Socket 23\ EX51IE M

%[3.11.8

Guido van Rossum and the Python development team

4 A 02, 2024

Python Software Foundation
Email: docs@python.org

Contents
1 Sockets 2
I O 2
2 v —11# Socket 2
2.1 IPC . e 3
3 {611 Socket 3
3.1 BinaryData e e e e e e e e e e e e e e 5
4 Disconnecting 5
4.1 WhenSocketsDie L e e e e e e e e 5
5 Non-blocking Sockets 5
it
Gordon McMillan
5%

Sockets 7E4% R #S A EZ (EH] , (EEHE —TEW i B IR T2 —. 52— e ¥ sockets AR /T4 .
EBEAR R 52 B A B G B - VR 75 S 22 A A R sockets 1E 75 AE. & CEE BG4
A i (ﬁiﬁﬁﬁ%ﬂ@ﬁﬁiﬁﬁ) , HIR A A S CE R LA SenEk, DA BH UG ARG 1
sockets Rk o

1 Sockets

T HertamB s INET (Flan: 1Pv4) 1 sockets, {HEHE T % 99% iy sockets (i 355, 1Mkt
{5 B 7 STREAM (Hedn: TCP) $HZAUAY sockets - (R IR ELA FERFEMAHE (FEEEEE T, E6
TR REAE AIR), (1 STREAM ALY socket 475 Lh HoAth sockets FHAY S 47 L B FIMERE . TR &
Bl fRRE socket 2 1E], PAK Qi {5 F P 2€ (blocking) f1FFH %€ (non-blocking) sockets fif)—4E #ik . H g
SeFk G Je ek s 2E sockets, 7F PR IEIH 2€ sockets 2 B, VRTESL TR T TAEETE,

P T S TP) R B A A " scoket” W] DA R 2 A A Su R EI RV, 8 S EREDR R . B
PATT S, sFRAM Sl sy [HIE) (client)] socket Al [fa] il #% i (server)] socket FyZE[F], [HI[El | socket
FORME—u, [k socket AR — R EE 8. HEG RS (Bl REEL)
HEeE A [HERR] socket; ‘& iriHi iz A 48 6l i U [RTRE0 F [fliiis | socket AT [[EJ3 | socket 2
HEATIER .

1.1 B

145) IPC (Inter Process Communication) ', sockets & fiesz 80U 1 . EALMFFER -6 L, nThEd
FAAE AR SE PRy TPC T, (HEHR 5 BAURE], sockets J& M,

Sockets FE) Unix 1J BSD 43 {147 Berkeley B8 I 1A, & (1B 48 A 1 2 14 T Ak A)
S, AR IR I sockets il INET ()55 it 4 MU fT i e FAOE SRS S M B (520
BT R)

2 #3r—1{f Socket

RECEARE, BIREEE T A0 A E W E A AR, AR ESE R0 T AR At :

create an INET, STREAMing socket

s = socket.socket (socket .AF_INET, socket.SOCK_STREAM)

now connect to the web server on port 80 - the normal http port
s.connect (("www.python.org", 80))

i connect SEHUIE, B 1H socket s] DA S 1% 5 SR AR HUAS: B TH) SCAS . [R)— 1 socket 1, € 7 H [n]
H, SREEFEEE. 20, episyE. FAER socket 384 M Mk B (E—/ Nl E) .

HE A e (web server) B FE RS A E e — 2. 420, AR IRES €rdr— [fali#sin socket |:

create an INET, STREAMing socket

serversocket = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
bind the socket to a public host, and a well-known port
serversocket .bind((socket.gethostname (), 80))

become a server socket

serversocket.listen (5)

HRAFEFEERE: BRMMEH T socket.gethostname (), &k socket 74 HEHF/MERATRE 7] FL . WNARFE
MR T s.bind (('localhost', 80)) B{ s.bind(('127.0.0.1"', 80)), FMEEH—F [{7
AResis | socket, {H2HABETER —SHEMEIT R, s.bind (('', 80)) $85& socket I] PAiF MR (4T fi]
HohEAFH .

5 AR B IHER (port) B H R EA 4 [REEIL ARG] % (HTTP. SNMP 45), U2RAR
FURRHBATRE, W DAREH — RSP ER (4 (2807) -

Bef%, listen 5| #i i socket B (library), FAMAHAEEIS (queue) HRARE S MH (IEH M HMH)
ETF R FHEESNREE], AR AR R IR, Sl 2T .

BUEEFRAM A — (i B 80 ey [falfRatin | socket T, FRATHT DAME ALHES (e AR es i IR 1

while True:
accept connections from outside
(clientsocket, address) = serversocket.accept ()
now do something with the clientsocket
in this case, we'll pretend this is a threaded server
ct = client_thread(clientsocket)
ct.run ()

HE L, AR YET DA S (R B EAE - 3B M4 T4 (thread) K JEFE clientsocket . H.—1H
TR (process) M ERE client socket, B M ia MM AR X F BT i 5 1 Y 3 FH ZE socket, [EIffi] select
TERANY Tl | socket FUTATA RN clientsocket Z [T TIEHE. fﬁfﬁﬂ%‘%ﬁﬁézﬁiﬂﬁ/T%
B A 2B Bt [ARAS) socket MU P A il . BN GERTATER ., WAL
B, B HeEsr [fERESE] socket, &l clientsocket %‘KE.TIEIJ?E%%—EU& connect () F|FHM
%KZHEE‘JI%J:E’J [HE)s | socket. —{H clientsocket @SLSEK, @Ak E yﬁ%éﬁﬁl Eok. W
;El [(Elsi | AT DARE 2 A aH, - e 60) 2 — Lo B B8 A e s e, @7 3 RS SR 10 IR i gl Il (B 8
A

2.1 IPC

WRAR T B — & WA L W R A7 R R e A T P AT R A R (IPC), AR %75 18 (1 H 4518 (pipes)
i L {5 HY (shared memory)., SRR & 2i{di il AF_INET sockets, 7545 [fal iR #%u5 | socket 45 & %)
'localhost'. FERZHT-G L, BHG @R & MMMKEIEE, FHBEgHEH L&,

hz%:
multiprocessing 5 -G AT FE LA TIE G5 &8 APL H,

3 {#H—{& Socket

ﬁf‘ﬁﬁﬁ%& , MEEERRR [HER] socket AIAEE IR [HIER] socket ZAEHRLIA . HtE
(E], ~1E [232 (peer to peer) | AUIEFIT 3, BUE T AEMEEIR 14, 1R AE 2 i@ ey HA)
L,%f*.T connect [socket @i it 5 14— K o (5 DA BRI —UGE R . (HiE @R atstER,
R socket LAY,

BIAEA WAL AT U s B 5 . ARPTPAGE] send Al recv, B TR socket # [pHE DR 22
R, Ef] read fil write, 212 Java 28] socket {2, AT HAEGEE e, 2R
R BAE socket i £lush, EEREMN HHE], —ME DAEREMH write BAFLEE,
?X‘Eiﬁﬁi‘% read [A 8. WERAMA £lush, RAIfEEr—ESMRE MBI, HER R BRI H 4%
firH

PIAEFAM 2K F sockets [T 2Rk - send Fl recv BRAEREAHBK G H 1% . A —E G BRIR LG T
& B (37 e AL (E‘cﬁ%%/ﬁﬁ%@ﬁlﬂ%ﬁﬁ%ﬂ), E1Fﬁ£%ﬂ@§¥ﬁmfél%ﬁﬂ%%%@i@ — i A [E,
B TE B A A R AT I 2L (send) SELHAS (recv) RERIER, SREAFIREMER T2/ 0c4l. 1k
) A — Y B A B R B A A HUE, ﬁﬁfimﬁi

W recy BIE [RAICH (0 bytes) | B, MR CASBIPH (SCEEAERIP) HE. (RARRERE
AR E) EBASALATOR 1. ARATRER 2 0T DAL R FRA 1R 6 S e A T o S A P AR

1% HTTP SE btk S — {8 socket MEAT—ycfiiis, MEli 6% — sk, SEEIR—MuE, s
k. IRRIE M socket S BESH(E. 1B Fn AT AEB I TR0 CAL] Akl B i 4

R QNSRRI T A 2 A% 1 B o S8 A socket BRE, ARTR ZEHHH socket F % T A /£ EOT (H¥H45H) .
K ﬁH%Q@ socket] send B{ recv JEH T [FEJeAl] ®EEH, FonEC&ER . nEE
(A BBR, RA]REEriaE Bt recv WRAE, BHIE (i H HI2RE)) socket €455/ R(EIG £ G Rk AT
VARTHUT . BIFE, WSRSRRUESE T, Mot @) socket 1 AEEARTL: R &R([Fx —MEE T
|E (RFaatik), 2ERTO#E SR (& @%M%L%ﬂ%ﬁi%%&(i%%ﬁ%%%ﬂﬁﬁ
M F % k. sE e RORIED e Sl ERRE s ((HA 2k A s R B o)

MR AR AN G RO, e B)y Ot o 1 I R R T -

class MySocket:
"""demonstration class only

— coded for clarity, not efficiency
mirrn

def _ init_ (self, sock=None) :
if sock is None:
self.sock = socket.socket (
socket .AF_INET, socket.SOCK_STREAM)
else:
self.sock = sock

def connect (self, host, port):
self.sock.connect ((host, port))

def mysend(self, msgqg):
totalsent = 0
while totalsent < MSGLEN:
sent = self.sock.send(msg[totalsent:])
if sent == 0:
raise RuntimeError ("socket connection broken'")
totalsent = totalsent + sent

def myreceive (self):

chunks = []

bytes_recd = 0

while bytes_recd < MSGLEN:
chunk = self.sock.recv(min (MSGLEN - bytes_recd, 2048))
if chunk == b'':

raise RuntimeError ("socket connection broken")

chunks.append (chunk)
bytes_recd = bytes_recd + len (chunk)

return b''.join (chunks)

J

IR AR SRS 2T m] AT HUEL) (35 75 3K - 7E Python FRAREEE — (7 Hy, ATVAM] Len () ZfCHife
A R (B FE L T \0 FI0) . (EEE, TRl wE—t, (£ CRiET,
THEE A5 R, AR EE T \0 7T, MREARMIN strien K.)

A] BLAY O T 2 A RUR A B — M e ORI B, [ERSHUR p R B U R R . BUTE
IRFEMHMIK rec - YRR (20) H—MFICARERHRE, 58 R TREERE o T
IR, AR AR (] S PR AR R 75X, VRS & ASE AR R0 [/ A THE R (4096 = 8192 i 5
T2 A AR AT /N RBP4), (EMENRC B A D bt 2 B AT 5

TR — I, SRR E A e e rF AR 2 R (Bl), [EARELRS
recv B EERIEIA/)D, Bt f T RERIIE] T Wl B BIEE . ARFFE i —FEREA T
e, EBTH A AR

- REEVEETRUE RIS (Blan, [N S MErsocdon) B b, WE (FAFEDR) Aol sede
WEAE—IK recy PHERFTA S AFI0. FE—RENT, WREAGAEMRE, B7E&EaRIMER T, K
UMM recv CR—RARMEERE, (A RBUSHER R), BRI &
Hi B B NI (7B RS el R Bl send [ERAHARTE— R i T e 2T R FT A D4
[O TR, (HRsGE 2 Mk iR

B #i e . SRR Re (DR RIENES), 3Lt ¥ B ARE AT . BIERT M B
IRHEATIE B AR

3.1 Binary Data

It is perfectly possible to send binary data over a socket. The major problem is that not all machines use the same
formats for binary data. For example, network byte order is big-endian, with the most significant byte first, so a 16
bit integer with the value 1 would be the two hex bytes 00 01. However, most common processors (x86/AMD64,
ARM, RISC-V), are little-endian, with the least significant byte first - that same 1 would be 01 00.

999

Socket libraries have calls for converting 16 and 32 bit integers - ntohl, htonl, ntohs, htons where ’n
means network and "h” means host, ’s” means short and ”1” means long. Where network order is host order, these do
nothing, but where the machine is byte-reversed, these swap the bytes around appropriately.

In these days of 64-bit machines, the ASCII representation of binary data is frequently smaller than the binary rep-
resentation. That’s because a surprising amount of the time, most integers have the value 0, or maybe 1. The string
"0" would be two bytes, while a full 64-bit integer would be 8. Of course, this doesn’t fit well with fixed-length
messages. Decisions, decisions.

4 Disconnecting

Strictly speaking, youre supposed to use shutdown on a socket before you close it. The shutdown is an
advisory to the socket at the other end. Depending on the argument you pass it, it can mean “I'm not going to send
anymore, but T'll still listen”, or ”I'm not listening, good riddance!”. Most socket libraries, however, are so used
to programmers neglecting to use this piece of etiquette that normally a close is the same as shutdown () ;
close (). So in most situations, an explicit shut down is not needed.

One way to use shutdown effectively is in an HTTP-like exchange. The client sends a request and then does a
shutdown (1). This tells the server “This client is done sending, but can still receive.” The server can detect
”"EOF” by a receive of 0 bytes. It can assume it has the complete request. The server sends a reply. If the send
completes successfully then, indeed, the client was still receiving.

Python takes the automatic shutdown a step further, and says that when a socket is garbage collected, it will auto-
matically do a close if it’s needed. But relying on this is a very bad habit. If your socket just disappears without
doing a close, the socket at the other end may hang indefinitely, thinking you're just being slow. Please close
your sockets when you're done.

4.1 When Sockets Die

Probably the worst thing about using blocking sockets is what happens when the other side comes down hard (without
doing a close). Your socket is likely to hang. TCP is a reliable protocol, and it will wait a long, long time before
giving up on a connection. If you’re using threads, the entire thread is essentially dead. There’s not much you can do
about it. As long as you aren’t doing something dumb, like holding a lock while doing a blocking read, the thread
isn’t really consuming much in the way of resources. Do not try to kill the thread - part of the reason that threads are
more efficient than processes is that they avoid the overhead associated with the automatic recycling of resources. In
other words, if you do manage to kill the thread, your whole process is likely to be screwed up.

5 Non-blocking Sockets

If you’ve understood the preceding, you already know most of what you need to know about the mechanics of using
sockets. You'll still use the same calls, in much the same ways. It’s just that, if you do it right, your app will be almost
inside-out.

In Python, you use socket .setblocking (False) to make it non-blocking. In C, it’s more complex, (for one
thing, you’ll need to choose between the BSD flavor O_ NONBLOCK and the almost indistinguishable POSIX flavor
O_NDELAY, which is completely different from TCP_NODELAY), but it’s the exact same idea. You do this after
creating the socket, but before using it. (Actually, if you're nuts, you can switch back and forth.)

The major mechanical difference is that send, recv, connect and accept can return without having done
anything. You have (of course) a number of choices. You can check return code and error codes and generally drive

https://en.wikipedia.org/wiki/Endianness#Networking

yourself crazy. If you don’t believe me, try it sometime. Your app will grow large, buggy and suck CPU. So let’s skip
the brain-dead solutions and do it right.

Use select.

In C, coding select is fairly complex. In Python, it’s a piece of cake, but it’s close enough to the C version that if
you understand select in Python, you'll have little trouble with it in C:

ready_to_read, ready_to_write, in_error = \
select.select (
potential_readers,
potential_writers,
potential_errs,
timeout)

You pass select three lists: the first contains all sockets that you might want to try reading; the second all the
sockets you might want to try writing to, and the last (normally left empty) those that you want to check for errors.
You should note that a socket can go into more than one list. The select call is blocking, but you can give it a
timeout. This is generally a sensible thing to do - give it a nice long timeout (say a minute) unless you have good
reason to do otherwise.

In return, you will get three lists. They contain the sockets that are actually readable, writable and in error. Each of
these lists is a subset (possibly empty) of the corresponding list you passed in.

If a socket is in the output readable list, you can be as-close-to-certain-as-we-ever-get-in-this-business that a recv
on that socket will return something. Same idea for the writable list. You’'ll be able to send something. Maybe not all
you want to, but something is better than nothing. (Actually, any reasonably healthy socket will return as writable - it
just means outbound network buffer space is available.)

If you have a “server” socket, put it in the potential_readers list. If it comes out in the readable list, your accept will
(almost certainly) work. If you have created a new socket to connect to someone else, put it in the potential_writers
list. If it shows up in the writable list, you have a decent chance that it has connected.

Actually, select can be handy even with blocking sockets. It’s one way of determining whether you will block -
the socket returns as readable when there’s something in the buffers. However, this still doesn’t help with the problem
of determining whether the other end is done, or just busy with something else.

Portability alert: On Unix, se lect works both with the sockets and files. Don’t try this on Windows. On Windows,
select works with sockets only. Also note that in C, many of the more advanced socket options are done differently
on Windows. In fact, on Windows I usually use threads (which work very, very well) with my sockets.

	Sockets
	歷史

	建立一個 Socket
	IPC

	使用一個 Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets

