destroy the (sub-)interpreter represented by the given thread state. The given thread
state must be the current thread state. See the discussion of thread states below. When the call returns, the
current thread state is NULL. All thread states associated with this interpreter are destroyed. (The global inter-
preter lock must be held before calling this function and is still held when it returns.) Py_FinalizeEx ()
will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect --- for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs as-
sume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of
sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching
PyGILState_Ensure () and PyGILState Release () calls. Furthermore, extensions (such as ctypes)
using these APIs to allow calling of Python code from non-Python created threads will probably be broken when
using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.
int Py_AddPendingCall (int (*func)(void*), void *arg)

Fart of the Stable ABIL Schedule a function to be called from the main interpreter thread. On success, O is
returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any
exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return O on success, or —1 on failure with an exception set. func won't be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

9.7. Asynchronous Notifications 191

The Python/C API, £[F) 3.11.8

e M. This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called
before the system call returns. This function is generally not suitable for calling Python code from arbitrary
C threads. Instead, use the PyGILState API.

1E 3.1 BT A.

Tr 3.9 K Ay 5 5 TIf this function is called in a subinterpreter, the function func is now scheduled to be called
from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its
own list of scheduled calls.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_SetProfile () and PyEval_SetTrace ().
The first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyITrace_C_CALL, PyTrace_ C_EXCEPTION, PyITrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_ CALL Always Py_None.

PyTrace EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace C_CALL Function object being called.

PyTrace_C_EXCEPTION Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL

The value of the what parameter to a Py_ t racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter to a Py_ t racefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_ t race func function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

192 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, £[F) 3.11.8

int PyTrace_RETURN

The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL

The value for the what parameter to Py_ t race func functions when a C function is about to be called.
int PyTrace_C_EXCEPTION

The value for the what parameter to Py_ t race func functions when a C function has raised an exception.
int PyTrace_C_RETURN

The value for the what parameter to Py_ t race func functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)

Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except Py Trace_LINE PyTrace_OPCODE and PyTrace_ EXCEPTION.

See also the sys.setprofile () function.
WY 35 W JH R A GIL
void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval SetProfile (), except the tracing function
does receive line-number events and per-opcode events, but does not receive any event related to C func-
tion objects being called. Any trace function registered using PyEval_SetTrace () will not receive
PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what pa-
rameter.

Wi A sys.settrace () HIL.
WU 2 R A GIL

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState *PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.
PylnterpreterState *PyInterpreterState_Main ()
Return the main interpreter state object.
PylnterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.
PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.
PyThreadState *PyThreadState_Next (PyThreadState *tstate)

Return the next thread state object after #state from the list of all such objects belonging to the same
PyInterpreterState object.

9.9. Advanced Debugger Support 193

The Python/C API, £[F) 3.11.8

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython
C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a
void* value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python . h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

#i[El: None of these API functions handle memory management on behalf of the void* values. You need to
allocate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do
refcount operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

1E 3.7 JHTIA.
hz%:
”A New C-API for Thread-Local Storage in CPython” (PEP 539)

type Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_TINIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_ tss_ t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc ()
Part of the Stable ABI since version 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT,or NULL in the case of dynamic allocation failure.
void PyThread_tss_free (Py_tss_t *key)

Part of the Stable ABI since version 3.7. Free the given key allocated by PyThread _tss_alloc (), after
first calling PyThread_tss_delete () toensure any associated thread locals have been unassigned. This
is a no-op if the key argument is NULL.

#iE): A freed key becomes a dangling pointer. You should reset the key to NULL.

194 Chapter 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0539/

The Python/C API, £[F) 3.11.8

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()

and PyThread_ tss_get () are undefined if the given Py _tss_t has not been initialized by

PyThread_ tss_create().

int PyThread_tss_is_created (Py_fss_t *key)
Part of the Stable ABI since version 3.7. Return a non-zero value if the given Py_ t ss_t has been initialized
by PyThread_tss_create ().

int PyThread_tss_create (Py_tss_t *key)
Fart of the Stable ABI since version 3.7. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py tss_NEEDS_ INIT.
This function can be called repeatedly on the same key -- calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete (Py_fss_t *key)
Part of the Stable ABI since version 3.7. Destroy a TSS key to forget the values associated with the key across
all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized
again by PyThread_tss_create (). This function can be called repeatedly on the same key -- calling it
on an already destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Fart of the Stable ABI since version 3.7. Return a zero value to indicate successfully associating a void* value
with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get (Py_tss_t *key)

Fart of the Stable ABI since version 3.7. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

1r 3.7 iz &4 [E)] : This API is superseded by Thread Specific Storage (TSS) API.

f#[E): This version of the API does not support platforms where the native TLS key is defined in a way that cannot
be safely cast to int. On such platforms, PyThread create_key () will return immediately with a failure
status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Part of the Stable ABI.

void PyThread_delete_key (int key)
Part of the Stable ABI.

int PyThread_set_key_value (int key, void *value)
Part of the Stable ABI.

void *PyThread_get_key_value (int key)
Part of the Stable ABI.

void PyThread_delete_key_value (int key)
Part of the Stable ABI.

void PyThread_ReInitTLS ()
Part of the Stable ABI.

9.10. Thread Local Storage Support 195

The Python/C API, £[F) 3.11.8

196 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

Python Initialization Configuration

1E 3.8 HUHTIIA.

Python can be initialized with Py_TnitializeFromConfig () andthe PyConfig structure. It can be preini-
tialized with Py _PreTnitialize () and the PyPreConfig structure.

There are two kinds of configuration:

» The Python Configuration can be used to build a customized Python which behaves as the regular Python. For

example, environment variables and command line arguments are used to configure Python.

¢ The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.

For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler

is registered.

The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.
hz%:
PEP 587 Python Initialization Configuration”.

10.1 EHI

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)

{

PyStatus status;
PyConfig config;
PyConfig_InitPythonConfig(&config);

config.isolated = 1;

/* Decode command line arguments.

Implicitly preinitialize Python (in isolated mode) .

status = PyConfig_SetBytesArgv (&config, argc, argv);
if (PyStatus_Exception(status)) A
goto exception;

*/

EET—TD

197

https://peps.python.org/pep-0587/

The Python/C API, £[F) 3.11.8

(R L —5)

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) A
goto exception;
}
PyConfig_Clear (&configqg) ;

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg);

if (PyStatus_IsExit (status)) {
return status.exitcode;

I3

/* Display the error message and exit the process with
non—-zero exit code */

Py_ExitStatusException (status);

10.2 PyWideStringList

type PyWideStringList

List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:

PyStatus PyWideStringList_Append (PyWideStringList *list, const wchar_t *item)
Append item to list.
Python must be preinitialized to call this function.
PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.
If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.
Structure fields:
Py_ssize_t length
List length.

wchar_t **items

List items.

198

Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

10.3 PyStatus

type PyStatus
Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:

int exitcode
Exit code. Argument passed to exit ().

const char *err_msg

Bt tUEL o
const char *func

Name of the function which created an error, can be NULL.
Functions to create a status:

PyStatus PyStatus_Ok (void)
Success.

PyStatus PyStatus_Error (const char *err_msg)

Initialization error with a message.

err_msg ANV [E] NULL,
PyStatus PyStatus_NoMemory (void)

Memory allocation failure (out of memory).
PyStatus PyStatus_Exit (int exitcode)

Exit Python with the specified exit code.
Functions to handle a status:

int PyStatus_Exception (PyStatus status)
Is the status an error or an exit? If true, the exception must be handled; by -calling
Py _ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

int PyStatus_IsExit (PyStatus status)
Is the result an exit?

void Py_ExitStatusException (PyStatus status)

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code
if status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

H5(E: Internally, Python uses macros which set PyStatus . func, whereas functions to create a status set func
to NULL.

i

PyStatus alloc(void **ptr, size_t size)
{
*ptr = PyMem_RawMalloc (size);
if (*ptr == NULL) {
return PyStatus_NoMemory () ;

(BT —15)

10.3. PyStatus 199

The Python/C API, £[F) 3.11.8

int

(B E—H)
return PyStatus_0Ok () ;

main (int argc, char **argv)

void *ptr;

PyStatus status = alloc(&ptr, 16);

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

I3

PyMem_Free (ptr);

return O;

10.4 PyPreConfig

type PyPreConfig

Structure used to preinitialize Python.
Function to initialize a preconfiguration:

void PyPreConfig InitPythonConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Python Configuration.

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Isolated Configuration.

Structure fields:

intallocator
Name of the Python memory allocators:

e PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).

e PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.

e PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.

e PYMEM_ALLOCATOR_MALLOC (3): usemalloc () of the C library.

e PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.
e PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.

e PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug
hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not sup-
ported if Python is configured using —--without-pymalloc.

A iR
FHF%: PYMEM_ALLOCATOR_NOT_SET,

int configure_locale
Set the LC_CTYPE locale to the user preferred locale.

If equals to O, set coerce_c_localeand coerce_c_locale_warn members to O.
5 Rlocale encoding .

Default: 1 in Python config, 0 in isolated config.

200

Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

int coerce_c_locale

If equals to 2, coerce the C locale.

If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
#5 Fllocale encoding .

Default: —1 in Python config, 0 in isolated config.

int coerce_c_locale_warn

If non-zero, emit a warning if the C locale is coerced.
Default: —1 in Python config, 0 in isolated config.

int dev_mode

Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated
Isolated mode: see PyConfig.isolated.

Default: 0 in Python mode, 1 in isolated mode.
int legacy_windows_fs_encoding
WREARE] 0:
o ¥pyPreconfig.utf8 mode #[F] 0,
e M PyConfig.filesystem_encoding #([F) "mbes",
o WpyConfig.filesystem errors #l[E] "replace",
Initialized the from PYTHONLEGACYWINDOWSF SENCOD ING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
e 0,
int parse_argv
If non-zero, Py_PrelnitializeFromArgs () and Py PrelnitializeFromBytesArgs ()

parse their argv argument the same way the regular Python parses command line arguments: see
Command Line Arguments.

Default: 1 in Python config, 0 in isolated config.

int use_environment

Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Set to 0 or 1 by the —X ut £8 command line option and the PYTHONUTF 8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.

Default: -1 in Python config and 0 in isolated config.

10.4. PyPreConfig 201

The Python/C API, £[F) 3.11.8

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:

* Set the Python memory allocators (PyPreConfig.allocator)

* Configure the LC_CTYPE locale (locale encoding)

* Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)
The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:
PyStatus Py_PreInitialize (const PyPreConfig *preconfig)

Preinitialize Python from preconfig preconfiguration.

preconfig NA[[E] NULL,

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int arge, char *const *argv)
Preinitialize Python from preconfig preconfiguration.

Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig AAT[[E] NULL,

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int argc, wchar_t *const *argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig ZNA[[E] NULL,

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception () and
Py_ExitStatusException ().

For Python Configuration (PyPreConfig_InitPythonConfig ()),if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py _PrelInitialize() and before
Py_TInitializeFromConfig() to install a custom memory allocator. It can be called before
PyiPreInitialize()inyPreConfig.allocatorﬁsSﬂtoPYMEM_ALLOCATOR_NOT_SET

Python memory allocation functions like PyMem_ RawMalloc () must not be used before the Python preinitializa-
tion, whereas calling directly malloc () and free () is always safe. Py_DecodeLocale () must not be called
before the Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

PyStatus status;
PyPreConfig preconfig;
PyPreConfig_InitPythonConfig (&preconfiqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfigqg);

if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

}

/* at this point, Python speaks UTF-8 */
Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

202 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

10.6 PyConfig

type PyConfig

Structure containing most parameters to configure Python.
When done, the PyConfig_ Clear () function must be used to release the configuration memory.
Structure methods:

void PyConfig InitPythonConfig (PyConfig *config)
Initialize configuration with the Python Configuration.

void PyConfig InitIsolatedConfig (PyConfig *config)
Initialize configuration with the Isolated Configuration.

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string str into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const char *str)

Decode str using Py DecodeLocale () and set the result into *config_str.
Preinitialize Python if needed.
PyStatus PyConfig_SetArgv (PyConfig *config, int arge, wchar_t *const *argv)
Set command line arguments (2 rgv member of config) from the argv list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int arge, char *const *argv)

Set command line arguments (a rgv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, Py WideStringList *list, Py_ssize_t
length, wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.
PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.
Fields which are already initialized are left unchanged.

Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.

The PyConfig Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

TE 3.10 iR/ &% 8. The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argv equals 1.

75 3.11 fRIEETE: PyConfig Read () no longer calculates all paths, and so fields listed under Python
Path Configuration may no longer be updated until Py_TnitializeFromConfig () is called.

10.6. PyConfig 203

The Python/C API, £[F) 3.11.8

void PyConfig_Clear (PyConfig *config)

Release configuration memory.

Most PyConfig methods preinitialize Python if needed. In that case, the Python preinitialization config-
uration (PyPreConfiqg) in based on the PyConfig. If configuration fields which are in common with
PyPreConfig are tuned, they must be set before calling a PyConig method:

e PyConfig.dev_mode

e PyConfig.isolated

e PyConfig.parse_argv

* PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArgv () is used, this method must be
called before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).

The caller of these methods is responsible to handle exceptions (error or exit) using
PyStatus_Exception () and Py_ExitStatusException ().

Structure fields:

PyWideStringList axgv

Command line arguments: sys.argv.

Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sy s . argv always exists and is never empty.
FERZ{H: NULL.
See also the orig_argv member.

int safe_path
If equals to zero, Py_RunMain () prepends a potentially unsafe path to sys.path at startup:

e If argv/[0]isequalto L"-m" (python -m module), prepend the current working directory.

e If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

e Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the —P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.

e 3. 11 BUFTIA.

wchar_t *base_exec_prefix

sys.base_exec_prefix,
TEELE: NULL,
Part of the Python Path Configuration output.

wchar_t *base_executable

Python base executable: sys._base_executable.

Set by the __PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

TEF(E: NULL.

Part of the Python Path Configuration output.

204 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

wchar_t *base_prefix

sys.base_prefix,
THFH: NULL,
Part of the Python Path Configuration output.

int buffered_stdio

If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
FHRE: 1.

int bytes_warning

If equals to 1, issue a warning when comparing bytes or bytearray with st r, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the —lo command line option.
Higk: 0.

int warn_default_encoding

If non-zero, emit a EncodingWarning warning when io. Text IOWrapper uses its default encod-
ing. See io-encoding-warning for details.

e 0.
T 3.10 HUHTIA.

int code_debug_ranges
If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.

Set to 0 by the PYTHONNODEBUGRANGE S environment variable and by the -X no_debug_ranges
command line option.

BBE: 1.
1E 3.1 BCHT A

wchar_t *check_hash_pycs_mode

Control the validation Dbehavior of hash-based .pyc files: value of the
——check-hash-based-pycs command line option.

Valid values:
e L"always": Hash the source file for invalidation regardless of value of the ‘check_source’ flag.
e L"never": Assume that hash-based pycs always are valid.
* L"default": The check_source’ flag in hash-based pycs determines invalidation.

FH#: L"default",

See also PEP 552 ”Deterministic pycs”.

int configure_c_stdio

If non-zero, configure C standard streams:
¢ On Windows, set the binary mode (O_BINARY) on stdin, stdout and stderr.
e If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.

* If interactive is non-zero, enable stream buffering on stdin and stdout (only stdout on Win-
dows).

10.6. PyConfig 205

https://peps.python.org/pep-0552/

The Python/C API, £[F) 3.11.8

Default: 1 in Python config, 0 in isolated config.

int dev_mode
If non-zero, enable the Python Development Mode.

Set to 1 by the -X dewv option and the PYTHONDEVMODE environment variable.
Default: —1 in Python mode, 0 in isolated mode.

int dump_refs

Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREF'S environment variable.

Need a special build of Python with the Py_TRACE_REFS macro defined: see the configure
—--with-trace-refs option.

THEE: 0.
wchar_t *exec_prefix

The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.

THFR(H: NULL,
Part of the Python Path Configuration output.

wchar_t *executable
The absolute path of the executable binary for the Python interpreter: sys.executable.

JHFR{E: NULL.
Part of the Python Path Configuration output.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () atstartup.
Setto 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: —1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding

Filesystem encoding: sys.getfilesystemencoding ().
On macOS, Android and VxWorks: use "ut £-8" by default.

On Windows: use "utf-8" by default, or "mbcs" if legacy_windows_fs_encoding of
PyPreConfig is non-zero.

Default encoding on other platforms:
e "utf-8"if PyPreConfig.utf8 mode is non-zero.

e "ascii" if Python detects that n1_langinfo (CODESET) announces the ASCII encoding,
whereas the mbstowcs () function decodes from a different encoding (usually Latin1).

e "utf-8"ifnl_langinfo (CODESET) returns an empty string.
* Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example,
"ANSI_X3.4-1968" is replaced with "ascii".

See also the filesystem errors member.

206 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

wchar_t *filesystem_errors

Filesystem error handler: sys.getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if
legacy_windows_fs_encoding of PyPreConfig is non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:
e "strict"
e "surrogateescape"
e "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem encoding member.
unsigned long hash_seed
int use_hash_seed
Randomized hash function seed.
If use_hash_seedis zero, a seed is chosen randomly at Python startup, and hash_ seed is ignored.
Set by the PYTHONHASHSEED environment variable.
Default use_hash_seed value: -1 in Python mode, 0 in isolated mode.

wchar_t *home

Python home directory.
If Py_SetPythonHome () has been called, use its argument if it is not NULL.
Set by the PYTHONHOME environment variable.
THRC{E: NULL,
Part of the Python Path Configuration input.
int import_time
If non-zero, profile import time.

Set the 1 by the -X importtime option and the PYTHONPROFILEIMPORTTIME environment
variable.

HE: 0.
int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys . stdin does not appear to
be a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable
is non-empty.

H#: 0,
int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.

int interactive
If greater than 0, enable the interactive mode (REPL).

Incremented by the —i command line option.

TEE: 0,

10.6. PyConfig 207

The Python/C API, £[F) 3.11.8

int isolated

If greater than 0, enable isolated mode:
e Set safe_pathto 1: don’t prepend a potentially unsafe path to sys.path at Python startup.
o ¥use environment $EFE 0,
* Set user_site_directoryto 0: don’t add the user site directory to sys.path.

¢ Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the —TI command line option.
Default: 0 in Python mode, 1 in isolated mode.
7l PyPreConfig.isolated,

int legacy_windows_stdio

If non-zero, use i0.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.
stdout and sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
HE: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats

If non-zero, dump statistics on Python pymalloc memory allocator at exit.
Set to 1 by the PYTHONMALLOCSTATS environment variable.

The option is ignored if Python is configured using the —--without-pymalloc

option.
THF%: 0,

wchar_t *platlibdir

Platform library directory name: sys.platlibdir.
Set by the PYTHONPLATLIBDIR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure --with-platlibdir
option (default: "1ib", or "DLLs" on Windows).

Part of the Python Path Configuration input.
7E 3.9 FRAHTMA.

7E 3.11 fi %42 55 : This macro is now used on Windows to locate the standard library extension modules,
typically under DLLs. However, for compatibility, note that this value is ignored for any non-standard
layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).

Set by the PYTHONPATH environment variable.
PkfH: NULL.
Part of the Python Path Configuration input.

PyWideStringList module_search_paths

208 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0528/

The Python/C API, £[F) 3.11.8

intmodule_search_paths_set

Module search paths: sys.path.

If module search_paths_setisequalto 0, Py TnitializeFromConfig () will replace
module_search_paths and sets module_search_paths_set to 1.

Default: empty list (module_search_paths)and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level

Compilation optimization level:
¢ 0: Peephole optimizer, set __debug___ to True.
¢ 1: Level 0, remove assertions, set ___debug__ to False.
e 2: Level 1, strip docstrings.

Incremented by the —O command line option. Set to the PYTHONOPTIMIZE environment variable
value.

i 0.
PyWideStringList orig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig _argv list is empty and argv is not a list only containing an empty string,
PyConfig_Read () copies argv into orig_argv before modifying argv (if parse_argv is
non-zero).

See also the a rgv member and the Py GetArgcArgv () function.
Default: empty list.
1E 3.10 BUFT A

int parse_argv

Parse command line arguments?

If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

The PyConfig_Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

7E 3.10 fR /) %% §: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argvequalsto 1.

int parser_debug

Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on
compilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
TEFE: 0.
int pathconfig_warnings

If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to O,
suppress these warnings.

Default: 1 in Python mode, O in isolated mode.
Part of the Python Path Configuration input.
TE 3.11 iR [%%% 58 : Now also applies on Windows.

10.6. PyConfig 209

The Python/C API, £[F) 3.11.8

wchar_t *prefix

The site-specific directory prefix where the platform independent Python files are installed: sys.
prefix.

THRR(H: NULL,
Part of the Python Path Configuration output.

wchar_t *program_name

Program name used to initialize executable and in early error messages during Python initialization.
e If Py_SetProgramName () has been called, use its argument.
¢ On macOS, use PYTHONEXECUTABLE environment variable if set.

e [fthe WITH_NEXT_FRAMEWORK macro is defined, use __PYVENV_LAUNCHER___ environment
variable if set.

e Use argv [0] of argv if available and non-empty.

¢ Otherwise, use L"python" on Windows, or L"python3" on other platforms.

Part of the Python Path Configuration input.
wchar_t *pycache_prefix

Directory where cached . pyc files are written: sys.pycache_prefix.

Set by the -X pycache_prefix=PATH command line option and the PYTHONPYCACHEPREFIX
environment variable.

If NULL, sys.pycache_prefixissetto None.
FEER{E: NULL,
int quiet

Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.

Incremented by the —g command line option.
W 0.
wchar_t *run_command
Value of the —c command line option.
Used by Py_RunMain ().
THRR{H: NULL.
wchar_t *run_filename

Filename passed on the command line: trailing command line argument without —c or —m. It is used by
the Py_ RunMain () function.

For example, it is set to script .py by the python3 script.py argcommand line.
Wi R PyConfig. skip_source_first_line j3:IH,
FERZ{H: NULL.

wchar_t *run_module

Value of the —-m command line option.
Used by Py_RunMain ().
FRAH: NULL.

210 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

int show_ref_count

Show total reference count at exit?
Setto 1 by -X showrefcount command line option.
Need a debug build of Python (the Py_REF_DEBUG macro must be defined).
B 0.
int site_import
Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.
path that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main ()
if you want them to be triggered).

Set to 0 by the —S command line option.
sys.flags.no_site is set to the inverted value of site_ import.
PHRH: 1.
int skip_source_first_line
If non-zero, skip the first line of the PyConfig. run_filename source.
It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the —x command line option.
THEL: 0.
wchar_t *stdio_encoding

wchar_t *stdio_errors

Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (butsys.stderr
always uses "backslashreplace™" error handler).

If Py _SetStandardStreamEncoding () has been called, use its error and errors arguments if
they are not NULL.

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8" if PyPreConfig.utf8_ mode is non-zero.

¢ Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape".

e "surrogateescape" if PyPreConfig. utf8_mode is non-zero, or if the LC_CTYPE lo-
cale is ”C” or "POSIX”.

e "strict" otherwise.

int tracemalloc
Enable tracemalloc?

If non-zero, call tracemalloc.start () atstartup.

Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment
variable.

Default: —1 in Python mode, 0 in isolated mode.

10.6. PyConfig 211

The Python/C API, £[F) 3.11.8

int use_environment

Use environment variables?

If equals to zero, ignore the environment variables.
Set to 0 by the —E environment variable.

Default: 1 in Python config and 0 in isolated config.

intuser_site_directory

If non-zero, add the user site directory to sys.path.

Set to 0 by the —s and —I command line options.

Set to 0 by the PYTHONNOUSERSITE environment variable.
Default: 1 in Python mode, 0 in isolated mode.

int verbose

Verbose mode. If greater than O, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.

If greater or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Incremented by the —v command line option.
Set to the PYTHONVERBOSE environment variable value.
HE: 0.

PyWideStringList warnoptions

Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).

The —W command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

intwrite_bytecode

If equal to 0, Python won'’t try to write . pyc files on the import of source modules.

Set to 0 by the —B command line option and the PYTHONDONTWRITEBYTECODE environment vari-
able.

sys.dont_write_bytecode is initialized to the inverted value of write_ bytecode.
R 1.
PyWideStringList xoptions
Values of the —X command line options: sys._xoptions.
Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.

The xopt ions options are parsed to set other options: see the —X command line option.

FE 3.9)55 5 : The show_alloc_count field has been removed.

212 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

10.7 Initialization with PyConfig

Function to initialize Python:

PyStatus Py_InitializeFromConfig (const PyConfig *config)
Initialize Python from config configuration.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception () and
Py ExitStatusException ().

If PyImport_FrozenModules (), PyImport_AppendInittab () or
PyImport_ExtendInittab () are used, they must be set or called after Python preinitialization and
before the Python initialization. If Python is initialized multiple times, Py Import_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,
L"/path/to/my_program") ;
if (PyStatus_Exception (status)) {
goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {
goto exception;
}
PyConfig_Clear (&config);
return;

exception:
PyConfig_Clear (&configqg);
Py_ExitStatusException (status);

More complete example modifying the default configuration, read the configuration, and then override some param-
eters. Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read from
the configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python (const char *program_name)

{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;

if (PyStatus_Exception (status)) {
(BHET—H)

10.7. Initialization with PyConfig 213

The Python/C API, £[F) 3.11.8

(R L —5)

goto done;

/* Read all configuration at once */

status = PyConfig_Read (&confiqg);

if (PyStatus_Exception (status)) {
goto done;

/* Specify sys.path explicitly */
/* If you want to modify the default set of paths, finish
initialization first and then use PySys_GetObject ("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/stdlib") ;
if (PyStatus_Exception(status)) A
goto done;
I3
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception (status)) {
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable") ;
if (PyStatus_Exception(status)) A
goto done;

status = Py_InitializeFromConfig (&confiqg);
done:

PyConfig_Clear (&configqg);
return status;

10.8 Isolated Configuration

PyPreConfig InitIsolatedConfig() and PyConfig InitIsolatedConfig () functions create
a configuration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the
LC_CTYPE locale are left unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

214 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

10.9 Python Configuration

PyPreConfig InitPythonConfig () and PyConfig InitPythonConfig () functions create a con-
figuration to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF 8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:

¢ Path configuration inputs:
— PyConfig.home
— PyConfig.platlibdir
— PyConfig.pathconfig warnings
— PyConfig.program_name
— PyConfig.pythonpath_env
— current working directory: to get absolute paths
— PATH environment variable to get the program full path (from PyConfig.program name)
— _ PYVENV_LAUNCHER_ _ BahEiy

— (Windows only) Application paths in the registry under ”SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

* Path configuration output fields:
— PyConfig.base_exec_prefix
— PyConfig.base_executable
— PyConfig.base_prefix
— PyConfig.exec_prefix
— PyConfig.executable
— PyConfig.module_search_paths_set, PyConfig.module_search_paths
— PyConfig.prefix

If at least one “output field” is not set, Python calculates the path configuration to fill unset fields.
If module_search_paths_set is equal to 0, module_search_paths 1is overridden and
module_search_paths_setissetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explic-
itly all path configuration output fields listed above. A string is considered as set even if it is non-empty.
module_search_paths is considered as set if module_search_paths_set is set to 1. In this case,
module_search_paths will be used without modification.

Set pathconfig_warnings to O to suppress warnings when calculating the path configuration (Unix only, Win-
dows does not log any warning).

If base_prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefixrespectively.

Py_RunMain () and Py_Main () modify sys.path:

10.9. Python Configuration 215

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, £[F) 3.11.8

e If run_filename is set and is a directory which contains a __main__.py script, prepend
run_filenameto sys.path.

e If isolatedis zero:

— If run_moduleis set, prepend the current directory to sy s . path. Do nothing if the current directory
cannot be read.

— If run_filename is set, prepend the directory of the filename to sys.path.
— Otherwise, prepend an empty string to sy s . path.

If site_import isnon-zero, sys.path can be modified by the site module. If user _site_directory
is non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory
to sys.path.

The following configuration files are used by the path configuration:
e pyvenv.cfg
e ._pthfile (ex: python._pth)
e pybuilddir.txt (Unix only)
If a . _pth file is present:
e Wisolated #EFE 1.
o ¥use environment $EFE 0,
o« Wisite import #EF 0,
o Wsare path#EF 1,

The _ PYVENV_LAUNCHER___ environment variable is used to set PyConfig.base_executable

10.11 Py_RunMain()

int Py_RunMain (void)

Execute the command (PyConfig. run_command), the script (PyConfig.run_filename) or the
module (PyConfig. run_module) specified on the command line or in the configuration.

By default and when if —1i option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit () function.

See Python Configuration for an example of customized Python always running in isolated mode using
Py_RunMain ().

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argv)

Get the original command line arguments, before Python modified them.

See also PyConfig.orig_argv member.

216 Chapter 10. Python Initialization Configuration

The Python/C API, £[F) 3.11.8

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:

» ”Core” initialization phase, “bare minimum Python™:

Builtin types;

Builtin exceptions;

Builtin and frozen modules;
— The sys module is only partially initialized (ex: sys.path doesn’t exist yet).

¢ ”"Main” initialization phase, Python is fully initialized:

Install and configure importlib;

Apply the Path Configuration;

Install signal handlers;

Finish sys module initialization (ex: create sys.stdout and sys.path);

Enable optional features like faulthandler and tracemalloc;

Import the site module;
- eftc.
Private provisional API:

e PyConfig._init_main:ifsetto O, Py _InitializeFromConfig () stops atthe ”Core” initializa-
tion phase.

e PyConfig._isolated_interpreter: if non-zero, disallow threads, subprocesses and fork.
PyStatus _Py_InitializeMain (void)
Move to the "Main” initialization phase, finish the Python initialization.

No module is imported during the "Core” phase and the import 1ib module is not configured: the Path Configu-
ration is only applied during the "Main” phase. It may allow to customize Python in Python to override or tune the
Path Configuration, maybe install a custom sys .meta_path importer or an import hook, etc.

It may become possible to calculatin the Path Configuration in Python, after the Core phase and before the Main
phase, which is one of the PEP 432 motivation.

The ”Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.

Example running Python code between "Core” and "Main” initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);

config._init_main = 0;
/* ... customize 'config' configuration ... */
status = Py_InitializeFromConfig(&confiqg);

PyConfig_Clear (&configqg);
if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

(EFET—3

10.13. Multi-Phase Initialization Private Provisional API 217

https://peps.python.org/pep-0432/
https://peps.python.org/pep-0432/

The Python/C API, £[F) 3.11.8

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */
int res = PyRun_SimpleString(

"

"import sys;

"print ('Run Python code before _Py_InitializeMain',

"file=sys.stderr)");
if (res < 0) {
exit (1) ;
}
/* ... put more configuration code here ... */
status = _Py_InitializeMain();

if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

n

(R L —5)

218

Chapter 10. Python Initialization Configuration

cHAPTER 11

111 @28

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf) ;
free(buf); /* malloc'ed */
return res;

J

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

219

The Python/C API, £[F) 3.11.8

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection,
memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

hz%:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different ”domains” (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at sere. There is no hard requirement to use the memory
returned by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although
this is the recommended practice). For example, one could use the memory returned by PyMem_RawMalloc ()
for allocating Python objects or the memory returned by PyOb ject_Malloc () for allocating memory for buffers.

The three allocation domains are:

* Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without the G/L. The memory is requested directly
to the system.

¢ "Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the G/L held. The memory is taken from the Python private heap.

* Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the
Python private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching
specific deallocating functions must be used. For example, PyMem_Free () must be used to free memory allocated
using PyMem_Malloc ().

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

The default raw memory allocator uses the following functions: malloc (), calloc(), realloc() and
free();callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

1 3.4 BT
void *PyMem_RawMalloc (size_tn)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had
been called instead. The memory will not have been initialized in any way.

220 Chapter 11. FDlEREZIE

The Python/C API, £[F) 3.11.8

void *PyMem_RawCalloc (size_t nelem, size_t elsize)

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

1E 3.5 ORI

void *PyMem_RawRealloc (void *p, size_t n)

Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem_RawFree (void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem RawRealloc () or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

e The GIL must be held when using these functions.

TE 3.6 {[Y)%2 5 The default allocator is now pymalloc instead of system malloc ().

void *PyMem_Malloc (size_tn)
Part of the Stable ABIL. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyMem_Calloc (size_t nelem, size_t elsize)

Fart of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

1E 3.5 ORI

void *PyMem_Realloc (void *p, size_t n)

Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

11.4. Memory Interface 221

The Python/C API, £[F) 3.11.8

If p is NULL, the call is equivalent to PyMem_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (),PyMem_Realloc ()
or PyMem Calloc ().

If the request fails, PyMem_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)

Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a
previous call to PyMem_Malloc (), PyMem_Realloc () or PyMem Calloc (). Otherwise, or if
PyMem_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

PyMem_New (TYPE, n)

Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer
cast to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize (p, TYPE, n)

Same as PyMem_Realloc (), butthe memory block isresizedto (n * sizeof (TYPE)) bytes. Returns
apointer cast to TYPE *. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)
MpPyMem Free () FH[A] .

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

e PyMem_MALLOC (size)

e PyMem_NEW (type, size)

¢ PyMem_ REALLOC (ptr, size)

e PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

* PyMem_DEL (ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

#i[E): There is no guarantee that the memory returned by these allocators can be successfully cast to a Python
object when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

The default object allocator uses the pymalloc memory allocator.

#%fie: The GIL must be held when using these functions.

222 Chapter 11. FDlEREZIE

The Python/C API, £[F) 3.11.8

void *PyObject_Malloc (size_tn)

Part of the Stable ABIL. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had
been called instead. The memory will not have been initialized in any way.

void *PyObject_Calloc (size_t nelem, size_t elsize)

Fart of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

1E 3.5 ORI

void *PyObject_Realloc (void *p, size_t n)

Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n);else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc (),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject_Free (void *p)

Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a previous
call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallc PyMem_Malloc PyOb-
ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debuc malloc +debug pymalloc + pymalloc +
debug debug

Release build, without py- "malloc" malloc malloc malloc
malloc
Debug build, without py- "malloc_debug" malloc +debug malloc + de- malloc + de-
malloc bug bug

Legend:

Name: value for PYTHONMALLOC environment variable.

malloc: system allocators from the standard C library, C functions: malloc (),calloc (), realloc ()
and free ().

pymalloc: pymalloc memory allocator.

”+ debug”: with debug hooks on the Python memory allocators.

11.6.

Default Memory Allocators 223

The Python/C API, £[F) 3.11.8

* ”"Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

TE 3.4 BUFTIMA.

type PyMemAllocatorEx
Structure used to describe a memory block allocator. The structure has the following fields:

Field Meaning

void *ctx user context passed as first argument
void* malloc (void *ctx, size_t size) allocate a memory block

void* calloc(void *ctx, size_t nelem, allocate a memory block initialized
size_t elsize) with zeros

void* realloc (void *ctx, void *ptr, size_t allocate or resize a memory block
new_size)
void free (void *ctx, void *ptr) free a memory block

JE 3.5 iR 5 §¥: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

type PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:
PYMEM_DOMAIN_RAW
PR
* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()
PYMEM_DOMAIN_MEM
PR
* PyMem Malloc(),
* PyMem Realloc()
e PyMem_Calloc /()
* PyMem Free()
PYMEM DOMAIN_OBJ
e PyObject_Malloc ()
* PyObject_Realloc ()
* PyObject_Calloc /()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Get the memory block allocator of the specified domain.

224 Chapter 11. FDlEREZIE

The Python/C API, £[F) 3.11.8

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN RAW domain, the allocator must be thread-safe: the GIL is not held when the
allocator is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

M. pyMem_ SetAllocator () does have the following contract:

e It can be called after Py_PreTnitialize () and before Py _TnitializeFromConfig ()
to install a custom memory allocator. There are no restrictions over the installed allocator other than
the ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called
without the GIL held). See the section on allocator domains for more information.

o If called after Python has finish initializing (after Py_TnitializeFromConfig () has been
called) the allocator must wrap the existing allocator. Substituting the current allocator for some
other arbitrary one is not supported.

void PyMem_SetupDebugHooks (void)

Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem SetupDebugHooks () function is called at the Python preini-
tialization to setup debug hooks on Python memory allocators to detect memory errors.

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release
mode (ex: PYTHONMALLOC=debug).

The PyMem SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_SetAllocator ().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly al-
located memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the byte
0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by “forbidden bytes” filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

* Detect API violations. For example, detect if PyObject_Free () is called on a memory block allocated by
PyMem _Malloc ().

¢ Detect write before the start of the buffer (buffer underflow).
¢ Detect write after the end of the buffer (buffer overflow).

¢ Check that the GIL is held when allocator functions of PYMEM_DOMATN_OBJ (ex: PyObject_Malloc ())
and PYMEM_DOMATIN_MEM (ex: PyMem Malloc ()) domains are called.

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was
traced.

Let S = sizeof (size_t). 2*S bytes are added at each end of each block of N bytes requested. The memory
layout is like so, where p represents the address returned by a malloc-like or realloc-like function (p [1:j] means
the slice of bytes from * (p+1) inclusive up to * (p+7) exclusive; note that the treatment of negative indices differs
from a Python slice):

11.8. Debug hooks on the Python memory allocators 225

The Python/C API, £[F) 3.11.8

pl-2*S:-S]
Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).
p[-s]

API identifier (ASCII character):
e 'r' for PYMEM DOMAIN_ RAW.
e 'm' for PYMEM _DOMAIN_MEM.

e 'o' for PYMEM _DOMAIN_OBJ.

pl[—-sS+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
p[O:N]

The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitial-
ized memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes
are also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with
PYMEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting
a smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

pIN:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

PI[N+S:N+2*S]
Only used if the PYMEM_DEBRUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If ”bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and
tries to use it as an address. If you get in a debugger then and look at the object, you're likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).

TE 3.6 U5 T The PyMem SetupDebugHooks () function now also works on Python compiled in re-
lease mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of PYMEM DOMATIN_OBJ and
PYMEM_DOMAIN_MEM domains are called.

IE 3.8 Ji I % TE: Byte patterns 0xCB (PYMEM_CLEANBYTE), OxDB (PYMEM_DEADBYTE) and OxFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Win-
dows CRT debug malloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit
platforms. It falls back to PyMem RawMalloc () and PyMem RawRealloc () for allocations larger than 512
bytes.

pymalloc is the default allocator of the PYMEM DOMAIN_MEM (ex: PyMem_Malloc ()) and
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,

e mmap () and munmap () if available,

226 Chapter 11. FDlEREZIE

The Python/C API, £[F) 3.11.8

e malloc () and free () otherwise.

This allocator is disabled if Python is configured with the ——without-pymalloc option. It can also be disabled
at runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

11.9.1 Customize pymalloc Arena Allocator

1E 3.4 BUFTINA.

type PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field Meaning

void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, void *ptr, size_t free an arena

size)

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.10 tracemalloc C API

1E 3.7 BUHTmA.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemalloc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)

Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return O.

11.11 &6l

Here is the example from section 4% %, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;

char *buf = (char *) PyMem Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

11.10. tracemalloc C API 227

The Python/C API, £[F) 3.11.8

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_ New (char, BUFSIZ);

char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —- should be PyMem_ Free() */
free (buf2); /* Right —-- allocated via malloc () */
free (bufl); /* Fatal —- should be PyMem_Del () */

J

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New, PyObject_NewVar and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

228 Chapter 11. RiEEE

i}
]

CHAPTER 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 £ heap L5 ECHiF

PyObject *_PyObject_New (PyTypeObject *type)
EEE TR DR 31

PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
EEE TR DR 31

PyObject *PyObiject_Init (PyObject *op, PyTypeObject *type)
B 15R S04, Part of the Stable ABL JiI'E Y BUEIRIY) bs 2 BOIKI G B> BLWI(F op. CHIIG
R G R . R type Fom TR E2 SR SRAR LSS, S HOBT s B AR A e it B W
HKET. PR HARRAAZEE.

PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
EIEAE: 15 F %84, Part of the Stable ABL ‘B3| pyobject_Init () MG ThAE, [EIH WA
MR/ N TS AR RE T

PyObject_New (TYPE, typeobj)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will
own the only reference to the object (i.e. its reference count will be one). The size of the memory allocation
is determined from the tp_basicsize field of the type object.

PyObject_NewVar (TYPE, typeobj, size)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject *). Fields not defined by the Python object header are not initialized. The allocated mem-
ory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp itemsize
field of fypeobj. This is useful for implementing objects like tuples, which are able to determine their size at
construction time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

void PyObject_Del (void *op)

Releases memory allocated to an object using PyObject_New or PyOb ject_NewVar. This is normally

229

The Python/C API, £[F) 3.11.8

called from the tp_dealloc handler specified in the object’s type. The fields of the object should not be
accessed after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
B AP {182 Python H1) None. ‘B RMEZE#MPy_None BHNRAF, W E L ER Rzt
HUELER

W%

PyModule_Create()

Jr BCRC P MR S A

12.2 @AMHER

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions
of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

type PyObject
Part of the Limited API. (Only some members are part of the stable ABI.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In
a normal “release” build, it contains only the object’s reference count and a pointer to the corresponding type
object. Nothing is actually declared to be a PyOb ject, but every pointer to a Python object can be cast to a
PyObject*. Access to the members must be done by using the macros Py_ REFCNT and Py_ TYPE.

type PyVarObject

Part of the Limited APL (Only some members are part of the stable ABI.) This is an extension of PyObject
that adds the ob_ s1i ze field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py REFCNT,
Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

[PyObject ob_base;

See documentation of PyOb ject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

[PyVarObject ob_base;

See documentation of PyVarObject above.
int Py_ Is (PyObject *x, PyObject *y)
Part of the Stable ABI since version 3.10. Test if the x object is the y object, the same as x is vy in Python.

e 3.10 BOFTIA.

230 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

int Py_IsNone (PyObject *x)
Fart of the Stable ABI since version 3.10. Test if an object is the None singleton, the same as x is None
in Python.

e 3.10 OB A
int Py_IsTrue (PyObject *x)

Part of the Stable ABI since version 3.10. Test if an object is the True singleton, the same as x is True
in Python.

1E 3.10 BCHT A
int Py_IsFalse (PyObject *X)

Part of the Stable ABI since version 3.10. Test if an object is the False singleton, the sameas x is False
in Python.

e 3.10 OB A
PyTypeObject *Py_TYPE (PyObject *0)
Get the type of the Python object o.
Return a borrowed reference.
Use the Py_SET_TYPE () function to set an object type.

TE 3.11 MU 58 8. Py TYPE () is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE (0) == type.
1E 3.9 BT A
void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to type.
e 3.9 BUBTMA.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.
Use the Py_SET_REFCNT () function to set an object reference count.
I 3.11 JiR¥)5# 55 : The parameter type is no longer const PyObject*.
TE 3.10 R4 Py REFCNT () is changed to the inline static function.
void Py_SET_REFCNT (PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.
T 3.9 BUBTINA.
Py_ssize_t Py_SIZE (PyVarObject *0)
Get the size of the Python object o.
Use the Py_SET_SIZE () function to set an object size.

T 3.11 [R5 Py SIZE () is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.

TE 3.9 JHT A

12.2. EAYHEE 231

The Python/C API, £[F) 3.11.8

PyObject_HEAD_INIT (type)

This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)

This is a macro which expands to initialization values for anew Py Va
field. This macro expands to:

rObject type, including the ob_size

PyObject EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

type PyCFunction

Fart of the Stable ABI. Type of the functions used to implement most Python callables in C. Functions of this
type take two PyOb ject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed

in Python. The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords

Fart of the Stable ABIL Type of the functions used to implement Python callables in C with signature

METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,

PyObject *kwargs);

type _PyCFunctionFast

Type of the functions used to implement Python callables in C with signature METH _FASTCALL. The function

signature is:

PyObject *_PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type _PyCFunctionFastWithKeywords

Type of the functions used to implement Python callables in
METH_KEYWORDS. The function signature is:

C with signature METH _FASTCALL |

PyObject *_PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,

Py_ssize_t

nargs,

PyObject *kwnames) ;

type PyCMethod
Type of the functions used to implement Python callables in

C with signature METH_METHOD |

METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,

€ & A}

232 Chapter 12

. Object Implementation Support

The Python/C API, £[F) 3.11.8

(B —1)
Py_ssize_t nargs,
PyObject *kwnames)

e 3.9 BUHTIA.

type PyMethodDef

Fart of the Stable ABI (including all members). Structure used to describe a method of an extension type. This
structure has four fields:

const char *ml1_name
Name of the method.

PyCFunction m1_meth
Pointer to the C implementation.

intml_flags
Flags bits indicating how the call should be constructed.

const char *m1_doc
Points to the contents of the docstring.

The m1_methisa C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunct ion, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject*, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunct i on. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg _ParseTuple () or PyArg UnpackTuple ().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH FASTCALL | METH KEYWORDS and METH _METHOD | METH _FASTCALL | METH_KEYWORDS.

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or
possibly NULL if there are no keyword arguments. The parameters are typically processed using
PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type
_PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyObject*
values indicating the arguments and the third parameter is the number of arguments (the length of the array).

TE 3.7 OB
1E 3.10 B ST : METH_FASTCALL is now part of the siable ABI.

METH _FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the
vectorcall protocol: there is an additional fourth PyOb ject* parameter which is a tuple representing the
names of the keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no
keywords. The values of the keyword arguments are stored in the args array, after the positional arguments.

1E 3.7 ORI

12.2. BAMHER 233

The Python/C API, £[F) 3.11.8

METH_METHOD
Can only be used in the combination with other flags: METH_METHOD | METH_FASTCALL |
METH KEYWORDS.

METH _METHOD | METH_FASTCALL | METH_KEYWORDS
Extension of METH _FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS
with defining_class argument added after self.

1E 3.9 BUBT A

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

The function must have 2 parameters. Since the second parameter is unused, Py_ UNUSED can be used to
prevent a compiler warning.
METH_O

Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg ParseTuple () with a "O" argument. They have the type PyCFunction, with the self pa-
rameter, and a PyOb ject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod () built-in function.
METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the stat icmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyObject *PyCMethod_New (PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)

E1R 18 #ay %8, Part of the Stable ABI since version 3.9. Turn ml into a Python callable object. The
caller must ensure that m/ outlives the callable. Typically, ml is defined as a static variable.

The self parameter will be passed as the self argument to the C function in m1->ml_meth when invoked.
self can be NULL.

The callable object’s __module___ attribute can be set from the given module argument. module should be
a Python string, which will be used as name of the module the function is defined in. If unavailable, it can be
set to None or NULL.

L4
function._ _module_

The cls parameter will be passed as the defining_class argument to the C function. Must be set if
METH_METHODIis setonml->ml_flags.

234 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

TE 3.9 HUHT A
PyObject *PyCFunction_NewEx (PyMethodDef *ml, PyObject *self, PyObject *module)

EI4R 15 ey 4 B&, Part of the Stable ABIL Equivalent to PyCMethod_New (ml,
NULL) .

self, module,

PyObject *PyCFunction_New (PyMethodDef *ml, PyObject *self)
EIM&AE 1 #7hY 4 B8, Part of the Stable ABI since version 3.4. Equivalent to PyCMethod_New (ml, self,
NULL, NULL).

12.2.3 Accessing attributes of extension types

type PyMemberDef

Part of the Stable ABI (including all members). Structure which describes an attribute of a type which corre-
sponds to a C struct member. Its fields are:

Field C Type Meaning

name const char * name of the member

type int the type of the member in the C struct

offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc const char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

Macro name C type
T_SHORT short

T_INT int

T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T BYTE char
T_UBYTE unsigned char
T _UINT unsigned int

T _USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T _PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and

T_OBJECT_EX raises an AttributeError.

Try to use T_OBJECT_EX over T_OBJECT because

T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

flags can be O for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX mem-

bers can be deleted. (They are set to NULL).

Heap allocated types (created using PyType FromSpec ()
contain definitions for the special members __ dictoffset_ ,

or similar),
_ _weaklistoffset_

PyMemberDef may
and

12.2. BAMHER

235

The Python/C API, £[F) 3.11.8

__vectorcalloffset__, corresponding to tp_dictoffset, tp_weaklistoffset and
tp_vectorcall_offset in type objects. These must be defined with T_PYSSIZET and READONLY,
for example:

static PyMemberDef spam_type_members[] = {
{"__dictoffset__ ", T_PYSSIZET, offsetof (Spam_object, dict), READONLY},
{NULL} /* Sentinel */

bi

PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)
Get an attribute belonging to the object at address obj_addr. The attribute is described by PyMemberDef m.
Returns NULL on error.

int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)
Set an attribute belonging to the object at address obj_addr to object o. The attribute to set is described by
PyMemberDef m. Returns O if successful and a negative value on failure.

type PyGetSetDef

Fart of the Stable ABI (including all members). Structure to define property-like access for a type. See also
description of the Py TypeObject.tp_getset slot.

Field C Type Meaning

name const char * attribute name

get getter C function to get the attribute

set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * optional docstring

clo- void * optional user data pointer, providing additional data for getter and setter

sure

The get function takes one PyObject* parameter (the instance) and a user data pointer (the associated
closure):

[typedef PyObject * (*getter) (PyObject *, wvoid *); }

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a user data pointer
(the associated closure):

[typedef int (*setter) (PyObject *, PyObject *, wvoid *); J

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with
a set exception on failure.

12.3 BEHH

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_* functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

In addition to the following quick reference, the %] section provides at-a-glance insight into the meaning and use
of PyTypeObject.

236 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

12.3.1 Quick Reference

’tp slots”

PyTypeObject Slot"ec 238 1

Type

special methods/attrs

|nfoPage 238,2

CTDI
<R> tp_name const char * __name__ X X
tp_basicsize Py ssize_t X X X
tp_itemsize Py _ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py_ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, _ delattr___ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots)
tp_hash hashfunc _ _hash__ X G
tp_call ternaryfunc _call__ X X
tp_str reprfunc _ str X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc __setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * %0
tp_flags unsigned long X X ?
tp_doc const char * __doc__ X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc e, le ,_eq ,_ne , X G
_ gt ,_ge
tp_weaklistoffset Py_ssize_ t X ?
tp_iter getiterfunc iter X
tp_iternext iternextfunc next X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * _ base__ X
tp_dict PyObject * _dict__ ?
tp_descr_get descrget func __get_ X
tp_descr_set descrset func _set_,_delete_ X
tp_dictoffset Py _ssize_t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X 7 ?
tp_new newfunc _ nNew__ X X ? ?
tp_free freefunc X X?7?
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * _ mro__ ~
[tp_cache] PyObject *
[tp_subclasses] PyObject * __subclasses__
[tp_weaklist] PyObject *
(tp_del) destructor
[tp_version_tag] unsigned int
tp_finalize destructor _del__ X
tp_vectorcall vectorcallfunc
12.3. B4 237

The Python/C API, £[F) 3.11.8

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter___
am_anext unaryfunc __anext__
am_send sendfunc
nb_add binaryfunc _add__ _ radd__
nb_inplace_add binaryfunc _dadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc _mul__ _ rmul__
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc _mod__ _ rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc __divmod__
__rdivmod__
nb_power ternaryfunc __pow__ __ rpow__
nb_inplace_ power ternaryfunc __ipow__
nb_negative unaryfunc __neg
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_1lshift binaryfunc _ Ishift_ _ rlshift
nb_inplace_lshift binaryfunc __ilshift__
nb_rshift binaryfunc __rshift__ rrshift
nb_inplace_rshift binaryfunc __irshift__
nb_and binaryfunc _and__ _ rand__
nb_inplace_and binaryfunc __dand__
nb_xor binaryfunc __XOr__ __ IXOr__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc __Oor__ __ror__
nb_inplace_or binaryfunc __dor__
nb_int unaryfunc _int__
nb_reserved void *
nb_float unaryfunc _ float__
BET—H

1 (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[I: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).
2 Columns:
”Q”: set on PyBaseObject_Type
”T”: seton PyType Type
”D”: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ — PyType_Ready always sets this value (it should be NULL)
? — PyType_Ready may set this value depending on other slots

Also see the inheritance column ("I").

”I”: inheritance

X — type slot is inherited via *PyType_Ready* if defined with a *NULL* value

% — the slots of the sub-struct are inherited individually

G - inherited, but only in combination with other slots; see the slot's description
2

— it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

238 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

Fi52- W5
Slot Type special methods
nb_floor divide binaryfunc __floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc __truediv__
nb_inplace_true_divide binaryfunc __itruediv__
nb_index unaryfunc __index__
nb_matrix_multiply binaryfunc __matmul__
__rmatmul__
nb_inplace_matrix_multiply binaryfunc __imatmul__
mp_length lenfunc _len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc __ setitem__,
__delitem__
sq_length lenfunc _len__
sqg_concat binaryfunc _add__
sqg_repeat ssizeargfunc _ mul__
sqg_item ssizeargfunc __getitem__
Sqg_ass_item ssizeobjargproc __setitem___
_ delitem___
sq_contains objobjproc __contains__
sg_inplace_concat binaryfunc __jadd__
sqg_inplace_repeat ssizeargfunc __imul__

bf_getbuffer
bf _releasebuffer

getbufferproc ()
releasebufferproc ()

12.3. BEMH4

239

The Python/C API, £[F) 3.11.8

slot typedefs

typedef Parameter Types Return Type
allocfunc PyObject *
PyTypeObject *
Py ssize_t
destructor PyObject * void
freefunc void * void
traverseproc int
PyObject *
visitproc
void *
newfunc PyObject *
PyObject *
PyObject *
PyObject *
initproc int
PyObject *
PyObject *
PyObject *
reprfunc PyObject * PyObject *
getattrfunc PyObject *
PyObject *
const char *
setattrfunc int
PyObject *
const char *
PyObject *
getattrofunc PyObject *
PyObject *
PyObject *
setattrofunc int
PyObject *
PyObject *
PyObject *
descrgetfunc PyObject *
PyObject *
PyObject *
PyObject *
descrsetfunc int
PyObject *
PyObject * . g
240 P Chapter 12. Object Implementation Support
PyObject *
hashfunc PyObject * Py_hash_t

a1~ M 11~

DsOA = A ~+ %

The Python/C API, £[F 3.11.8

W2 AN T ITHSlot Type typedefs.

12.3.2 PyTypeObject Definition

The structure definition for Py TypeOb ject can be found in Include/object .h. For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall_offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

BET—T

12.3. B[241

The Python/C API, £[F) 3.11.8

(R L —5)

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

} PyTypeObiject;

12.3.3 PyObiject Slots

The type object structure extends the PyVarOb ject structure. The ob_ s i ze field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_ Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_ s i ze field.

Py_ssize_t PyObject .ob_refent

Part of the Stable ABIL This is the type object’s reference count, initialized to 1 by the
PyObject_HEAD_INIT macro. Note that for statically allocated type objects, the type’s instances
(objects whose ob_ t ype points back to the type) do not count as references. But for dynamically allocated
type objects, the instances do count as references.

Inheritance:

This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type

Part of the Stable ABI. This is the type’s type, in other words its metatype. It is initialized by the argument
to the PyObject_HEAD_INIT macro, and its value should normally be &§PyType_Type. However, for
dynamically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

[Foo_Type.ob_type = &PyType_Type;

)

This should be done before any instances of the type are created. Py Type_Ready () checks if ob_type
is NULL, and if so, initializes it to the ob_ t ype field of the base class. PyType_Ready () will not change
this field if it is non-zero.

242

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

Inheritance:
This field is inherited by subtypes.
PyObject ¥*PyObject ._ob_next
PyObject *PyObject ._ob_prev
These fields are only present when the macro Py_TRACE_REFS is defined (see the configure

—-—with-trace-refs option).

Their initialization to NULL is taken care of by the PyObject_HEAD_INIT macro. For statically allocated
objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link
the object into a doubly linked list of a/l live objects on the heap.

This could be used for various debugging purposes; currently the only uses are the sys.getobjects ()
function and to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREF'S is set.

Inheritance:

These fields are not inherited by subtypes.

12.3.4 PyVarObject Slots

Py _ssize_t PyVarObject .ob_size
Part of the Stable ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.

Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObject Slots

Each slot has a section describing inheritance. If PyType Ready () may set a value when the field is set to
NULL then there will also be a ”Default” section. (Note that many fields set on PyBaseObject_Type and
PyType_ Type effectively act as defaults.)

const char *PyTypeOb ject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage O in package
P should have the tp_name initializer "P.Q .M. T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module__ .

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is
made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
___name___ attribute.

If no dot is present, the entire tp_name field is made accessible as the __name___ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:

This field is not inherited by subtypes.

12.3. B[243

The Python/C API, £[F) 3.11.8

Py _ssize_t PyTypeObject.tp_basicsize

Py_ssize_t PyTypeObject .tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsi ze field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of
N is typically stored in the instance’s ob_ size field. There are exceptions: for example, ints use a negative
ob_ s1izetoindicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_ si ze field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size.

A note about alignment: if the variable items require a particular alignment, this should be taken care of by the
value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

For any type with variable-length instances, this field must not be NULL.
Inheritance:

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function
signature is:

[void tp_dealloc (PyObject *self);

The destructor function is called by the Py_ DECREF () and Py_ XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call the
type’s tp_ free function. If the type is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator
should be the one used to allocate the instance; this is normally PyObject_Del () if the instance was
allocated using PyObject_New or PyObject_NewVar,or PyObject_GC_Del () if the instance was
allocated using PyObject_GC_New or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py TPFLAGS_HAVE_ GC flag bit set), the destructor should
call PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR (self->ref);
Py_TYPE (self)->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_ TPFLAGS_HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_ DECREF ()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

244

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp—>tp_free (self);
Py_DECREF (tp) ;

Inheritance:
This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_vectorcall_offset

An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a
more efficient alternative of the simpler tp_call.

This field is only used if the flag Py TPFLAGS_HAVE_VECTORCALL is set. If so, this must be a positive
integer containing the offset in the instance of a vectorcall func pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py _TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Any class that sets Py_TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure its
behaviour is consistent with the vectorcallfunc function. This can be done by setting p_call to
PyVectorcall_Call().

g e Tt is not recommended for mutable heap types to implement the vectorcall protocol. When a user
sets __call__ in Python code, only #p_call is updated, likely making it inconsistent with the vectorcall
function.

1r 3.8 it)% 5 . Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for printing
to a file. In Python 3.0 to 3.7, it was unused.

Inheritance:

This field is always inherited. However, the Py TPFLAGS_HAVE_VECTORCALLflag is not always inherited.
If it’s not, then the subclass won’t use vectorcall, except when PyVectorcall_Call () is explicitly called.
This is in particular the case for types without the Py TPFLAGS IMMUTABLETYPE flag set (including
subclasses defined in Python).

getattrfunc Py TypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with t p_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr
An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

12.3. B[245

The Python/C API, £[F) 3.11.8

PyAsyncMethods *Py TypeObject .tp_as_async

Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

T 3.5 A : Formerly known as tp_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc Py TypeObject .tp_repr

An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr ():

[PyObject *tp_repr (PyObject *self); }

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval (), given a suitable environment, returns an object with the same value. If this is not feasible,
it should return a string starting with ' <' and ending with ' >' from which both the type and the value of the
object can be deduced.

Inheritance:
This field is inherited by subtypes.
i

When this field is not set, a string of the form <%s object at $%$p> isreturned, where $s is replaced by
the type name, and $p by the object’s memory address.

PyNumberMethods *Py TypeObject .tp_as_number

Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *Py TypeObject .tp_as_sequence

Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

Inheritance:
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.
PyMappingMethods *PyTypeObject .tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc Py TypeObject .tp_hash

An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ():

[Py_hash_t tp_hash (PyObject *);]

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return —1.

When this field is not set (and tp_ richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNot Implemented ().

246 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

This field can be set explicitly to PyOb ject_HashNot Implemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of _ _hash__ = None at the Python
level, causing isinstance (o, collections.Hashable) to correctly return False. Note that the
converse is also true - setting__hash___ = None on a class at the Python level will result in the t p_hash
slot being set to PyOb ject_HashNot Implemented().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompareand tp_hash, whenthe subtype’s tp_richcompareand tp_hashare bothNULL.
ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyOb ject_Call ():

[PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs); }

Inheritance:
This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation st r () . (Note that st r is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual
work, and PyOb ject_Str () will call this handler.)

The signature is the same as for PyObject_Str ():

[PyObject *tp_str (PyObject *self); }

The function must return a string or a Unicode object. It should be a "friendly” string representation of the
object, as this is the representation that will be used, among other things, by the print () function.

Inheritance:

This field is inherited by subtypes.

Fik:

When this field is not set, PyObject_Repr () is called to return a string representation.

getattrofunc Py TypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr():

[PyObject *tp_getattro (PyObject *self, PyObject *attr); }

It is usually convenient to set this field to PyOb ject_GenericGetAttr (), which implements the normal
way of looking for object attributes.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

Hie:
PyBaseObject_Type uses PyObject_GenericGetAttr ().

setattrofunc Py TypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr ():

12.3. B[247

The Python/C API, £[F) 3.11.8

[int tp_setattro (PyObject *self, PyObject *attr, PyObject *value); }

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyOb ject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

B
PyBaseObject_Type uses PyObject_GenericSetAttr ().

PyBufferProcs *PyTypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer in-
terface. These fields are documented in Buffer Object Structures.
Inheritance:

The tp_as_bufrfer field is not inherited, but the contained fields are inherited individually.

unsigned long Py TypeObject .tp_£flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must
be considered to have a zero or NULL value instead.

Inheritance:

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_ TPFLAGS_HAVE_ GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS HAVE_GC flag bit is clear in the subtype
and the tp_traverseand tp_clear fields in the subtype exist and have NULL values.

Hig:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_f1ags field. The macro PyType_HasFeature () takes a type and a flags value, #p and
f, and checks whether tp—->tp_flags & £ isnon-zero.

Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using Py Type_FromSpec (). Inthis case, the ob_ t ype field of its instances is considered a reference
to the type, and the type object is INCREFed when a new instance is created, and DECREFed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREFed or DECREF’ed).

Inheritance:

m

Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Inheritance:

248 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

m
Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().
Inheritance:
M
Py_TPFLAGS_READYING
This bit is set while Py Type_Ready () is in the process of initializing the type object.
Inheritance:
m
Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New and destroyed using PyObject_GC_Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.

Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

The Py TPFLAGS_HAVE_ GC flag bit is inherited together with the tp_traverseand tp_clear
fields, i.e. if the Py_ TPFLAGS_HAVE_ GC flag bit is clear in the subtype and the tp_traverse and
tp_clear fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the
type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:
77
Py_TPFLAGS_METHOD_DESCRIPTOR
This bit indicates that objects behave like unbound methods.
If this flag is set for t ype (meth), then:

e meth.__get__ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent
tometh (obj, *args, **kwds).

e meth.__get__ (None, cls) (*args, **kwds) must be equivalent to meth (*args,
**kwds).

This flag enables an optimization for typical method calls like ob7j.meth () : it avoids creating a tem-
porary “bound method” object for obj . meth.

1E 3.8 BUBTINA.

Inheritance:

This flag is never inherited by types without the Py TPFLAGS IMMUTABLETYPE flag set. For exten-
sion types, it is inherited whenever tp_descr_get is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS

Py_TPFLAGS_BYTES_SUBCLASS

12.3. B[249

The Python/C API, £[F) 3.11.8

Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type
is a subclass of a built-in type; such specific checks are faster than a generic check, like
PyObject_IsInstance (). Custom types that inherit from built-ins should have their tp_flags
set appropriately, or the code that interacts with such types will behave differently depending on what
kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE

This bit is set when the t p_ finalize slotis present in the type structure.

1E 3.4 ORI

75 3.8 R 2 g [F)H: This flag isn’t necessary anymore, as the interpreter assumes the tp_finalize
slot is always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall_offset for
details.

Inheritance:

This bit is inherited for types with the Py TPFLAGS_IMMUTABLETYPE flagset, if tp_call is also
inherited.

1E 3.9 BUFTINA.

Py TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready () automatically applies this flag to static types.
Inheritance:

This flag is not inherited.

£ 3.10 BUFTIA.

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the ___new___key in the
type dictionary.

The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready () is called on the type.

The flag is set automatically on static types if tp_base is NULL or &§PyBaseObject_Type and
tp_new is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

#i(E): To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract
base class), do not use this flag. Instead, make tpp_new only succeed for subclasses.

15 3.10 BUFTIA.

250

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

Py_TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of a
match block. It is automatically set when registering or subclassing collections.abc.Mapping,
and unset when registering collections.abc.Sequence.

#iE): Py TPFLAGS MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an
error to enable both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS SEQUENCE.

hz%:
PEP 634 -- Structural Pattern Matching: Specification
T 3.10 BOHIA.

Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject
of a match block. It is automatically set when registering or subclassing collections.abc.
Sequence, and unset when registering collections.abc.Mapping.

#i[El: Py TPFLAGS MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an
error to enable both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py_ TPFLAGS_MAPPING.

hs%:
PEP 634 -- Structural Pattern Matching: Specification
e 3.10 BT AA.

const char *PyTypeObject .tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the ___doc___ attribute on the type and instances of the type.

Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_traverse (PyObject *self, visitproc visit, wvoid *arg); }

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of a tp_t raverse function simply calls Py_ VISIT () on each of the instance’s members that
are Python objects that the instance owns. For example, this is function local_traverse () from the
_thread extension module:

static int
local_traverse (localobject *self, visitproc visit, woid *arg)
{

Py_VISIT (self->args);

HERET—TD

12.3. B[251

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0634/

The Python/C API, £[F) 3.11.8

(L —5)
Py_VISIT (self->kw);
Py_VISIT (self->dict);
return O;

Note that Py VISIT () is called only on those members that can participate in reference cycles. Although
there is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents () function will include it.

% ;. When implementing tp_traverse, only the members that the instance owns (by having
strong references to them) must be visited. For instance, if an object supports weak references via the
tp_weaklist slot, the pointer supporting the linked list (what p_weaklist points to) must not be visited
as the instance does not directly own the weak references to itself (the weakreference list is there to support
the weak reference machinery, but the instance has no strong reference to the elements inside it, as they
are allowed to be removed even if the instance is still alive).

Note that Py VISTIT () requires the visit and arg parameters to Local_traverse () to have these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py_ TYPE (self), or delegate this responsibility by calling tp_traverse of another heap-allocated
type (such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

JE 3.9 i {5 55 Heap-allocated types are expected to visit Py_TYPE (self) in tp_traverse. In
earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the

flagbit, tp_traverse,and tp_clear areall inherited from the base type if they are all zero in the subtype.
inquiry PyTypeObject .tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the

Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_clear (PyObject *); }

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a t p_ clear function. For example, the tuple type does not imple-
ment a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely
of tuples. Therefore the t p_clear functions of other types must be sufficient to break any cycle containing
a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

'a N\
static int

local_clear (localobject *self)
{
Py_CLEAR (self->key);
Py_CLEAR (self->args);
Py_CLEAR (self->kw);
Py_CLEAR (self->dict);

(HEBT—TD

252 Chapter 12. Object Implementation Support

https://bugs.python.org/issue40217

The Python/C API, £[F) 3.11.8

(R L —5)

return 0O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the con-
tained object must not be released (via Py_DECREF ()) until after the pointer to the contained object is set
to NULL. This is because releasing the reference may cause the contained object to become trash, triggering
a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref
callbacks, associated with the contained object). If it’s possible for such code to reference self again, it’s im-
portant that the pointer to the contained object be NULL at that time, so that self knows the contained object
can no longer be used. The Py_ CLEAR () macro performs the operations in a safe order.

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_dealloc is called directly.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s t o_dea 1 1 oc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
Group: Py_ TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_ t raverse and the Py_ TPFLAGS_HAVE_ GC flag bit:
the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the
subtype.

richcmpfunc PyTypeObject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is:

[Pyobject *tp_richcompare (PyObject *self, PyObject *other, int op); }

The first parameter is guaranteed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_ Not Implemented, if another error occurred it must return NULL and set
an exception condition.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare ():

12.3. B[253

The Python/C API, £[F) 3.11.8

B Comparison

<
Py LT

<=
Py LE
Py_EQ o

! —
Py NE

>
Py_GT

>3
Py_GE

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A
and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats).
The third argument specifies the requested operation, as for PyObject_RichCompare ().

The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
1 3.7 BOFTnA.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.

i

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. How-
ever, if only tp_hash is defined, not even the inherited function is used and instances of the type will not be
able to participate in any comparisons.

Py _ssize_t PyTypeObject.tp_weaklistoffset

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs () and the PyWeakref_* functions. The instance structure needs to
include a field of type PyOb ject* which is initialized to NULL.

Do not confuse this field with t p_ weak 11 st; that is the list head for weak references to the type object itself.
Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no __slots___ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the
instance layout and setting the tp_weaklistoffset of that slot’s offset.

254

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.

When a type’s __slots__ declaration does not contain a slot named __weakref
tp_weaklistoffset from its base type.

, the type inherits its

getiterfunc Py TypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter ():

[Pyobject *tp_iter (PyObject *self);

Inheritance:
This field is inherited by subtypes.

iternextfunc Py TypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. The signature is:

[PyObject *tp_iternext (PyObject *self);

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.

Iterator types should also define the tp_ i ter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as Py Iter Next ().
Inheritance:
This field is inherited by subtypes.

struct PyMethodDef *PyTypeObject .tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
method descriptor.

Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
member descriptor.

Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see t p_dict below) containing a getset
descriptor.

Inheritance:

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

12.3. B[255

The Python/C API, £[F) 3.11.8

PyTypeObject *PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

#[E): Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be "address
constants”. Function designators like Py Type_GenericNew (), with implicit conversion to a pointer, are
valid C99 address constants.

However, the unary &’ operator applied to a non-static variable like PyBaseObject_Type is not required
to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are
strictly standard conforming in this particular behavior.

Consequently, t p_base should be set in the extension module’s init function.

Inheritance:
This field is not inherited by subtypes (obviously).
B

This field defaults to sPyBaseObject_Type (which to Python programmers is known as the type
object).

PyObject *PyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__ ()).

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

i

If this field is NULL, Py Type_Ready () will assign a new dictionary to it.

g Ttis not safe to use PyDict_SetItem () on or otherwise modify t p_dict with the dictionary
C-APL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a descriptor get” function.

The function signature is:

[Pyobject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

Inheritance:

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

[int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

256

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject.tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and

contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_ dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset from the end of the instance structure. A negative offset is
more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtypes of str or tuple. Note that the
tp_basicsize field should account for the dictionary added to the end in that case, even though the dictio-
nary is not included in the basic object layout. On a system with a pointer size of 4 bytes, tp_dictoffset
should be set to —4 to indicate that the dictionary is at the very end of the structure.

The tp_dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict (). Calling PyObject_GenericGetDict () may need to allocate
memory for the dictionary, so it is may be more efficient to call PyObject_GetAttr () when accessing
an attribute on the object.

Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement has no ___slots___ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set
to that slot’s offset.

When a type defined by a class statement has a ___slots__ declaration, the type inherits its
tp_dictoffset from its base type.

(Adding a slot named __dict__ tothe _ slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like __weakref___ though.)

i

This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.
initproc PyTypeObject .tp_init

An optional pointer to an instance initialization function.

This function corresponds to the __init__ () method of classes. Like __init__ (), it is possible to
create an instance without calling __init__ (), and it is possible to reinitialize an instance by calling its
__init__ () method again.

The function signature is:

[int tp_init (PyObject *self, PyObject *args, PyObject *kwds);]

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the £t p_new function returns an instance
of some other type that is not a subtype of the original type, no tp_init function is called; if tp_new
returns an instance of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, —1 and sets an exception on error.

12.3. B[257

The Python/C API, £[F) 3.11.8

Inheritance:
This field is inherited by subtypes.
i

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is:

[Pyobject *tp_alloc (PyTypeObject *self, Py_ssize_t nitems);

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
i

For dynamic subtypes, this field is always set to PyType GenericAlloc (), to force a standard heap
allocation strategy.

For static subtypes, PyBaseObject_Typeuses PyType_GenericAlloc (). Thatisthe recommended
value for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

[PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds);

)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for
the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for
immutable types, all initialization should take place in tp_new, while for mutable types, most initialization
should be deferred to tp_init.

Set the Py TPFLAGS_DISALLOW_INSTANTIATION flag to disallow creating instances of the type in
Python.

Inheritance:

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

iR

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

[freefunc PyTypeObject.tp_free

An optional pointer to an instance deallocation function. Its signature is:

[void tp_free(void *self);

An initializer that is compatible with this signature is PyObject_Free ().
Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)

A

258

Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

In dynamic subtypes, this field is set to a deallocator suitable to match Py Type_ GenericAlloc () and the

value of the Py TPFLAGS_HAVE_ GC flag bit.
For static subtypes, PyBaseObject_Type uses PyObject_Del ().

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_f1ags field, and check the Py TPFLAGS_ HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a

non-collectible instance. The signature is:

[int tp_is_gc (PyObject *self);

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to

distinguish between statically and dynamically allocated types.)
Inheritance:

This field is inherited by subtypes.

i

This slot has no default. If this field is NULL, Py TPFLAGS_HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject .tp_bases
Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the typeis initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of

PyType_FromSpecWithBases (). The argument form is preferred.

tuple, Python will not raise an error, but some slots will only be inherited from the first base.

e . Multiple inheritance does not work well for statically defined types. If you set tp_bases to a

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_mro

Tuple containing the expanded set of base types, starting with the type itself and ending with object, in

Method Resolution Order.

This field should be set to NULL and treated as read-only. Python will fill it in when the typeis initialized.

Inheritance:
This field is not inherited; it is calculated fresh by Py Type_Ready ().

PyObject *PyTypeObject .tp_cache
Unused. Internal use only.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_subclasses

List of weak references to subclasses. Internal use only.
Inheritance:

This field is not inherited.

12.3. BEMH4

259

The Python/C API, £[F) 3.11.8

PyObject *PyTypeObject .tp_weaklist

Weak reference list head, for weak references to this type object. Not inherited. Internal use only.
Inheritance:

This field is not inherited.

destructor PyTypeObject .tp_del

This field is deprecated. Use tp_finalize instead.

unsigned int Py TypeObject .tp_version_tag

Used to index into the method cache. Internal use only.
Inheritance:

This field is not inherited.

destructor PyTypeObject .tp_£finalize

An optional pointer to an instance finalization function. Its signature is:

[void tp_finalize (PyObject *self);

)

If tp_finalizeis set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a
non-trivial finalizer is:

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch (&error_type, &error_value, &error_traceback);

/% coo Y

/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);

Also, note that, in a garbage collected Python, tp_deal1oc may be called from any Python thread, not just
the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected
by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn
destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects
on the thread which called tp_dealloc will not violate any assumptions of the library.

Inheritance:
This field is inherited by subtypes.
1E 3.4 BOHTA.

TE 3.8 iR 54 5 : Before version 3.8 it was necessary to set the Py TPFLAGS_HAVE_FINALIZE flags bit
in order for this field to be used. This is no longer required.

hE%:
”Safe object finalization” (PEP 442)

260

Chapter 12. Object Implementation Support

https://peps.python.org/pep-0442/

The Python/C API, £[F) 3.11.8

vectorcallfunc Py TypeObject .tp_vectorcall

Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call__ . Iftp_vectorcall is NULL, the default call implementation using __new___ () and
__init__ () isused.

Inheritance:
This field is never inherited.

TE 3.9 WUFT I (the field exists since 3.8 but it’s only used since 3.9)

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeOb ject structure is defined directly in code
and initialized using Py Type_Ready ().

This results in types that are limited relative to types defined in Python:
* Static types are limited to one base, i.e. they cannot use multiple inheritance.

» Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the
type object’s attributes from Python.

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific
state.

Also, since Py TypeOb ject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

12.3.7 Heap Types
An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s class statement. Heap types have the Py TPFLAGS HEAPTYPE flag set.

This is done by filling a PyType Spec structure and calling PyType_FromSpec (),
PyType_FromSpecWithBases (),or PyType_ FromModuleAndSpec ().

12.4 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_1lshift;
binaryfunc nb_rshift;

(HEBT—TD

12.4. Number Object Structures 261

The Python/C API, £[F) 3.11.8

} PyNumberMethods;

binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix multiply;
binaryfunc nb_inplace_matrix_multiply;

(R L —5)

#[F): Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_Not Implemented, if another error
occurred they must return NULL and set an exception.

#§[E): The nb_reserved field should always be NULL. It was previously called nb_1ong, and was re-

named in Python 3.0.1.

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

ternaryfunc PyNumberMet hods

nb_add
nb_subtract
nb_multiply
nb_remainder

nb_divmod

.nb_power

unaryfunc PyNumberMethods.nb_negative

unaryfunc PyNumberMethods.nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods .nb_bool

unaryfunc PyNumberMethods .nb_invert

262

Chapter 12

. Object Implementation Support

The Python/C API, £[F) 3.11.8

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.

nb_lshift
nb_rshift
nb_and
nb_xor

nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMet hods.nb_float

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.

ternaryfunc PyNumberMet hods .

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.

nb_inplace_add
nb_inplace_subtract
nb_inplace_multiply
nb_inplace_remainder
nb_inplace_power
nb_inplace_1lshift
nb_inplace_rshift
nb_inplace_and
nb_inplace_xor
nb_inplace_or
nb_floor_divide

nb_true_divide

nb_inplace_floor_divide

nb_inplace_true_divide

unaryfunc PyNumberMethods.nb_index

binaryfunc PyNumberMethods.

binaryfunc PyNumberMet hods.nb_inplace_matrix_multiply

nb_matrix_multiply

12.5 Mapping Object Structures

type PyMappingMethods

This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has

three members:

lenfunc PyMappingMethods .mp_length

This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This
slot may be set to NULL if the object has no defined length.

12.5. Mapping Object Structures

263

The Python/C API, £[F) 3.11.8

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice (), and has the same
signature as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to
return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(),
PySequence_SetSlice () and PySequence_DelSlice (). It has the same signature as

PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the
object does not support item assignment and deletion.

12.6 Sequence Object Structures

type PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length

This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It
is also used for handling negative indices via the sg_itemand the sqg_ass_ itemslots.

binaryfunc PySequenceMethods.sq_concat

This function is used by PySequence_Concat () and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods .sq_repeat

This function is used by PySequence_Repeat () and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item

This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem/(), after trying the subscription via the mp_subscript slot. This slot must be
filled for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sg_Iengthslotis filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sq_length is NULL, the index is passed
as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item

This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via
the mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment
and deletion.

objobjproc PySequenceMethods.sq_contains

This function may be used by PySequence_Contains () and has the same signature. This slot may be
left to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It
should modify its first operand, and return it. = This slot may be left to NULL, in this case
PySequence_InPlaceConcat () will fall back to PySequence_Concat (). It is also used by the
augmented assignment +=, after trying numeric in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_ InPlaceRepeat () and has the same signature. It
should modify its first operand, and return it. = This slot may be left to NULL, in this case
PySequence_InPlaceRepeat () will fall back to PySequence_Repeat (). Itis also used by the
augmented assignment *=, after trying numeric in-place multiplication via the nb_inplace_multiply
slot.

264 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

12.7 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer

The signature of this function is:

[int (PyObject *exporter, Py_buffer *view, int flags); }

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise BufferError, set view—>obj to NULL and return
-1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view->o0bJ.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

* Re-export: Each member of the tree acts as the exporting object and sets view—>ob 7 to a new reference
to itself.

* Redirect: The buffer request is redirected to the root object of the tree. Here, view—>ob]j will be a
new reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py_bu £ fer structure belongs to the exporter and must remain valid until there
are no consumers left. format, shape, strides, suboffsets and internal are read-only for the
consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly
with all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer

The signature of this function is:

[void (PyObject *exporter, Py_buffer *view); }

Handle a request to release the resources of the buffer. If no resources need to be released,
PyBufferProcs.bf_releasebuffer may be NULL. Otherwise, a standard implementation of this
function will take these optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the i nternal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer Release () (this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

12.7. Buffer Object Structures 265

The Python/C API, £[F) 3.11.8

12.8 Async Object Structures

TE 3.5 BUBTIA.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

[PyObject *am_await (PyObject *self);

The returned object must be an iterator, i.e. PyIter_Check () must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

[PyObject *am_aiter (PyObject *self);

Must return an asynchronous iterator object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

[PyObject *am_anext (PyObject *self);

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send
The signature of this function is:

[PySendResult am_send (PyObject *self, PyObject *arg, PyObject **result);

See PyIter_ Send () for details. This slot may be set to NULL.

1 3.10 BOFTIA.

12.9 Slot Type typedefs

typedef PyObject *(*alloefunc)(PyTypeObject *cls, Py_ssize_t nitems)
Fart of the Stable ABI. The purpose of this function is to separate memory allocation from memory initial-
ization. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned,
and initialized to zeros, but with ob_refcnt setto 1 and ob_t ype set to the type argument. If the type’s
tp_1itemsizeisnon-zero, the object’s ob_ s i ze field should be initialized to nitems and the length of the al-
located memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple
of sizeof (void¥*) ;otherwise, nitems is not used and the length of the block should be tp_basicsize.

266 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

typedef void (*destructor)(PyObject*)
Part of the Stable ABI.

typedef void (*£reefunc)(void*)
sERtp free,
typedef PyObject *(*newfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABL 5§ R.tp_new.
typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABL 5 Rtp_init,
typedef PyObject *(*reprfunc)(PyObject*)
Part of the Stable ABL. 5§ R.tp_repr.

typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Fart of the Stable ABI. Return the value of the named attribute for the object.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Fart of the Stable ABI. Return the value of the named attribute for the object.
T Rtp_getattro,

typedef int (¥*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)

Fart of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

sEHtp setattro,

typedef PyObject *(*descrget func)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABL 5§ H.tp_descr get.,

typedef int (*descrset func)(PyObject*, PyObject*, PyObject™*)
Part of the Stable ABL 5§ H.tp_descr set.,

typedef Py_hash_t (*hashfunc)(PyObject*)
Part of the Stable ABL. 5% R.tp_hash.

typedef PyObject *(*richempfunc)(PyObject*, PyObject*, int)
Part of the Stable ABL. 5§ R.tp_richcompare,

typedef PyObject *(*getiterfunc)(PyObject*)
Part of the Stable ABL 5§ R.tp_iter,

typedef PyObject *(*iternextfunc)(PyObject*)
Part of the Stable ABL. 5 H.tp_iternext,

typedef Py_ssize_t (*1lenfunc)(PyObject*)
Part of the Stable ABI.

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
typedef void (*releasebufferproc)(PyObject*, Py_buffer*)

typedef PyObject *(*unaryfunc)(PyObject*)
Part of the Stable ABI.

12.9. Slot Type typedefs 267

The Python/C API, £[F) 3.11.8

typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
s Hlam_send,

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Part of the Stable ABI.

typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Part of the Stable ABI.

typedef int (*objobjproc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

12.10 B4

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.

A basic static type:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, 0)

"mymod.MyObject", /* tp_name */

sizeof (MyObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)myobij_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */
0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */

0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */

(BT —H)

268 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

(L —5)
/* tp_hash */
/* tp_call */
/% tp str */
’ /* tp_getattro */
’ /* tp_setattro */
’ /* tp_as_buffer */
0, /* tp_ flags */
PyDoc_STR ("My objects"), /* tp_doc */
/* tp_traverse */
/* tp_clear */
/* tp_richcompare */
/* tp_weaklistoffset */
/* tp_iter */
/* tp_iternext */
/* tp_methods */
/* tp_members */
/* tp_getset */
/* tp_base */
/* tp dict */
/* tp_descr_get */
/* tp_descr_set */
/* tp dictoffset */
/* tp_init */
/* tp_alloc */
myobij_new, /* tp_new */

~ ~

~

O O O O O O

N~ N SN SN N~ O~

~

N~ SN SN SN N O~ 0~

O O O O O O O O O OO o oo o o
~

~

bi

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
PyObject *inst_dict;
PyObject *weakreflist;
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_weaklistoffset = offsetof (MyObject, weakreflist),
.tp_dictoffset = offsetof (MyObject, inst_dict),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare = PyBaseObject_Type.tp_richcompare,
bi

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)
using Py TPFLAGS_DISALLOW_INSTANTIATION ﬂag:

typedef struct {
PyUnicodeObject raw;
char *extra;
} MyStr;
(BTN —5)

12.10. G4 269

The Python/C API, £[F) 3.11.8

(R L —5)

static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",

bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *datall];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, 0)

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
.tp_itemsize = sizeof (char *),

bi

12.11 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_flags field of the type object must include the Py TPFLAGS_HAVE_GC
and provide an implementation of the t p_ t raverse handler. If instances of the type are mutable, a tp_clear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyOb ject_GC_New or PyObject_GC_NewVar.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track().

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyOb ject_GC_UnTrack () must be called.

270 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

2. The object’s memory must be deallocated using PyObject_GC_Del ().

g e If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_traverse
handler or explicitly use one from its subclass or subclasses.

When calling PyType Ready () or some of the APIs that indirectly call it like
PyType_FromSpecWithBases () or PyType_FromSpec () the interpreter will automatically
populate the tp_flags, tp_traverseand tp_clear fields if the type inherits from a class that im-
plements the garbage collector protocol and the child class does not include the Py_ TPFLAGS_HAVE_GC
flag.

PyObject_GC_New (TYPE, typeobj)

Analogous to PyObject_New but for container objects with the Py TPFLAGS HAVE_GC flag set.
PyObject_GC_NewVar (TYPE, typeobj, size)

Analogous to PyObject_NewVar but for container objects with the Py_ TPFLAGS_HAVE_GC flag set.
PyObject_GC_Resize (TYPE, op, newsize)

Resize an object allocated by PyOb ject_NewVar. Returns the resized object of type TYPE* (refers to any

C type) or NULL on failure.

op must be of type PyVarObject* and must not be tracked by the collector yet. newsize must be of type
Py_ssize_ t.

void PyObject_GC_Track (PyObject *op)
Part of the Stable ABI. Adds the object op to the set of container objects tracked by the collector. The collector

can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_t raverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.

The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked (PyObject *op)
Fart of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
is being currently tracked by the garbage collector and O otherwise.

This is analogous to the Python function gc.is_tracked ().

1 3.9 OB A

int PyObject_GC_IsFinalized (PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
has been already finalized by the garbage collector and 0 otherwise.

This is analogous to the Python function gc.is_finalized ().

£ 3.9 BUBTNA.

void PyObject_GC_Del (void *op)
Part of the Stable ABIL Releases memory allocated to an object using PyObject_GC_New or
PyObject_GC_NewVar.

void PyObject_GC_UnTrack (void *op)

Part of the Stable ABI. Remove the object op from the set of container objects tracked by the collector. Note
that PyObject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

JE 3.8 iR ¥)3% ¥ : The _PyObject_GC_TRACK () and _PyObject_GC_UNTRACK () macros have been re-
moved from the public C APIL.

12.11. Supporting Cyclic Garbage Collection 271

The Python/C API, £[F) 3.11.8

The tp_traverse handler accepts a function parameter of this type:
typedef int (*visitproc)(PyObject *object, void *arg)

Part of the Stable ABI. Type of the visitor function passed to the t p_ t rave rse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg.
The Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that
users will need to write their own visitor functions.

The tp_traverse handler must have the following type:

typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Part of the Stable ABI Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_ VISIT () macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

void Py_VISIT (PyObject *0)

If o0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, t p_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

The tp_clear handler must be of the i nguiry type, or NULL if the object is immutable.
typedef int (*inquiry)(PyObject *self)

Part of the Stable ABI. Drop references that may have created reference cycles. Immutable objects do not
have to define this method since they can never directly create reference cycles. Note that the object must still
be valid after calling this method (don’t just call Py_DECREF () on a reference). The collector will call this
method if it detects that this object is involved in a reference cycle.

12.11.1 Controlling the Garbage Collector State

The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)
Part of the Stable ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector is
disabled or already collecting, returns O immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable (void)

Fart of the Stable ABI since version 3.10. Enable the garbage collector: similar to gc.enable (). Returns
the previous state, O for disabled and 1 for enabled.

1 3.10 UHTmMA.
int PyGC_Disable (void)

Part of the Stable ABI since version 3.10. Disable the garbage collector: similar to gc.disable (). Returns
the previous state, O for disabled and 1 for enabled.

e 3.10 JBOFTmA.

272 Chapter 12. Object Implementation Support

The Python/C API, £[F) 3.11.8

int PyGC_IsEnabled (void)

Part of the Stable ABI since version 3.10. Query the state of the garbage collector: similar to gc.
isenabled (). Returns the current state, O for disabled and 1 for enabled.

1E 3.10 JBUHTIA.

12.11. Supporting Cyclic Garbage Collection 273

The Python/C API, £[F) 3.11.8

274 Chapter 12. Object Implementation Support

cHAPTER 13

API| 0 AB| fR AR E 18

CPython i PA N E 4E (macro) /A BHHIRASE . siiE, BERAZHEE (built) FrHBRRA, FIA—2
SEPATEEE (run time) BT I RO IUAS

BRI AT APTFI ABI AR @ M it , il G APLAS 2 14
PY_MAJOR_VERSION
£ 3.4.1a2) 3.
PY_MINOR_VERSION
FE 3.4.1a2 P 4,
PY_MICRO_VERSION
TE3.4.1a2 Y 1.
PY RELEASE_LEVEL

1E 3.4.1a2 Hff) a. OxA ft3 alpha fiA<. 0xB ft3 beta fiAc, 0xC BB A . oxF HIE

PY_RELEASE_SERIAL
1E 3.4.1a2 iy 2, FHERKEARA .
PY_VERSION_HEX
Pl A S E) BB 80 Python A< 5% .
AR A TR AT AT DA BRI B 02— 32 (7 To e AR -

I 5t # fIyT (KRG s (bigendianorder)) =k 3.4.1a2 B Hy
& &
1 1-8 PY MAJOR VERSION 0x03
2 916 PY MINOR VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY RELEASE_LEVEL OxA
29-32 PY RELEASE_SERTAL 0x2

K 3.4.1a2 403 hexversion 0x030401a2, 3.10.0 {3 hexversion 0x030a00£0,
T AT LB, U0 #1if PY_VERSION_HEX >= ...,

This version is also available via the symbol Py_Version.

275

The Python/C API, £[F) 3.11.8

const unsigned long Py_Version

Part of the Stable ABI since version 3.11. %% [F) B {H 5 # ¥ # %) Python $ATER R A9, #& =
Hipy VERSION_HEX BEAEMN . 86 & 7R TE5 6 1Y Python Jii4s.

16 311 fGHTmA.
Fi A 25 1 B S4B & FAE Include/patchlevel.h,

276 Chapter 13. API f0 ABI A&

https://github.com/python/cpython/tree/3.11/Include/patchlevel.h

APPENDIX A

>>>

83X shell (Y FEE Python 7R850, 5 WU RETE B o DA LB 5 e A TR RS S 01

AR

2to3

o TE— WA HER RS IR . FE— BT A A E R4S (delimiter, BITNIESE. 74558, 1E3E
gk =519%) R, sURTEE— Mg (decorator) 2 1%, Tlii AR HEHE, T B2 shell
JRHYTEF Python $2/R5 TG

o Fi# Ellipsis,

— {6 Python 2.x F2 A5 EE Python 3.x FEalAY TH, & BB/ 0 A A A
TERCL I, T L A A R T i A 1 3 R A T g e 2R

2t03 FE] AEEHE R B DA Lib2to3 gl il Bt T — (MBS A I8, 7E Tools/scripts/
2to3. w2[E 2to3-reference.

abstract base class (il 3L KE])

g R EHIE (REE ABC) $#{IL T M ER N E R E, 1EEduck-typing (B TFE)) A4 7.
HAMBIR TR, B2 hasattr (), AIEASEMEUR M M GA0SEER (61406 FH ST ¥ (magic
method)) . ABC [EJfJ[EJ#E 1 subclass (FHiE]) , BMENHER 5 —1 class (JEE]) , {Hg50]
¥t isinstance () } issubclass () ¥k #2[E abe BALMERN 3044, Python A 7 £ B
ABC, HINERI G (7F collections. abe #ifl). 7 (7F numbers). B (FF 1o i)
J import FAGERFIEALS (FE importlib.abe BifH). KA A abe B E . H O ABC.

annotation ([FJf)

— BRI class B, BRI 2 B0 R EHE AR BB O RRED . BRIEOL, e AR AE[Eoype hine (B
EHER) .

TEATERR (runtime), [353 00 [RR SV A AE I, (B4Rt 0, class JBMERTR X W EfR, &5
Bl e ASAH . class FIpKEUH) __annotations_ FRFREMET .

#8522 [Elvariable annotation. function annotation. PEP 484 1 PEP 526, 1502 %A tohheERY .
R A (EVRR A A B 8y 75 5% 2 [F] annotations-howto .

argument (5[4)

WY pR 2 R BB 45 function (B{method) W{H. 5|8CE WifE:

277

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, £[F) 3.11.8

o B4 7| B (keyword argument): FERFNFIY | PLERE)IT (identifier, 14 name=) BHFEMIS |3,
o2 DA ** KA dictionary (i) [EI{E R EERYS ¥ Bilun, 3 Al 5 #J2EPAR complex ()
WY F)) g [

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

* 12 % 3| 8K (positional argument): A ZBHH 5| BN 51#. (7E S | o AE— 85 B RAE R &
B, A (5) fEE * 2 & ierable (PJEWCIIE) TIOTCHEPER. G0, 3RS HZAT
ERCENOIVACGIE &

complex (3, 5)
complex (* (3, 5))

G BCE WA E Sl X M R A A e, R SERE A R AR R I, 552 calls T2, 75
Ak b, ATATE S SR AT DA AR — 5 [Rl (B G i o A [

St s BRI parameer (Z280) W6H . & LEE D5 ERS ¥ Min2EE, L% PEP 362,

asynchronous context manager (JE[RIZB 5B BIZS)
— i AT AFE] async with BRIAX i RSP F, MESEMEFR __aenter_ () M
__aexit__ () method (J¥%) AG=MHINY. H PEP 492 5] A

asynchronous generator (JERIBEIA:ZS)
—{l€r [A{# asynchronous generator iterator (AE[F]ZEEIEEENLES) MER . BEREKSG —(HPL async
def E KA FER (coroutine function), ERFIMEEME T vield R, ABAM—RYIAH
i async for [FIREMIME.

T M ATRE I A AR — AR P A ek X, (EAERELiEs , WT e R Fn 3k Bl 7 [E A BEX
% (asynchronous generator iterator). #—HFREN TR ENERE, MO E BN, PAREGE
o

— AR A EVE RS R A R await BRI, PAK async for fll async with PR,

asynchronous generator iterator (JE[R]2G(EIZ:2SEICES)
—{ fyasynchronous generator (FEFEVERY) RSB

& s —{Masynchronous iterator (AEFIEENLHE), B EDA __anext_ () method gIFY K, &[] {EH—
E T % R {4 (awaitable object), %A EAFAATIE A E AR R T80, HEBE N —M yield
B yield GE{E AR, ERt B0 S ke (35 M s M E iy wy PR . HaE
R ¥ EA ZBERENS P __anext_ () [BIMEM WS AR BIER, &R E LK
AT, 52 (E PEP 492 f1 PEP 525,

asynchronous iterable (25 [[EfCHf:)
— M Y, BV PATE async for BRAA R . UWHREMW _aiter_ () method [A] & —
{®asynchronous iterator (JEFZEICEE). B PEP 492 2| A,

asynchronous iterator (JEFRIZBECZS)
—{HEME _aiter_ () Ml__anext__ () method ¥k, _ anext_ () WEN{E—{#awaitable
(WS E) o async for GENTAERIEENMR AN __anext__ () method i [l /it] 26 R4 14,
HFI'EG[% stopAsyncIteration fil4h. H PEP 492 5] A,

attribute ()&M)
— R LI A B RO ME, RZ(E K RE 75 1) 40 P i 502X (dotted expression) [44 g 22 B . 3]
an, WP o H—HE N a, HIFZETERELA 0.0 #i2HE.

WER—E T, 6T — AR B identifiers T e 36 2 #h([E)4F (identifier) 118 14 & 4
FIRERY, BIANGEA] setattr () o 1RIEFRI B 1 M6 0 1 BE 2 B SR xR, T2 5 B
getattr () FKESE.

awaitable (W[Z:55911)
— [T AFE await R X P HEEH AP 4. B0 PA R — Wcoroutine (hHE) , @ — A
__await__ () method ¥, 352 ([E PEP 492,

278 Appendix A. fijEE%R

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python/C API, £[F) 3.11.8

BDFL
Benevolent Dictator For Life (&S {-28M#3%), X 44 Guido van Rossum, Python [.

binary file (- if:l#$5R)
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

s Eext file (XFHESE), ER—MHAEERIREA str WERY.

borrowed reference (fi%J]22H)
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

$borrowed reference WERY Py, INCREF () DAME JEHE (in-place) $(EI[Elstrong reference 21k 7 % (A%
W, BRAEEYEASRERE R IR 2 IR 2 migiss(El. Py_NewRer () pRzUA] RS EESL— M0 HT

Hstrong reference,

bytes-like object (Kfic4lhimit:)
— W 37 ¥ 4% &7 % 7€ (Buffer Protocol) H.BE[EIME Y C-contiguous & WY 4. BAIEFHEN bytes.
bytearray fll array.array ¥, PAKFFZ& R memoryview Y. BAoHF YT H
A BEPE EE EORN AEE L SRR AR . A R B TIRE ZRIE I socket (FHEE) HEIE.

G L TR R AT . (EIIA SR A RS L AR [R R S A e AL R
A AR SR (E I) Y4 bytearray, PAK bytearray) memoryview. i85 75 2
il GRS AP EA T Y (TMERER BN TR) s S (s bytes, PAM bytes
Y4 memoryview,

bytecode ({IC&HE)
Python 1) J5% 4 1 & 4 i i AL CALAS , B2 Python F2:UAE CPython BLFEES T YEBFRTE. #% (L
TCAHAS R PR pyc BT, PAESE R TR — AR R R RE s peskl (W] DA 7 S L 18
EgREN CAHME) . S [T EEES (intermediate language) | #2E) 281 THE— W virtual machine
(EWttar) b, sZEW S G AT B 3 1 O AH A% 3 HE A M #3105 (machine code), ZEERMZ, 17
TCAH RS PR a2 VAR R R Python [EHEMEAS 2 HIEAENY , R BEXE AR [RUA Y Python 2 [H] AR+

(LTS8 25 2 7] DATE dis ASTAH A [HH SO 4R 3

callable (wW:nL#{t:)
—{H callable J& R] ARGIFERY AR 424, WU IR AT REDA R A B0 — A5 1 8 (3% Wargument) :

[callable(argumentl, argument2, argumentN) }

—A function BLEGEAH fjmethod FJ2 callable, —{HAEVE __call__ () J7¥ERY class 2 B il 2
callable,

callback ([a[if)
VIS | S5 R 1) — 18 B 2X (subroutine) R, &7 A A LA R] B e LA 7«

class (JiE])
— P A A e AR . Class 11922 230 7 @ £ & method £ 3%, 182 method 1] DA
£ class 1B LI THAE.

class variable (HE[E/528)
—fHAE class "PREFR, HIERZLBEAE class IR (RXBINEFE class B) wiis ok sy,

complex number ([E14%})
—HI AR EHAR ST, TR BT G 2R [B A — W ERR 2 F. [Eldogh 2
[ElEEA (-1 PR POECERT, AR SR g (E 1, TR RE) 5. Python
[T HEHE %, ©rARENRERIRES; FRRaE - mesn 5 sime, sl
3+175. #EHF math BEAEIR THERH M RER, F5600 cmath B4, 00 12— A5
MR EEET e . IARIEG 20 2 B e MoK, AR T AR VR T DA% 42 b Z 0 T

279

https://gvanrossum.github.io/

The Python/C API, £[F) 3.11.8

context manager ([5EE5PNES)
An object which controls the environment seen in a with statement by defining __enter__ () and

__exit__ () methods. See PEP 343.

context variable (Ji5hE5s))
— s g, HAE T AR BE B SCAOIE SR MG BT AN [R] o 58 IS4 T 4% RISk f3# /7 [(Thread-Local Storage),
EHA, — AN T T R A AEME. 2R, BN, R s ae e
BT, MRS EE Mg, RIEETTRYIER2T# (concurrent asynchronous task) Hi, #f
béﬁ%[ﬂj(%ﬂglﬂo %%% contextvars,

contiguous (JHAEIT])
R —f 4218 [52 C-contiguous 5% & Fortran contiguous, I’ & e Hipi i E S 480 . B4 (zero-
dimensional) {4 [%S /2 C M Fortran contiguous ., F—#ft (one-dimensional) [#i%1| /| 4518 H W JELERD
TR RS PO A AR RO HES , TR PR P LR IERY . 7F 2 4% (multidimensional) C-contiguous [
Fr, FERC RO NE T A I R, AR — RS s b et 81, £ Fortran contiguous
Wz, ARG bk

coroutine ()
s 2 W2 X (subroutine) (1) — il B FIEE T 2. mII R 22 e R0 PRl] 5l 3t (B 7 — {1 e)
EGR . R AT ALE FF LS N R B IR Bl A L SR AR . EMREEIA asyne de £ BRIAZHE
HIE. HaE2([E PEP 492,

coroutine function (FErA=)
—fA] i corourine (FhFE) PIFRIRES. — M FEENEEVA asyne def Rz, [Ev]EE
W await., async for fll async with B8, BSLEEFH PEP 492 5] A,

CPython

Python F2 355 A B /E (canonical implementation), #%#7i7E python.org . [CPython | 31/ #7
FHTEL R A, Al M B R B RE F R EAE, 40 Jython B IronPython,

decorator (Z:fiizZ%)
—E R, TR E S R, W E TG ewrapper #EE, B El-—E R X1 8 (] (function
transformation), SEHFESHE REME classmethod () Fl staticmethod () .

Fe e REA U RN . VAT W ol U SRR 58 R SRR -

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

Class HWAFTEARIRI AR &, EAEARE A . B Eeips e 20, #H2E R E %M class
S FEMEI S

descriptor (1iiA%%)
Any object which defines the methods ___get__ (), set_ (),or __delete__ (). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

i 2 4 method YT M, 5 2(E descriptors Bl iR #3467 .

dictionary (“=iit)
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary comprehension (L4 &iEE)
—MEZEW I, HARER T E Y i s e R, [B A R DA 52 i]

280 Appendix A. fijEE%R

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python/C API, £[F) 3.11.8

results = {n: n ** 2 for n in range(lO)}@’EE*@?iﬂia @/E’TT% @%ET@”E

n ** 2, #52I[F] comprehensions.

dictionary view (‘FzHUiGH)
ft dict.keys (). dict.values(Zﬁdict items () [BMEAY BRI T AR . B3R
TP EH B AR, B RN T S E) ﬁ*ﬁ%ﬁ‘%fi]ﬂﬁ_‘kb AE) B AR
HHE)sE R list (F2%1)), ZEHH llst dlctVlew) ([dict-views

docstring ([EIH)
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing (W5 24[E])
— MR RS, BN R RE AR R R BB R 2 e R T LA IERER A E . B AR 2
()52, method B J&§ 1 € ¥ 4 Hb P s . (TSR e AR ARG — G 71 HLn e e 1% — (B
T, BB —EL BT, 1) KHEEG A mmIEs e 2E, osstefeSs e @2 m N
(polymorphic substitution) &3l () @G . T8 T RE R] type () B{ isinstance () H
. (ERwEEE, WTAIE R AU 46 %08 k38 [0 (abstract base class) RAGFE.) SR, BEH
€A hasattr () HlEt, SU2EAFP B EEEHEWE .

EAFP
Easier to ask for forgiveness than permission. (753K % SR AL) BT LAY Python 4%
JEHS G e A R S B AT, B %R %ﬂi?ﬁﬁﬂﬂwﬁﬁ%fﬂ% 128 7o 7 () LRt g JEL S
HEF O RIFET LM try fl except PR, B2 HMEET (Fln0 C) & WALBYL &%
e T ¥

expression (R
— B DA A ER (R RE . EAIEEE, —MER s cs . 4. B, EE TR
W S RO SRR, T 2O PR RE 1] i Eﬁiﬁg/ﬁ\ﬁﬂnn QKIEJE’JXE, IRE B ERil]
Python 33 & M 2 A %’%75 —Lstatement (BRIAZ) RNEEBHMEER, i1 while, B
{E (assignment) 2 ik, A2 E R .

extension module (§§ FEEiZH)
—fHPA C B C++ Sas 4l, ‘&Ml Python i) C API ARELAZ.O K fifi i H R X B EAT H) .

f-string (f GzH8)
PA T 5 F BT R SRl R E) [f 2R, B R R SO SR . S
PEP 498,

file object (K§R¥1F)
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

HE b, AR R =B R4 R BN BRI LT R . ETIANATETE 1o
B e S . BRI R M open () MR,

file-like object (JikEZRMTk)
file object (REZEWIME) W IFIFEF-

filesystem encoding and error handler (2% & %% M HIZE s R B AR,)
PYt/}Ilzon JR T — TR AR A A SR IR R X, AR B A2 R Mo, PASGK Unicode %t
MRS

T R S A A PR B BE LT IR AR FIr G /i 128 BN TeA . WIS R R S A a2 (L oL e, HI
API (R 5| % UnicodeError,

sys.getfilesystemencoding () fll sys.getfilesystemencodeerrors () I A HRNEL

TR 5 25 2 A B AP o B R X

filesystem encoding and error handler (T% %R M G AN B R i T R) &5 /E Python () B Ky
HPyConfig Read () PRI ARE B ﬁ.fllesystem_encodlng, PA MePyConfig WK

281

https://peps.python.org/pep-0498/

The Python/C API, £[F) 3.11.8

Bfilesystem _errors.
Hag2[Fllocale encoding ([FI4AE)

finder (=}HH7Y)
—fEPiE, g EREIEAER import AL R loader (FALR) -

¢ Python 3.3 iR, A MR AYFMES 1 TUIAAE G4 2% (meta path finder) € [sys .meta_path,
Wi ¥448 78 B 4 2% (path entry finder) € {fi[f] sys.path_hooks.

#2(F PEP 302. PEP 420 fIl PEP 451 D\ T W Z 401 .

floor division (i) FHUEKR:)
) A iy 55 B IR I RS M R . 1) R B RVA I T2 / /0 B, R 11 // 4
T4 R 2, B float (FREKM) ZURVEFTMIENG 2.75 AWM. #UE, (-11) // 4 Mg
-3, WEE -2.75 $ie T HEHIE& 2. #2([E PEP 238,

function (R
— B EOART, B AEE eE Y] e — S et] AR R AR B (8 7| B, s [Tl
RS A AT, iz Eparameter (23%). method (J7%%), PAM function FEfi

function annotation (F=XEIFE)
bR X 2 el o EE A — B annotation ([EJRE) o

A LR FE R 2 Ee = g, BTGS2 MME int 518, EeA—@ int [
H{E:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

pR 2 EIRE A REAE function ZEFIA FEANARRE
it 2Elvariable annotation #1 PEP 484, B/ IWIhEmHiiA. BRERBNRETEER T, Bzl

annotations-howto.,

future
future BiAR: from _ future_ import <feature>, /R4 Eae i ISLLLE Python 7R
PRI B WA P U EREE M A R YA SR BE 28, AR s E B4, 1M __future_ BIAHAIGEE T
featre (F14%) WRERIME. i import PUASAHFISE B BORAE, /RVT LAE 1 B0) BE 2 Rf 1
WHHEE| EE S, DAREMEE e (2 48) B IIRE:

>>> import __future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (b nlik)
RO S PR R R, I BRI AR FE . Python AT IR MUK, 25 2 MR EF#L (reference
counting), DA K — 1 & [F) g] A1 A B 22 BE G B2 (reference cycle) A9 8 17 3% M UL #% (cyclic garbage
collector) Z&5¢ Lo 3R MISGHR W] AGE A g AR4H S8 LA T4

generator ([E4:%%)
— {8 & [l i generator iterator ([EVEZRENRER) BIEX. BHEERG -MEFKEX, BEARNZE
WBET vield #EHA, BEEE—RINME, BEE W HR for [FlE, s20A next () X, R
R A — R .

TE TR AR R —EE AR R, (EAER LS, WAl ReRFonEle SERE. B—H%
BN RERENERE, A e aTaE, DA RIEEE.

generator iterator ([F)ZE:#$ENCES)
— il thgenerator ([E1A:2%) BR=CHT L IHI
M yield GrEiEm iy, ER B Em kg (G5 ks s S b wy k) . #E
i)%%ﬁ%%@@ﬁ%:, BT LR B AT (BRI 0 hg R) IRr 0 T B A 1 ek = A
).

282 Appendix A. fijEE%R

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python/C API, £[F) 3.11.8

generator expression ([EJZL:#$i#%)
—(AghEERERNERER. EHEERG MEEEE, BmEE M for T4, & TFHE
T EE s AR 1). sZALAER e AN E pa X E AR 2 R

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function ({Z7pX;)
1 £ 2 M R AR B BRI X, % o XSS [A R (BB E R [(S . o] 3 % (0 O A
1, 2R EEE A (dispatch algorithm) 2R([E]5E

Wt Flsingle dispatch (B—3HEF) B H . functools.singledispatch () #Afirefl PEP
443,

generic type ({Z747I[E])
— 1 AE[EY 2 ¥ 1k (parameterized) frype (ZU(E]); WHE—M ZaHE, B2 list fldict. B
R R [Elde = FE 2 .

s 2z ME4 BE. PEP 483, PEP 484, PEP 585 il typing f54H.

GIL
#5 2 (Flglobal interpreter lock (43 2225481) .

global interpreter lock (43 B 45%$3H)
CPython T i¥%4a T FHIBE ST, FH DARECRBE R R A — AT 45 BELAT Python [¥ibyrecode ({3 T#H
) . SRR (LRERENERE, dict) HEHEREFTAFE (concurrent access)
HIf@BE, BEA%HI W] DM fk CPython AU EFE. SH 38l H %8s, G B ER S M EZ T4
(multi-threaded), {H 1 /2 i n 22 JE BRSO RS2 REERR LA — RS 4F4T 1 (parallelism).

SR, AR FERA, MEum M B SE =, B MR s Rt e A T I A kA (E) S R R 4R
(computationally intensive) FfFE#5RE, T AR GIL. B4b, fE#AT VO KF, GIL 482 ey fifhs.

W HE S TR GIPATA] By (VAT RS A0 B B S 2 R A LR g) 55 I [EIR L
o1, WEE—BiE— R E T, SRk, —RRE, HElcasaeme, g
PR REIRERT 2, MM AT 58 o A AR

hash-based pyc (FEI k& pyc)

— (AL ICALH (bytecode) BT A7AE , & I AE[EVE AN /2 3 HE IR A AR R A B AR A R [, e e HoA
Wtk . w52 [F pyc-invalidation.,

hashable (7] §fE))
An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (it needs an __eq__ () method). Hashable objects which
compare equal must have the same hash value.

ALEENE: (hashability) {fi— Y7 AT i dictionary (F4tt) RYHERI set (Ffr) HIMRE, HEELH
R B T A EN .

ﬁ%ﬁiﬂ’] Python AT SEEA) (1452 nTREEIRY s ATE A%ty (B1AN list 5 dictionary) [EIAVE; TiA

SRS (I tuple (JCAL) Al frozenset) , U HEMYICE 2 TER, B4 S 420 i
B AR B E class IECBL,)5S L6 (e gl v s () n] AR (ET Y [:TF?TFUFH%%EH%E%K
RAMER (BRAFEMEECHR), meEMpEER04 3 EMr 1d(

IDLE
Python f¥] Integrated Development and Learning Environment (%54 BHESELEEEEES) . idle 2—fHEAR
) AR AN LR AR IR ST, BRI Python FYEETE BRI TR — A g 11t

immutable (An]%&H1k)
— A HA B ERE. Anl Sy aiEs . A wple (Joél) . BEHWIFE A REBICER
NSRS [A (b ZE R G A, MBS, — B . MR B R R ENE Ry, i E
B, i dictionary (L) g —{H S .

import path (5] A J&1%)
—HOLE (Eipksesa 8) BIANFE, ARSI ELEAE import BLAH Iy, €rifipath based finder (ELjitE%&

283

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python/C API, £[F) 3.11.8

By tads) BN ACE . AE import IR, S ESIREHZH A sys.path, HERTEMN
(subpackage) M, EMAHERAEEMH) __path__ B,

importing (5| A)
— (R . —EBLA) Python FE=UA AT DAE A MR AR,) — AR AL H 17 Python A2 A5 .

importer (5IA%})
— (A RIS AR AL BB R finder (FAg8%) tRloader (BALR) WF-

interactive (H.Ej1))
Python 7 — i BB X H 4%, ﬁ%ﬁ‘%TMTE%%%E@?EE‘?TE%/\%LEWHL%‘? SERIRATE
MEIHER EMPEER. HEES) python, ATHFEALMG# (W] BEHE b7/ B RS 1Y) 5 138 B ge g
B). aalE iR s i n JeE E R (R help(X))

interpreted (Pi%Y)
Python & —HE 55, MA S MRS Ki@iﬁﬂﬁl [43 7] e LeAs , R ENA (37 T4 A (bytecode)
SR AR AR o 1B FR RIS 0] DAEAEMGELT, 1A TS I R ST o — A T4 %ﬁﬁ%{lﬁ
B Hibnh ol et oA Han B e / BREE, N eMmpofeaE s ams .
Flinteractive (HEIH) .

interpreter shutdown (P 7SFH)
i Python 2R 9k ZKBHPANY , B arf A— BRIy B, FEM e B i A s e e & IR, 11
ﬂlﬂ‘%zﬂﬂlﬁﬁ BRSPS . B E 2RI 3R =k % (garbage collecior). & REEE #5648
TE WA HERG X (destructor) 5555 | F A1 (weakref callback), [FRUf7H A (o RE =05 . 7 BH P I B b
% gi{;&;?? BRI RREFSN, HEE ISR EATTAER T (7 A6l ek X Bkl
g]

BB EERE, & __main_ BASUEPHETOEARC BT
iterable (W[[EMCHI1E)

An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or witha __getitem__ () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator ([E{t2%)

An object representing a stream of data. Repeated calls to the iterator’s __next___ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

£ typeiter 3CH] AR B B 2 &l

CPython ‘B fE &l fifi: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

key function ()
o U B B 30 (collation function) 2 — i AT IEIY (callable) R, & [ml fE—{i 1] R HE)F (sorting)
HERF (ordering) W{H. BTN, locale.strxfrm() 1k F AR E) A —1{H TR I A HE 1 Y HE
JF

Python Wiy 2 TR, %52 DA R 2R B CRBOE P el AL 7 30 B min O max ()

sorted (). list.sort (). heapg.merge (). heapg.nsmallest (). heapg.nlargest ()

284 Appendix A. fifEE%

The Python/C API, £[F) 3.11.8

Ml itertools.groupby () .

TR AT DA, . B, str.lower () method W] PAFEIEIAR 43K/ NES HE T 11 88 i
Ao B, B R W] AME lambda SHAPE, filN lambda r: (r[0], r[2]). 5i4h,
operator.attrgetter (). operator.itemgetter () Fl operator methodcaller ()

ARG R A R X (constructor) o I AR fE N2 AN BT SRR S HE A, S E N HEY .

keyword argument (2575 185%)
#t2(Flargument (5]85).

lambda
i B —expression (GEE) FrAH M — B 4 fTEIK =X (inline function), A 3% b8 =045 P 0y ISR (A .

#£57 lambda KX HFEVE 2 lambda [parameters]: expression

LBYL

Look before you leap. (= JM%A7.) & T8 A 6 RS Er7E A TP I el A 2 T, WAt It S e
. B EAFP ﬁT}F/ﬁkiﬁfﬂﬁ HEMRre2aair2 1 BT,

1E— ﬁl%%ﬂ TR, LBYL JrAUHAE [=R A1 [4&47] Z M5 I T BEF (race condition) 1)
Ja\Bg . BIUA I RE A 1f key in mapping: return mapping(key], WIRS—(H#ATHIAE
P2 R AT, A€ mapping RGBT key, RIZAEACHEAL & KL 52 LB T DA FT 8 (lock)
a6l T EAFP 85 7 AR (E .

list (#i51)
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension (H 5|45 & 315
— e 1 AR — M 3 51 G AR A e R, ([R PR A SR DA — 1 List (Rl B 2L)5 5. result =
["{:#04x}'.format (x) for x in range (256) if x % 2 == 0] &[E4E —{HFEP list,
Hod 0 3 255 iEE], Bra Ees oS s ox.). if FAESREER. WA, 1
range (256) FHITH TCREES SR

loader (EARY)
—EREER AR . T EEFR—AAE load_module () [method (J5%:). HAZLEE
Setlifinder (Fggs) . HE2AHH2E PEP 302, Bg]ﬁAabstractbase class (IR, &%

2[F) importlib.abc.Loader.

locale encoding ([I8 Zi5)
£ Unix [, ‘B2 LC_CTYPE B Em 5. B PAH locale.setlocale(locale.
LC_CTYPE, new_locale) #%E.

7r Windows |, ‘B2 ANSIfCHEE (code page, fil#l "cpl252"),
T£ Android 1 VxWorks |-, Python {#i[f] "ut £-8" /E[E] | 54w .
locale.getencoding () can be used to get the locale encoding.
WEE A filesystem encoding and error handler

magic method (JE#kr Jji:)
special method (455K) WI—E 3EE =[5 285 .

mapping ()
— AR Y, B BAAREN AR, HAEE A abstract base classes (i 5 &R H(E]) o,
collections.abc.Mapping B{ collections.abc.MutableMapping f$8E R method, #i
Blfi4E dict .collections.defaultdict.collections.OrderedDict fllcollections.
Counter,

meta path finder (JCHETEabIEY)
—MEL 18 sys.meta_path [[F[{E# 1 finder (FFAGER) . TCHEIRFAGARELIL A A B 548 255 (path
entry finder) M BEZAR
B A TCIE R B A EAE) method, 352(F] importlib.abc.MetaPathFinder,

metaclass (JCE])
— 7 class [y class, Class 5 FEiB A% € 73 37— class Zf5. —1# class dictionary (F8) , DA S —1#

285

https://peps.python.org/pep-0302/

The Python/C API, £[F) 3.11.8

base class (FICHHE]) #9513, Metaclass 5578 =MD #, [E#E3 class, K14 n)
FEAHE S e I FE R A B /E . Python (4RI BEAE Y E BEEIE ST F %71 metaclass. KEBMH) A
FHERAFEW T H, (R FHEN, metaclass 1] DARALEIR HABHME £, 2MEw ks
EF A, B a4t BEFET . BEIEEAIRE (singleton), DAKFFZE HALAIT S

B %2 &5 A DATE metaclasses 25 i 14k 2 .

method (J5#)
—{7E class A< EEIgE 2 A K. A0SR method VEEIE: class B il i — {0 & M gieny , HIE K &5
KB EREE 95— Hargument (5190 (M5 Mol HWAE self). BB funcion (HX)
Flinested scope (EMRAE) .

method resolution order (Jj 7. /M IE)T)
T VSR IE S e AT PR R B i AR, base class (ELEHAE]) B aplEF. BN 2.3 RE
4>, Python FL3#a% FT i F T BN ER, 552 (E] Python 2.3 [A MRITIE)T .

module (Ei%H)
—{E#54F: Python PR A AHAK ¥ (organizational unit) ({4 . BHA —EmAEH, BEUEER
(1) Python ¥4} LA ZFE Hiimporting WAL, #HEA 2 Python,

it [Epackage (1)

module spec (L4)
— WS, Bas AR AR import #H B & #l. B J2 importlib.machinery.
ModuleSpec [—{EEH .

MRO
i 2 [Emethod resolution order (75 ¥EFENTIET) o

mutable ([5E47})
AT DA B, BHERFEMN i O o SRS Eimmuable (R EPE) .

named tuple (F#Ic4H)
#iak [named tuple (P42 7C4H) J 2487 tuple BRI LM HEIEY class, H B[] (indexable) Tt
F AT DA PR 44 8 1 AR A 3 Se U5k class AT DARAT HoAB I fRbE

5 2[R [F))2 named tuple, {U3fH time.localtime () Ml os.stat () [EENHE. H—MHFT

& sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from t uple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace (i #23i)
SHBE R . 4 25 P2 DA dictionary (SFHL) #EEEME. A IWIsiy . Ak K EE) a4 25
MAEY 4+ (7€ method ") A SR a2 25 M. 54 25 MRS PT 1k a2 E%, AR . B
i, K3 builtins.open Ml os.open () i E M) 24 25 WA 4 . fir 44 25 106
HH et [2 MBS AE B A —H pR X, RIS W Pk S v Atk . BN, %t random. seed ()
B itertools.islice () FHfEHLFE S, B R A E 2 B random fll itertools FRAITEEAE.

namespace package (7 Z23MIE:)
—{l PEP 420 package (£{F) , & HEEAEEI T2 (subpackage) fy—{H %525 . v 44 45 & {4 0] fE
Ef g 2R, mHEEARE M ARG R —fregular package (IEREN) , HEEMEEAS
__init_ .py BfEREE.

Az Emodule (KAL) .

286 Appendix A. fijEE%R

https://www.python.org/download/releases/2.3/mro/
https://peps.python.org/pep-0420/

The Python/C API, £[F) 3.11.8

nested scope (HURERIR)
fiE(E]22 I8 /Mg 7€ 3§ (enclosing definition) F [RS8 RE J7. BRBIARIE], — {0 =X AN SR 2 7E o — M e X
e, MEMEREE2RINg R Pse. e, EREEEET, SR 1EHEEE k2
W, T R ek s e e B (i Ik P R S B IR, A MU A Ak 44
2 EEUCE A . nonlocal P IMNEEHEIE TR A

new-style class (FiAJ(E])

Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object (¥1F)
HAREE (BrEoE) MoiEznFTE] (method) MYEMIEERl. B R Mnew-style class (Hiz\HE
[E]) At base class (FLRHEED) .

package (£1})
— W Python fAjmodule (F41), & AL T4 (submodule) By 2 IEEIH) T (subpackage), %
b, Bl __path_ EHER—8 Python 54 .

Wak2Elregular package (TFFHEME) Fnamespace package (64423 MEME).

parameter (Z)
AE function (pRx) B method 7 5§ ¥ —fH iy 24 B #E (named entity), &4 B 3% bk 2\ BB 32 32 19—
Margument (51#0), SAEFLFE FRR2SMEE 8. G H FREAR RS 8EA
* positional-or-keyword (1B BT)« H&HH— W] DAd% 18 12 B SURAEEIM 425 7| Sl R 1)
18, ERSHIMTERERL, GIMPATIR foo 1 bar:

[def func (foo, bar=None): ... J

* positional-only (FEFROZE) : H5H—ME L REHL I OL BAR AL T | . FEpRE S 2 8 R
W /50, WnT DAERZ P OCHT T E SR E RO E 2 8, HIANLAR) posonlyl 11 posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

* keyword-only (MEFRBHSET) : H8HI—MH X BECABHSE 7 RIER B0 5 [#. TERdUE 361 2 W%k
A AT R 2 U (var-positional parameter) Bi& ALY * 700, BT DAFERAR Ty
TEFRMERBEHE T2, BIWPATHY kw_onlyl Hl kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... }

* var-positional (fEREMEIE) : 45U —HBELMERF PSR BLi 7 5 | . (TEC B 2 8
ARG | M AN . BRSO ERIE L2 WA E L~ HOEFR, BIIPAT Y

args:

[def func (*args, **kwargs): ... }

* var-keyword ({F7Z8CR BT) FEATPTHHRALE S BRI |3 (FEC g2 B2
?ggﬁ%%ﬁi%?%l%iZﬁl‘)o EHZUEERE LS AT I ~~ AEs8ny, Filan b
| F) kwargs .

ST ARG | ORI AR s F5 Y, 0T DAE— 6585 e 1y 5 | B o TR (-

7y i 2 B i e Wargument (5180 W H . & LB E P51 80 282 M 2£([E), inspect.
Parameter class, function Z i, DA PEP 362,

path entry (#{€51H)
TEimport path (GIABEAE) "PEI—MERLE, Wiparh based finder (BEFABALHI B G2H % (E
242 import FYREAL .

path entry finder (¥%{%3H H =-4%%)
Wi sys.path_hooks HIF{— a] BEHH{4: (callable) (& Bl —1{#path entry hook) Bt R/ — T finder ,
BB AR PA—{Epath entry g RiASAH .

BT IR AR TE H A2 EAE) method, 352 ([F) importlib.abe.PathEntryFinder,

287

https://peps.python.org/pep-0362/

The Python/C API, £[F) 3.11.8

path entry hook (%% i H(E))
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder (JLRPEELIT M%)
THBE USEAE F 48 55 (meta path finder) 2 —, "B &FE—@limport path 118 FH54H .

path-like object (FHPRIEH1E)
— R FRRAE R RS BT DU — R BRI str 8 bytes ¥4, w2 —M
BHVF os.PathLike W EWWMH. BB os. fspath () K, —f%4E os.PathLike WE
AT DA E(EIE] str 85 bytes MR R I4FE; 1M os.fsdecode () M os.fsencode () HI
SYEVAT A AR str M bytes HI%E%. i PEP 519 5] A.

PEP
Python Enhancement Proposal (Python J[F4#222). PEP 22—k sHEIRSCf4E, & REE] Python #1832
B, B2 Python)—(F B Bh B ol % B e YRR P Al B BE . PEP JER% B4R LA 1R A0 S A
PAS B 22) RE O AR IR L

PEP WA TE HIY, 22 B E R P FE 2 ALFE v B Sl 1 R) 2 S, ARRE A
Python (1% #HEVRIIFEE, & SeilFRi 1= 2l . PEP 1)1 2 & e te ot e) d vy el e (B 5
.

#H2[F PEP 1,

portion (354))
1 B — H [E)p) — 4R 58 (M mTRE A TE — 1R zip A5), 35 SEAR ZE R 3 — MRl iy 44 25 TH] B4 (namespace
package) Tk, WIlE PEP 420 H1)E 3.

positional argument ({5 5|45
s Flargument (3]38).

provisional API (%47 API)
AT APL 248, (EHAME R =L 4 AH 25 1 (backwards compatibility) fRa&Hr, #E#HERR T APLL
BESR LN T, HEe MBI, M EER A ERWET, FE%.0E A SR
EELE, Wnged BB mEAHANE T (LR AR . % EEA G mEmHhE L
—HA APT YA A Z AR B e B B AN BRI e f i IRy, e A etk

ISR AT APL, B AAHZS Y 8 S8 Gl i) [MRy %2) — STl B [
ATB9R € 2 mT REH th— M 1) AR AR A AR E)y 52

e {28 A (S A A 4 o X R B B TR PN BT, T B SR AR = 1 Ry] 25 B A I R Y et B
it 2E PEP 411 T 2 41 .

provisional package (‘E17%1)
it (Elprovisional API (%47 API),

Python 3000
Pythorj&x FIVARERE (RAATIRIER, HWRH 3 B e e R 2.) dnl AR 25 ([E]
[Py3k].

Pythonic (Python Jal#&t])
—(EAVE S —BoAEUHS, EEA] T Python 3 5 Il FBIE T GE, A2 8 1 HAB RS 58 RIS
ACECVERRCAS . (U4, Python Hrig WLy —ME B YL, RMH—M for BUAX, #H—MrIERY
PRI TR EATEIE . 3F 2 HAbRE S EEA S 280, BT AR#E Python (1 A\ AT IR € i
JH — (8 e B e AU

for i in range(len(food)):
print (food[i])

2T, DA AR E . 3AA7 Python Jalks :

for piece in food:
print (piece)

288 Appendix A. fijEE%R

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python/C API, £[F) 3.11.8

qualified name (P} 92 #45%)
—fH [E AR, B BURRE— ALY A Ve 3 R B4 e 5619 class, BRI EL method f1)
(B8], 40 PEP 3155 thptE s, SR TEJE Y B 3 UR class T3, BRE 24 REEELHA) (444 R AH] -

-

>>> class C:
class D:
def meth (self):
pass
>>> C.__ _gqualname_
ICV
>>> C.D.__qualname_
'C.D'
>>> C.D.meth.__ _qualname_
'C.D.meth'

WA G EALRE, ©ATRE & & (fully qualified name) ;23R B SERE B 73 B BR AR, ELFEAT AR
MAZEM, Bl email .mime.text:

>>> import email .mime.text
>>> email.mime.text._ name_
'email .mime.text'

reference count (W)
R — YR 2 R A 2 EET IR 2R, o if#IREL S (deallocated), &
WE 51 GE A Python FEASHH A AR H|, (HEEDECPyhon BER — MBI T . BT RT DA
N getrefcount () PR IREIE—HERE Y2 BEHE

regular package (IF#£1):)
— B S package (£4F), FIIN—@EEA __init__.py fHEMHEIE.

etz Elnamespace package (423 .

__slots__
e class [FIFY—ME B 1, EHHBUCESEOEENZSHE, PUIERE G dictionary (FHL) , %K
i RO . MEARRZROTAR T, (HE A B DO MG Y, e OR BR A0 I A O 1 e
(memory-critical) [FI A= A7 e K B 20 5 LB T

sequence (J3:41)
An iterable which supports efficient element access using integer indices via the __getitem__ () spe-
cial method and defines a ___len__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (), butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension (44 &i i)
— T B vk, AR W EAR) i AT S e R, R PR A R DA set
[H{#, results = {c for ¢ in 'abracadabra' if ¢ not in 'abc'} &[F4 5
set: {'r', 'd'}, 7#H2I[E] comprehensions.,

single dispatch (¥.—3RFf)
generic funcion (ZHUM) WHREM—TETEN, FEML, BEAEMSERR LR B —5 | S B,

slice (VJH)
—fE 1, EE R Brsequence (JFH) WMo B —BHY R 72 8 N AAF 9% (sub-
script notation) [1, #FE4H 2 MET, AAEHFE MM A E S, Flilvariable_name[1:3:5].
ERESE (M) A3EmERS, &#iH slice Yt

289

https://peps.python.org/pep-3155/

The Python/C API, £[F) 3.11.8

special method ($#%kJ5:)
— R4 Python [BTN () method, Ff ¥ RARRIERATHAEGES, FANHNE:. 57 method ()44
- 7E BHEE AN &5 e A Wi R R(E Spec1a1 method £ specialnames H1 5 #E4H[EJRH .

statement (A=)

B — M (suite, —ARAXMG [EHL]) P—EBor. BEAKT PUE—Mexpression (5T
X)), HESHBET (Fli01if. while B for) MEZREEEMZ —.
static type checker

An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

strong reference ([F/Z)
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py TNCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

Py_NewRef () BRzA] A ES. — BB 2 IR, @K, 7R B E2 EAE RS 6, WETE
ZEI2 M el py DECREF () B3, PABEGER—HM2 M.

Atz Eborrowed reference (2 M),

text encoding (3L FHHE)
Python)5 H3 2 Unicode 5% (code point))79 (7L U+0000 — U+10FFFF 2). #
SRETE R, CAR LD (A G TAL .

ﬂ%#ﬁ]?jﬁ?ﬁﬂﬁc&fn%ﬂf?ﬁm FRE) [4t), 10807 JC AL 51 8 B or % - B B AR ED [AR5
(decoding)

A Z AR ST LSRG (codecs), “EMBESIREE [3074 1.

text file ()L%iﬁ%)
— A REE AT A st Y —{Rfile object (FEEYIF) . EH, SCFHEEREE FRFRITH
PG| ,‘%7]4{;", (byte-oriented datastream) [E)€r [B g Mirext encoding (SCF4iE) . CFREEMBI T4
PASCEREE (e 8 'w') BHEARZE, sys.stdin, sys.stdout DA io.StringIo IEH.

B 2(Elbinary file (ZHERIREZE), B2 —HEEEEBRE A 2815 T4 & 1 (bytes-like object) g
ESY/ 1L

triple-quoted string (= 5| 3EEIEH)
H =R 595 () sG55 O EERA N — @5 MR T MEEA fALER 85| 555 T
g EIRE, EERFZIEA, B RAE K. BN AFET R 4 & A BKE) (unescaped)
(L SRR S 5%, 107 ELE MR TR 8 184 5T (continuation character) St W] AMS 2 AT, & i1 E
192 4w 55 (EJHA 7 5 R A 1

type (ZI[E])
—fi#l Python ¥ {4 Z[EIElE T & A ESE A EYARE —EAE. — Y ¢-rZLE v]
PAHER __class__ BHARLFH, A type (obj) KR,

type alias (FUEIFI%)
— BN) 3w, B A B IS E 46— R EST (identifier) ST .

HIEFIE)4 i 42 [FI32 = (type hint) 84 . Bild:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:
pass

ATAR BGERE, SEEA AT

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

#2[E typing Fl PEP 484, F HIIRERIHREIA .

290 Appendix A. fiisE%&

https://peps.python.org/pep-0484/

The Python/C API, £[F) 3.11.8

type hint (%I([E$25)
—fannotation ([EVRE), EHGE—MHEE. —H class J& = — 1 ok =) 2 8k o] (1 T A E

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

43 A B class JB ME AR X OR & s) MR ER R, AW A typing.
get_type_hints () RLEHL
#2[F typing fil PEP 484, 45 ML REMIHEAR

universal newlines (3#)JH[ET5C)
— e A SR (text stream) B9 720, DA A RO ERREE—F7 89 45 5 Unix 17 R 1E B
"\n'., Windows 1&%] '\r\n"' £ Macintosh &% '\r'. F52[[E PEP 278 #il PEP 3116, DAKH
it bytes.splitlines () BPFANIAE.

variable annotation (%%5(Ff%)
—{W 5, class B annotation ([EIFE) .

(EFE 58 By, class J@ PR, BRI IEIER :

class C:
field: 'annotation'
SEUEVEE P 32 = (ype hine): B0, S5 AR SCRUN @S ine (ASR) f
[count: int = 0 J

5 W EIRR I REVAAE annassign T2 A FEAR I R .

%%%function annotation (l%[it*%) . PEP 484 1 PEP 526, %A IIIRERHEIA . A DR A e A
BHETYE, Hi52[F annotations-howto.,

virtual environment ([FJHEERES)
— {4 VEFR #f (cooperatively isolated) (R TEIHE, HERE Python [I 35 A1 FF2 A5 DAZE RN THA)
Python ¥§([EVEF, A € [—(f &t LA T H A Python i HI A2 A TEIE A T4

Wtz venv,

virtual machine ([EJHEZS)
— B 5E 4z F RS T A 3R BRI (computer) ., Python [[EE& RS & 14Tt byrecode ({iTCALAS) Hsses
g A AL

Zen of Python (Python Z[F])
Python 1R I BRT B2 51 55, LRI B BRAR ARG A DL RE = . s 2nl A A BB Ui 7
JUEEIA [import this| ARKF|IE.

291

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, £[F) 3.11.8

292 Appendix A. fiisE%&

APPENDIX B

BARELEFIRA S 14

i SEEI] SO 7 Sphinx (— & (E) Python [EIW]SCHF IR RS O SCPRIERERR) 4B reStructured Text 45
TR R AR R i

Wil Python B B, ik H 1155 1 T EI SCARBLE AR BB BAT TR, AR ERI AR, #5572
reporting-bugs FUTHT, [AH BRIl FAM i BBy B B A

et
e Fred L. Drake, Jr., Jflf Python SCPF T HAERYAITE # DA K — KM EIERIVES
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx #¢//#) Alternative Python Reference #1#| 1 #1521 F & .

B.1 Python {898 BRKE

% NFR I Python 13 M35 . Python 4223 p% 2)& A1 Python [FIH] (4 B kil . Python B (E) R 4G i h
TAT M ERE R, # 7 Misc/ACKS .

TEFAE] Python A (1488 g B B8R A 4 3 35 [EDRR A [ET] SO - e T A B R g AL A !

293

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python/C API, £[F) 3.11.8

294 Appendix B. FjiELFEAS

appeENDIX C

i E IR

C.1 &icio

Python 2 1 7 B S22 0 5 AR R 2T 97 B (CWI, R https://www.cwinl/) [Guido van Rossum & 1990
ERFHETAE, B 2/EE—EEE ABC SEE1E4E . [F)%8 Python 08 T &£ 3K B Hifth A EER,
Guido {32 H FEAEH .

1995 4E, Guido {r4E JE 5i M 25 WriE i B KA B iF 9T A 5] (CNRI, 5, https://www.cnri.reston.va.us/) #4548
fliAE Python fit) T4, EWEAREIEFE 7%l iy 2 AR A .

2000 4£ 7. H, Guido F1 Python #%.0» B % [#]) 2% 2| BeOpen.com [E])i{,37. T BeOpen PythonLabs [# [. [
4+ H , PythonLabs [P53 Digital Creations (¥i[E] Zope Corporation; & https://www.zope.org/). 2001
4E, Python ##43L4-6r (PSF, K https://www.python.org/psf/) 37, g —{HEEHEA Python FHE %2
EHEIRENT A7 1) IR R 44K . Zope Corporation J& PSF f)—H & & &

Jir A7 B Python JRAKSZBHIRAY (A BB EFE, 2(E hups//opensource.org/) . M b, KEH{HAE4
By Python JAS, o2 GPLAHZAH; DAR FARAE 4 25 M A 1 22 [E.

BMRE BB Fn wEE GPL &% 7

09.0%F 12 A 1991-1995 CWI =
132152 1.2 1995-1999 CNRI 2
1.6 1.5.2 2000 CNRI &
2.0 1.6 2000 BeOpen.com 75
1.6.1 1.6 2001 CNRI =
2.1 2.0+1.6.1 2001 PSF w
2.0.1 2.0+1.6.1 2001 PSF 2
2.1.1 2.1+2.0.1 2001 PSF 2
2.12 2.1.1 2002 PSF =
2.1.3 2.1.2 2002 PSF 7=
22 PAE 2.1.1 2001 £4 PSF 2

fiiE): GPL MALIAF R 21E GPL R #[El Python, A4 GPL, A1) Python FZHEHS AT DA 455 (1)
BRI, (AR B 5 o IR . GPL A2 B #2 HE(L 1S Python W] PA%S & A /E GPL R
SHE R EH B ERRERIARTT.

295

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, £[F) 3.11.8

IR 2SN T, £ Guido FRE NIATH, FfHE LA 1 B [R(E AT A

C.2 FANREMHLIEMFGXER Python BHISHER

Python FCHFIEI SR RZAE 2 LR PSF 424 &4

% Python 3.8.6 B4R, [EIHASCH:rpagaifl, R BN HAWRE XA, 2908 FEIZHE (dual licensed) 7 PSF #%
WEA #1 VA K Zero-Clause BSD % #¢ .

A LEHAN A Python SRR BLA R R B0 S5 SEARRER G BB REZ LR — g . B RE 2
FHERI A SERETE L, 2 O T 3R 09 34 20

C.2.1 ¥ PYTHON 3.11.8 §Y PSF %&£

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSEF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.8 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.8 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All.
—~Rights

Reserved" are retained in Python 3.11.8 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.8 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.8.

4. PSF is making Python 3.11.8 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.8 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.8
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF

296 Appendix C. ;HEELIRE

The Python/C API, £[F) 3.11.8

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.8, OR ANY.
—~DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—or any

third party.

8. By copying, installing or otherwise using Python 3.11.8, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 4 PYTHON 2.0) BEOPEN.COM R &#

BEOPEN PYTHON BHIRFZRES 4055 1 I

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(BT —1D

C.2. ARFRHURMFXMERA Python BEHIIER 297

The Python/C API, £[F) 3.11.8

(B E—H)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 ¥ PYTHON 1.6.1 g CNRI iR &#

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark

EET—3

298 Appendix C. ;HEELIRE

The Python/C API, £[F) 3.11.8

(R L —5)

sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 ¥ PYTHON 0.9.0 & 1.2 gy CWI i1R{EEH

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 Fi* PYTHON 3.11.8 [FEAX 4+ FI#2 X 5y ZERO-CLAUSE BSD #%4#

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. ARFRHURMFXMERA Python BEHIIER

299

The Python/C API, £[F) 3.11.8

C.3 #My(IIBkAS AR 1 B BN
A S AR SE I I G BEESET B, 5% JE Python ST B EDAG 5 =y B

C.3.1 Mersenne Twister

_random BAH S T LA hitp://www.math.sci.hiroshima-u.ac. jp/~m-mat/MT/MT2002/emt19937ar.html] N
EZFIRE RS . AT 2R AR U Y 52 8 i -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

300 Appendix C. ;HEELIRE

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, £[F) 3.11.8

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 FEFE ¥ socket JR 7%

asynchat fll asyncore fAL & DA R AR :

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB 301

https://www.wide.ad.jp/

The Python/C API, £[F) 3.11.8

C.3.4 Cookie &1

http.cookies HiZH L& DA AR :

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 #{TIEN

trace B W& DA
portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

302 Appendix C. GERIFiE

The Python/C API, £[F) 3.11.8

C.3.6 UUencode £ UUdecode &E=

uu AL DA :

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Eixf2FFueoy

xmlrpc.client PEAHALE DA FE:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB 303

The Python/C API, £[F) 3.11.8

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BLHIHfHY kqueue 714 & DA RN -

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

304 Appendix C. GERIFiE

The Python/C API, £[F) 3.11.8

C.3.10 SipHash24

Python/pyhash. c #§% 4% Marek Majkowski’ 5L i* Dan Bernstein f{] SipHash24 JE V5 EAE .
PAT R -

a3
@
o

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod H dtoa

Python/dtoa.c fEZEHEME T C [dtoa Fl strtod B, FHFAME C 1) B B2 77 B ORI 7 5 HAH I,

S

FefiTA: H David M. Gay @7 [R5 , 1235 BIAE W] DA https://web.archive.org/web/20220517033456/http:

/Iwww.netlib.org/fp/dtoa.c N, #2009 4E 3 H 16 H kR 1R G648 2005 DA IR RE B 2 REAZE Y -

/**

The author of this software is David M. Gay.

E

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

E O

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

*
*
*
*
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*
*
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

**/

C.3. #ugFIakienyIR{E BB

305

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, £[F) 3.11.8

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later
releases derived from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

(HEBT—TD

306 Appendix C. ;HEELIRE

The Python/C API, £[F) 3.11.8

(B E—H)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(BT —H)

C.3. #ugFIakienyIR{E BB 307

The Python/C API, £[F) 3.11.8

(B E—H)
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

308 Appendix C. ;HEELIRE

The Python/C API, £[F) 3.11.8

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

BRARfE R E _ctypes PR EE] ——with-system-1ibffi, FHHIFZMTTE H—HES libfi JFAA1HS
B B AR AR

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 309

The Python/C API, £[F) 3.11.8

C.3.15 zlib

URAE R S BAR B 2lib A KR PABOR Ik R 2110 JE5E, ARz se g M — M EE 2ib [5G
AR R A 2

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc {#i Y 3EEIFE (hash table) F4E, J2DA cfuhash B2 ([FIRLAE:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(HEBT—TD

310 Appendix C. ;HEELIRE

The Python/C API, £[F) 3.11.8

(R L —5)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

MdEfE 7 _decimal B4R EE] -—with-system—-1libmpdec, 7 A% B4 € H—H(El 2 libmpdec
PR X JBE 1) A A

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N B EH

test AP CI4N 2.0 HIFLEM (Lib/test/xmltestdata/cl14n-20/) 24 W3C #du} https:
/Iwww.w3.0org/TR/xml-c14n2-testcases/ #A52%, HEHR 3-clause BSD #Z#Eyt #(E):

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(BT —H)

C.3. #ugFIakienyIR{E BB 311

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, £[F) 3.11.8

(R L —5)
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/
sox/12.17.7/sox-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUD-
ING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRAC-
TICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE IN-
FRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect
and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

EET—3

312 Appendix C. GERIFiE

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python/C API, £[F) 3.11.8

(R L —5)
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 313

The Python/C API, £[F) 3.11.8

314 Appendix C. GERIFiE

APPENDIX D

=
i
|mit
If

Python 13z 3 [EJHA SCH4- 04 IURE :

Copyright © 2001-2023 Python Software Foundation {3 & —HJHEF] .

Copyright © 2000 BeOpen.com {4 i — I HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SERMR R A T 2 105 5 St

315

The Python/C API, £[F) 3.11.8

316 Appendix D. IREE&

5

ERFEIERF
..., 277
2to3,277
>>>, 277
_all__ (B##%#H) .06
_ dict__ (#H#BEM) ,154
__doc__ (##EM) ,154
__file (HEAEM) , 154,155
___future_ , 282
__import_
built-in function ([EJEE=R) , 66
__loader_ (H#EM) ,154

_ _main_
module (#4H) ,11
A, 178, 190

_name__ (H#BM) ,154

_ package_ (#BEM) ,154

_ _PYVENV_LAUNCHER_ , 204,210

_ _slots_ ,289

_frozen (C struct), 69

_inittab (C struct), 69

_inittab.initfunc (C member), 69

_inittab.name (C member), 69

_Py_c_diff (C function), 119

_Py_c_neqg (C function), 119

_Py_c_pow (C function), 119

_Py_c_prod (C function), 119

_Py_c_quot (C function), 119

_Py_c_sum (C function), 119

_Py_TInitializeMain (C function), 217

_Py_NoneStruct (Cvar), 230

_PyBytes_Resize (C function), 122

_PyCFunctionFast (C type), 232

_PyCFunctionFastWithKeywords (Ctype), 232

_PyFrameEvalFunction (Ctype), 188

_PyInterpreterState_GetEvalFrameFunc
(C function), 188

_PyInterpreterState_SetEvalFrameFunc
(C function), 189

_PyObject_GetDictPtr (C function), 87

_PyObject_New (C function), 229

_PyObject_NewVar (C function), 229

_PyTuple_Resize (C function), 141

_thread
M4, 185

RIS H
__ PYVENV_LAUNCHER
PATH, 12
PYTHONCOERCECLOCALE, 215
PYTHONDEBUG, 176, 209
PYTHONDEVMODE, 206
PYTHONDONTWRITEBYTECODE, 176, 212
PYTHONDUMPREF'S, 206, 243
PYTHONEXECUTABLE, 210
PYTHONFAULTHANDLER, 206
PYTHONHASHSEED, 176, 207
PYTHONHOME, 12, 177, 182, 207
PYTHONINSPECT, 177, 207
PYTHONIOENCODING, 179,211
PYTHONLEGACYWINDOWSFSENCODING,

201

PYTHONLEGACYWINDOWSSTDIO, 177,208
PYTHONMALLOC, 220, 223, 225, 227
PYTHONMALLOCSTATS, 208, 220
PYTHONNODEBUGRANGES, 205
PYTHONNOUSERSITE, 177,212
PYTHONOPTIMIZE, 177, 209
PYTHONPATH, 12, 177,208
PYTHONPLATLIBDIR, 208
PYTHONPROF ILEIMPORTTIME, 207
PYTHONPYCACHEPREFIX, 210
PYTHONSAFEPATH, 204
PYTHONTRACEMALLOC, 211
PYTHONUNBUFFERED, 177, 205
PYTHONUTFS, 201, 215
PYTHONVERBOSE, 178, 212
PYTHONWARNINGS, 212

, 204, 210

177,

abort (C function), 66
abs
built-in function (FZZR) ,95
abstract base class (#HZFEEHE) ,277
allocfunc (C type), 266
annotation ([Ef) ,277
argument (3| %) ,277
argv (sys #&d) , 181

317

The Python/C API, £[F) 3.11.8

ascii
bulit-in function ([El&E&E=R) , 87

asynchronous context manager (3 | ¥
FEHEE) 278

asynchronous generator iterator(3[@E%F
4 #EMRE) ,278

asynchronous generator(dk | FEI4E %),278

asynchronous iterable (3 T EIX 4 #)
,278

asynchronous iterator (R FERE),278

attribute (B¥) ,278

awaitable (T ,) |, 278

B

BDFL, 279
binary file (ZiE##£) ,279
binaryfunc (C type), 267
borrowed reference (fEH%®E) ,279
buffer interface (/)W)

(7 A& E), 101
buffer object (%Tﬁ%ﬁ—)

(s A&), 101
buffer protocol (%@%E) , 101
built-in function ([FJZZ)

_ _import__,66

abs, 95

classmethod, 234

compile (#%) ,67

divmod, 95

float, 96

hash (3[F)) ,246

int, 96

len, 99, 143, 145, 148

pow, 95, 96

repr, 246

staticmethod, 234

tuple (Ju#l) , 144
built-in function (HZEZR)

len, 97

tuple (5u4) ,98
builtins ([E#)

module (##H) ,11

A, 178, 190
bulit-in function ([EZE&)

ascii, 87

bytes (fLm#l) .87

hash (3[F)) ,88

len, 89

repr, 87

type (E[F) , 88
bytearray (LA EF])

object (##) ,122
bytecode ({f T#1#) ,279
bytes-like object (MM TALEMHE) ,279
bytes (fLT04L)

bulit-in function (FZZ=R) ,87

object (##) ,120

C

callable (HwEe4y4E) ,279
callback ([H") ,279
calloc (C function), 219
Capsule

object (##) , 165
C-contiguous (C FEAEH) , 104,280
class variable (ME&#) ,279
classmethod

built-in function ([El&#E=R) ,234
class (H[E]) ,279
cleanup functions (WEER) , 66
close (in module os), 191
CO_FUTURE_DIVISION (Cvar),43
code object (BREHH) , 151
compile (#3)

built-in function (FZZ=R) ,67
complex number ([El#) ,279

object (##) ,119
context manager (FEZHAE) ,280
context variable (FEHEE#) ,280
contiguous (LK) , 104, 280
copyright (sys f##) , 181
coroutine function (BHEER) ,280
coroutine (#4E) ,280
CPython, 280

D

decorator (#EAF#) ,280
descrget func (C type), 267
descriptor () ,280
descrset func (C type), 267
destructor (C type), 267
dictionary comprehension (FHAgELEE),
280
dictionary view (F#tipid) , 281
dictionary (F#) ,280
object (##) , 144

divmod

built-in function (3%@?&) , 95
docstring (Eﬁ?$) , 281
duck-typing (#FA[E]) , 281

E

EAFP, 281

EOFError ([EJ#EHFI4) , 153
exc_info (in module sys), 10
executable (sys ###) , 180
exit (C function), 66

expression (EER) ,281
extension module (ML) , 281

F

f-string (f F&) ,281

file object (#ZEWH) ,281
file-like object (¥t ZEWH) ,281

318

#5l

filesystem encoding and error

handler (% % 2 # 4 75 Fn 5%
IjE_]Z_JEE) , 281
file (%)

{1

E
object (##) ,153
finder (Zf#%) ,282
float

built-in function (%@iﬁ) , 96
integer (%é‘%ﬁ)

object (##) , 113
interactive (Z#H) ,284

interpreted (EH#EH) ,284
floating point (%)

built-in function ([ElE&ER) ,96
object (4#) ,117

interpreter lock (HEEH4) , 183
interpreter shutdown (EHZEHHE) ,284
iterable (FERYH) | 284
iterator ([Eft%) ,284
floor division (| FEUEKE) ,282
280

iternextfunc (C type), 267
K
free (C function), 219

Fortran contiguous (Fortran &), 104,
freefunc (Ctype), 267

freeze utility (B TE) ,69
frozenset (&ﬁ%’%é\)

key function (%) ,284
KeyboardInterrupt ([EJZ#4) , 53,54
keyword argument (B#£55%) ,285
(4) .
object (41F) , 147 1 ambda. 285
function annotation (& R[EFE) ,282 L;?L ;és
function (®=R) ,282 len ’
object (4#) , 148
G

garbage collection (Hrig[ENK) , 282
generator expression ([FJ4 BEHR) , 282,
283

generator ([El4 %) ,282

145, 148
generator iterator ([E4HBEIRE) 282

built-in function ([EIZ &) , 99, 143,
generic function (EAER) ,283

generic type (ZAAM[FE]) ,283
getattrfunc (Ctype), 267
getattrofunc (C type), 267

getbufferproc (C type), 267

built-in function (KZE®ER) ,97
lenfunc (C type), 267
getiterfunc (Ctype), 267
GIL, 283

bulit-in function ([FJZZR) ,89
list comprehension (& 7|4 &
list (7)) ,285

W?Fljﬁﬁ) ’285
object (##) , 142

loader (#FANE) ,285

locale encoding (E¥E 4) , 285
183, 283
H

lock, interpreter (44. HE#) , 183
long integer (&ZE#)
object (##) ,113
global interpreter lock (&3 = E4) ,

LONG_MAX (C macro), 114

M

hashfunc (C type), 267

magic
hash-based pyc (?ﬁ?{%%% pyc) ,283

hashable (7 ([Elf) , 283
hash (?E)

method (F#) ,285
magic method (AT FiE) ,285
main (), 179, 181
malloc (C function), 219
mapping (#8k) , 285
built-in function ([El&ZER) , 246
bulit-in function ([ElZZR) , 88
IDLE, 283

object (##) , 144
immutable (R &) , 283

memoryview (LIEEARE)
import path (B AEKAE) ,283
importer (I AN&) ,284

object (#1#) , 164
importing (3| \) , 284

incr_item(), 10, 11
initproc (C type), 267
inquiry (Ctype), 272

instancemethod

meta path finder (TTHELEFHE) 285
metaclass (THE]) ,285
METH_CLASS (C macro), 234
METH_COEXIST (C macro), 234
METH_FASTCALL (C macro), 233
METH_KEYWORDS (C macro), 233
METH_METHOD (C macro), 234
METH_NOARGS (C macro), 234
object (##) , 150
int

METH_O (C macro), 234

METH_STATIC (C macro), 234
METH_VARARGS (C macro), 233
%5l

286

method resolution order (FEMAHEF) ,

319

The Python/C API, £[F) 3.11.8

The Python/C API, £[F) 3.11.8

MethodType (types #ALH) , 148, 150, 154
method (F) , 286

magic, 285

object (##) , 150

special, 290
module spec (M) ,286
modules (sys W) , 66,178
module (##4L) , 286

__main_ ,11

builtins ([F1&) , 11

object (##) , 154

search (##) path (B£L) ,11

signal (F#l%%) , 53,54

sys, 11
MRO, 286
mutable (&Y H) ,286

N

named tuple (Mf4& JGAL) ,286
namespace package (# & XM EH) , 286
namespace (&% =) ,286
nested scope (;ﬁcﬂkﬁzmﬁ) , 287
new-style class (F#[F)) ,287
newfunc (C type), 267
None

object (##) ,113
numeric (%ME)

object (#fF) ,113

O

object (H4l)
module (#41) , 154
object (##) ,287
bytearray (ﬁﬁ:?ﬂ$§ﬂ) , 122
bytes (fLyt#l) , 120
Capsule, 165
code (#2X#) , 151
complex number ([El%) ,119
dictionary (F4#) , 144
file (%) ,153
floating point (J#%) ,117
frozenset (/}'Ez?‘::%/ﬁ\) , 147
function (IZJ:’EU , 148
instancemethod, 150
integer (%) ,113
list (#7]) , 142
long integer (Ei’fé_‘ﬁ() , 113
mapping (¥#k) | 144
memoryview (FIEEAE) , 164
method (F i) , 150
None, 113
numeric (#{&) ,113
sequence (J7%]) , 120
set (£4) ,147
tuple (Jo#l) , 140
type (E‘i) , 6,109
objobjargproc (C type), 268
objobjproc (C type), 268

overflowError (WZEFIH) , 114,115

P

package variable (B###)
__all_,66
package (&) ,287
parameter (£%) ,287
PATH, 12
path based finder (FHERBEH Fipit) ,288
path entry finder (BRIEE S %) , 287
path entry hook (Z81EHI[E]) , 288
path entry (BARIEEH) ,287
path-like object (K4 H) , 288
path (sys 4F) , 11,178,180
path (#1%)
module (##l) search (#&) ,11
4l search ($##2) ,178,180
PEP, 288
platform (sys ##¥) , 181
portion (#4) ,288
positional argument ({L % 3|#) ,288
pow
built-in function ([El&EER) , 95,96
provisional API (¥4T API) ,288
provisional package (¥4TE#) , 288
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 191
Py_ALWAYS_INLINE (C macro), 4
Py_AtExit (C function), 66
Py_AuditHookFunction (C type), 65
Py_BEGIN_ALLOW_THREADS (C macro), 183, 186
Py_BLOCK_THREADS (C macro), 186
Py_buffer (Ctype), 102
Py_buffer.buf (C member), 102
Py_buffer.format (C member), 102
Py_buffer.internal (C member), 103
Py_buffer.itemsize (C member), 102
Py_buffer.len (C member), 102
Py_buffer.ndim (C member), 102
Py_buffer.ob]j (Cmember), 102
Py_buffer.readonly (C member), 102
Py_buffer.shape (C member), 103
Py_buffer.strides (C member), 103
Py_buffer.suboffsets (C member), 103
Py_Buildvalue (C function), 77
Py_BytesMain (C function), 39
Py_BytesWarningFlag (Cvar), 176
Py_CHARMASK (C macro), 5
Py_CLEAR (C function), 46
Py_CompileString (C function), 41, 42
Py_CompileStringExFlags (C function), 42
Py_CompileStringFlags (C function), 41
Py_CompileStringObject (C function), 41
Py_complex (Ctype), 119
Py_DEBUG (C macro), 12
Py_DebugFlag (Cvar), 176
Py_DecodeLocale (C function), 62
Py_DECREF (C function), 7, 46

320

#5l

The Python/C API, £[F) 3.11.8

Py_DecRef (C function), 46
Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (Cvar), 176
Py_Ellipsis (Cvar), 164
Py_EncodeLocale (C function), 63
Py_END_ALLOW_THREADS (C macro), 183, 186
Py_EndInterpreter (C function), 191
Py_EnterRecursiveCall (C function), 56
Py_EQ (C macro), 254

Py_eval_input (Cvar), 42

Py_Exit (C function), 66
Py_ExitStatusException (C function), 199
Py_False (Cvar), 116

Py_FatalError (C function), 66
Py_FatalError (), 181
Py_FdIsInteractive (C function), 61
Py_file_input (Cvar), 42

Py_Finalize (C function), 178
Py_FinalizeEx (C function), 66, 178, 190, 191
Py_FrozenFlag (Cvar), 176

Py_GE (C macro), 254

Py_GenericAlias (C function), 174
Py_GenericAliasType (Cvar), 174
Py_GetArgcArgv (C function), 216
Py_GetBuildInfo (C function), 181
Py_GetCompiler (C function), 181
Py_GetCopyright (C function), 181
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 12, 179
Py_GetPath (C function), 12, 180
Py_GetPath (), 179, 180
Py_GetPlatform (C function), 181
Py_GetPrefix (C function), 12, 179
Py_GetProgramFullPath (C function), 12, 180
Py_GetProgramName (C function), 179
Py_GetPythonHome (C function), 182
Py_GetVersion (C function), 181

Py_GT (C macro), 254

Py_hash_t (Ctype), 81
Py_HashRandomizationFlag (Cvar), 176
Py_IgnoreEnvironmentFlag (Cvar), 176
Py_INCREF (C function), 7, 45

Py_IncRef (C function), 46
Py_Initialize (C function), 11,178, 190
Py_Initialize(), 179
Py_InitializeEx (C function), 178
Py_InitializeFromConfig (C function), 213
Py_InspectFlag (Cvar), 177
Py_InteractiveFlag (Cvar), 177

Py_1Is (C function), 230

Py_IS_TYPE (C function), 231

Py_IsFalse (C function), 231
Py_IsInitialized (C function), 12, 178
Py_TIsNone (C function), 230
Py_IsolatedFlag (Cvar), 177
Py_IsTrue (C function), 231

Py_LE (C macro), 254
Py_LeaveRecursiveCall (C function), 56

Py_LegacyWindowsFSEncodingFlag (C var),
177

Py_LegacyWindowsStdioFlag (Cvar), 177

Py_LIMITED_API (C macro), 13

Py_LT (C macro), 254

Py_Main (C function), 39

PY_MAJOR_VERSION (C macro), 275

Py_MAX (C macro), 5

Py_MEMBER_SIZE (C macro), 5

PY_MICRO_VERSION (C macro), 275

Py_MIN (C macro), 5

PY_MINOR_VERSION (C macro), 275

Py_mod_create (C macro), 157

Py_mod_exec (C macro), 158

Py_NE (C macro), 254

Py_NewInterpreter (C function), 190

Py_NewRef (C function), 45

Py_NO_INLINE (C macro), 5

Py_None (Cvar), 113

Py_NoSiteFlag (Cvar), 177

Py_NotImplemented (C var), 85

Py_NoUserSiteDirectory (Cvar), 177

Py_OpenCodeHookFunction (C type), 153

Py_OptimizeFlag (Cvar), 177

Py_PreInitialize (C function), 202

Py_PreInitializeFromArgs (C function), 202

Py_PreInitializeFromBytesArgs (C func-
tion), 202

Py_PRINT_RAW (C macro), 85, 154

Py_QuietFlag (Cvar), 177

Py_REFCNT (C function), 231

PY_RELEASE_LEVEL (C macro), 275

PY_RELEASE_SERIAL (C macro), 275

Py_ReprEnter (C function), 57

Py_ReprLeave (C function), 57

Py_RETURN_FALSE (C macro), 116

Py_RETURN_NONE (C macro), 113

Py_RETURN_NOTIMPLEMENTED (C macro), 85

Py_RETURN_RICHCOMPARE (C macro), 254

Py_RETURN_TRUE (C macro), 116

Py_RunMain (C function), 216

Py_SET_REFCNT (C function), 231

Py_SET_SIZE (C function), 231

Py_SET_TYPE (C function), 231

Py_SetPath (C function), 180

Py_SetPath (), 180

Py_SetProgramName (C function), 12, 179

Py_SetProgramName (), 178180

Py_SetPythonHome (C function), 182

Py_SetStandardStreamEncoding (C function),
179

Py_single_input (Cvar), 42

Py_SIZE (C function), 231

Py_ssize_t (Ctype), 10

PY_SSIZE_T_MAX (C macro), 115

Py_STRINGIFY (C macro), 5

Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro),
250

gL]

321

The Python/C API, £[F) 3.11.8

Py_TPFLAGS_BASETYPE (C macro), 248
Py_TPFLAGS_BYTES_SUBCLASS (C macro), 249
Py_TPFLAGS_DEFAULT (C macro), 249
Py_TPFLAGS_DICT_SUBCLASS (C macro), 250
Py_TPFLAGS_DISALLOW_INSTANTIATION (C
macro), 250
Py_TPFLAGS_HAVE_FINALIZE (C macro), 250
Py_TPFLAGS_HAVE_GC (C macro), 249
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 250
Py_TPFLAGS_HEAPTYPE (C macro), 248
Py_TPFLAGS_IMMUTABLETYPE (C macro), 250
Py_TPFLAGS_LIST_SUBCLASS (C macro), 249
Py_TPFLAGS_LONG_SUBCLASS (C macro), 249
Py_TPFLAGS_MAPPING (C macro), 250
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro),
249
Py_TPFLAGS_READY (C macro), 249
Py_TPFLAGS_READYING (C macro), 249
Py_TPFLAGS_SEQUENCE (C macro), 251
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 249
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 250
Py_TPFLAGS_UNICODE_SUBCLASS (C macro),
249
Py_tracefunc (Ctype), 192
Py_True (Cvar), 116
Py_tss_NEEDS_INIT (C macro), 194
Py_tss_t (Ctype), 194
Py_TYPE (C function), 231
Py_UCS1 (Ctype), 123
Py_UCS2 (Ctype), 123
Py_UCS4 (Ctype), 123
Py_uhash_t (Ctype), 81
Py_UNBLOCK_THREADS (C macro), 187
Py_UnbufferedStdioFlag (Cvar), 177
Py_UNICODE (C type), 123
Py_UNICODE_IS_HIGH_SURROGATE (C macro),
127
Py_UNICODE_IS_LOW_SURROGATE (C macro),
127
Py_UNICODE_IS_SURROGATE (C macro), 127
Py_UNICODE_ISALNUM (C function), 126
Py_UNICODE_ISALPHA (C function), 126
Py_UNICODE_ISDECIMAL (C function), 126
Py_UNICODE_ISDIGIT (C function), 126
Py_UNICODE_ISLINEBREAK (C function), 126
Py_UNICODE_ISLOWER (C function), 126
Py_UNICODE_ISNUMERIC (C function), 126
Py_UNICODE_ISPRINTABLE (C function), 126
Py_UNICODE_TISSPACE (C function), 126
Py_UNICODE_ISTITLE (C function), 126
Py_UNICODE_ISUPPER (C function), 126
Py_UNICODE_JOIN_SURROGATES (C macro), 127
Py_UNICODE_TODECIMAL (C function), 127
Py_UNICODE_TODIGIT (C function), 127
Py_UNICODE_TOLOWER (C function), 126
Py_UNICODE_TONUMERIC (C function), 127
Py_UNICODE_TOTITLE (C function), 126
Py_UNICODE_TOUPPER (C function), 126

Py_UNREACHABLE (C macro), 5

Py_UNUSED (C macro), 6

Py_VaBuildvalue (C function), 79

PY VECTORCALL_ARGUMENTS_OFFSET (o
macro), 90

Py_VerboseFlag (Cvar), 177

Py_Version (Cvar), 276

PY_VERSION_HEX (C macro), 275

Py_VISIT (C function), 272

Py_XDECREF (C function), 11, 46

Py_XINCREF (C function), 45

Py_XNewRef (C function), 45

PyAIter_Check (C function), 100

PyAnySet_Check (C function), 147

PyAnySet_CheckExact (C function), 147

PyArg_Parse (C function), 76

PyArg_ParseTuple (C function), 76

PyArg_ParseTupleAndKeywords (C function),
76

PyArg_UnpackTuple (C function), 76

PyArg_ValidateKeywordArguments (C func-
tion), 76

PyArg_VaParse (C function), 76

PyArg_VaParseTupleAndKeywords (C func-
tion), 76

PyASCIIObject (Ctype), 123

PyAsyncMethods (C type), 266

PyAsyncMethods.am_aiter (C member), 266

PyAsyncMethods.am_anext (C member), 266

PyAsyncMethods.am_await (C member), 266

PyAsyncMethods.am_send (C member), 266

PyBool_Check (C function), 116

PyBool_FromLong (C function), 117

PyBool_Type (Cvar), 116

PyBUF_ANY_CONTIGUOUS (C macro), 105

PyBUF_C_CONTIGUOUS (C macro), 105

PyBUF_CONTIG (C macro), 105

PyBUF_CONTIG_RO (C macro), 105

PyBUF_F_CONTIGUOUS (C macro), 105

PyBUF_FORMAT (C macro), 104

PyBUF_FULL (C macro), 105

PyBUF_FULL_RO (C macro), 105

PyBUF_INDIRECT (C macro), 104

PyBUF_MAX_NDIM (C macro), 103

PyBUF_ND (C macro), 104

PyBUF_READ (C macro), 164

PyBUF_RECORDS (C macro), 105

PyBUF_RECORDS_RO (C macro), 105

PyBUF_SIMPLE (C macro), 104

PyBUF_STRIDED (C macro), 105

PyBUF_STRIDED_RO (C macro), 105

PyBUF_STRIDES (C macro), 104

PyBUF_WRITABLE (C macro), 104

PyBUF_WRITE (C macro), 164

PyBuffer_FillContiguousStrides (C func-
tion), 108

PyBuffer_FillInfo (C function), 108

PyBuffer_ FromContiguous (C function), 107

322

#5l

The Python/C API, £[F) 3.11.8

PyBuffer_GetPointer (C function), 107
PyBuffer_IsContiguous (C function), 107
PyBuffer_Release (C function), 107
PyBuffer_ SizeFromFormat (C function), 107
PyBuffer_ToContiguous (C function), 107
PyBufferProcs (Ctype), 101, 265
PyBufferProcs.bf_getbuffer (C member),
265
PyBufferProcs.bf_releasebuffer (C mem-
ber), 265
PyByteArray_AS_STRING (C function), 123
PyByteArray_AsString (C function), 122
PyByteArray_Check (C function), 122
PyByteArray_CheckExact (C function), 122
PyByteArray_Concat (C function), 122
PyByteArray_FromObject (C function), 122
PyByteArray_FromStringAndSize (C func-
tion), 122
PyByteArray_GET_SIZE (C function), 123
PyByteArray_Resize (C function), 122
PyByteArray_Size (C function), 122
PyByteArray_Type (Cvar), 122
PyByteArrayObject (C type), 122
PyBytes_AS_STRING (C function), 121
PyBytes_AsString (C function), 121
PyBytes_AsStringAndSize (C function), 121
PyBytes_Check (C function), 120
PyBytes_CheckExact (C function), 120
PyBytes_Concat (C function), 121
PyBytes_ConcatAndDel (C function), 122
PyBytes_FromFormat (C function), 120
PyBytes_FromFormatV (C function), 121
PyBytes_FromObject (C function), 121
PyBytes_FromString (C function), 120
PyBytes_FromStringAndSize (C function), 120
PyBytes_GET_SIZE (C function), 121
PyBytes_Size (C function), 121
PyBytes_Type (Cvar), 120
PyBytesObject (Ctype), 120
PyCallable_Check (C function), 94
PyCallIter_Check (C function), 161
PyCallIter_New (C function), 161
PyCallIter_Type (Cvar), 161
PyCapsule (Ctype), 165
PyCapsule_CheckExact (C function), 166
PyCapsule_Destructor (Ctype), 165
PyCapsule_GetContext (C function), 166
PyCapsule_GetDestructor (C function), 166
PyCapsule_GetName (C function), 166
PyCapsule_GetPointer (C function), 166
PyCapsule_Import (C function), 166
PyCapsule_IsValid (C function), 166
PyCapsule_New (C function), 166
PyCapsule_SetContext (C function), 167
PyCapsule_SetDestructor (C function), 167
PyCapsule_SetName (C function), 167
PyCapsule_SetPointer (C function), 167
PyCell_Check (C function), 151

PyCell_GET (C function), 151
PyCell_Get (C function), 151
PyCell_New (C function), 151
PyCell_SET (C function), 151
PyCell_Set (C function), 151
PyCell_Type (Cvar), 151
PyCellObject (Ctype), 151
PyCFunction (C type), 232
PyCFunction_New (C function), 235
PyCFunction_NewEx (C function), 235
PyCFunctionWithKeywords (C type), 232
PyCMethod (C type), 232
PyCMethod_New (C function), 234
PyCode_Addr2Line (C function), 152
PyCode_Addr2Location (C function), 152
PyCode_Check (C function), 151
PyCode_GetCellvars (C function), 152
PyCode_GetCode (C function), 152
PyCode_GetFreevars (C function), 152
PyCode_GetNumFree (C function), 151
PyCode_GetVarnames (C function), 152
PyCode_New (C function), 151
PyCode_NewEmpty (C function), 152
PyCode_NewWithPosOnlyArgs (C function), 152
PyCode_Type (Cvar), 151
PyCodec_BackslashReplaceErrors (C func-
tion), 83
PyCodec_Decode (C function), 82
PyCodec_Decoder (C function), 83
PyCodec_Encode (C function), 82
PyCodec_Encoder (C function), 83
PyCodec_IgnoreErrors (C function), 83
PyCodec_IncrementalDecoder (C function), 83
PyCodec_IncrementalEncoder (C function), 83
PyCodec_KnownEncoding (C function), 82
PyCodec_LookupError (C function), 83
PyCodec_NameReplaceErrors (C function), 83
PyCodec_Register (C function), 82
PyCodec_RegisterError (C function), 83
PyCodec_ReplaceErrors (C function), 83
PyCodec_StreamReader (C function), 83
PyCodec_StreamWriter (C function), 83
PyCodec_StrictErrors (C function), 83
PyCodec_Unregister (C function), 82
PyCodec_XMLCharRefReplaceErrors (C func-
tion), 83
PyCodeObject (Ctype), 151
PyCompactUnicodeObject (C type), 123
PyCompilerFlags (C struct), 42
PyCompilerFlags.cf_feature_version (C
member), 42
PyCompilerFlags.cf_flags (C member), 42
PyComplex_AsCComplex (C function), 120
PyComplex_Check (C function), 119
PyComplex_CheckExact (C function), 119
PyComplex_FromCComplex (C function), 119
PyComplex_FromDoubles (C function), 120
PyComplex_ImagAsDouble (C function), 120

gL]

323

The Python/C API, £[F) 3.11.8

PyComplex_RealAsDouble (C function), 120
PyComplex_Type (Cvar), 119
PyComplexObject (Ctype), 119
PyConfig (C type), 203
PyConfig_Clear (C function), 203
PyConfig_InitIsolatedConfig (C function),
203
PyConfig_InitPythonConfig (C function), 203
PyConfig_Read (C function), 203
PyConfig_SetArgv (C function), 203
PyConfig_SetBytesArgv (C function), 203
PyConfig_SetBytesString (C function), 203
PyConfig_SetString (C function), 203
PyConfig_SetWideStringList (C function),
203
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.

argv (C member), 204
base_exec_prefix (C member), 204
base_executable (C member), 204
base_prefix (C member), 204
buffered_stdio (C member), 205
PyConfig.bytes_warning (C member), 205
PyConfig.check_hash_pycs_mode (C mem-
ber), 205
PyConfig.code_debug_ranges
205
PyConfig.configure_c_stdio (C member),
205
PyConfig.dev_mode (C member), 206
PyConfig.dump_refs (C member), 206
PyConfig.exec_prefix (Cmember), 206
PyConfig.executable (C member), 206
PyConfig. faulthandler (C member), 206
PyConfig.filesystem_encoding (C member),
206
PyConfig.filesystem_errors
206
PyConfig.hash_seed (C member), 207
PyConfig.home (C member), 207
PyConfig.import_time (C member), 207
PyConfig. inspect (C member), 207
PyConfig.install_signal_handlers (o
member), 207
PyConfig.interactive (C member), 207
PyConfig.isolated (C member), 207
PyConfig.legacy_windows_stdio (C mem-
ber), 208
PyConfig.malloc_stats (C member), 208
PyConfig.module_search_paths (C member),
208
PyConfig.module_search_paths_set C
member), 208
PyConfig.optimization_level (C member),
209
PyConfig.orig_argv (C member), 209
PyConfig.parse_argv (C member), 209
PyConfig.parser_debug (C member), 209
PyConfig.pathconfig_warnings (C member),
209

(C member),

(C member),

platlibdir (C member), 208
prefix (C member), 209
program_name (C member), 210
pycache_prefix (C member), 210
pythonpath_env (C member), 208
quiet (C member), 210
run_command (C member), 210
run_filename (C member), 210
run_module (C member), 210
safe_path (C member), 204
show_ref_count (C member), 210
PyConfig.site_import (C member), 211
PyConfig.skip_source_first_line (Cmem-
ber), 211
PyConfig.stdio_encoding (C member), 211
PyConfig.stdio_errors (C member), 211
PyConfig.tracemalloc (C member), 211
PyConfig.use_environment (C member), 211
PyConfig.use_hash_seed (C member), 207
PyConfig.user_site_directory (C member),
212
PyConfig.verbose (C member), 212
PyConfig.warn_default_encoding (C mem-
ber), 205
PyConfig.warnoptions (C member), 212
PyConfig.write_bytecode (C member), 212
PyConfig.xoptions (C member), 212
PyContext (C type), 169
PyContext_CheckExact (C function), 169
PyContext_Copy (C function), 170
PyContext_CopyCurrent (C function), 170
PyContext_Enter (C function), 170
PyContext_Exit (C function), 170
PyContext_New (C function), 170
PyContext_Type (Cvar), 169
PyContextToken (C type), 169
PyContextToken_CheckExact (C function), 170
PyContextToken_Type (C var), 169
PyContextVar (C type), 169
PyContextVar_CheckExact (C function), 169
PyContextVar_Get (C function), 170
PyContextVar_New (C function), 170
PyContextVar_Reset (C function), 170
PyContextVar_Set (C function), 170
PyContextVar_Type (C var), 169
PyCoro_CheckExact (C function), 169
PyCoro_New (C function), 169
PyCoro_Type (C var), 169
PyCoroObject (C type), 169
PyDate_Check (C function), 171
PyDate_CheckExact (C function), 171
PyDate_FromDate (C function), 172
PyDate_FromTimestamp (C function), 174
PyDateTime_Check (C function), 171
PyDateTime_CheckExact (C function), 171
PyDateTime_Date (Ctype), 171
PyDateTime_DATE_GET_FOLD (C function), 173
PyDateTime_DATE_GET_HOUR (C function), 173

PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.

324

#5l

The Python/C API, £[F) 3.11.8

PyDateTime_DATE_GET_MICROSECOND (C func-
tion), 173
PyDateTime_DATE_GET_MINUTE (C function),
173
PyDateTime_DATE_GET_SECOND (C function),
173
PyDateTime_DATE_GET_TZINFO (C function),
173
PyDateTime_DateTime (C type), 171
PyDateTime_DateTimeType (Cvar), 171
PyDateTime_DateType (Cvar), 171
PyDateTime_Delta (Ctype), 171
PyDateTime_DELTA_GET_DAYS (C function), 173
PyDateTime_DELTA_GET_MICROSECONDS (C
function), 174
PyDateTime_DELTA_GET_SECONDS (C function),
174
PyDateTime_DeltaType (Cvar), 171
PyDateTime_FromDateAndTime (C function),
172
PyDateTime_FromDateAndTimeAndFold (C
function), 172
PyDateTime_FromTimestamp (C function), 174
PyDateTime_GET_DAY (C function), 173
PyDateTime_GET_MONTH (C function), 173
PyDateTime_GET_YEAR (C function), 173
PyDateTime_Time (C type), 171
PyDateTime_TIME_GET_FOLD (C function), 173
PyDateTime_TIME_GET_HOUR (C function), 173
PyDateTime_TIME_GET_MICROSECOND (C func-
tion), 173
PyDateTime_TIME_GET_MINUTE (C function),
173
PyDateTime_TIME_GET_SECOND (C function),
173
PyDateTime_TIME_GET_TZINFO (C function),
173
PyDateTime_TimeType (Cvar), 171
PyDateTime_TimeZone_UTC (Cvar), 171
PyDateTime_TZInfoType (Cvar), 171
PyDelta_Check (C function), 172
PyDelta_CheckExact (C function), 172
PyDelta_FromDSU (C function), 172
PyDescr_IsData (C function), 162
PyDescr_NewClassMethod (C function), 162
PyDescr_NewGetSet (C function), 162
PyDescr_NewMember (C function), 162
PyDescr_NewMethod (C function), 162
PyDescr_NewWrapper (C function), 162
PyDict_Check (C function), 144
PyDict_CheckExact (C function), 144
PyDict_Clear (C function), 144
PyDict_Contains (C function), 144
PyDict_Copy (C function), 144
PyDict_DelItem (C function), 144
PyDict_DelItemString (C function), 145
PyDict_GetItem (C function), 145
PyDict_GetItemString (C function), 145

PyDict_GetItemWithError (C function), 145
PyDict_TItems (C function), 145
PyDict_Keys (C function), 145
PyDict_Merge (C function), 146
PyDict_MergeFromSeq2 (C function), 146
PyDict_New (C function), 144
PyDict_Next (C function), 145
PyDict_SetDefault (C function), 145
PyDict_SetItem (C function), 144
PyDict_SetItemString (C function), 144
PyDict_Size (C function), 145
PyDict_Type (Cvar), 144
PyDict_Update (C function), 146
PyDict_Values (C function), 145
PyDictObject (Ctype), 144
PyDictProxy_New (C function), 144
PyDoc_STR (C macro), 6
PyDoc_STRVAR (C macro), 6
PyErr_BadArgument (C function), 48
PyErr_BadInternalCall (C function), 50
PyErr_CheckSignals (C function), 53
PyErr_Clear (C function), 10, 11,47
PyErr_ExceptionMatches (C function), 11,51
PyErr_Fetch (C function), 52
PyErr_Format (C function), 48
PyErr_FormatV (C function), 48
PyErr_GetExcInfo (C function), 53
PyErr_GetHandledException (C function), 52
PyErr_GivenExceptionMatches (C function),
51
PyErr_NewException (C function), 54
PyErr_NewExceptionWithDoc (C function), 55
PyErr_NoMemory (C function), 48
PyErr_NormalizeException (C function), 52
PyErr_Occurred (C function), 10, 51
PyErr_Print (C function), 48
PyErr_PrintEx (C function), 47
PyErr_ResourceWarning (C function), 51
PyErr_Restore (C function), 52
PyErr_SetExcFromWindowsErr (C function), 49
PyErr_SetExcFromWindowsErrWithFilename
(C function), 50

PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 49

PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 49
PyErr_SetExcInfo (C function), 53
PyErr_SetFromErrno (C function), 48
PyErr_SetFromErrnoWithFilename (C func-
tion), 49
PyErr_SetFromErrnoWithFilenameObject
(C function), 49
PyErr_SetFromErrnoWithFilenameObjects
(C function), 49
PyErr_SetFromWindowsErr (C function), 49
PyErr_SetFromWindowsErrWithFilename (C
function), 49
PyErr_SetHandledException (C function), 53

gL]

325

The Python/C API, £[F) 3.11.8

PyErr_SetImportError (C function), 50
PyErr_SetImportErrorSubclass (C function),
50
PyErr_SetInterrupt (C function), 54
PyErr_SetInterruptEx (C function), 54
PyErr_SetNone (C function), 48
PyErr_SetObject (C function), 48
PyErr_SetString (C function), 10, 48
PyErr_SyntaxLocation (C function), 50
PyErr_SyntaxLocationEx (C function), 50
PyErr_SyntaxLocationObject (C function), 50
PyErr_WarnEx (C function), 50
PyErr_WarnExplicit (C function), 51
PyErr_WarnExplicitObject (C function), 51
PyErr_WarnFormat (C function), 51
PyErr_WriteUnraisable (C function), 48
PyEval_AcquireLock (C function), 189
PyEval_AcquireThread (C function), 189
PyEval_AcquireThread(), 185
PyEval_EvalCode (C function), 42
PyEval_EvalCodeEx (C function), 42
PyEval_EvalFrame (C function), 42
PyEval_EvalFrameEx (C function), 42
PyEval_GetBuiltins (C function), 82
PyEval_GetFrame (C function), 82
PyEval_GetFuncDesc (C function), 82
PyEval_GetFuncName (C function), 82
PyEval_GetGlobals (C function), 82
PyEval_GetLocals (C function), 82
PyEval_InitThreads (C function), 185
PyEval_InitThreads (), 178
PyEval_MergeCompilerFlags (C function), 42
PyEval_ReleaseLock (C function), 190
PyEval_ReleaseThread (C function), 189
PyEval_ReleaseThread (), 185
PyEval_RestoreThread (C function), 183, 185
PyEval_RestoreThread (), 185
PyEval_SaveThread (C function), 183, 185
PyEval_SaveThread (), 185
PyEval_SetProfile (C function), 193
PyEval_SetTrace (C function), 193
PyEval_ThreadsInitialized (C function), 185
PyExc_ArithmeticError (Cvar), 57
PyExc_AssertionError (Cvar), 57
PyExc_AttributeError (Cvar), 57
PyExc_BaseException (Cvar), 57
PyExc_BlockingIOError (Cvar), 57
PyExc_BrokenPipeError (Cvar), 57
PyExc_BufferError (Cvar), 57
PyExc_BytesWarning (C var), 59
PyExc_ChildProcessError (Cvar), 57
PyExc_ConnectionAbortedError (Cvar), 57
PyExc_ConnectionError (Cvar), 57
PyExc_ConnectionRefusedError (Cvar), 57
PyExc_ConnectionResetError (Cvar), 57
PyExc_DeprecationWarning (C var), 59
PyExc_EnvironmentError (C var), 58
PyExc_EOFError (Cvar), 57

PyExc_Exception (Cvar), 57
PyExc_FileExistsError (Cvar), 57
PyExc_FileNotFoundError (Cvar), 57
PyExc_FloatingPointError (Cvar), 57
PyExc_FutureWarning (C var), 59
PyExc_GeneratorExit (Cvar), 57
PyExc_ImportError (Cvar), 57
PyExc_ImportWarning (C var), 59
PyExc_IndentationError (Cvar), 57
PyExc_IndexError (Cvar), 57
PyExc_InterruptedError (Cvar), 57
PyExc_IOError (Cvar), 58
PyExc_IsADirectoryError (Cvar), 57
PyExc_KeyboardInterrupt (Cvar), 57
PyExc_KeyError (Cvar), 57
PyExc_LookupError (Cvar), 57
PyExc_MemoryError (Cvar), 57
PyExc_ModuleNotFoundError (Cvar), 57
PyExc_NameError (Cvar), 57
PyExc_NotADirectoryError (Cvar), 57
PyExc_NotImplementedError (Cvar), 57
PyExc_OSError (Cvar), 57
PyExc_OverflowError (Cvar), 57
PyExc_PendingDeprecationWarning (C var),
59
PyExc_PermissionError (Cvar), 57
PyExc_ProcessLookupError (Cvar), 57
PyExc_RecursionError (Cvar), 57
PyExc_ReferenceError (Cvar), 57
PyExc_ResourceWarning (C var), 59
PyExc_RuntimeError (Cvar), 57
PyExc_RuntimeWarning (C var), 59
PyExc_StopAsyncIteration (Cvar), 57
PyExc_StopIteration (Cvar), 57
PyExc_SyntaxError (Cvar), 57
PyExc_SyntaxWarning (C var), 59
PyExc_SystemError (Cvar), 57
PyExc_SystemExit (C var), 57
PyExc_TabError (Cvar), 57
PyExc_TimeoutError (Cvar), 57
PyExc_TypeError (Cvar), 57
PyExc_UnboundLocalError (Cvar), 57
PyExc_UnicodeDecodeError (Cvar), 57
PyExc_UnicodeEncodeError (Cvar), 57
PyExc_UnicodeError (Cvar), 57
PyExc_UnicodeTranslateError (Cvar), 57
PyExc_UnicodeWarning (C var), 59
PyExc_UserWarning (C var), 59
PyExc_ValueError (Cvar), 57
PyExc_Warning (C var), 59
PyExc_WindowsError (Cvar), 58
PyExc_ZeroDivisionError (Cvar), 57
PyException_GetCause (C function), 55
PyException_GetContext (C function), 55
PyException_GetTraceback (C function), 55
PyException_SetCause (C function), 55
PyException_SetContext (C function), 55
PyException_SetTraceback (C function), 55

326

#5l

The Python/C API, £[F) 3.11.8

PyFile_FromFd (C function), 153
PyFile_GetLine (C function), 153
PyFile_SetOpenCodeHook (C function), 153
PyFile_WriteObject (C function), 153
PyFile_WriteString (C function), 154
PyFloat_AS_DOUBLE (C function), 117
PyFloat_AsDouble (C function), 117
PyFloat_Check (C function), 117
PyFloat_CheckExact (C function), 117
PyFloat_FromDouble (C function), 117
PyFloat_FromString (C function), 117
PyFloat_GetInfo (C function), 117
PyFloat_GetMax (C function), 117
PyFloat_GetMin (C function), 117
PyFloat_Pack2 (C function), 118
PyFloat_Pack4 (C function), 118
PyFloat_Pack8 (C function), 118
PyFloat_Type (Cvar), 117
PyFloat_Unpack?2 (C function), 118
PyFloat_Unpack4 (C function), 118
PyFloat_Unpack8 (C function), 118
PyFloatObject (Ctype), 117
PyFrame_Check (C function), 167
PyFrame_GetBack (C function), 167
PyFrame_GetBuiltins (C function), 167
PyFrame_GetCode (C function), 167
PyFrame_GetGenerator (C function), 168
PyFrame_GetGlobals (C function), 168
PyFrame_GetLasti (C function), 168
PyFrame_GetLineNumber (C function), 168
PyFrame_GetLocals (C function), 168
PyFrame_Type (Cvar), 167
PyFrameObject (Ctype), 167
PyFrozenSet_Check (C function), 147
PyFrozenSet_CheckExact (C function), 147
PyFrozenSet_New (C function), 147
PyFrozenSet_Type (Cvar), 147
PyFunction_Check (C function), 148
PyFunction_GetAnnotations (C function), 149
PyFunction_GetClosure (C function), 149
PyFunction_GetCode (C function), 149
PyFunction_GetDefaults (C function), 149
PyFunction_GetGlobals (C function), 149
PyFunction_GetModule (C function), 149
PyFunction_New (C function), 148
PyFunction_NewWithQualName (C function),
149
PyFunction_SetAnnotations (C function), 149
PyFunction_SetClosure (C function), 149
PyFunction_SetDefaults (C function), 149
PyFunction_Type (C var), 148
PyFunctionObject (C type), 148
PyGC_Collect (C function), 272
PyGC_Disable (C function), 272
PyGC_Enable (C function), 272
PyGC_IsEnabled (C function), 272
PyGen_Check (C function), 168
PyGen_CheckExact (C function), 168

PyGen_New (C function), 168
PyGen_NewWithQualName (C function), 168
PyGen_Type (C var), 168
PyGenObject (C type), 168
PyGetSetDef (C type), 236
PyGILState_Check (C function), 186
PyGILState_Ensure (C function), 186
PyGILState_GetThisThreadState (C func-
tion), 186
PyGILState_Release (C function), 186
PyHash_FuncDef (C type), 81
PyHash_FuncDef.hash_bits (C member), 81
PyHash_FuncDef .name (C member), 81
PyHash_FuncDef.seed_bits (C member), 81
PyHash_GetFuncDef (C function), 81
PyImport_AddModule (C function), 67
PyImport_AddModuleObject (C function), 67
PyImport_AppendInittab (C function), 69
PyImport_ExecCodeModule (C function), 67
PyImport_ExecCodeModuleEx (C function), 68
PyImport_ExecCodeModuleObject (C func-
tion), 68
PyImport_ExecCodeModuleWithPathnames
(C function), 68
PyImport_ExtendInittab (C function), 69
PyImport_FrozenModules (C var), 69
PyImport_GetImporter (C function), 68
PyImport_GetMagicNumber (C function), 68
PyImport_GetMagicTag (C function), 68
PyImport_GetModule (C function), 68
PyImport_GetModuleDict (C function), 68
PyImport_Import (C function), 67
PyImport_ImportFrozenModule (C function),
69
PyImport_ImportFrozenModuleObject (C
function), 68
PyImport_ImportModule (C function), 66
PyImport_ImportModuleEx (C function), 66
PyImport_ImportModuleLevel (C function), 67
PyImport_ImportModuleLevelObject (o
function), 66
PyImport_ImportModuleNoBlock (C function),
66
PyImport_ReloadModule (C function), 67
PyIndex_Check (C function), 97
PyInstanceMethod_Check (C function), 150
PyInstanceMethod_Function (C function), 150
PyInstanceMethod_GET_FUNCTION (C func-
tion), 150
PyInstanceMethod_New (C function), 150
PyInstanceMethod_Type (C var), 150
PyInterpreterState (Ctype), 185
PyInterpreterState_Clear (C function), 187
PyInterpreterState_Delete (C function), 187
PyInterpreterState_Get (C function), 188
PyInterpreterState_GetDict (C function),
188
PyInterpreterState_GetID (C function), 188

gL]

327

The Python/C API, £[F) 3.11.8

PyInterpreterState_Head (C function), 193
PyInterpreterState_Main (C function), 193
PyInterpreterState_New (C function), 187
PyInterpreterState_Next (C function), 193
PyInterpreterState_ThreadHead (C func-
tion), 193
PyIter_Check (C function), 100
PyIter_Next (C function), 100
PyIter_Send (C function), 101
PyList_Append (C function), 143
PyList_AsTuple (C function), 144
PyList_Check (C function), 142
PyList_CheckExact (C function), 142
PyList_GET_ITEM (C function), 143
PyList_GET_SIZE (C function), 143
PyList_GetItem (C function), 8, 143
PyList_GetSlice (C function), 143
PyList_Insert (C function), 143
PyList_New (C function), 142
PyList_Reverse (C function), 144
PyList_SET_ITEM (C function), 143
PyList_SetItem (C function), 7, 143
PyList_SetSlice (C function), 143
PyList_Size (C function), 143
PyList_Sort (C function), 143
PyList_Type (Cvar), 142
PyListObject (Ctype), 142
PyLong_AsDouble (C function), 116
PyLong_AsLong (C function), 114
PyLong_AsLongAndOverflow (C function), 114
PyLong_AsLongLong (C function), 115
PyLong_AsLongLongAndOverflow (C function),
115
PyLong_AsSize_t (C function), 115
PyLong_AsSsize_t (C function), 115
PyLong_AsUnsignedLong (C function), 115
PyLong_AsUnsignedLongLong (C function), 115
PyLong_AsUnsignedLongLongMask (C func-
tion), 116
PyLong_AsUnsignedLongMask (C function), 115
PyLong_AsVoidPtr (C function), 116
PyLong_Check (C function), 113
PyLong_CheckExact (C function), 113
PyLong_FromDouble (C function), 114
PyLong_FromLong (C function), 113
PyLong_FromLongLong (C function), 114
PyLong_FromSize_t (C function), 114
PyLong_FromSsize_t (C function), 114
PyLong_FromString (C function), 114
PyLong_FromUnicodeObject (C function), 114
PyLong_FromUnsignedLong (C function), 113
PyLong_FromUnsignedLongLong (C function),
114
PyLong_FromVoidPtr (C function), 114
PyLong_Type (Cvar), 113
PyLongObject (Ctype), 113
PyMapping_Check (C function), 99
PyMapping_DelItem (C function), 99

PyMapping_DelItemString (C function), 99
PyMapping_GetItemString (C function), 99
PyMapping_HasKey (C function), 99
PyMapping_HasKeyString (C function), 99
PyMapping_Items (C function), 100
PyMapping_Keys (C function), 100
PyMapping_Length (C function), 99
PyMapping_SetItemString (C function), 99
PyMapping_Size (C function), 99
PyMapping_Values (C function), 100
PyMappingMethods (C type), 263
PyMappingMethods.mp_ass_subscript (C
member), 264
PyMappingMethods.mp_length (C member),
263
PyMappingMethods.mp_subscript (C mem-
ber), 263
PyMarshal_ReadLastObjectFromFile (&
function), 70
PyMarshal_ReadLongFromFile (C function), 70
PyMarshal_ReadObjectFromFile (C function),
70
PyMarshal_ReadObjectFromString (C func-
tion), 70
PyMarshal_ReadShortFromFile (C function),
70
PyMarshal_WriteLongToFile (C function), 70
PyMarshal_WriteObjectToFile (C function),
70
PyMarshal_WriteObjectToString (C func-
tion), 70
PyMem_Calloc (C function), 221
PyMem_Del (C function), 222
PYMEM_DOMAIN_MEM (C macro), 224
PYMEM_DOMAIN_OBJ (C macro), 224
PYMEM_DOMAIN_RAW (C macro), 224
PyMem_Free (C function), 222
PyMem_GetAllocator (C function), 224
PyMem_Malloc (C function), 221
PyMem_New (C macro), 222
PyMem_RawCalloc (C function), 220
PyMem_RawFree (C function), 221
PyMem_RawMalloc (C function), 220
PyMem_RawRealloc (C function), 221
PyMem_Realloc (C function), 221
PyMem_Resize (C macro), 222
PyMem_SetAllocator (C function), 224
PyMem_SetupDebugHooks (C function), 225
PyMemAllocatorDomain (C type), 224
PyMemAllocatorEx (C type), 224
PyMember_GetOne (C function), 236
PyMember_SetOne (C function), 236
PyMemberDef (C type), 235
PyMemoryView_Check (C function), 164
PyMemoryView_FromBuffer (C function), 164
PyMemoryView_FromMemory (C function), 164
PyMemoryView_FromObject (C function), 164
PyMemoryView_GET_BASE (C function), 164

328

#5l

The Python/C API, £[F) 3.11.8

PyMemoryView_GET_BUFFER (C function), 164
PyMemoryView_GetContiguous (C function),
164
PyMethod_Check (C function), 150
PyMethod_Function (C function), 150
PyMethod_GET_FUNCTION (C function), 150
PyMethod_GET_SELF (C function), 150
PyMethod_New (C function), 150
PyMethod_Self (C function), 150
PyMethod_Type (Cvar), 150
PyMethodDef (C type), 233
PyMethodDef .ml_doc (C member), 233
PyMethodDef .ml_flags (C member), 233
PyMethodDef .ml_meth (C member), 233
PyMethodDef .ml_name (C member), 233
PyMODINIT_FUNC (C macro), 4
PyModule_AddFunctions (C function), 158
PyModule_AddIntConstant (C function), 160
PyModule_AddIntMacro (C macro), 160
PyModule_AddObject (C function), 159
PyModule_AddObjectRef (C function), 159
PyModule_AddStringConstant (C function),
160
PyModule_AddStringMacro (C macro), 160
PyModule_AddType (C function), 160
PyModule_Check (C function), 154
PyModule_CheckExact (C function), 154
PyModule_Create (C function), 156
PyModule_Create? (C function), 156
PyModule_ExecDef (C function), 158
PyModule_FromDefAndSpec (C function), 158
PyModule_FromDefAndSpec?2 (C function), 158
PyModule_GetDef (C function), 154
PyModule_GetDict (C function), 154
PyModule_GetFilename (C function), 155
PyModule_GetFilenameObject (C function),
154
PyModule_GetName (C function), 154
PyModule_GetNameObject (C function), 154
PyModule_GetState (C function), 154
PyModule_New (C function), 154
PyModule_NewObject (C function), 154
PyModule_SetDocString (C function), 158
PyModule_Type (Cvar), 154
PyModuleDef (C type), 155
PyModuleDef_Init (C function), 157
PyModuleDef_Slot (Ctype), 157
PyModuleDef_Slot.slot (C member), 157
PyModuleDef_Slot.value (C member), 157
PyModuleDef .m_base (C member), 155
PyModuleDef .m_clear (C member), 156
PyModuleDef .m_doc (C member), 155
PyModuleDef .m_free (C member), 156
PyModuleDef .m_methods (C member), 155
PyModuleDef .m_name (C member), 155
PyModuleDef .m_size (C member), 155
PyModuleDef .m_slots (C member), 155

PyModuleDef.m_slots.m_reload (C member),
155
PyModuleDef .m_traverse (C member), 156
PyNumber_Absolute (C function), 95
PyNumber_Add (C function), 94
PyNumber_And (C function), 95
PyNumber_AsSsize_t (C function), 97
PyNumber_Check (C function), 94
PyNumber_Divmod (C function), 95
PyNumber_Float (C function), 96
PyNumber_FloorDivide (C function), 94
PyNumber_Index (C function), 96
PyNumber_InPlaceAdd (C function), 95
PyNumber_InPlaceAnd (C function), 96
PyNumber_InPlaceFloorDivide (C function),
96
PyNumber_InPlaceLshift (C function), 96
PyNumber_InPlaceMatrixMultiply (C func-
tion), 95
PyNumber_InPlaceMultiply (C function), 95
PyNumber_InPlaceOr (C function), 96
PyNumber_InPlacePower (C function), 96
PyNumber_InPlaceRemainder (C function), 96
PyNumber_InPlaceRshift (C function), 96
PyNumber_InPlaceSubtract (C function), 95
PyNumber_InPlaceTrueDivide (C function), 96
PyNumber_InPlaceXor (C function), 96
PyNumber_Invert (C function), 95
PyNumber_Long (C function), 96
PyNumber_Lshift (C function), 95
PyNumber_ MatrixMultiply (C function), 94
PyNumber_ Multiply (C function), 94
PyNumber_Negative (C function), 95
PyNumber_Or (C function), 95
PyNumber_Positive (C function), 95
PyNumber_Power (C function), 95
PyNumber_Remainder (C function), 94
PyNumber_Rshift (C function), 95
PyNumber_Subtract (C function), 94
PyNumber_ToBase (C function), 97
PyNumber_TrueDivide (C function), 94
PyNumber_Xor (C function), 95
PyNumberMethods (C type), 261
PyNumberMethods.nb_absolute (C member),
262
PyNumberMethods
PyNumberMethods

.nb_add (C member), 262
.nb_and (C member), 263
PyNumberMethods.nb_bool (C member), 262
PyNumberMethods .nb_divmod (C member), 262
PyNumberMethods.nb_float (C member), 263
PyNumberMethods.nb_floor_divide (Cmem-
ber), 263
PyNumberMethods
PyNumberMethods
ber), 263
PyNumberMethods
ber), 263

.nb_index (C member), 263
.nb_inplace_add (C mem-

.nb_inplace_and (C mem-

gL]

329

The Python/C API, £[F) 3.11.8

PyNumberMethods.nb_inplace_floor_divideyObject_CallMethodObjArgs (C function), 93

(C member), 263
PyNumberMethods.nb_inplace_1lshift (C
member), 263

PyObject_CallMethodOneArqg (C function), 93
PyObject_CallNoArgs (C function), 92
PyObject_CallObject (C function), 92

PyNumberMethods.nb_inplace_matrix_multiByiGbject_Calloc (C function), 223

(C member), 263
PyNumberMethods.nb_inplace_multiply (C
member), 263
PyNumberMethods.nb_inplace_or (C mem-
ber), 263
PyNumberMethods.nb_inplace_power c
member), 263
PyNumberMethods.nb_inplace_remainder
(C member), 263
PyNumberMethods.nb_inplace_rshift (C
member), 263
PyNumberMethods.nb_inplace_subtract (C
member), 263

PyNumberMethods.nb_inplace_true_divide

(C member), 263
PyNumberMethods.nb_inplace_xor (C mem-

ber), 263
PyNumberMethods
PyNumberMethods

.nb_int (C member), 263
.nb_invert (C member), 262
PyNumberMethods.nb_1shift (C member), 262
PyNumberMethods.nb_matrix_multiply (C
member), 263
PyNumberMethods.nb_multiply (C member),
262
PyNumberMethods
262
PyNumberMethods
PyNumberMethods
262
PyNumberMethods
PyNumberMethods
262
PyNumberMethods
263
PyNumberMethods
PyNumberMethods
262
PyNumberMethods
ber), 263
PyNumberMethods.nb_xor (C member), 263
PyObject (C type), 230
PyObject_AsCharBuffer (C function), 108
PyObject_ASCII (C function), 87
PyObject_AsFileDescriptor (C function), 153
PyObject_AsReadBuffer (C function), 108
PyObject_AsWriteBuffer (C function), 108
PyObject_Bytes (C function), 87
PyObject_Call (C function), 92
PyObject_CallFunction (C function), 92
PyObject_CallFunctionObjArgs (C function),
93
PyObject_CallMethod (C function), 92
PyObject_CallMethodNoArgs (C function), 93

.nb_negative (C member),

.nb_or (C member), 263
.nb_positive (C member),

.nb_power (C member), 262
.nb_remainder (C member),

.nb_reserved (C member),

.nb_rshift (C member), 263
.nb_subtract (C member),

.nb_true_divide (C mem-

PyObject_CallOneArqg (C function), 92
PyObject_CheckBuffer (C function), 107
PyObject_CheckReadBuffer (C function), 108
PyObject_ClearWeakRefs (C function), 165
PyObject_CopyData (C function), 107
PyObject_Del (C function), 229
PyObject_DelAttr (C function), 86
PyObject_DelAttrString (C function), 86
PyObject_DelItem (C function), 89
PyObject_Dir (C function), 89
PyObject_Format (C function), 87
PyObject_Free (C function), 223
PyObject_GC_Del (C function), 271
PyObject_GC_IsFinalized (C function), 271
PyObject_GC_IsTracked (C function), 271
PyObject_GC_New (C macro), 271
PyObject_GC_NewVar (C macro), 271
PyObject_GC_Resize (Cmacro), 271
PyObject_GC_Track (C function), 271
PyObject_GC_UnTrack (C function), 271
PyObject_GenericGetAttr (C function), 86
PyObject_GenericGetDict (C function), 86
PyObject_GenericSetAttr (C function), 86
PyObject_GenericSetDict (C function), 87
PyObject_GetAIter (C function), 89
PyObject_GetArenaAllocator (C function),
227
PyObject_GetAttr (C function), 86
PyObject_GetAttrString (C function), 86
PyObject_GetBuffer (C function), 107
PyObject_GetItem (C function), 89
PyObject_GetIter (C function), 89
PyObject_HasAttr (C function), 85
PyObject_HasAttrString (C function), 85
PyObject_Hash (C function), 88
PyObject_HashNotImplemented (C function),
88
PyObject_HEAD (C macro), 230
PyObject_HEAD_INIT (C macro), 231
PyObject_Init (C function), 229
PyObject_InitVar (C function), 229
PyObject_IS_GC (C function), 271
PyObject_IsInstance (C function), 88
PyObject_IsSubclass (C function), 88
PyObject_IsTrue (C function), 88
PyObject_Length (C function), 88
PyObject_LengthHint (C function), 89
PyObject_Malloc (C function), 222
PyObject_New (C macro), 229
PyObject_NewVar (C macro), 229
PyObject_Not (C function), 88
PyObject._ob_next (C member), 243
PyObject._ob_prev (C member), 243

330

#5l

The Python/C API, £[F) 3.11.8

PyObject_Print (C function), 85
PyObject_Realloc (C function), 223
PyObject_Repr (C function), 87
PyObject_RichCompare (C function), 87
PyObject_RichCompareBool (C function), 87
PyObject_SetArenaAllocator (C function),
227
PyObject_SetAttr (C function), 86
PyObject_SetAttrString (C function), 86
PyObject_SetItem (C function), 89
PyObject_Size (C function), 88
PyObject_Str (C function), 87
PyObject_Type (C function), 88
PyObject_TypeCheck (C function), 88
PyObject_VAR_HEAD (C macro), 230
PyObject_Vectorcall (C function), 93
PyObject_VectorcallDict (C function), 93
PyObject_VectorcallMethod (C function), 93
PyObjectArenaAllocator (C type), 227
PyObject.ob_refcnt (C member), 242
PyObject .ob_type (C member), 242
PyOS_AfterFork (C function), 62
PyOS_AfterFork_Child (C function), 62
PyOS_AfterFork_Parent (C function), 61
PyOS_BReforeFork (C function), 61
PyOS_CheckStack (C function), 62
PyOS_double_to_string (C function), 80
PyOS_FSPath (C function), 61
PyOS_getsig (C function), 62
PyOS_InputHook (C var), 40
PyOS_ReadlineFunctionPointer (C var), 40
PyOS_setsig (C function), 62
PyOS_sighandler_t (Ctype), 62
PyOS_snprintf (C function), 79
PyOS_stricmp (C function), 81
PyOS_string_to_double (C function), 80
PyOS_strnicmp (C function), 81
PyOS_strtol (C function), 80
PyOS_strtoul (C function), 80
PyOS_vsnprintf (C function), 79
PyPreConfig (C type), 200
PyPreConfig_InitIsolatedConfig (C func-
tion), 200
PyPreConfig_InitPythonConfig (C function),
200
PyPreConfig.allocator (C member), 200
PyPreConfig.coerce_c_locale (C member),

200
PyPreConfig.coerce_c_locale_warn (o
member), 201
PyPreConfig.configure_locale (C member),
200

PyPreConfig.dev_mode (C member), 201
PyPreConfig.isolated (C member), 201

PyPreConfig.legacy_windows_fs_encoding

(C member), 201
PyPreConfig.parse_argv (C member), 201

PyPreConfig.use_environment (C member),
201
PyPreConfig.utf8_mode (C member), 201
PyProperty_Type (Cvar), 162
PyRun_AnyFile (C function), 39
PyRun_AnyFileEx (C function), 39
PyRun_AnyFileExFlags (C function), 39
PyRun_AnyFileFlags (C function), 39
PyRun_File (C function), 41
PyRun_FileEx (C function), 41
PyRun_FileExFlags (C function), 41
PyRun_FileFlags (C function), 41
PyRun_InteractiveLoop (C function), 40
PyRun_InteractiveLoopFlags (C function), 40
PyRun_InteractiveOne (C function), 40
PyRun_InteractiveOneFlags (C function), 40
PyRun_SimpleFile (C function), 40
PyRun_SimpleFileEx (C function), 40
PyRun_SimpleFileExFlags (C function), 40
PyRun_SimpleString (C function), 40
PyRun_SimpleStringFlags (C function), 40
PyRun_String (C function), 41
PyRun_StringFlags (C function), 41
PySendResult (Ctype), 101
PySeqglter_Check (C function), 161
PySeqglter_New (C function), 161
PySeqlter_Type (Cvar), 161
PySequence_Check (C function), 97
PySequence_Concat (C function), 97
PySequence_Contains (C function), 98
PySequence_Count (C function), 98
PySequence_DelItem (C function), 98
PySequence_DelS1lice (C function), 98
PySequence_Fast (C function), 98
PySequence_Fast_GET_ITEM (C function), 98
PySequence_Fast_GET_SIZE (C function), 98
PySequence_Fast_ITEMS (C function), 99
PySequence_GetItem (C function), 8, 97
PySequence_GetSlice (C function), 97
PySequence_Index (C function), 98
PySequence_InPlaceConcat (C function), 97
PySequence_InPlaceRepeat (C function), 97
PySequence_ITEM (C function), 99
PySequence_Length (C function), 97
PySequence_List (C function), 98
PySequence_Repeat (C function), 97
PySequence_SetItem (C function), 98
PySequence_SetSlice (C function), 98
PySequence_Size (C function), 97
PySequence_Tuple (C function), 98
PySequenceMethods (C type), 264
PySequenceMethods.sq ass_item (C mem-
ber), 264
PySequenceMethods.sq concat (C member),
264
PySequenceMethods.sq_contains (C mem-
ber), 264

gL]

331

The Python/C API, £[F) 3.11.8

PySequenceMethods.sq _inplace_concat (C
member), 264

PySequenceMethods.sq inplace_repeat (C
member), 264

PySequenceMethods. sq_item (C member), 264

PySequenceMethods.sq length (C member),
264

PySequenceMethods.sq repeat (C member),
264

PySet_Add (C function), 148
PySet_Check (C function), 147
PySet_CheckExact (C function), 147
PySet_Clear (C function), 148
PySet_Contains (C function), 148
PySet_Discard (C function), 148
PySet_GET_SIZE (C function), 148
PySet_New (C function), 147
PySet_Pop (C function), 148
PySet_Size (C function), 148
PySet_Type (Cvar), 147
PySetObject (C type), 147
PySignal_SetWakeupFd (C function), 54
PySlice_AdjustIndices (C function), 163
PySlice_Check (C function), 162
PySlice_GetIndices (C function), 162
PySlice_GetIndicesEx (C function), 162
PySlice_New (C function), 162
PySlice_Type (Cvar), 162
PySlice_Unpack (C function), 163
PyState_AddModule (C function), 161
PyState_FindModule (C function), 161
PyState_RemoveModule (C function), 161
PyStatus (Ctype), 199
PyStatus_Error (C function), 199
PyStatus_Exception (C function), 199
PyStatus_Exit (C function), 199
PyStatus_IsError (C function), 199
PyStatus_IsExit (C function), 199
PyStatus_NoMemory (C function), 199
PyStatus_0k (C function), 199
PyStatus.err_msqg (C member), 199
PyStatus.exitcode (C member), 199
PyStatus. func (C member), 199
PyStructSequence_Desc (Ctype), 141
PyStructSequence_Desc.doc (C member), 141
PyStructSequence_Desc.fields (C member),
141
PyStructSequence_Desc.n_in_sequence (C
member), 141
PyStructSequence_Desc.name (C member),
141
PyStructSequence_Field (Ctype), 141
PyStructSequence_Field.doc (C member),
142
PyStructSequence_Field.name (C member),
142
PyStructSequence_GET_ITEM (C function), 142
PyStructSequence_GetItem (C function), 142

PyStructSequence_InitType (C function), 141
PyStructSequence_InitType2 (C function),
141
PyStructSequence_New (C function), 142
PyStructSequence_NewType (C function), 141
PyStructSequence_SET_ITEM (C function), 142
PyStructSequence_SetItem (C function), 142
PyStructSequence_UnnamedField (C var),
142

PySys_AddAuditHook (C function), 65
PySys_AddWarnOption (C function), 64
PySys_AddWarnOptionUnicode (C function), 64
PySys_AddXOption (C function), 65
PySys_Audit (C function), 65
PySys_FormatStderr (C function), 65
PySys_FormatStdout (C function), 64
PySys_GetObject (C function), 64
PySys_GetXOptions (C function), 65
PySys_ResetWarnOptions (C function), 64
PySys_SetArgv (C function), 178, 182
PySys_SetArgvEx (C function), 178, 181
PySys_SetObject (C function), 64
PySys_SetPath (C function), 64
PySys_WriteStderr (C function), 64
PySys_WriteStdout (C function), 64
Python 3000, 288
Python Enhancement Proposals

PEP 1,288

PEP 7,3,6

PEP 238,43,282

PEP 278,291

PEP 302,282,285

PEP 343,280

PEP 353,10

PEP 362,278,287

PEP 383,131,132

PEP 387,13

PEP 393,123,130

PEP 411,288

PEP 420, 282, 286, 288

PEP 432,217

PEP 442,260

PEP 443,283

PEP 451,157,282

PEP 456, 81

PEP 483,283

PEP 484,277,282, 283,290,291

PEP 489,158

PEP 492,278, 280

PEP 498,28l

PEP 519,288

PEP 523,189

PEP 525,278

PEP 526,277,291

PEP 528,177,208

PEP 529,132,177

PEP 538,215

PEP 539,194

332

#5l

The Python/C API, £[F) 3.11.8

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

540,215
552, 205
578, 65
585, 283
587,197
590, 90
623,123
634,251
3116,291
31109, 88
3121, 155
3147, 68

PEP 3151,58

PEP 3155,289
PYTHONCOERCECLOCALE, 215
PYTHONDEBUG, 176, 209
PYTHONDEVMODE, 206
PYTHONDONTWRITEBYTECODE, 176, 212
PYTHONDUMPREFS, 206, 243
PYTHONEXECUTABLE, 210
PYTHONFAULTHANDLER, 206
PYTHONHASHSEED, 176, 207
PYTHONHOME, 12, 177, 182, 207
Pythonic (Python JE#%#) , 288
PYTHONINSPECT, 177,207
PYTHONIOENCODING, 179, 211
PYTHONLEGACYWINDOWSEFSENCODING, 177,201
PYTHONLEGACYWINDOWSSTDIO, 177, 208
PYTHONMALLOC, 220, 223, 225, 227
PYTHONMALLOCSTATS, 208, 220
PYTHONNODEBUGRANGES, 205
PYTHONNOUSERSITE, 177, 212
PYTHONOPTIMIZE, 177,209
PYTHONPATH, 12, 177, 208
PYTHONPLATLIBDIR, 208
PYTHONPROFILEIMPORTTIME, 207
PYTHONPYCACHEPREFIX, 210
PYTHONSAFEPATH, 204
PYTHONTRACEMALLOC, 211
PYTHONUNBUFFERED, 177, 205
PYTHONUTFES, 201, 215
PYTHONVERBOSE, 178, 212
PYTHONWARNINGS, 212
PyThread_create_key (C function), 195
PyThread_delete_key (C function), 195
PyThread_delete_key_value (C function), 195
PyThread_get_key_value (C function), 195
PyThread_ReInitTLS (C function), 195
PyThread_set_key_value (C function), 195
PyThread_tss_alloc (C function), 194
PyThread_tss_create (C function), 195
PyThread_tss_delete (C function), 195
PyThread_tss_free (C function), 194
PyThread_tss_get (C function), 195
PyThread_tss_is_created (C function), 195
PyThread_tss_set (C function), 195
PyThreadState (Ctype), 183, 185
PyThreadState_Clear (C function), 187

PyThreadState_Delete (C function), 187
PyThreadState_DeleteCurrent (C function),
187
PyThreadState_EnterTracing (C function),
188
PyThreadState_Get (C function), 185
PyThreadState_GetDict (C function), 189
PyThreadState_GetFrame (C function), 187
PyThreadState_GetID (C function), 187
PyThreadState_GetInterpreter (C function),
188
PyThreadState_LeaveTracing (C function),
188
PyThreadState_New (C function), 187
PyThreadState_Next (C function), 193
PyThreadState_SetAsyncExc (C function), 189
PyThreadState_Swap (C function), 185
PyThreadState.interp (C member), 185
PyTime_Check (C function), 171
PyTime_CheckExact (C function), 172
PyTime_FromTime (C function), 172
PyTime_FromTimeAndFold (C function), 172
PyTimeZone_FromOffset (C function), 172
PyTimeZone_FromOffsetAndName (C function),
172
PyTrace_C_CALL (Cvar), 193
PyTrace_C_EXCEPTION (C var), 193
PyTrace_C_RETURN (C var), 193
PyTrace_CALL (Cvar), 192
PyTrace_EXCEPTION (C var), 192
PyTrace_LINE (Cvar), 192
PyTrace_OPCODE (C var), 193
PyTrace_RETURN (C var), 192
PyTraceMalloc_Track (C function), 227
PyTraceMalloc_Untrack (C function), 227
PyTuple_Check (C function), 140
PyTuple_CheckExact (C function), 140
PyTuple_GET_ITEM (C function), 140
PyTuple_GET_SIZE (C function), 140
PyTuple_GetItem (C function), 140
PyTuple_GetSlice (C function), 140
PyTuple_New (C function), 140
PyTuple_Pack (C function), 140
PyTuple_SET_ITEM (C function), 141
PyTuple_SetItem (C function), 7, 140
PyTuple_Size (C function), 140
PyTuple_Type (Cvar), 140
PyTupleObject (Ctype), 140
PyType_Check (C function), 109
PyType_CheckExact (C function), 109
PyType_ClearCache (C function), 109
PyType_FromModuleAndSpec (C function), 111
PyType_FromSpec (C function), 112
PyType_FromSpecWithBases (C function), 111
PyType_GenericAlloc (C function), 110
PyType_GenericNew (C function), 110
PyType_GetFlags (C function), 109
PyType_GetModule (C function), 111

gL]

333

The Python/C API, £[F) 3.11.8

PyType_GetModuleByDef (C function), 111
PyType_GetModuleState (C function), 111
PyType_GetName (C function), 110
PyType_GetQualName (C function), 110
PyType_GetSlot (C function), 110
PyType_HasFeature (C function), 110
PyType_IS_GC (C function), 110
PyType_IsSubtype (C function), 110
PyType_Modified (C function), 110
PyType_Ready (C function), 110
PyType_Slot (Ctype), 112
PyType_Slot.PyType_Slot.pfunc (C mem-
ber), 113
PyType_Slot.PyType_Slot.
112
PyType_Spec (C type), 112
PyType_Spec.PyType_Spec.
member), 112
PyType_Spec.PyType_Spec.
ber), 112
PyType_Spec.PyType_Spec.
member), 112
PyType_Spec.PyType_Spec.
112
PyType_Spec.PyType_Spec.
ber), 112
PyType_Type (Cvar), 109
PyTypeObject (C type), 109

slot (C member),

basicsize (C
flags (C mem-
itemsize c

name (C member),

slots (C mem-

PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
253
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
259
PyTypeObject
PyTypeObject
260
PyTypeObject

.tp_is_gc (C member), 259
.tp_itemsize (C member), 243
.tp_iter (C member), 255
.tp_iternext (C member), 255
.tp_members (C member), 255
.tp_methods (C member), 255
.tp_mro (C member), 259
.tp_name (C member), 243
.tp_new (C member), 258
.tp_repr (C member), 246
.tp_richcompare (C member),

.tp_setattr (C member), 245
.tp_setattro (C member), 247
.tp_str (C member), 247
.tp_subclasses (C member),

.tp_traverse (C member), 251
.tp_vectorcall (C member),

.tp_vectorcall_offset (C

member), 245

PyTypeObject
260

PyTypeObject

PyTypeObject

.tp_version_tag (C member),

.tp_weaklist (C member), 259
.tp_weaklistoffset (C mem-

ber), 254
PyTZInfo_Check (C function), 172

PyTypeObject.tp_alloc (C member), 258 PyTZInfo_CheckExact (C function), 172
PyTypeObject.tp_as_async (C member), 245 PyUnicode_1BYTE_DATA (C function), 124
PyTypeObject.tp_as_buffer (C member), 248 PyUnicode_I1BYTE_KIND (C macro), 124
PyTypeObject.tp_as_mapping (C member), PyUnicode_2BYTE_DATA (C function), 124

246 PyUnicode_2BYTE_KIND (C macro), 124
PyTypeObject.tp_as_number (C member), 246 PyUnicode_4BYTE_DATA (C function), 124
PyTypeObject.tp_as_sequence (C member), PyUnicode_4BYTE_KIND (C macro), 124

246 PyUnicode_AS_DATA (C function), 125
PyTypeObject.tp_base (C member), 255 PyUnicode_AS_UNICODE (C function), 125
PyTypeObject.tp_bases (C member), 259 PyUnicode_AsASCIIString (C function), 137
PyTypeObject.tp_basicsize (Cmember), 243 PyUnicode_AsCharmapString (C function), 137
PyTypeObject.tp_cache (C member), 259 PyUnicode_AsEncodedString (C function), 134
PyTypeObject.tp_call (C member), 247 PyUnicode_AsLatinlString (C function), 137
PyTypeObject.tp_clear (C member), 252 PyUnicode_AsMBCSString (C function), 138
PyTypeObject.tp_dealloc (C member), 244 PyUnicode_AsRawUnicodeEscapeString (C
PyTypeObject.tp_del (C member), 260 function), 136
PyTypeObject.tp_descr_get (Cmember), 256 PyUnicode_AsUCS4 (C function), 129
PyTypeObject.tp_descr_set (Cmember), 256 PyUnicode_AsUCS4Copy (C function), 130
PyTypeObject.tp_dict (C member), 256 PyUnicode_AsUnicode (C function), 130
PyTypeObject.tp_dictoffset (C member), PyUnicode_AsUnicodeAndSize (C function),

257 130
PyTypeObject.tp_doc (C member), 251 PyUnicode_AsUnicodeEscapeString (C func-
PyTypeObject.tp_finalize (C member), 260 tion), 136
PyTypeObject.tp_flags (C member), 248 PyUnicode_AsUTF8 (C function), 134
PyTypeObject.tp_~free (C member), 258 PyUnicode_AsUTF8AndSize (C function), 134
PyTypeObject.tp_getattr (C member), 245 PyUnicode_AsUTF8String (C function), 134
PyTypeObject.tp_getattro (C member), 247 PyUnicode_AsUTF16String (C function), 136
PyTypeObject.tp_getset (C member), 255 PyUnicode_AsUTF32String (C function), 135
PyTypeObject.tp_hash (C member), 246 PyUnicode_AsWideChar (C function), 133
PyTypeObject.tp_init (C member), 257
334]|

The Python/C API, £[F) 3.11.8

PyUnicode_AsWideCharString (C function),
133
PyUnicode_Check (C function), 124
PyUnicode_CheckExact (C function), 124
PyUnicode_Compare (C function), 139
PyUnicode_CompareWithASCIIString (o
function), 139
PyUnicode_Concat (C function), 138
PyUnicode_Contains (C function), 139
PyUnicode_CopyCharacters (C function), 129
PyUnicode_Count (C function), 139
PyUnicode_DATA (C function), 125
PyUnicode_Decode (C function), 134
PyUnicode_DecodeASCII (C function), 137
PyUnicode_DecodeCharmap (C function), 137
PyUnicode_DecodeFSDefault (C function), 132
PyUnicode_DecodeFSDefaultAndSize (o
function), 132
PyUnicode_DecodelLatinl (C function), 137
PyUnicode_DecodeLocale (C function), 131
PyUnicode_DecodelLocaleAndSize (C func-
tion), 131
PyUnicode_DecodeMBCS (C function), 138
PyUnicode_DecodeMBCSStateful (C function),
138
PyUnicode_DecodeRawUnicodeEscape (o
function), 136
PyUnicode_DecodeUnicodeEscape (C func-
tion), 136
PyUnicode_DecodeUTF7 (C function), 136
PyUnicode_DecodeUTF7Stateful (C function),
136
PyUnicode_DecodeUTF8 (C function), 134
PyUnicode_DecodeUTF8Stateful (C function),
134
PyUnicode_DecodeUTF 16 (C function), 135
PyUnicode_DecodeUTF16Stateful (C func-
tion), 135
PyUnicode_DecodeUTF32 (C function), 135
PyUnicode_DecodeUTF32Stateful (C func-
tion), 135
PyUnicode_EncodeCodePage (C function), 138
PyUnicode_EncodeFSDefault (C function), 132
PyUnicode_EncodeLocale (C function), 131
PyUnicode_Fill (C function), 129
PyUnicode_Find (C function), 139
PyUnicode_FindChar (C function), 139
PyUnicode_Format (C function), 139
PyUnicode_FromEncodedObject (C function),
129
PyUnicode_FromFormat (C function), 128
PyUnicode_FromFormatV (C function), 128
PyUnicode_FromKindAndData (C function), 127
PyUnicode_FromObject (C function), 129
PyUnicode_FromString (C function), 128
PyUnicode_FromStringAndSize (C function),
127
PyUnicode_FromUnicode (C function), 130

PyUnicode_FromWideChar (C function), 133
PyUnicode_FSConverter (C function), 132
PyUnicode_FSDecoder (C function), 132
PyUnicode_GET_DATA_SIZE (C function), 125
PyUnicode_GET_LENGTH (C function), 124
PyUnicode_GET_SIZE (C function), 125
PyUnicode_GetLength (C function), 129
PyUnicode_GetSize (C function), 130
PyUnicode_InternFromString (C function),
140
PyUnicode_InternInPlace (C function), 140
PyUnicode_IsIdentifier (C function), 125
PyUnicode_Join (C function), 138
PyUnicode_KIND (C function), 124
PyUnicode_MAX_CHAR_VALUE (C function), 125
PyUnicode_New (C function), 127
PyUnicode_READ (C function), 125
PyUnicode_READ_CHAR (C function), 125
PyUnicode_ReadChar (C function), 129
PyUnicode_READY (C function), 124
PyUnicode_Replace (C function), 139
PyUnicode_RichCompare (C function), 139
PyUnicode_Split (C function), 138
PyUnicode_Splitlines (C function), 138
PyUnicode_Substring (C function), 129
PyUnicode_Tailmatch (C function), 139
PyUnicode_Translate (C function), 137
PyUnicode_Type (Cvar), 124
PyUnicode_WCHAR_KIND (C macro), 124
PyUnicode_WRITE (C function), 125
PyUnicode_WriteChar (C function), 129
PyUnicodeDecodeError_Create (C function),
55
PyUnicodeDecodeError_GetEncoding C
function), 55
PyUnicodeDecodeError_GetEnd (C function),

56
PyUnicodeDecodeError_GetObject (C func-
tion), 55
PyUnicodeDecodeError_GetReason (C func-
tion), 56
PyUnicodeDecodeError_GetStart (C func-
tion), 56
PyUnicodeDecodeError_SetEnd (C function),
56
PyUnicodeDecodeError_SetReason (C func-
tion), 56
PyUnicodeDecodeError_SetStart (C func-
tion), 56

PyUnicodeEncodeError_GetEncoding C
function), 55

PyUnicodeEncodeError_GetEnd (C function),
56

PyUnicodeEncodeError_GetObject (C func-
tion), 55

PyUnicodeEncodeError_GetReason (C func-
tion), 56

gL]

335

The Python/C API, £[F) 3.11.8

PyUnicodeEncodeError_GetStart (C func-
tion), 56

PyUnicodeEncodeError_SetEnd (C function),
56

PyUnicodeEncodeError_SetReason (C func-
tion), 56

PyUnicodeEncodeError_SetStart (C func-
tion), 56

PyUnicodeObject (Ctype), 123

PyUnicodeTranslateError_GetEnd (C func-
tion), 56

PyUnicodeTranslateError_GetObject (C
function), 55

PyUnicodeTranslateError_GetReason (C
function), 56

PyUnicodeTranslateError_GetStart c

function), 56
PyUnicodeTranslateError_SetEnd (C func-
tion), 56

PyUnicodeTranslateError_SetReason (C
function), 56
PyUnicodeTranslateError_SetStart (o

function), 56
PyVarObject (C type), 230
PyVarObject_HEAD_INIT (C macro), 232
PyVarObject.ob_size (C member), 243
PyVectorcall_Call (C function), 91
PyVectorcall_Function (C function), 91
PyVectorcall_NARGS (C function), 91
PyWeakref_Check (C function), 165
PyWeakref_CheckProxy (C function), 165
PyWeakref_CheckRef (C function), 165
PyWeakref_GET_OBJECT (C function), 165
PyWeakref_GetObject (C function), 165
PyWeakref_NewProxy (C function), 165
PyWeakref_NewRef (C function), 165
PyWideStringList (Ctype), 198
PyWideStringList_Append (C function), 198
PyWideStringList_Insert (C function), 198
PyWideStringList.items (C member), 198
PyWideStringList.length (C member), 198
PyWrapper_New (C function), 162

Q

qualified name (fRZE%%%) ,289

R

realloc (C function), 219
reference count (£ JE3#) ,289
regular package (FEHEH) ,289
releasebufferproc (Ctype), 267
repr
built-in function ([El&ZEER) , 246
bulit-in function ([BlZEZR) ,87
reprfunc (C type), 267
richcmpfunc (Ctype), 267

S

sdterr

stdin stdout, 179
search (##)

path (%f&) ,module (##l) ,11

path (HAE) , &AL, 178, 180
sendfunc (C type), 268
sequence (JF77|) ,289

object (##) , 120
set comprehension (EA&4AEE) ,289
set_all(),8
setattrfunc (Ctype), 267
setattrofunc (C type), 267
setswitchinterval (in module sys), 183
set (%4)

object (4#F) , 147
SIGINT (C macro), 53, 54
signal (#l#%)

module (##) , 53,54
single dispatch (E—3H) ,289
SIZE_MAX (C macro), 115
slice (1K) ,289
special

method (F) ,290
special method (%% F i) ,290
ssizeargfunc (C type), 268
ssizeobjargproc (Ctype), 268
statement (K#AR) , 290
static type checker, 290
staticmethod

built-in function ([El&ZER) ,234
stderr (sys W) , 190
stdin

stdout sdterr, 179
stdin (sys W) , 190
stdout

sdterr, stdin, 179
stdout (sys) , 190
strerror (C function), 49
string (¥ #)

PyObject_Str (C ®=R) ,87
strong reference (éiﬂéf) , 290
sum_list (),9
sum_sequence (), 9, 10

sys

module (#4H) ,11

A, 178, 190
SystemError ([EJZF4)) , 154,155
T

ternaryfunc (C type), 268

text encoding (X F#4H) , 290

text file (XEMHZE) ,290

traverseproc (Ctype), 272

triple-quoted string (Z 5| #EF &) ,290

tuple (Ju#l)
built-in function (%@iﬁ) , 144
object (##) , 140

336

#5l

The Python/C API, £[F) 3.11.8

tuple (J04)
built-in function (HZEZR) ,98
type alias (A[F[E4) ,290
type hint (E[EHEFR) ,291
type (A[F) ,290
bulit-in function (%@ﬁ) , 88
object (##F) .6, 109

U

ULONG_MAX (C macro), 115

unaryfunc (C type), 267

universal newlines (#AE{TETT) ,291
USE_STACKCHECK (C macro), 62

Vv

variable annotation (##[E) ,291
vectorcallfunc (Ctype), 90

version (sys fﬁ?ﬂ”’j) , 181

virtual environment ([F##3F) ,291
virtual machine (%ﬁ%%%‘g) , 291
visitproc (C type), 272

W

A
__main_ , 178,190
_thread, 185
builtins ([E#) , 178, 190
search (# %) path (Hf€) , 178,180
sys, 178, 190

Z

Zzen of Python (Python ZI[E]) ,291

%3 337

	簡介
	編寫標準
	引入檔案 (include files)
	有用的巨集
	物件、型別和參照計數
	參照計數
	參照計數詳細資訊

	型別

	例外
	嵌入式Python
	除錯建置

	C API 穩定性
	穩定的應用程式二進位介面
	Limited C API
	Stable ABI
	受限 API 範圍和性能
	受限 API 注意事項

	平台注意事項
	受限 API 的內容

	The Very High Level Layer
	參照計數
	例外處理
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	例外類別
	例外物件
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	工具
	作業系統工具
	系統函式
	行程（Process）控制
	引入模組
	Data marshalling support
	剖析引數與建置數值
	Parsing arguments
	Strings and buffers
	數字
	其他物件
	API 函式

	Building values

	字串轉換與格式化
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	抽象物件層 (Abstract Objects Layer)
	Object Protocol
	呼叫協定 (Call Protocol)
	tp_call 協定
	Vectorcall 協定
	遞迴控制
	Vectorcall 支援 API

	物件呼叫 API
	呼叫支援 API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	疊代器協議
	緩衝協定 (Buffer Protocol)
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	舊式緩衝協定 (Buffer Protocol)

	具體物件層
	基礎物件
	Type Objects
	Creating Heap-Allocated Types

	None 物件

	數值物件
	整數物件
	Boolean（布林）物件
	浮點數（Floating Point）物件
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	序列物件
	位元組物件 (Bytes Objects)
	位元組串列物件 (Byte Array Objects)
	Type check macros
	Direct API functions
	巨集

	Unicode物件與編碼
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Deprecated Py_UNICODE APIs
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions

	元組（Tuple）物件
	Struct Sequence Objects
	List（串列）物件

	容器物件
	字典物件
	Set Objects

	函式物件
	函式物件 (Function Objects)
	實例方法物件 (Instance Method Objects)
	方法物件 (Method Objects)
	Cell 物件
	程式碼物件

	其他物件
	檔案物件 (File Objects)
	模組物件模組
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	疊代器（Iterator）物件
	Descriptor（描述器）物件
	切片物件
	Ellipsis Object

	MemoryView 物件
	弱參照物件
	Capsules
	Frame Objects
	產生器 (Generator) 物件
	Coroutine（協程）物件
	Context Variables Objects
	DateTime 物件
	型別提示物件

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	高階 API
	低階 API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Python Initialization Configuration
	範例
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	記憶體管理
	總覽
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API
	範例

	Object Implementation Support
	在 heap 上分配物件
	通用物件結構
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types

	型別物件
	Quick Reference
	"tp slots"
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types

	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	範例
	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State

	API 和 ABI 版本管理
	術語表
	關於這些說明文件
	Python 文件的貢獻者們

	沿革與授權
	軟體沿革
	關於存取或以其他方式使用 Python 的合約條款
	用於 PYTHON 3.11.8 的 PSF 授權合約
	用於 PYTHON 2.0 的 BEOPEN.COM 授權合約
	用於 PYTHON 1.6.1 的 CNRI 授權合約
	用於 PYTHON 0.9.0 至 1.2 的 CWI 授權合約
	用於 PYTHON 3.11.8 說明文件內程式碼的 ZERO-CLAUSE BSD 授權

	被收錄軟體的授權與致謝
	Mersenne Twister
	Sockets
	非同步 socket 服務
	Cookie 管理
	執行追蹤
	UUencode 與 UUdecode 函式
	XML 遠端程序呼叫
	test_epoll
	Select kqueue
	SipHash24
	strtod 與 dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N 測試套件
	Audioop
	asyncio

	版權宣告
	索引

