The Python Language Reference
%) 3.11.8

Guido van Rossum and the Python development team

4 A 02, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 fiigr 3
1.1 Alternate Implementations L e e e e e e e 3
1.2 Notation o e 4

2 Lexical analysis 5
2.1 LIneStructure i e e e e e e e e e e e e e 5

2.1.1 Logicallines e e 5
2.1.2 Physicallines 5
2.1.3 0 ComMmMENtS . . . v v v v e e e e e e e e e e e e e e e e e e 6
2.1.4 Encodingdeclarations L e e e e e e e e e 6
2.1.5 Explicitline joining o o i e e e e e e e e e e e e e e 6
2.1.6 Implicitline joining L e e 6
217 Blanklines. e e e e 7
2.1.8 Indentation L. e e e e e 7
2.1.9 Whitespace between tokens e e e e e e e e e 8
22 Othertokens i e e e e e 8
2.3 Identifiersand keywords L oL e 8
231 Keywords e 9
232 SoftKeywords 9
2.3.3 Reserved classes of identifiers L 9
24 Literals o oL e e e e 10
24.1 Stringand Bytes literals e e 10
242 String literal concatenation L. Lo oL 12
243 f-Strings . . . oL . o e e e e e e e e e e 12
244 Numericliterals L 14
245 Integerliterals o e e e e e e e e e e e e e 14
2.4.6 Floatingpoint literals L e e 15
247 Imaginaryliterals e 15
2.5 OPperators e e e e e e e 15
2.6 Delimiters. e e e e e e e 15

3 Data model 17
3.1 Objects, values and types o L e e e e e e e e e e e e e e e e 17
32 EERIEREIE 18

32,1 NONE. . . o e e 18
3.22 NotImplemented e e e e e 18
323 EIIPSIS. . ¢ o o oo e e e e e e e 19
324 numbers.NUMDET . . . v v v v vt et e e e e e e e e e e e e e e e e 19
325 SeqUENCES v v v e e e e e 20
320 SetLyPeS . & v v e e e e e e e e e e e e e e e e e 21
327 MapPINGS . . v v o e 21

3.2.8 Callable types o i e e e e e e e e e e e 22

329 A . . e 26
32,10 Customclasses e e e e e 26
3201 ClassinStances v v v v v v v e 27
3.2.12 T/O objects (also known as fileobjects) 27
32,13 Internal types oo e e e e e e e e e 28
3.3 Special method names L. e e e e e e e e 33
3.3.1 Basic customizationo e e e e e e e e e e 34
3.3.2 Customizing attribute accesso e e e 37
3.3.3 Customizing class creation oL e e e e e e 41
3.34 Customizing instance and subclasschecks oL 44
3.3.5 Emulating generiC types v v v v vt e e e e e e e e e e e e e e e e e e 45
3.3.6 Emulating callableobjects 47
3.3.77 Emulating container types oot et e e e e e e e e e e e 47
3.3.8 Emulating numeric types e e 49
3.3.9 With Statement Context Managers 51
3.3.10 Customizing positional arguments in class pattern matching 51
3.3.11 Special method lookup e e e 52
S 53
34.1 Awaitable Objects e 53
342 Coroutine Objects L oL e 53
3.4.3 Asynchronous Iterators e e 54
3.4.4 Asynchronous Context Managers v v v v v v v v v i e e e e e 54
Execution model 57
4.1 Structure of a programo e e e e e e e e 57
42 Namingand binding L e e e e e e e e e 57
42.1 Bindingof names e e e 57
422 Resolutionof names L e e 58
4.2.3 Builtins and restricted execution L. L. Lo e e e e e e e e 59
4.2.4 Interaction with dynamic features oL 59
e S 1 59
The import system 61
5.1 dmportlib e e e e 62
5.2 Packages e e e e e e e e 62
5.2.1 Regularpackages e e e e e e e e e 62
5.22 Namespace packages e e 63
53 Searching e 63
53.1 Themodulecache e 63
532 Findersand loaders e 64
5.33 Importhooks o . . e e e e e 64
534 Themetapath e e e 64
54 Loading L e 65
541 Loaders e e 66
542 Submodules e e 67
543 ModuleSpec e e e e e e e e e e e 67
5.4.4 Import-related module attributes L. Lo 67
545 module.__path 68
54.6 Modulereprs 69
5.4.7 Cached bytecode invalidation 69
5.5 ThePathBased Finder e 69
5.5.1 Pathentryfinders e e e 70
5.5.2 Pathentry finder protocol L e 71
5.6 Replacing the standard import system oL o e e e 71
5.7 Package Relative Imports L. 72
5.8 Special considerations for __main__ oL e e e e 72
5.8 1 MAIN__._ SPEC__ . e 72

59 References e e e
Expressions
6.1 Arithmetic CONVErSIONS v v v v i e e e e e e e e e e e e e e e e e e e
6.2 ALOMS . . . o e e e e e e e
6.2.1 Identifiers (INames) v i v i i e e e e e
6.2.2 Literals e e e e
6.2.3 Parenthesized forms
6.2.4 Displays for lists, sets and dictionaries Lo
6.2.5 Listdisplays e e e e
6.2.6 Setdisplays e e e e e e e e e e e
6.2.7 Dictionary displays e e e e e e e e e e
6.2.8 Generator eXpressions et e e e e e e e e e e e e e
6.2.9 Yieldexpressions e
6.3 Primari€s e e e e e e e e e e e e e e e e
6.3.1 Attribute references L ..o
6.3.2 SubSCriptionS e e e e e e e e e e e e
6.3.3 SHCINGS o e e e e e e
6.34 Calls e e
6.4 AWAIt EXPIeSSION v v e e e e e e e e e e e e e e e e
6.5 The pOWEr OPEerator v v v v v e
6.6 Unary arithmetic and bitwise Operations v v v v v v v vt e e e e e
6.7 Binary arithmetic operations L. e e e
6.8 Shifting operations L L L e e e e e e e
6.9 Binary bitwise Operationso e e e e e e e e e e e
6.10 CompariSONS v v v i e
6.10.1 Value compariSOns v v i i e e e e e e e e e e e e e e
6.10.2 Membership test Operationsot te e e e e e eee
6.10.3 Identity compariSOnSo e e e e e e
6.11 Boolean operationst L e e e e e e e e e e e e e e e e e e e
6.12 AsSSIgNMENt eXPresSSiONS . . .« o v v vt i e e e e e e e e e e e e e e e e e e e
6.13 Conditional Xpressions v v v i i e e e e e e e e e e e e e e e e e e
6.14 Lambdas e e e
6.15 Expression lists L e e e e
6.16 Evaluationorder e e e e e e
6.17 Operator precedence v v it e e e e e e e e e e e e
Simple statements
7.1 EXpression Statements L. o bt e
7.2 AsSignment StAteMENts e e e e e e e e e e e e e e e e e e
7.2.1 Augmented assignment statementso e e e e e e
7.2.2 Annotated assignment Statements oo e u e e e e e
73 Theassertstatement. o v i it v it e e e e e e e e e e e e e e
7.4 Thepassstatement i v i et e
7.5 Thedelstatement i v i vt et e
7.6 The returnstatement. o ittt e e e e e e e e e e
7.7 The yieldstatement i i it e e e e e e e e e e e e e e e e
7.8 The raisestatement o v v i i i v it e e e e e e e e e e e e
7.9 Thebreakstatement i ittt e e e e e e e e e e
7.10 The continuestatement v i vt vt e e e e e e e e e e e e e
7.11 The import statement o i et e e e e e e e e e e e e e e e e e e
7.11.1 Future statements vttt e e e e e e e e e e e e e
7.12 The global statement. v v vt i i e
7.13 The nonlocal Statement v v v vt v vt e e e e e e e e e e e e e e e
Compound statements
8.1 Theifstatement v v v v it e e e e e e e e e e e e e e e e e e e
8.2 Thewhilestatement o i vt i vttt et e e e e e e e e e e
8.3 The forstatement i e e e e e e e e e e e e e e e e e e e

75
75
75
76
76
76
77
77
78
78
78
79
83
83
83
84
84
86
86
87
87
88
88
89
89
91
92
92
92
93
93
93
94
94

97

97

98
100
100
101
101
101
102
102
103
104
104
105
106
107
108

109
110
110
110

10

84 Thetrystatement it i it e e e e e e e e e e e e e e e 111
84.1 exceptclause e e e e e e e 111
842 except*clause e e e e e e e e e 112
843 elseclause e e e e 113
844 finallyclause e e e e e 113
8.5 Thewithstatement it i ittt e e e e e e e e e e e e e e 114
8.6 Thematchstatement i v i i i e e e e e e e e e e e e e e e e e e e 115
B.6.1 OVEIVIEW . . . v i i e e e e e e e e e e e 116
8.6.2 Guards. e e e e e e e e e e e e 117
8.6.3 Irrefutable Case Blocks e 117
8.6.4 Patterns e e e e e e e 117
8.7 BRIUIETR . . 124
8.8 ClassdefinitionS o e 126
8.9 AR . . 127
8.9.1 Coroutine function definition 127
8.9.2 Theasync forstatement ittt e 127
8.93 Theasync withstatementt i v ittt et e e 128
I Ja otk 131
9.1 SEEEfy Python B2 o e 131
02 FEZEHIA . . e 131
93 HEIFRBIA . .. e 132
94 JHEFUEIA . . . e 132
SEEN I U 133
i 149
B A 15 B [EIW] S 165
B.1 Python SCHFIUERREM . . o o o o 165
Wy B RE 167
C.l BRI e 167
C2 BATFEE AHAE T S] Python BUGTEIMGER - . . o o o o 168
C2.1 JHAPYTHON3.IL8 I PSFHZHEAL] o o o e 168
C22 i PYTHON 2.0 [y BEOPEN.COM #ZHEAA) o oo 169
C23 JFAPYTHON 1.6.1 [CNRIFZHESHZT . . o o o e e 170
C24 JHAPYTHONO09.O0 B 12 CWLIZFHESH o o . 171
C.2.5 HIji* PYTHON 3.11.8 [EIHA SC-EIRE X Alf¥) ZERO-CLAUSE BSD #2#E 171
C3 Wk FMRBs MRz EBE G 172
C.3.1 Mersenne TWIStET v v v i it e e e e e e e e e e e e e 172
C.3.2 SoCKets . . . o v i e e e e e e e e e e e e e 173
C.3.3 e[l socket fRFE . . . o o o e 173
C3.4 Cookie BHL s 174
C3.5 HATBE . . . 174
C.3.6 UUencode il UUdecode BRZS . . . o o o o o o o e e e e 175
C3.7 XML ERETEREI . . e 175
C.3.8 test_epoll L e e e e 176
C.3.9 Selectkqueue e e e e 176
C3.10 SipHash24 e e e 177
C3.11 strtod B dtoa o 177
C.3.12 OpenSSL o o e e e e e 178
C3U13 exXpat. . v o o v e e e e e e e e e e e e e e e e 181
C3.14 1ibfh . . . e e e e e e e 181
C3.15 zIib . . . o e 182
C.3.16 cfuhash e 182
C3.17 Hbmpdec e e e e e e e e 183
C.3.18 W3CCHNJIEEM . . o o e 183
C3.19 Audioop . . . v v vt e e e e e 184

C.3.20 asyncio
D JihEE Y

=51

vi

The Python Language Reference, %[F] 3.11.8

B 2% F ik Python sEF WREE K (#0055l BERMEER, AthHEAREEEE. Bk
JELAEEY) (non-essential) [F1@) (4 BUE), [FIi ok =X SASA GRS, HIEE library-index PEIIH. B MGGE &
WAEERN4E, 72 tutorial-index, ¥J74 C 8 C++ FE ks, 24 5 4 W F[E: extending-index DA
o B 1 B (E TR 4] 4 55 Python 8 FERSAH, 17 c-api-index HIJFEAHEIR C/C++ A am il H B9 /i

Contents 1

The Python Language Reference, &[] 3.11.8

2 Contents

CHAPTER 1

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing quite
a different language. On the other hand, if you are using Python and wonder what the precise rules about a particular
area of the language are, you should definitely be able to find them here. If you would like to see a more formal
definition of the language, maybe you could volunteer your time --- or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document --- the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language defi-
nition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython
This is the original and most-maintained implementation of Python, written in C. New language features gen-
erally appear here first.

Jython
Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET
This implementation actually uses the CPython implementation, but is a managed .NET application and makes

https://www.jython.org/

The Python Language Reference, &[] 3.11.8

.NET libraries available. It was created by Brian Lloyd. For more information, see the Python for NET home
page.

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator
of Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BackusNaur form (BNF) grammar notation. This
uses the following style of definition:

name = lc_letter (lc_letter | "_")~*
lc_letter = "av..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letters and
underscores. An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : : =. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<. . .>) gives an informal description of the symbol defined; e.g., this could be used to describe
the notion of "control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
("Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. &4

https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

CHAPTER 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

‘When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://peps.python.org/pep-3120/

The Python Language Reference, &[] 3.11.8

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\
w.] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*—

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTF-8, an initial UTF-8 byte-order mark (b’xefxbbxbf’) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April"', 'Mei', 'Juni’', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Chapter 2. Lexical analysis

The Python Language Reference, %[F] 3.11.8

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:41] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1i] + 1[i+1:]
p = perm(l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7

The Python Language Reference, &[] 3.11.8

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer --- the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue = <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
e Lu - uppercase letters
* LI - lowercase letters
[t - titlecase letters
¢ Lm - modifier letters
* Lo - other letters
* NI - letter numbers
* Mn - nonspacing marks
¢ Mc - spacing combining marks
e Nd - decimal numbers

* Pc - connector punctuations

8 Chapter 2. Lexical analysis

<all characters in id_continue whose NFKC normalization is in

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, %[F] 3.11.8

e Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
* Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.
unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords
1 3.10 BUBT A

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code
that uses match, case and __ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

*

Not imported by from module import *.

In a case pattern within a mat ch statement, __is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, __is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.

H#5[E): The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

System-defined names, informally known as “dunder” names. These names are defined by the interpreter and
its implementation (including the standard library). Current system names are discussed in the Special method
names section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___
names, in any context, that does not follow explicitly documented use, is subject to breakage without warning.

2.3. Identifiers and keywords 9

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, &[] 3.11.8

Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
section Ildentifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r" | "y" | "R" | "U" | "£" | "F"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "rr'" o Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "'''" Jongbytesitem* "'''"™ | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character.

Bytes literals are always prefixed with 'b' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter ' r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and ' \u"' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax
is not supported.

15 3.3 HiFin A The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Support for the unicode legacy literal (u'value ') was reintroduced to simplify the maintenance of dual Python 2.x

10 Chapter 2. Lexical analysis

n RB n

The Python Language Reference, %[F] 3.11.8

and 3.x codebases. See PEP 414 for more information.

A string literal with '£' or 'F "' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined
with 'r', butnot with 'b"' or 'u', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning [Ef#
\<newline> Backslash and newline ignored (1)
N\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh 3.4)

Escape sequences only recognized in string literals are:

Escape Sequence

Meaning

[El#

\N{name}
\UXXXX
\UXXXXXXXX

Character named name in the Unicode database
Character with 16-bit hex value xxxx
Character with 32-bit hex value xxxxxxxx

&)
(6)
)

(EIfig -

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'

'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.

(2) Asin Standard C, up to three octal digits are accepted.

JE 3.11 Jiu A5 5 Octal escapes with value larger than 00377 produce a DeprecationWarning. Ina
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) 7F 3.3 Ji{)% T : Support for name aliases' has been added.

(6) Exactly four hex digits are required.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

2.4. Literals

11

https://peps.python.org/pep-0414/
https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, &[] 3.11.8

(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

7r 3.6 ifiA% 5% B Unrecognized escape sequences produce a DeprecationWarning. In a future Python version
they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is avalid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, nor as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings con-
veniently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The '+ operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 f-strings
1E 3.6 UFTINA.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "x" | "a"
format_spec = (literal_char | replacement_field)™*
literal_char n= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces ' {{ "' or '} } '
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign ' =" may be added after the expression. A conversion field, introduced by an exclamation
point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ': '. A replacement field
ends with a closing curly bracket ' } '.

12 Chapter 2. Lexical analysis

"}"

The Python Language Reference, %[F] 3.11.8

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

TE 3.7 B Ak %8 55 Prior to Python 3.7, an awa 1 t expression and comprehensions containing an async for clause
were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '="' is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace ' { ', within the expression and after the '="' are all retained in the output. By
default, the '=" causes the repr () of the expression to be provided, unless there is a format specified. When a

format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.

TE 3.8 HiN A The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' !s"'
calls str () ontheresult, ' ! r' calls repr (),and '!a"' calls ascii ().

The result is then formatted using the format () protocol. The format specifier is passed tothe _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier
mini-language is the same as that used by the st r. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name .

"He said his name is 'Fred'."

>>> f"He said his name is {repr(name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400"

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20"

"line = The mill's closed "

>>> f"{line 20 }"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

f"abc {al["
f"abc {al'

"1} def" # error: outer string literal ended prematurely

X
x']} def" # workaround: use different quoting

2.4. Literals 13

The Python Language Reference, &[] 3.11.8

Backslashes are not allowed in format expressions and will raise an error:

[f"newline: ord('\n'") }" # raises SyntaxError }

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n"')
>>> f"newline: {newline}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def foo():
f"Not a docstring"”

>>> foo. doc is None
True

J

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary
operator -’ and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer RES decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O0"+ (["_"] "O"™)*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o"™ | "O") (["_"] octdigit)+

hexinteger = oM ("x" | "X") (["_"] hexdigit)+

nonzerodigit = RN LA

digit = "o"..."9"

bindigit = "om | omin

octdigit = "o"..."7"

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

TE 3.6 Jit {5 55 Underscores are now allowed for grouping purposes in literals.

14 Chapter 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, %[F] 3.11.8

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat u= [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent RES ("e"™ | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93 J

TE 3.6 {L Y52 5 : Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j3" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating point number to it, e.g., (3+47). Some examples of imaginary literals:

[3.143' 10.7 107 .0013 1e1003 3.14e-103 3.14_15_937

2.5 Operators

The following tokens are operators:

+ = 2 e / // % @
<< >> & | A ~ g

< > <= >= == I=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

’ 2 = ->

= == e /= //= &= @=

&= | = o= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

2.5. Operators 15

The Python Language Reference, &[] 3.11.8

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

£ : # \)

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

16 Chapter 2. Lexical analysis

CHAPTER 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

CPython B {E4lfii: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether --- it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython E{{E4llfi: CPython currently uses a reference-counting scheme with (optional) delayed detection of
cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (so you should always close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

11t is possible in some cases to change an object’s type, under certain controlled conditions. Tt generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, &[] 3.11.8

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The t ry...finally statement and the w1t h statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1, c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note thatc = d = []
assigns the same object to both ¢ and d.)

3.2 FENIIERE

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ’special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t
explicitly return anything. Its truth value is false.

3.2.2 Notlmplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

T £ A1 Hi 75 7, implementing-the-arithmetic-operations.

TE 3.9 Jit Y5 5: Evaluating Not Implemented in a boolean context is deprecated. While it currently evaluates
as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

18 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . .
or the built-in name E11ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly
related to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computedby ___repr_ () and __str__ (), have the following
properties:

e They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

* The representation is in base 10, when possible.

 Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
* Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

* A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

#i[E]: The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose
of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a
variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True
are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave
like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string,
the strings "False" or "True" are returned, respectively.

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying
machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating point numbers.

3.2. BEDTERE 19

The Python Language Reference, &[] 3.11.8

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same
caveats apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item
i of sequence a is selected by a [1]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n—21], the second to last item of sequence a with length
n.

Sequences also support slicing: a[i:7j] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. The comment above about negative indexes also applies to negative
slice positions.

Some sequences also support “extended slicing” with a third ”step” parameter: a [1 : j : k] selects all items of a with
index x where x = 1 + n*k,n>=0andi<=x<].

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to
other objects, these other objects may be mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

i}t (String)
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point
in the string is represented as a string object with length 1. The built-in function ord () converts a code
point from its string form to an integer in the range 0 — 10FFFF; chr () converts an integer in the range
0 — 1O0FFFF to the corresponding length 1 string object. str.encode () can be used to convert a str
to bytes using the given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a ’singleton’) can be formed by affixing a comma to an expression (an
expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An
empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <=x <
256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

20 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the
target of assignment and de 1 (delete) statements.

#i[E): The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

List (#i51])
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expres-
sions in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside
from being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality
as immutable bytes objects.

3.2.6 Set types

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any sub-
script. However, they can be iterated over, and the built-in function 1en () returns the number of items in a set.
Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathemat-
ical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1 . 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset
is immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item
indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements.
The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

¥

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable
as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain
constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(e.g., 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added se-
quentially over the dictionary. Replacing an existing key does not change the order, however removing a key and
re-inserting it will add it to the end instead of keeping its old place.

3.2. BEDTERE 21

The Python Language Reference, &[] 3.11.8

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

TE 3.7 fUH) 55 55 Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython 3.6,
insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Caulls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section % X, /2). It should be called with an
argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

B Meaning

A reference to the dictionary that holds the func-
tion’s global variables -- the global namespace of the
module in which the function was defined.

None or a tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals___

function.___closure

22 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

Special writable attributes

Most of these attributes check the type of the assigned value:

B

Meaning

function.__doc

function.__name_

function.__qualname___

function.__module___

function.__defaults___

function.__code_

function.__dict__

function.___annotations_

function.__kwdefaults___

The function’s documentation string, or None if un-
available. Not inherited by subclasses.

The function’s name. See also: __ _name_
attributes.

The function’s qualified name. See also:
__qualname__ attributes.

1 3.3 CHTIA.

The name of the module the function was defined in, or
None if unavailable.

A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

The code object representing the compiled function
body.

The namespace supporting arbitrary function attributes.
See also: __dict__ attributes.

A dictionary containing annotations of parame-
ters. The keys of the dictionary are the parameter
names, and 'return' for the return annotation, if
provided. See also: annotations-howto.

A dictionary containing defaults for keyword-only
parameters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach meta-
data to functions. Regular attribute dot-notation is used to get and set such attributes.

CPython E{f24ifiii: CPython’s current implementation only supports function attributes on user-defined functions.
Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the

___code___ attribute).

3.2. BEDTERE

23

The Python Language Reference, &[] 3.11.8

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined func-
tion).

Special read-only attributes:

Refers to the class instance object to which the method
method._ _self N

Refers to the original function object
method.__func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_)

method.__doc___

method.__name_

The name of the module the method was defined in, or

method.__module__ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self_ __ attribute is the instance, and the method object is said to be bound. The new method’s
__func___ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
__self_ _ attribute is the class itself, and its __ func___ attribute is the function object underlying the class
method.

When an instance method object is called, the underlying function (___ func__) is called, inserting the class instance
(__self__)in front of the argument list. For instance, when C is a class which contains a definition for a function
f (), and x is an instance of C, calling x . £ (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a c1assmethod object, the “class instance” storedin ___self
will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to calling £ (C, 1) where £
is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is retrieved
from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call that local
variable. Also notice that this transformation only happens for user-defined functions; other callable objects (and all
non-callable objects) are retrieved without transformation. It is also important to note that user-defined functions
which are attributes of a class instance are not converted to bound methods; this only happens when the function is
an attribute of the class.

24 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator func-
tion. Such a function, when called, always returns an iterator object which can be used to execute the body of the
function: calling the iterator’s iterator.__next__ () method will cause the function to execute until it pro-
vides a value using the yield statement. When the function executes a return statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when
called, returns a coroutine object. It may contain awa it expressions, as well as async withand async for
statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a asyn-
chronous generator function. Such a function, when called, returns an asynchronous iterator object which can be used
inan async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.__anext___ method will return an awaitable which when awaited
will execute until it provides a value using the yield expression. When the function executes an empty return
statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will
have reached the end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C
function. Special read-only attributes:

e __doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e name___is the function’s name. See function. name .
e __self__ issettoNone (but see the next item).

e _ module__ isthe name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist .append (), assuming alist is a list object. In
this case, the special read-only attribute __self___is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

3.2. BEDTERE 25

The Python Language Reference, &[] 3.11.8

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new___ (). The arguments of the call are passed to __new___ () and, in the typical
case,to___init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.29

Modules are a basic organizational unit of Python code, and are created by the import system as invoked ei-
ther by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dic-
tionary referenced by the _globals_ attribute of functions defined in the module). Attribute references are
translated to lookups in this dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object does not
contain the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__["x"] = 1.

Predefined (writable) attributes:

__name__
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
__file___ attribute may be missing for certain types of modules, such as C modules that are
statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations__
A dictionary containing variable annotations collected during module body execution. For best
practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython E{{E4IEi: Because of the way CPython clears module dictionaries, the module dictionary will be cleared
when the module falls out of scope even if the dictionary still has live references. To avoid this, copy the dictionary
or keep the module around while using its dictionary directly.

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.
x is translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of
locating attributes). When the attribute name is not found there, the attribute search continues in the base classes.
This search of the base classes uses the C3 method resolution order which behaves correctly even in the presence
of diamond’ inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self attribute is C. When it would yield a stat icmethod object, it is transformed

26 Chapter 3. Data model

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, %[F] 3.11.8

into the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name___
The class name.

__module___
The name of the module in which the class was defined.

__dict__
The dictionary containing the class’s namespace.

bases
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc

The class’s documentation string, or None if undefined.

__annotations__
A dictionary containing variable annotations collected during class body execution. For best prac-
tices on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose __self
attribute is the instance. Static method and class method objects are also transformed; see above under “Classes”.
See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s __dict__. If no class attribute is found, and the object’s class
hasa___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: ___dict___is the attribute dictionary; ___class___is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in
function, and also os.popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps
by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the i0. Text IOBase abstract class.

3.2. BEDTERE 27

The Python Language Reference, &[] 3.11.8

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future
versions of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object
and a function object is that the function object contains an explicit reference to the function’s globals (the module
in which it was defined), while a code object contains no context; also the default argument values are stored in the
function object, not in the code object (because they represent values calculated at run-time). Unlike function objects,
code objects are immutable and contain no references (directly or indirectly) to mutable objects.

28 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

Special read-only attributes

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

.co_name

co_qualname

.co_argcount

co_posonlyargcount

.co_kwonlyargcount

co_nlocals

CO_varnames

co_cellvars

co_freevars

co_code

co_consts

CcoO_names

.co_filename

co_firstlineno

.co_1lnotab

co_stacksize

co_flags

The function name

The fully qualified function name

e 3.11 HOHTIA.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including ar-
guments with default values) that the function has

The number of local variables used by the function (in-
cluding parameters)

A tuple containing the names of the local variables
in the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of byfecode instruc-
tions in the function

A tuple containing the literals used by the bytecode
in the function

A tuple containing the names used by the bytecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the
interpreter.

The required stack size of the code object

An integer encoding a number of flags for the inter-
preter.

The following flag bits are defined for co_f1ags: bit 0x04 is set if the function uses the *argument s syntax to
accept an arbitrary number of positional arguments; bit 0x 08 is set if the function uses the * *keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for

3.2. BEDTERE

29

The Python Language Reference, &[] 3.11.8

details on the semantics of each flags that might be present.

Future feature declarations (from __ future_ import division)alsouse bitsin co_f1ags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_const s is the documentation string of the function, or
None if undefined.

Methods on code objects

codeobject.co_positions ()

Returns an iterable over the source code positions of each byfecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the
i-th instruction. Column information is 0-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
* Running the interpreter with -X no_debug_ranges.
* Loading a pyc file compiled while using ~X no_debug_ranges.
* Position tuples corresponding to artificial instructions.
¢ Line and column numbers that can’t be represented due to implementation specific limitations.

When this occurs, some or all of the tuple elements can be None.

e 311 BOFTIA.

#§[E): This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the —X no_debug_ranges command line flag
or the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byfecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the byrecode range
* end (an int) represents the offset (exclusive) of the end of the byrecode range

e lineno is an int representing the line number of the byfecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
* The first range yielded will have a start of O.

e The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples,
the start of the second will be equal to the end of the first.

* No range will be backwards: end >= start for all triples.

» The last tuple yielded will have end equal to the size of the bytecode.

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present
in the source code, but have been eliminated by the byfecode compiler.

e 3.10 BOFTINA.

hs%:

30

Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject . replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

1E 3.8 BT

Frame objects

Frame objects represent execution frames. They may occur in traceback objects, and are also passed to registered

trace functions.

Special read-only attributes

frame.f_back

frame.f_code

frame.f_locals

frame.f_globals

frame.f_builtins

frame.f_lasti

Points to the previous stack frame (towards the caller),
or None if this is the bottom stack frame

The code object being executed in this frame.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"f_code".

The dictionary used by the frame to look up local vari-
ables

The dictionary used by the frame to look up global vari-
ables

The dictionary used by the frame to look up built-in (in-
trinsic) names

The "precise instruction” of the frame object (this is an
index into the bytecode string of the code object)

Special writable attributes

frame.f_trace

frame.f_trace_lines

frame.f_trace_opcodes

frame.f_lineno

If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f _trace_lines).

Set this attribute to False to disable triggering a trac-
ing event for each source line.

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame -- writing to this
from within a trace function jumps to the given line
(only for the bottom-most frame). A debugger can im-
plement a Jump command (aka Set Next Statement) by
writing to this attribute.

3.2. BEDTERE

31

https://peps.python.org/pep-0626/

The Python Language Reference, &[] 3.11.8

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.

TE 3.4 JEGHTImA.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling types . TracebackType.

TE 3.7 fR Y5 5 . Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as the third item of
the tuple returned by sys.exc_info (), and asthe __traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the “precise instruction”.
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

traceback.tb_next

The special writable attribute tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level.

FE 3.7 B)55 55 This attribute is now writable

32 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

Slice objects

Slice objects are used to represent slices for ___getitem _ () methods. They are also created by the built-in
slice () function.

Special read-only attributes: start is the lower bound; st op is the upper bound; step is the step value; each is
None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice
object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices
are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under "instance methods”. Class method objects are created by the built-in classmethod ()
constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem (), and x is an instance of this class, then x [1] is roughly equivalent to t ype (x) .
__getitem__ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically Att ributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets___iter__ () toNone, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to ___getitem ()).2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

2The hash (), _iter (), _reversed _(),and _ contains__ () methods have special handling for this; others will
still raise a TypeError, but may do so by relying on the behavior that None is not callable.

3.3. Special method names 33

The Python Language Reference, &[] 3.11.8

3.3.1 Basic customization

object.__new__ (cls[,])

Called to create a new instance of class cls. ___new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cIs).

Typical implementations create a new instance of the class by invoking the superclass’s ___new___ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly cre-
ated instance as necessary before returning it.

If __new__ () is invoked during object construction and it returns an instance of cls, then the new instance’
s__init__ () method will be invoked like __init__ (self[, ...]),where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If new () does not return an instance of cls, then the new instance’s init () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,..])

Called after the instance has been created (by __new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base classhasan___init__ () method,
the derived class’s ___init___ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init__ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ (); doing so will
cause a TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor.
If a base class hasa ___del__ () method, the derived class’s ___del__ () method, if any, must explicitly
call it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) forthe del () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () iscalled a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that __del___ () methods are called for objects that still exist when the interpreter exits.

#i[E): del x doesntdirectly call x.__del () --- the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero.

CPython E{{2&lifiii : It is possible for a reference cycle to prevent the reference count of an object from going
to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A common
cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then
reference the exception, which references its own traceback, which references the locals of all frames caught
in the traceback.

hz%:

Documentation for the gc module.

. Due to the precarious circumstances under which ___del__ () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sys . stderr instead. In par-
ticular:

34

Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

e __del__ () can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If __del__ () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute __del ().

e _del__ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the ___del () method is called.

object._ _repr_ _ (self)
Called by the repr () built-in function to compute the “official” string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines __ _repr_ () butnot _ str__ (), then __ repr__ () is also used when an “informal” string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous.

object.__str__ (self)
Called by str (object) and the built-in functions format () and print () to compute the “informal”
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr__ () in that there is no expectation that __str___ () return a
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ _repr ().

object.__bytes__ (self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a “formatted” string representation of an object. The format_spec ar-
gument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing ___format___ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

T 3.4 MUY 5 5 : The _ format__ method of object itself raises a TypeError if passed any non-empty
string.

TE 3.7 MW %% B: object._ format_ (x, '') is now equivalent to str (x) rather than
format (str(x), '').

self , other
self , other

object.__1
object.__1
self , other
self , other
self , other)

These are the so-called “rich comparison” methods. The correspondence between operator symbols and
method names is as follows: x<y calls x.__ 1t (y), x<=y calls x.__le_ (y), x==y calls x.
eq (y),x!=ycallsx._ ne_ (y),x>ycallsx._ gt_ (y),andx>=ycallsx._ _ge_ (y).

t__()
e_ ()
object.__eq _ (self, other)
object.__ne__ ()
object.__gt__ ()
object.__ge__ (

3.3. Special method names 35

The Python Language Reference, &[] 3.11.8

A rich comparison method may return the singleton Not Imp lemented if it does not implement the operation
for a given pair of arguments. By convention, False and True are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of an if statement), Python will call bool () on the value to determine if the result is true
or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of a
false comparison: True if x is y else NotImplemented. For __ne (), by default it dele-
gatesto __eqg__ () and inverts the result unless it is Not Implemented. There are no other implied re-
lationships among the comparison operators or default implementations; for example, the truth of (x<y or
x==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering ().

See the paragraph on ___hash___ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, It () and _ _gt__ () are each other’s reflection,
__le ()and _ _ge__ () are each other’s reflection, and _ _eq () and __ _ne__ () are their own re-
flection. If the operands are of different types, and the right operand’s type is a direct or indirect subclass
of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s
method has priority. Virtual subclassing is not considered.

When no appropriate method returns any value other than Not Implemented, the == and ! = operators will
fall back to is and is not, respectively.

object.__hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The _ _hash__ () method should return an integer. The only required property
is that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

#i[E): hash () truncates the value returned from an object’s custom __hash__ () method to the size
of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s
___hash__ () must interoperate on builds of different bit sizes, be sure to check the width on all sup-
ported builds. Aneasy way to do thisis withpython -c "import sys; print(sys.hash_info.
width)".

If a class does not define an __eqg___ () method it should not define a___hash___ () operation either; if it
defines__eq () butnot___hash__ (), itsinstances will not be usable as items in hashable collections. If a
class defines mutable objects and implements an __eqg__ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classes have __eq__ () and __hash__ () methods by default; with them, all objects com-
pare unequal (except with themselves) and x.__hash__ () returns an appropriate value such that x == y
implies both that x is yand hash (x) == hash (y).

Aclassthatoverrides__eqg () anddoesnotdefine__hash__ () willhaveits___hash___ () implicitly set
to None. Whenthe __hash__ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as
unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg___ () needs to retain the implementation of ___hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__ .

If a class that does not override __eqg__ () wishes to suppress hash support, it should include __hash___

36

Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

= None in the class definition. A class which defines its own ___hash__ () that explicitly raises a
TypeError would be incorrectly identified as hashable by an isinstance (obj, collections.
abc.Hashable) call

H5(E: By default, the __hash___ () values of str and bytes objects are “salted” with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering
(and it typically varies between 32-bit and 64-bit builds).

2 (F) PYTHONHASHSEED,

TE 3.3 Y54 5 : Hash randomization is enabled by default.

object.__bool__ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __len__ () nor __bool__ (), all its instances are considered
true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an Att ributeError (either getattribute_ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or ___get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnot called. (This is an
intentional asymmetry between __getattr () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the __getattribute__ () method
below for a way to actually get total control over attribute access.

object.__getattribute__ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute_ _ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

#[E): This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

G185 obI . name MFER ST object .__getattr_.

3.3. Special method names 37

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, &[] 3.11.8

object.__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.__setattr__ (self, name, value).

58—t A5 ¥ obj. name. value WIFEZT{} object . _setattr_ .
object.__delattr__ (self, name)

Like _ _setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

G ARG 3 obj. name I FF object . delattr .
object.__dir__ (self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned
iterable to a list and sorts it.

Customizing module attribute access

Special names __getattr___ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and return
the computed value or raise an At t ributeError. If an attribute is not found on a module object through the nor-
mal lookup, i.e. object.__getattribute__ (),then__getattr__ issearched inthe module __dict_
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The __dir___ function should accept no arguments, and return an iterable of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr__ (self):
return f'Verbose {self._name_ }'
def _ setattr_ (self, attr, value):
print (f'Setting {attr}..."')
super () .__setattr__ (attr, value)

sys.modules|[_ name_]. class__ = VerboseModule

#i[El: Defining module __getattr__ and setting module __class__ only affect lookups made using the
attribute access syntax -- directly accessing the module globals (whether by code within the module, or via a reference
to the module’s globals dictionary) is unaffected.

FE 3.5 ST _ class__ module attribute is now writable.
TE 3.7 G __getattr___and__dir__ module attributes.
hz%:

PEP 562 - 154l _ getattr__ fll _ dir__
Describes the __getattr_ and _ dir__ functions on modules.

38 Chapter 3. Data model

https://peps.python.org/pep-0562/

The Python Language Reference, %[F] 3.11.8

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property
in the owner class’ __ dict__ .

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the
attribute was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an Att ributeError exception.

PEP 252 specifies that ___get___ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python’sown___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding __set__ () or __delete__ () changes the kind of descriptor to a ”data descriptor”. See
Invoking Descriptors for more details.

object.__delete__ (self, instance)

Called to delete the attribute on an instance instance of the owner class.
Instances of descriptors may also have the __objclass___ attribute present:

object.__objclass__

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this
object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes).
For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the
first positional argument (for example, CPython sets this attribute for unbound methods that are implemented
in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol: __get__ (), ___set___(),and __delete__ (). If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.___dict__ ['x'],then type(a).__dict__ ['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.__get__ (a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict_ ['x'].
__get___(a, type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict__['x'].__get__ (None, A).

3.3. Special method names 39

https://peps.python.org/pep-0252/

The Python Language Reference, &[] 3.11.8

Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__.__mro__ forabase class B following
Aandthenreturns B.__dict__ ['x'].__get__(a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined.
A descriptor can define any combination of __get__ (), set_ () and __delete (). If it does not
define __get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in
the object’s instance dictionary. If the descriptor defines ___set__ () and/or __delete__ (), it is a data de-
scriptor; if it defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and
__set__ (), while non-data descriptors have just the __get__ () method. Data descriptors with __get__ ()
and __set__ () (and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In
contrast, non-data descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict___ can be significant. Attribute lookup speed can be significantly improved as
well.

object.__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creationof __dict___
and __weakref__ for each instance.

Notes on using __slots__:

* When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances
will always be accessible.

e Withouta__dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

e Without a __ weakref__ variable for each instance, classes defining __ slots__ do not support weak
references to its instances. If weak reference support is needed, then add '___weakref__ ' to the
sequence of strings in the __slots__ declaration.

e __ slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

¢ The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will get a __dict___ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

 If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e TypeError will be raised if nonempty _ slots__ are defined for a class derived from a
"variable—-length" built-in typesuchas int,bytes,and tuple.

¢ Any non-string iferable may be assigned to __slots__.

40 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

If adictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The val-
ues of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc () and displayed in the output of help ().

__class__ assignment works only if both classes have the same __slos__.

Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class, init subclass_
it is possible to write classes which change the behavior of subclasses.
but where class decorators only affect the specific class they’re applied to,
future subclasses of the class defining the method.

classmethod object.__init_subclass__ (cls)

() is called on the parent class. This way,
This is closely related to class decorators,
init_subclass__ solely applies to

This method is called whenever the containing class is subclassed. cs is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using ___init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

(class Philosopher:
def _ init_subclass__ (cls, /, default_name,
super () .__init_subclass__ (**kwargs)
cls.default_name default_name

**kwargs) :

class AustralianPhilosopher (Philosopher,
pass

default_name="Bruce") :

The default implementation object .__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

#iE): The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed

as type (cls).

T 3.6 JUHT A

When a class is created, type._ new_
___set_name__ () hook.

0

scans the class variables and makes callbacks to those with a

object.__set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:
class A:
x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created,

set_name___ () will not be called automatically.

If needed, _set_name___ () can be called directly:
class A:
pass
(AT —F)
3.3. Special method names 41

The Python Language Reference, &[] 3.11.8

(L —5)
c = C()
A.x = C # The hook is not called
c._ _set_name__ (A, 'x'") # Manually invoke the hook

W2 AT 7 Creating the class object
TE 3.6 OB NA.

Metaclasses

By default, classes are constructed using type (). The class body is executed in a new namespace and the class
name is bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and MySubclass are instances of Meta:

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

J

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
* MRO entries are resolved,;
* the appropriate metaclass is determined;
* the class namespace is prepared;
* the class body is executed;

* the class object is created.

Resolving MRO entries

object.__mro_entries__ (self, bases)
If a base that appears in a class definition is not an instance of t ype, thenan__mro_entries__ () method
is searched on the base. If an__mro_entries__ () method is found, the base is substituted with the result
of acall to__mro_entries__ () when creating the class. The method is called with the original bases
tuple passed to the bases parameter, and must return a tuple of classes that will be used instead of the base.
The returned tuple may be empty: in these cases, the original base is ignored.

hz=%:

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

42 Chapter 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, %[F] 3.11.8

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
* if no bases and no explicit metaclass are given, then t ype () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« ifaninstance of t ype () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a _ prepare__ attribute, it is called as namespace = metaclass._ _prepare__(name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare_ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered map-
ping.

hz%:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped ___class__ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). __class__ is an
implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

CPython B fE &l fifi: In CPython 3.6 and later, the _ class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.___new___
call in order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass type, or any metaclass that ultimately calls type.__new__, the following
additional customization steps are invoked after creating the class object:

3.3. Special method names 43

https://peps.python.org/pep-3115/

The Python Language Reference, &[] 3.11.8

1) The type.__new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those __set_name___ methods are called with the class being defined and the assigned name of that par-
ticular attribute;

3) The _init_subclass__ () hook is called on the immediate parent of the new class in its method reso-
lution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.___new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

hz%:

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, in-
terface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to imple-
ment isinstance (instance, class).

class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to imple-

ment issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

hs%:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in the
context of adding Abstract Base Classes (see the abc module) to the language.

44 Chapter 3. Data model

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, %[F] 3.11.8

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type
int.

L%

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by
static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object.__class_getitem__ (cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purpose of ___class_getitem__ () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply 7ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __class_getitem _ (), or
inherit from typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementationsof __class_getitem__ () onclasses defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using __class_getitem__ () onany class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the _ getitem () instance method
defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem__ () may be called instead. __class_getitem__ () should return a GenericAlias ob-
ject if it is properly defined.

Presented with the expression obj [x], the Python interpreter follows something like the following process to decide
whether __getitem__ () or __class_getitem__ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of_obj.__getitem__ (obj, x)

if hasattr(class_of_obj, '_ _getitem__'):
return class_of_obj.__getitem__ (obj, x)
Else, if obj is a class and defines __class_getitem _,

€ & A}

3.3. Special method names 45

https://peps.python.org/pep-0484/

The Python Language Reference, &[] 3.11.8

(L —5)
call obj.__class_getitem _(x)
elif isclass(obj) and hasattr(obj, '__ _class_getitem__"):
return obj.__ _class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'"{class_of_obj.__name__}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s
metaclass, and most classes have the type class as their metaclass. type does not define ___getitem (),
meaning that expressions such as 1ist [int],dict [str, float] and tuple[str, bytes] all resultin
__class_getitem _ () being called:

>>> # 1list has class "type" as its metaclass, like most classes:
>>> type (list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem_ _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type(list[int])
<class 'types.GenericAlias'>

J

However, if a class has a custom metaclass that defines _getitem__ (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
""rA breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem__,

>>> # so __class_getitem__ is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menul['SPAM'])

<enum 'Menu'>

W%
PEP 560 - Core Support for typing module and generic types
Introducing _ class_getitem (), and outlining when a subscription results in

__class_getitem__ () beingcalled instead of __getitem__ ()

46 Chapter 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, %[F] 3.11.8

3.3.6 Emulating callable objects

object.__call__ (self[, args...])

Called when the instance is “called” as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first
set of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence, or
s1ice objects, which define a range of items. It is also recommended that mappings provide the methods keys (),
values (),items (),get (),clear (), setdefault (),pop(),popitem(),copy (),andupdate ()
behaving similar to those for Python’s standard dictionary objects. The collections.abc module pro-
vides a MutableMapping abstract base class to help create those methods from a base setof __getitem (),
__setitem__ (), delitem__ (), and keys (). Mutable sequences should provide methods append (),
count (), index (), extend (), insert (), pop (), remove (), reverse () and sort (), like Python
standard 1ist objects. Finally, sequence types should implement addition (meaning concatenation) and multipli-
cation (meaning repetition) by defining the methods __add__ (), __radd__ (),__iadd__ (),_mul__ (),
__rmul__ () and __imul__ () described below; they should not define other numerical operators. It is recom-
mended that both mappings and sequences implement the __contains__ () method to allow efficient use of the
in operator; for mappings, in should search the mapping’s keys; for sequences, it should search through the values.
It is further recommended that both mappings and sequences implementthe __ iter__ () method to allow efficient
iteration through the container; for mappings, __iter__ () should iterate through the object’s keys; for sequences,
it should iterate through the values.

object.__len__ (self)
Called to implement the built-in function 1en (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t definea ___bool__ () method and whose __len__ () method returns zero is
considered to be false in a Boolean context.

CPython E{ f4ll{fi: In CPython, the length is required to be at most sys.maxsize. If the length is
larger than sy s . maxsize some features (such as 1en ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___bool__ () method.

object.__length_hint__ (self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the ___1ength_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

TE 3.4 JEHT A

f#(E): Slicing is done exclusively with the following three methods. A call like

[a[l:Z] =

is translated to

[a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s1ice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence

3.3. Special method names 47

The Python Language Reference, &[] 3.11.8

(after any special interpretation of negative values), IndexError should be raised. For mapping types, if
key is missing (not in the container), KeyError should be raised.

#i(El: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

H(E]: When subscripting a class, the special class method ___class_getitem__ () may be called instead
of __getitem__ (). See__class_getitem__ versus __getitem__ for more details.

object.__setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe _getitem__ () method.

object._ delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values asforthe __getitem _ ()
method.

object.__missing__ (self, key)

Called by dict._ getitem _ () to implement self [key] for dict subclasses when key is not in the
dictionary.

object.__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator

object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

object.__reversed__ (self)

Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__Ien__ () and___getitem _ ()). Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not 1in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be iterable.

object.__contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iteration via___iter__ (),
then the old sequence iteration protocol via ___getitem _ (), see this section in the language reference.

48 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object.__mul__ (self, other)

object.__matmul__ (self, other)

object.__truediv__ (self, other)

object._ _floordiv__ (self, other)

object.__mod___ (self, other)

object.__divmod__ (self, other)

object.__pow__ (self, other[, modulo])

object.__lshift__ (self, other)

object.__rshift__ (self, other)

object.__and___ (self, other)

object.__xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + y, where x is an instance of
a class that has an ___add__ () method, type (x) .__add__(x, y) iscalled. The __divmod _ ()
method should be the equivalent to using _ floordiv.__ () and __mod__ (); it should not be related to
__truediv__ (). Note that __pow__ () should be defined to accept an optional third argument if the
ternary version of the built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return

NotImplemented.
object.__radd__ (self, other)
object.__rsub__ (self, other)
object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)
object._ _rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object.__rpow___ (self, other[, modulo])
object.__rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor__ (self, other)
object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the
left operand does not support the corresponding operation’ and the operands are of different types.* For

3 ”Does not support” here means that the class has no such method, or the method returns Not Implemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method -- suchas ___add__ () -- fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 49

The Python Language Reference, &[] 3.11.8

instance, to evaluate the expression x — y, where yis an instance of aclass thathasan___ rsub__ () method,
type(y) .__rsub__ (y, x) iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling __rpow__ () (the coercion rules would become too compli-
cated).

#E): If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object.__ifloordiv__ (self, other)
object.__imod___ (self, other)
object.__ipow__ (self, other[, m()dulo])
object.__ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)
object.__ixor__ (self, other)

object.__ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
&=, **=, <<=, >>=, &=, =, | =). These methods should attempt to do the operation in-place (modifying

self) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
or if that method returns Not Implemented, the augmented assignment falls back to the normal methods.
For instance, if x is an instance of a class withan ___iadd__ () method, x += yisequivalentto x = x.
_diadd__ _(y).If__iadd () doesnotexist,orif x.___iadd__ (y) returns Not Implemented, x.
_add__(y)andy.__radd__ (x) areconsidered, as with the evaluation of x + y. In certain situations,
augmented assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this
behavior is in fact part of the data model.

object.__neg__ (self)

object.__pos__ (self)

object.__abs__ (self)

object.__invert__ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object.__complex__ (self)

object.__int__ (self)

object.__float__ (self)
Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

object.__index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin () ,hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If __int__ (),__float__ () and __complex__ () are not defined then corresponding built-in func-
tions int (), float () and complex () fallbackto__ index__ ().

object.__round__ (self[, ndigits])
object.__trunc__ (self)

50 Chapter 3. Data model

The Python Language Reference, %[F] 3.11.8

object.__floor__ (self)
object.__ceil__ (self)

Called to implement the built-in function round () and math functions t runc (), floor () andceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int__ () nor __index__ () is
defined.

T 3.11 JjR 5% 55 The delegation of int () to ___trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section The with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The wi t h statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context

to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being prop-
agated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
hz%:

PEP 343 - The ”with” statement
The specification, background, and examples for the Python wi t h statement.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, y) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object.__match_args___

This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to () .

For example, if MyClass.__match_args__is ("left", "center", "right") thatmeansthatcase
MyClass (x, y) isequivalent to case MyClass (left=x, center=y). Note that the number of argu-
ments in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the
pattern match attempt will raise a TypeError.

1E 3.10 BB
h=%:

3.3. Special method names 51

https://peps.python.org/pep-0343/

The Python Language Reference, &[] 3.11.8

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an

exception:

>>> class C:
pass

>>> ¢ = C()
>>> ¢c.__len_ = lambda: 5
>>> len(c)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods suchas___hash__ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conven-

tional lookup process, they would fail when invoked on the type object itself:

>>> 1 . _hash__ () == hash(1l)
True
>>> int._ hash_ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash_ ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass

confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type(l) .__hash__ (1) == hash (1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally

also bypasses the __getattribute__ () method even of the object’s metaclass:

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def = len_ (self):
return 10
def _ _getattribute__ (*args):
print ("Class getattribute invoked")

return object._ _getattribute__ (*args)
>>> ¢ = C{()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10

(BT —H)

52 Chapter 3.

Data model

https://peps.python.org/pep-0634/

The Python Language Reference, &[] 3.11.8

(R L —5)
>>> len (c) # Implicit lookup
10

Bypassingthe _getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

34 #BiE

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async
de £ functions are awaitable.

#§E): The generator iterator objects returned from generators decorated with t ypes.coroutine () are also
awaitable, but they do not implement __await__ ().

object.__await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa it expression.

#i(E): The language doesn’t place any restriction on the type or value of the objects yielded by the iterator
returned by __await__, as this is specific to the implementation of the asynchronous execution framework
(e.g. asyncio) that will be managing the awaitable object.

1E 3.5 BUR A
h=%:

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

FE 3.5.2 i) HE: Itis a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, StopIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, tmceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the

34. RE 53

https://peps.python.org/pep-0492/

The Python Language Reference, &[] 3.11.8

__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code in its __anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext__ (self):
val = await self.readline ()
if val == b'"':
raise StopAsyncIteration
return val

TE 3.5 BUHTIA.
T 3.7 IR %% B Prior to Python 3.7,

chronous iterator.

aiter__ () could return an awaitable that would resolve to an asyn-

Starting with Python 3.7, __aiter__ () must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
___aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)
Semantically similar to ___enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to ___exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

54 Chapter 3. Data model

The Python Language Reference, &[] 3.11.8

class AsyncContextManager:
async def _ _aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type,
await log('exiting context')

exc,

tb) :

1E 3.5 BUBTINA.

[Ef#

34. RE

55

The Python Language Reference, &[] 3.11.8

56 Chapter 3. Data model

cHAPTER 4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a
unit. The following are blocks: a module, a function body, and a class definition. Each command typed interactively
is a block. A script file (a file given as standard input to the interpreter or specified as a command line argument to
the interpreter) is a code block. A script command (a command specified on the interpreter command line with the
—c option) is a code block. A module run as a top level script (as module ___main__) from the command line using
a —m argument is also a code block. The string argument passed to the built-in functions eval () and exec () isa
code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debug-
ging) and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.
The following constructs bind names:

* formal parameters to functions,

e class definitions,

¢ function definitions,

* assignment expressions,

e targets that are identifiers if occurring in an assignment:

— for loop header,

— after as ina withstatement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

— in a capture pattern in structural pattern matching

* import statements.

57

The Python Language Reference, &[] 3.11.8

The import statement of the form from ... import * binds all names defined in the imported module,
except those beginning with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If
a name is bound at the module level, it is a global variable. (The variables of the module code block are local and
global.) If a variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations. See the FAQ entry on UnboundLocalError for examples.

If the g1obal statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called __main__.

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A
class definition is an executable statement that may use and define names. These references follow the normal rules
for name resolution with an exception that unbound local variables are looked up in the global namespace. The
namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined in a class
block is limited to the class block; it does not extend to the code blocks of methods -- this includes comprehensions
and generator expressions since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

58 Chapter 4. Execution model

The Python Language Reference, %[F] 3.11.8

4.2.3 Builtins and restricted execution

CPython E{{f2#Mfii: Users should not touch _ builtins__; it is strictly an implementation detail. Users
wanting to override values in the builtins namespace should i mport the builtins module and modify its attributes
appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ inits global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, wheninthe __main__ module, _ builtins___is the built-in module builtins;
when in any other module, __builtins___is an alias for the dictionary of the built ins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will
print 42:

i =10

def f():
print (i)

i =42

£0

The eval () and exec () functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace.' The exec () and eval () functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used for both.

4.3 iy

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by
the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with the rai se statement. Exception handlers are specified with the
try .. except statement. The finally clause of such a statement can be used to specify cleanup code which
does not handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the "termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-
entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance:
it must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the
handler and can carry additional information about the exceptional condition.

#i[E]: Exception messages are not part of the Python API. Their contents may change from one version of Python to
the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the t ry statement in section 7he try statement and raise statement in section 7he raise
statement.

! This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Bilsh 59

The Python Language Reference, &[] 3.11.8

[FI#2

60 Chapter 4. Execution model

CHAPTER D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machin-
ery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the __ import__ () function, with the appropriate arguments. The return value of __import__ () is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__ () performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sys .modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin ___import__ () function is called. Other mech-
anisms for invoking the import system (such as importlib.import_module ()) may choose to bypass
__import__ () and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing
it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

1£ 3.3 I %2 5 The import system has been updated to fully implement the second phase of PEP 302. There is no
longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

I 2[F types.ModuleType.

61

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, &[] 3.11.8

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the im-
port machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of this
documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another
way, packages are just a special kind of module. Specifically, any module that contains a __path___ attribute is
considered a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called emai 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email.mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory contain-
ingan __init__.py file. When a regular package is imported, this __init__ .py file is implicitly executed,
and the objects it defines are bound to names in the package’s namespace. The __init__ .py file can contain the
same Python code that any other module can contain, and Python will add some additional attributes to the module
when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/
__init__ .py
one/
__init__.py
two/
__init___.py
three/
__init__ .py

Importing parent .one will implicitly execute parent/___init__ .py and parent/one/__init__ .
py. Subsequent imports of parent . two or parent . three will execute parent /two/__init__ .pyand
parent/three/__init__ .py respectively.

62 Chapter 5. The import system

The Python Language Reference, %[F] 3.11.8

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on
the network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__ .py file. In fact, there may be multiple parent
directories found during import search, where each one is provided by a different portion. Thus parent/one
may not be physically located next to parent /two. In this case, Python will create a namespace package for the
top-level parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this dis-
cussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo .bar.baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sy s .modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys .modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sy s .modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload ()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 63

https://peps.python.org/pep-0420/

The Python Language Reference, &[] 3.11.8

5.3.2 Finders and loaders

If the named module is not found in sy s .modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

7E 3.4 jii Y52 58 In previous versions of Python, finders returned loaders directly, whereas now they return module
specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys . path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sy s . path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sy s .modules, Python next searches sy s .meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called £ind_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
aModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path___ attribute. If the appropriate __path___ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the mod-
ules involved has already been cached, importing foo . bar . baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, callingmpf . find_spec ("foo.bar", foo.

64 Chapter 5. The import system

The Python Language Reference, %[F] 3.11.8

__path__, None). Once foo.bar hasbeen imported, the final traversal will callmpf . find_spec ("foo.
bar.baz", foo.bar.__path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything
other than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

T 3.4 JR¥ %2 ¥: The find_spec () method of meta path finders replaced find_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does
not implement find_spec ().

I 3.10 J[Rf{)5# T Use of £ind_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules [spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader_ and __package__ if missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules([spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

* If there is an existing module object with the given name in sy s . modules, import will have already returned
it.
* The module will exist in sys .modules before the loader executes the module code. This is crucial because

the module code may (directly or indirectly) import itself; adding it to sys .modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

¢ If loading fails, the failing module -- and only the failing module -- gets removed from sys.modules. Any
module already in the sy s . modules cache, and any module that was successfully loaded as a side-effect, must
remain in the cache. This contrasts with reloading where even the failing module is left in sys.modules.

5.4. Loading 65

The Python Language Reference, &[] 3.11.8

» After the module is created but before execution, the import machinery sets the import-related module at-
tributes (”_init_module_attrs” in the pseudo-code example above), as summarized in a later section.

* Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

¢ The module created during loading and passed to exec_module() may not be the one returned at the end of
import”.

1E 3.4 {7 [{)%# 55 : The import system has taken over the boilerplate responsibilities of loaders. These were previously
performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute.
Any value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

¢ If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict__).

* If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

¥E 3.4 i The create_module () method of loaders.

TF 3.4 [P35 8 The 1oad_module () method was replaced by exec_module () and the import machinery
assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders
if it exists and the loader does not also implement exec_module (). However, load_module () has been
deprecated and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

* If there is an existing module object with the given name in sy s .modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys.modules.

¢ The module must exist in sy s .modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

¢ If loading fails, the loader must remove any modules it has inserted into sys .modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

7E 35 MU WAy % ®: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

TE 3.6 [R5 . An ImportError is raised when exec_module () is defined but create_module () is
not.

T 3.10 fRAYSETE: Use of load_module () will raise ImportWarning.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

66 Chapter 5. The import system

The Python Language Reference, %[F] 3.11.8

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from
statements, or built-in __import__ ()) a binding is placed in the parent module’s namespace to the submodule
object. For example, if package spam has a submodule foo, after importing spam. foo, spam will have an
attribute foo which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init___.py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo]

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys.modules ['spam'] and sys.modules|['spam.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

1E 3.4 BUHTA.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.
__name___
The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.
__loader___

The __loader___ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

package___
The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
asits __name___. When the module is a package, its __package___ value should be set to its __name__.

5.4. Loading 67

The Python Language Reference, &[] 3.11.8

When the module is not a package, __package___ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules, as defined
in PEP 366. It is expected to have the same value as __spec___.parent.

TE 3.6 {555 The value of __package___is expected to be the same as __spec___.parent.
—Spec__

The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception
iS__main__,where __ spec__is set to None in some cases.

When ___package___is not defined,

1E 3.4 SO
TE 3.6 iRAETH: _ spec_ .parent is used as a fallback when ___package___is not defined.

spec___.parent is used as a fallback.

__path___
If the module is a package (either regular or namespace), the module object’s __path___ attribute must be
set. The value must be iterable, but may be empty if __path___ has no further significance. If __path__is
not empty, it must produce strings when iterated over. More details on the semantics of __path___ are given
below.

Non-package modules should not have a __path___ attribute.

__file__

__cached__

__file__ is optional (if set, value must be a string). It indicates the pathname of the file from which the
module was loaded (if loaded from a file), or the pathname of the shared library file for extension modules
loaded dynamically from a shared library. It might be missing for certain types of modules, such as C modules
that are statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic
meaning (e.g. a module loaded from a database).

If _ file_ issetthen the ___cached__ attribute might also be set, which is the path to any compiled
version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can
simply point to where the compiled file would exist (see PEP 3147).

Note that __cached___maybesetevenif __file_ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which ___file_
and __ cached__ are derived). So if a loader can load from a cached module but otherwise does not load
from a file, that atypical scenario may be appropriate.

5.4.5 module.__path__

By definition, if a module has a __path___attribute, it is a package.

A package’s __path___ attribute is used during imports of its subpackages. Within the import machinery, it func-
tions much the same as sys . path, i.e. providing a list of locations to search for modules during import. However,
__path___is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path_ .

A package’s __init__ .py file may set or alter the package’s __path___ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__ .py files containing only _ _path__ manipulation code; the import machinery
automatically sets __path___ correctly for the namespace package.

68 Chapter 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, %[F] 3.11.8

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module.__name__,module.__file_ ,and module.__loader___ as input into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

 If the module hasa ___spec___ attribute, the information in the spec is used to generate the repr. The "name”,

CEEE)

“loader”, ~origin”, and "has_location” attributes are consulted.
 If the module hasa ___file__ attribute, this is used as part of the module’s repr.

e If the module hasno __file__ butdoes have a __ loader__ thatis not None, then the loader’s repr is
used as part of the module’s repr.

* Otherwise, just use the module’s __name___in the repr.

TE 3.4 I 52 Use of loader.module_repr () has been deprecated and the module spec is now used by
the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr () method, if defined, before trying either approach described above. However, the method is
deprecated.

TE 3.10 R 55 Calling module_repr () now occurs after trying to use a module’s __spec___ attribute but
before falling back on __file_ . Use of module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source
. py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

Python also supports hash-based” cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based .pyc files: checked and unchecked. For checked hash-based .pyc files,
Python validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache
file. If a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-
based cache file. For unchecked hash-based .pyc files, Python simply assumes the cache file is valid if it exists.
Hash-based . pyc files validation behavior may be overridden with the ——check-hash-based-pycs flag.

TE 3.7 iR 55 5. Added hash-based . pyc files. Previously, Python only supported timestamp-based invalidation
of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
Jfinder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g.
. so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

5.5. The Path Based Finder 69

The Python Language Reference, &[] 3.11.8

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys .meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec () protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The __path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other "locations” (see the site
module) that should be searched for modules, such as URLSs, or database queries. Only strings should be present on
sys.path;all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s £ind_spec () method as described previously. When the path argument to £ind_spec ()
is given, it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys.path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEnt ryFinder) for the path entry. Because this can be an expensive operation (e.g. there
may be stat () call overheads for this search), the path based finder maintains a cache mapping path entries to
path entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache
actually stores finder objects rather than being limited to importer objects). In this way, the expensive search for a
particular path entry location’s path entry finder need only be done once. User code is free to remove cache entries
from sys.path_importer_cache forcing the path based finder to perform the path entry search again®.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding
of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook
cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that
code be changed to use None instead. See portingpythoncode for more details.

70 Chapter 5. The import system

The Python Language Reference, %[F] 3.11.8

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory -- denoted by an empty string -- is handled slightly differently from other en-
tries on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the £ind_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. find_spec () returns a fully populated spec for the module. This spec will always have “loader”
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets “sub-
module_search_locations” to a list containing the portion.

TE 3.4 fRIEETE: find_spec () replaced find_loader () and find_module (), both of which are now
deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec (). The
methods are still respected for the sake of backward compatibility. However, if find_spec () is implemented on
the path entry finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional £ind_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader () and f£ind_module () exist on a path
entry finder, the import system will always call find_loader () in preference to find_module ().

E 3.10 WU % B3 Calls to find_module () and find_loader () by the import system will raise
ImportWarning.

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.
meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec ()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.6. Replacing the standard import system 71

The Python Language Reference, &[] 3.11.8

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/
__init___.py
subpackagel/

__init__ .py
moduleX.py
moduleY.py
subpackage?2/
__init__.py
moduleZ.py
moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative
imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <>or from <> import <> syntax, butrelative imports may only
use the second form; the reason for this is that:

[import XXX .YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn’t strictly qualify as a built-in module. This is because the manner in which __main__ is initialized depends
on the flags and other options with which the interpreter is invoked.

5.8.1 _ main__._spec__

Depending on how __main__ isinitialized, __main__.___spec___ gets set appropriately or to None.

When Python is started with the —m option, ___spec___ is set to the module spec of the corresponding module or
package. _ spec___ is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys .path entry.

In the remaining cases __main__.___spec___is set to None, as the code used to populate the __main___ does
not correspond directly with an importable module:

* interactive prompt
+ —ciEIH
* running from stdin

* running directly from a source or bytecode file

72 Chapter 5. The import system

The Python Language Reference, %[F] 3.11.8

Note that __main__.__spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the —m switch if valid module metadata is desired in __main__.

Note also that even when __main___ corresponds with an importable module and __main__.__ spec__ isset
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if __ _name_
== "__main__": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol
as an alternative to £ind_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed ___name___for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

)

5.9. References 73

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, &[] 3.11.8

74 Chapter 5. The import system

CHAPTER O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a
common type”, this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
* otherwise, if either argument is a floating point number, the other is converted to floating point;
* otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the %’ operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure
enclosure = parenth_form | 1list_display | dict_display | set_display
| generator_expression | yield _atom

75

The Python Language Reference, &[] 3.11.8

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier ___spam occurring in a class named Ham will be transformed to _Ham___spam. This transformation
is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long
(longer than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals.
See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required --- allowing unparenthesized “nothing” in expressions would cause ambiguities
and allow common typos to pass uncaught.

76 Chapter 6. Expressions

The Python Language Reference, %[F] 3.11.8

6.2.4 Displays for lists, sets and dictionaries
For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two
flavors:

« either the container contents are listed explicitly, or

* they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for
comp_for ["async"] "for" target_list "in
comp_iter comp_for | comp_if

comp_if RES "if" or_test [comp_iter]

or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or i f
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t "leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from ex-
pressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of eithera for orasync for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa i t expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions
it is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the
coroutine function in which it appears. See also PEP 530.

TE 3.6 {HTiN A : Asynchronous comprehensions were introduced.
TE 3.8 fiY5# 3 : yieldand yield from prohibited in the implicitly nested scope.

7 3.11 5 55 . Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions.
Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2. Atoms 77

https://peps.python.org/pep-0530/

The Python Language Reference, &[] 3.11.8

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display := "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item list | dict_comprehension] "}"
dict_item_list n= dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension := expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you
can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the
last one given.

A double asterisk * * denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to
the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

TE 3.5 fiHTin A Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual “for” and "if” clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section 4% # ! [F][% /& . (To summarize, the key type
should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last
value (textually rightmost in the display) stored for a given key value prevails.

TE 3.8 Jif¥j 54 55 Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-
defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value,
as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the

78 Chapter 6. Expressions

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, %[F] 3.11.8

generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for
clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator
expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter
condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values
obtained from the leftmost iterable. For example: (x*y for x in range(10) for y in range (x,
x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from ex-
pressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

TE 3.6 JGHN A Asynchronous generator expressions were introduced.

T 3.7 i) %% 5 Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

TE 3.8 fiMJ5#TH: yieldand yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_from "yield" "from" expression
yield_expression = "yield" expression_list | yield_ from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

7r 3.8 WA %% 55 Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls
the execution of the generator function. The execution starts when one of the generator’s methods is called. At
that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of
expression_list to the generator’s caller, or None if expression_list is omitted. By suspended, we
mean that all local state is retained, including the current bindings of local variables, the instruction pointer, the in-
ternal evaluation stack, and the state of any exception handling. When the execution is resumed by calling one of the
generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The
value of the yield expression after resuming depends on the method which resumed the execution. If ___next__ ()
is used (typically via either a for or the next () builtin) then the result is None. Otherwise, if send () is used,
then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control

6.2. Atoms 79

The Python Language Reference, &[] 3.11.8

where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a ¢t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s c1ose () method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr> isused,the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send ()
and any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send () willraise AttributeError or TypeError, while throw () will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

TE 3.3 fR5# T : Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assign-
ment statement.

hz%:
PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha ___next___ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the expression_1list is returned to __ _next__ ()’s caller. If the generator exits without yielding
another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and ”sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (value)

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is

80 Chapter 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, %[F] 3.11.8

raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The type argument should be an exception class, and value should be an exception instance.
If the value is not provided, the fype constructor is called to get an instance. If fraceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any
other exception, it is propagated to the caller. cIose () does nothing if the generator has already exited due
to an exception or normal exit.

L

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :
print ("Execution starts when 'next()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo(1l)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in "What's New in Python.”

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_11ist tothe awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation

6.2. Atoms 81

The Python Language Reference, &[] 3.11.8

stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If _ anext__ () isused then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions,
the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected
context--perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator
garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling
aclose () method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a t ry construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a try construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls acZose () and executes the coroutine. This finalizer may
be registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-
iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method
see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

coroutine agen.__anext__ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last
executed yield expression. When an asynchronous generator function is resumed with an ___anext__ ()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the expression_1list of the yield expression is the
value of the StopIteration exception raised by the completing coroutine. If the asynchronous genera-
tor exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception,
signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this ”"sends” a value into the asynchronous generator function, and the
value argument becomes the result of the current yield expression. The awaitable returned by the asend ()
method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend () is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, lraceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous gener-
ator was paused, and returns the next value yielded by the generator function as the value of the raised
StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

82 Chapter 6. Expressions

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, %[F] 3.11.8

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise
a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a
RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier
The primary must evaluate to an object of a type that supports attribute references, which most objects do. This
object is then asked to produce the attribute whose name is the identifier. The type and value produced is determined

by the object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the getattribute () methodorthe getattr ()
method. The _ getattribute_ () method is called first and either returns a value or raises
AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__ () method, that method is called as a
fallback.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscrip-
tion of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through
defining one or both of __getitem () and _ _class_getitem__ (). When the primary is subscripted,
the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem__ iscalledinstead of __getitem__, see __ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression
list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An

6.3. Primaries 83

The Python Language Reference, &[] 3.11.8

example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a s1lice (as discussed
in the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a __getitem () method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s _ getitem () method,
subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or de statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"

slice_list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride u= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem__ () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section 4% 4 7! [F]/ &) whose start, stop and step attributes are the values of the
expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary " (" [argument_list [","] | comprehension]
argument_list = positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item = assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

84 Chapter 6. Expressions

The Python Language Reference, %[F] 3.11.8

An optional trailing comma may be present after the positional and keyword arguments but does not affect the se-
mantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga ___call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section % X, & &% for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the
slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value
is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the
call.

CPython E{f4ll{fli: An implementation may provide built-in functions whose positional parameters do not have
names, even if they are 'named’ for the purpose of documentation, and which therefore cannot be supplied by key-
word. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse their
arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless
aformal parameter using the syntax * *identifier is present; in this case, that formal parameter receives a dictio-
nary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y,
x3, x4),if yevaluates to a sequence yl, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2,
yvl, ..., YM, x3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any * *expression arguments -- see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

J

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not often arise.

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value
(by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned
to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a
Python identifier (e.g. "max—temp °F" is acceptable, although it will not match any formal parameter that could

6.3. Primaries 85

The Python Language Reference, &[] 3.11.8

be declared). If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there
is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

T 3.5 {19 5% ¥ Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by
PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is---

a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will do
is bind the formal parameters to the arguments; this is described in section % X, % % . When the code block
executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument
list of the call: the instance becomes the first argument.

a class instance:
The class mustdefinea call () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

15 3.5 OB A

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): —1* * 2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

86 Chapter 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, %[F] 3.11.8

Raising 0. 0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

n n

u_expr = power | "-" u_expr | "+" u_expr | "

u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as — (x+1). It only applies to integral numbers or to custom objects that override the ___invert__ ()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr = m_expr | a_expr "+" m _expr | a_expr "-"

m_expr
The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul__ () and ___rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

1E 3.5 BUHTA.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments
are first converted to a common type. Division of integers yields a float, while floor division of integers results in
an integer; the result is that of mathematical division with the *floor’ function applied to the result. Division by zero
raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv__ () and ___floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError excep-
tion. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 +
0.34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute

6.7. Binary arithmetic operations 87

The Python Language Reference, &[] 3.11.8

value of the result is strictly smaller than the absolute value of the second operand'.

The floor division and modulo operators are connected by the following identity: x == (x//y) *y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//
y, x%V) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both
be sequences of the same type. In the former case, the numbers are converted to a common type and then added
together. In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and __radd__ () methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special ___sub__ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

This operation can be customized using the special ___Ishift__ () and __rshift__ () methods.

A right shift by # bits is defined as floor division by pow (2, n). A left shift by » bits is defined as multiplication
with pow (2, n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and_expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
or_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__ () or __rand___ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must

1 While abs (x%y) < abs (y) istrue mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that ~1e-100 % 1e100 have the same signas 1100,
the computed resultis ~1e-100 + 1e100, which is numerically exactly equal to 1e100. The functionmath . fmod () returns a result whose
sign matches the sign of the first argument instead, and so returns ~1e-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x/ /v to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

88 Chapter 6. Expressions

The Python Language Reference, %[F] 3.11.8

be a custom object overriding ___xor___ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding _or () or__ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressionslike a < b < c have the interpretation that is conventional
in mathematics:

comparison n= or_expr (comp_operator or_expr)*
comp operator - nen ‘ nsn I n__mn | ns—n ‘ ne—m | nyp_n
I "isll ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty
is evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, thena opl b op2 c
y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z, except that each expression
is evaluated at most once.

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that,e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and != compare the values of two objects. The objects do not need to have the
same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
1t (), described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e. x is yimplies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

e Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal.Decimal can be compared within and across their types, with the restriction

6.10. Comparisons 89

The Python Language Reference, &[] 3.11.8

that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values float ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

* None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

* Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

* Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord ()) of their characters.’

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

— For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the
type is not the same).

— Collections that support order comparison are ordered the same as their first unequal elements (for ex-
ample, [1,2,x] <= [1,2,y] has the same value as x <= y). If a corresponding element does
not exist, the shorter collection is ordered first (for example, [1,2] < [1,2, 3] is true).

* Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
* Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the twosets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

* Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
¢ Equality comparison should be reflexive. In other words, identical objects should compare equal:

x 1s yimpliesx == y

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. "LATIN CAPITAL LETTER A”).
While most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition
be represented using a sequence of more than one code point. For example, the abstract character "LATIN CAPITAL LETTER C WITH
CEDILLA?” can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position
U+0043 (LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character "LATIN CAPITAL LETTER
C WITH CEDILLA”.

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

90 Chapter 6. Expressions

https://peps.python.org/pep-0008/

The Python Language Reference, %[F] 3.11.8

* Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yfly == x
x !=yfly !'= x
x < yMy > x
x <= yHfly >= x

» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x>yandy > zRT x > z
x <y and yv <= zIBERT x < z

¢ Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == yfllnot x !=y
x < yand not x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10.2 Membership test operations

The operators inand not 1in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,
frozenset, dict, or collections.deque, the expression x in vy isequivalenttoany (x is e or x == e for e
in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalenttestis y.find (x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the _ contains__ () method, x in y returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__ () butdodefine ___iter (),x in yis True
if some value z, for which the expression x is z or x == =z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines ___getitem__ (),x in yis True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10. Comparisons 91

The Python Language Reference, &[] 3.11.8

6.10.3 Identity comparisons

The operators i sand is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not 'y yields the inverse truth value.*

6.11 Boolean operations

or_test = and_test | or_test "or" and test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga __ bool_ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and v first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a "named expression” or "walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data) :
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert,
with, and assignment statements. In all other places where they can be used, parentheses are not required,
including in i f and while statements.

TE 3.8 BTN A See PEP 572 for more details about assignment expressions.

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

92 Chapter 6. Expressions

https://peps.python.org/pep-0572/

The Python Language Reference, %[F] 3.11.8

6.13 Conditional expressions

conditional_expression = or_test ["if" or_test "else" expression]

expression conditional_expression | lambda_expr

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda> (parameters) :
return expression

See section % X, & & for the syntax of parameter lists. Note that functions created with lambda expressions cannot
contain statements or annotations.

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list n= starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred item]
starred_item L= assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

TE 3.5 JiGHn A Tterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create
an empty tuple, use an empty pair of parentheses: ().)

6.15. Expression lists 93

https://peps.python.org/pep-0308/
https://peps.python.org/pep-0448/

The Python Language Reference, &[] 3.11.8

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is

evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expr4)
{exprl: expr2, expr3: expréd}
exprl + expr2 * (expr3 - exprd)

exprl (expr2, expr3, *exprd4, **exprb)

expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly
given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional

expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right

chaining feature as described in the Comparisons section.

Operator iR

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments...

x.attribute

await x
* *

+X, - X, ~X

N TR
+, -

<<, >>

&

in, not 1in, 1is,1s not,<, <=,>,>=!

not x
and

or
if--else
lambda

Subscription, slicing, call, attribute reference

Await expression

Exponentiation®

Positive, negative, bitwise NOT

Multiplication, matrix multiplication, division,
floor division, remainder®

Addition and subtraction

Shifts

Bitwise AND

Bitwise XOR

Bitwise OR

Comparisons, including membership tests and
identity tests

Boolean NOT

Boolean AND

Boolean OR

Conditional expression

Lambda expression

Assignment expression

5 The power operator * * binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**~1is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

94

Chapter 6. Expressions

The Python Language Reference, %[F] 3.11.8

[FI#2

6.17. Operator precedence 95

The Python Language Reference, &[] 3.11.8

96 Chapter 6. Expressions

CHAPTER /

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

97

The Python Language Reference, &[] 3.11.8

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] "™)"
"[" [target_list] "1"
attributeref

|
|
| subscription
| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section 4Z 27! [F|[% /2).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

* If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

e Else:

— If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

— Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
* If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

* If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield
an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked
to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a

98 Chapter 7. Simple statements

The Python Language Reference, %[F] 3.11.8

class attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:

x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property ().

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem _ () method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the target
sequence allows it.

CPython E{fE4{Hi : In the current implementation, the syntax for targets is taken to be the same as for expressions,
and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
’simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to vari-

ables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:
x = [0, 1]
i 0
i, x[1i] = 1, 2 # 1 1is updated, then x[i] is updated
print (x)
hz%:
PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.
7.2. Assignment statements 99

https://peps.python.org/pep-3132/

The Python Language Reference, &[] 3.11.8

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u I "//:n | no—mn | LIS |
| nss=n | Neg=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[1i] += £ (x) first looks-up a [1i], then it evaluates f (x) and performs the addition, and lastly,
it writes the result back to a [1i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same cavear about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression

["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a
special class or module attribute __annotations___thatis a dictionary mapping from variable names (mangled if
private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module
body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated
and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem () or __setattr__ () call.

hz%:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance
variables), instead of expressing them through comments.

100 Chapter 7. Simple statements

https://peps.python.org/pep-0526/

The Python Language Reference, &[] 3.11.8

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can be
used in static analysis tools and IDEs.

7r 3.8 iR\ 5% 5 : Now annotated assignments allow the same expressions in the right hand side as regular assign-
ments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug__:
if not expression: raise AssertionError

The extended form, assert expressionl, expression2,isequivalent to

if _ debug__:
if not expressionl: raise AssertionError (expression2)

These equivalences assume that ___debug__ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variable __debug___ is True under normal circumstances,
False when optimization is requested (command line option —0). The current code generator emits no code for an
assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is a null operation --- when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt = "del" target_1list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a gl obal statement in the same code block. If the name is unbound, a NameError exception will

7.5. The del statement 101

https://peps.python.org/pep-0484/

The Python Language Reference, &[] 3.11.8

be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

TE 3.2 It 5% 5 : Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the ret urn statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

102 Chapter 7. Simple statements

The Python Language Reference, %[F] 3.11.8

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as
the active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If itis a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback () exception method (which returns the same exception instance, with its traceback set to
its argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
__cause___ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the ___cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s ___context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

~~ N~

ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

€ & A}

7.8. The raise statement 103

The Python Language Reference, &[] 3.11.8

(R L —5)

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

J

Additional information on exceptions can be found in section 47 4|, and information about handling exceptions is in
section The try statement.

TE 3.3 fiAY%2 5 : None is now permitted as Y in raise X from Y.
Added the ___suppress_context___ attribute to suppress automatic display of the exception context.

T 3.11 R 54T If the traceback of the active exception is modified in an except clause, a subsequent raise
statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the trace-
back it had when it was caught.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e 1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a t ry statement witha £inally clause, that finally clause is executed
before really starting the next loop cycle.

104 Chapter 7. Simple statements

The Python Language Reference, %[F] 3.11.8

7.11 The import statement

import_stmt = "import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative _module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*
| "from" relative_module "import" " (" identifier ["as" identifie:
("," identifier ["as" identifier])* [","] ")"
| "from" relative_module "import" "*"

module = (identifier ".")* identifier

relative_module = "."* module | "."+

The basic import statement (no £ rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s
code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three
ways:

¢ If the module name is followed by as, then the name following as is bound directly to the imported module.

* If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the from clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

it :

import foo # foo imported and bound locally

import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound.
—~locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as baz
from foo import attr # foo imported and foo.attr bound as attr

7.11. The import statement 105

The Python Language Reference, &[] 3.11.8

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in __all__ are all considered public and are required to exist. If __all__is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('"_"). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import --- from module import * ---is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after £from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading
dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg .mod. If you execute from . .subpkg2 import mod from within pkg.
subpkgl you will import pkg . subpkg?2 . mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to
be loaded.

58— 775 | # module, filename, sys.path, sys.meta_path. sys.path_hooks JfE%5E
{4 import.,

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future_ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™))"

feature = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

¢ the module docstring (if any),
¢ comments,
¢ blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list in-
cludes absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are al-
ways enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs

106 Chapter 7. Simple statements

https://peps.python.org/pep-0563/

The Python Language Reference, %[F] 3.11.8

are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if
a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

[import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () --- see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

hz%:

PEP 236 - Back to the __future__
The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed
identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global,
although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements
or except clauses, or in a for target list, c1ass definition, function definition, import statement, or variable
annotation.

CPython E{fE&H{{i: The current implementation does not enforce some of these restrictions, but programs should
not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec () function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval () and
compile () functions.

7.12. The global statement 107

https://peps.python.org/pep-0236/

The Python Language Reference, &[] 3.11.8

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace
first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module)
scope.

Names listed in a nonlocal statement, unlike those listed in a g1 oba 1 statement, must refer to pre-existing bind-
ings in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Wz

PEP 3104 - Access to Names in Quter Scopes
The specification for the nonlocal statement.

108 Chapter 7. Simple statements

https://peps.python.org/pep-3104/

CHAPTER 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other state-
ments in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

The i f, whileand for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more "clauses.” A clause consists of a header and a ’suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one
or more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can
be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound
statements; the following is illegal, mostly because it wouldn’t be clear to which i 7 clause a following e I se clause
would belong:

[if testl: if test2: print (x) }

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print () calls are executed:

{if x <y < z: print(x); print(y); print(z)]

Summarizing:

compound_stmt = 1f stmt

| while_stmt

| for_stmt

| try_stmt

| with_stmt

| match_stmt

| funcdef

| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef
s

suite = tmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

109

The Python Language Reference, &[] 3.11.8

statement
stmt_list

stmt_1list NEWLINE | compound_stmt
simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ’dangling e 1 s’
problem is solved in Python by requiring nested i 7 statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the ir
statement is executed or evaluated). If all expressions are false, the suite of the e se clause, if present, is executed.

8.2 The while statement

The whi1e statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the e1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the e1lse clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

ln"

m.nmn

for_stmt = "for" target_list starred_1list suite

["else" ":" suite]

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those

110 Chapter 8. Compound statements

The Python Language Reference, %[F] 3.11.8

variables including those made in the suite of the for-loop:

for i in range (10):
print (i)
i=25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of
integers. For instance, iterating range (3) successively yields 0, 1, and then 2.

TE 3.11 fRit) 5 5 Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl_stmt | tryZ_stmt | try3 stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section) %[, and information on using the rai se statement
to generate exceptions may be found in section The raise statement.

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the ¢ ry clause, no
exception handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started.
This search inspects the except clauses in turn until one is found that matches the exception. An expression-less
except clause, if present, must be last; it matches any exception. For an except clause with an expression, that
expression is evaluated, and the clause matches the exception if the resulting object is “compatible” with the exception.
An object is compatible with an exception if the object is the class or a non-virtual base class of the exception object,
or a tuple containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated
as if the entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword
in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an
executable block. When the end of this block is reached, execution continues normally after the entire t ry statement.
(This means that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of
the inner handler, the outer handler will not handle the exception.)

! The exception is propagated to the invocation stack unless there is a £ina 11y clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 111

The Python Language Reference, &[] 3.11.8

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as
if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack frame,
keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sy s module, where it can be accessed
from within the body of the except clause by calling sys .exception (). When leaving an exception handler,
the exception stored in the sy s module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
1255578
raise ValueError
except:
print (repr (sys.exception()))

print (repr (sys.exception()))

TypeError ()

ValueError ()

TypeError ()

>>> print (sys.exception())
None

8.4.2 except* clause

The except * clause(s) are used for handling Except ionGroups. The exception type for matching is interpreted
as in the case of except, but in the case of exception groups we can have partial matches when the type matches
some of the exceptions in the group. This means that multiple except * clauses can execute, each handling part of
the exception group. Each clause executes at most once and handles an exception group of all matching exceptions.
Each exception in the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])
except* TypeError as e:
print (f'caught {type(e) } with nested {e.exceptions}')
except* OSError as e:
print (f'caught {type(e)} with nested {e.exceptions}')

caught <class 'ExceptionGroup'> with nested (TypeError(2),)

caught <class 'ExceptionGroup'> with nested (OSError (3), OSError (4))
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>

(BT —TD

112 Chapter 8. Compound statements

The Python Language Reference, %[F] 3.11.8

(R L —5)

| ExceptionGroup: eg

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except * clauses.

From version 3.11.4, when the entire ExceptionGroup is handled and only one exception is raised from an
except * clause, this exception is no longer wrapped to form a new ExceptionGroup.

If the raised exception is not an exception group and its type matches one of the except * clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr (e))

ExceptionGroup ('', (BlockingIOError()))

An except * clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. It
is not possible to mix except and except* in the same try. break, continue and return cannot appear
in an except * clause.

8.4.3 else clause

The optional else clause is executed if the control flow leaves the ¢ ry suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the else clause are not handled by the
preceding except clauses.

8.4.4 finally clause

If finally is present, it specifies a ’cleanup’ handler. The t ry clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The £inally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f ()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the t ry suite of a try...finally statement,
the finally clause is also executed 'on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a ret urn statement executed in the finally clause will always be the last one executed:

>>> def fool():
try:
(BT —H)

8.4. The try statement 113

The Python Language Reference, &[] 3.11.8

(R L —5)
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

7r 3.8 JiU Y% B Prior to Python 3.8, a cont i nue statement was illegal in the final1ly clause due to a problem
with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try...except...finally usage patterns to be
encapsulated for convenient reuse.

with_stmt
with_stmt_contents
with_item

with_item ("," with_item)*
expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:

1. The context expression (the expression given in the with_1item) is evaluated to obtain a context manager.
The context manager’s __enter__ () is loaded for later use.
The context manager’s __exit__ () is loaded for later use.

The context manager’s __enter () method is invoked.

wooA »N

If a target was included in the wi t h statement, the return value from ___enter__ () is assigned to it.

#iF): The with statement guarantees that if the __enter__ () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will
be treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to ___exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value fromthe _exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from ___exit__ () isignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
enter = type (manager).__enter_

B T—3

114 Chapter 8. Compound statements

"with" (" (" with_stmt_contents ","? ")" | with_stmt_contents

The Python Language Reference, &[] 3.11.8

(L —5)
exit = type (manager) .__exit___
value = enter (manager)
hit_except = False

try:
TARGET = wvalue
SUITE
except:
hit_except = True
if not exit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For
example:

with (
A() as a,
B() as b,
)t
SUITE

TE 3.1 Jit it 5 §: Support for multiple context expressions.
TE 3.10 A% %# 55 Support for using grouping parentheses to break the statement in multiple lines.
hsH:

PEP 343 - The ”with” statement
The specification, background, and examples for the Python wi t h statement.

8.6 The match statement

1E 3.10 HOHTIA.

The match statement is used for pattern matching. Syntax:

match_stmt u= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr star_named_expression "," star_named_expressions?

| named_expression

'case' patterns [guard] ":" block

case_block

#i(E): This section uses single quotes to denote soft keywords.

8.6. The match statement 115

https://peps.python.org/pep-0343/

The Python Language Reference, &[] 3.11.8

Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern
(which may contain subpatterns) is matched against the subject value. The outcomes are:

* A match success or failure (also termed a pattern success or failure).

¢ Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
wE%:

* PEP 634 -- Structural Pattern Matching: Specification

¢ PEP 636 -- Structural Pattern Matching: Tutorial

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success
or failure are described below. The match attempt can also bind some or all of the standalone names within
the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings
made during a successful pattern match outlive the executed block and can be used after the match
statement.

#[E]: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made
for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact
behavior is dependent on implementation and may vary. This is an intentional decision made to allow different
implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

* If the guard evaluates as true or is missing, the block inside case_block is executed.
* Otherwise, the next case_block is attempted as described above.

« If there are no further case blocks, the match statement is completed.

#i[E): Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1'")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}')
case _: +# Pattern not attempted
print ('Case 4, I match anything!")

Case 3, y: 200

In this case, 1f flagis a guard. Read more about that in the next section.

116 Chapter 8. Compound statements

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, %[F] 3.11.8

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form:
1 £ followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the
next case block is checked.

2. If the pattern succeeded, evaluate the guard.
¢ If the guard condition evaluates as true, the case block is selected.
* If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the
last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must
happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks
An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block,
and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

 AS Patterns whose left-hand side is irrefutable

* OR Patterns containing at least one irrefutable pattern
* Capture Patterns

» Wildcard Patterns

* parenthesized irrefutable patterns

8.6.4 Patterns

#§(E): This section uses grammar notations beyond standard EBNF:
¢ the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

* the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns n= open_sequence_pattern | pattern
pattern as_pattern | or_pattern
closed_pattern literal_ pattern
capture_pattern

wildcard _pattern
value_pattern

group_pattern
sequence_pattern

8.6. The match statement 117

The Python Language Reference, &[] 3.11.8

| mapping_pattern
| class_pattern

The descriptions below will include a description "in simple terms” of what a pattern does for illustration purposes
(credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions
are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not
cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern = "|".closed _pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is
then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 P2 | ... willtry to match P1, if it fails it will try to match P2, succeeding immediately
if any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of
the as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most literals in Python. Syntax:

literal_pattern = signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

The rule st rings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBERand signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LI TERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

118 Chapter 8. Compound statements

The Python Language Reference, %[F] 3.11.8

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = ' ' NAME
A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard _pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] |

x: ... isallowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator
in PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable
global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.
Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern =

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

value_pattern = attr
attr = name_or_attr "." NAME
name_or_attr = attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1 . NAME2 will succeed only if <subject> == NAME1.NAME2

#i(El: If the same value occurs multiple times in the same match statement, the interpreter may cache the first value
found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match
statement.

8.6. The match statement 119

https://peps.python.org/pep-0572/

The Python Language Reference, &[] 3.11.8

Group Patterns
A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it

has no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to
the unpacking of a list or tuple.

sequence_pattern = "[" [maybe_sequence_pattern] "]1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern u= maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern = ", ".maybe_star_patternt ","?
maybe_star_pattern = star_pattern | pattern
star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).

f#(E): A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While
a single pattern enclosed in square brackets (e.g. [3 | 41]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no
star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length
sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence”, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:
1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence
from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching

2 In pattern matching, a sequence is defined as one of the following:

¢ a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
 a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
* aclass that inherits from any of the above

The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
* range
e tuple

#[E): Subject values of type str, bytes, and bytearray do not match sequence patterns.

120 Chapter 8. Compound statements

The Python Language Reference, %[F] 3.11.8

their corresponding item, the sequence pattern succeeds.
Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

#5[E): The length of the subject sequence is obtained via 1en () (i.e. viathe __len__ () protocol). This
length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, .., P<N>] matches only if all the following happens:
¢ check <subject> is a sequence
* len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

* ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern u= "{" [items_pattern] "}"
items_pattern = ",".key_value_pattern+ ","?
key_value_pattern = (literal_pattern | value_pattern) ":" pattern

| double_star_pattern
"*xW capture_pattern

double_star_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in
the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys
that otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping®,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is
raised for duplicate literal values; or a ValueError for named keys of the same value.

3 In pattern matching, a mapping is defined as one of the following:
¢ a class that inherits from collections.abc.Mapping
¢ a Python class that has been registered as collections.abc.Mapping
 a builtin class that has its (CPython) Py_TPFLAGS_MAPPING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 121

The Python Language Reference, &[] 3.11.8

#iEl: Key-value pairs are matched using the two-argument form of the mapping subject’s get () method.
Matched key-value pairs must already be present in the mapping, and not created on-the-fly via __missing__ ()
or__getitem ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
¢ check <subject> is a mapping
* KEY1l in <subject>
e P1 matches <subject>[KEY1]

e ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern n= name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments = positional_patterns ["," keyword_ patterns]
| keyword_patterns
positional_patterns = ", ".patternt+
keyword_patterns = ", ".keyword _pattern+
keyword_pattern u= NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin type , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern
fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match
the entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than Att ributeError, the exception bubbles up.
e If this raises AttributeError, the class pattern has failed.

* Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value.
If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

IL. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args_
attribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args__", ()) iscalled.
« If this raises an exception, the exception bubbles up.
* If the returned value is not a tuple, the conversion fails and TypeError is raised.

* If there are more positional patterns than len (cls.___match_args
raised.

), TypeErroris

122 Chapter 8. Compound statements

The Python Language Reference, %[F] 3.11.8

e Otherwise, positional pattern 1 is converted to a keyword pattern using
__match_args__[i] as the keyword. _ _match_args__[i] must be a string;
if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.
hz%:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

¢ bool

* bytearray
* bytes

e dict

e float

e frozenset
e int

e list

* set

e str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object
rather than an attribute. For example int (0| 1) matches the value 0, but not the value 0. 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
* isinstance (<subject>, CLS)
 convert P1 to a keyword pattern using CLS.__match_args__
* For each keyword argument att r=P2:
— hasattr (<subject>, "attr")
— P2 matches <subject>.attr
* ... and so on for the corresponding keyword argument/pattern pair.
hz%:
e PEP 634 -- Structural Pattern Matching: Specification
e PEP 636 -- Structural Pattern Matching: Tutorial

8.6. The match statement 123

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, &[] 3.11.8

8.7 EXER

)

A function definition defines a user-defined function object (see section 4% %2 7 [F|1% /%):

put

funcdef = [decorators] "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

decorators = decorator+

decorator = "@" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)* "," "/" [" "

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

[paramete

defparameter ("," defparameter)* ["," [parameter_list_:

parameter_list_starargs = "*" [parameter] ("," defparameter)* ["," ["**" paramete

I AL] parameter [","J

parameter = identifier [":" expression]
defparameter = parameter ["=" expression]
funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function bodys; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arg)

Qf2

def func(): pass
KRB -

def func(): pass

func = f1(arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

TE 3.9 JiR ¥ 4% 5 Functions may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

‘When one or more parameters have the form parameter = expression, the function is said to have ”default parameter
values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
”*” must also have a default value --- this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used
for each call. This is especially important to understand when a default parameter value is a mutable object, such as
a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter
value is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:

(BT —1D

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

124 Chapter 8. Compound statements

https://peps.python.org/pep-0614/

The Python Language Reference, %[F] 3.11.8

(B E—H)
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all pa-
rameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default
values. If the form ”*identifier”is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the form ”**identifier” is present, it is initialized to a new ordered mapping
receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after
”*” or ”*identifier” are keyword-only parameters and may only be passed by keyword arguments. Parameters
before ”/” are positional-only parameters and may only be passed by positional arguments.

1F 3.8 A% 5 The / function parameter syntax may be used to indicate positional-only parameters. See PEP
570 for details.

Parameters may have an annotation of the form ”: expression” following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have "return”
annotation of the form ”-> expression” after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are
available as values of a dictionary keyed by the parameters’ names in the __annotations___ attribute of the
function object. If the annotations import from ___future__ is used, annotations are preserved as strings at
runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed.
In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a "de £” statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The "de £” form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A ”"def” statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Naming and binding for details.

hz%:

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime instead
of eager evaluation.

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.7. ARES 125

https://peps.python.org/pep-0570/
https://peps.python.org/pep-0570/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, &[] 3.11.8

8.8 Class definitions

A class definition defines a class object (see section 4% # 7 [F]% &):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname = identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.” A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@fl (arg)
Qf2
class Foo: pass

REFFE R :

class Foo: pass
Foo = f1(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

TE 3.9 Jit f)5# T5: Classes may be decorated with any valid assignment_expression. Previously, the grammar
was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = value. Both class and instance attributes are
accessible through the notation "se1f .name”, and an instance attribute hides a class attribute with the same name
when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values
there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation
details.

hz%:

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___item and therefore the class’s
docstring.

126 Chapter 8. Compound statements

https://peps.python.org/pep-0614/

The Python Language Reference, &[] 3.11.8

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how
classes with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 W=

15 3.5 UHT A

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list]
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). awa it expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

Itisa SyntaxError touseayield from expression inside the body of a coroutine function.

— {1 o A8

async def func(paraml, param2) :
do_stuff ()
await some_coroutine ()

TE 3.7 fRASE T await and async are now keywords; previously they were only treated as such inside the body
of a coroutine function.

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can
call asynchronous code inits __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

while running:
try:

EET—T

8.9. B2 127

https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, &[] 3.11.8

(R L —5)

TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

FLAMEEE R aiter () Hl anext (),

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt = "async" with_stmt
An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
aenter = type (manager) .__aenter_
aexit = type (manager) .__aexit___

value = await aenter (manager)
hit_except = False

try:
TARGET = value
SUITE

except :
hit_except = True

if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

WEAMMTER__aenter () Bl aexit_ ().
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
W%

PEP 492 - Coroutines with async and await syntax
The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

128 Chapter 8. Compound statements

https://peps.python.org/pep-0492/

The Python Language Reference, %[F] 3.11.8

[FI#2

8.9. R 129

The Python Language Reference, &[] 3.11.8

130 Chapter 8. Compound statements

CHAPTER 9

R TH

gl
ot

Python F{#4s Al AfE 2 MU A - AEEIER I A iRE 5 [B [EIAMA . AR B . BB
JFAAE TGS . 8 — B A TS Se I T BT YRR

9.1 5T#aY Python £

BESR R = BU R A E B 5 B2 NI BERR) (invoke) 1, (HL35¢ 821 Python A2 DAEIR &
A M. — 58 Python B2 G EiR/ MR ICER H el AT IrA DR ERALEI T, (H
PIEMAPIGR G, R sys (REBERABMH). builtins (EE#EK. HI4MI None) Ml _main__
Biohe 23 TRE) e R R s A T4 A I s P 4l i 4% 25] (namespace) .

J A1 5¢ % Python REsiaAvk, RITNEFT AR RIA

e ar DA BB R T I E T, EEAEIRAAT e B, R Rk
oA AT —) (TREEIEI A BRR) o IRF 470 I B 45 B — {1 52 B A X AR)5 Ak BROR X e e
__main__ WA A P REELAT .

— e AR AT AR AR MR A B S S —c F Ry, (AR R AEEE —
X5 SR A . AR R AR — W wy R, RS EEARREL, RlEe
AR A e AR AT

9.2 I§ERBA

Jfv A 4R A L Bl AR S B i AR A R] A K

file_input = (NEWLINE | statement) *

ECRER R T 51 AR E):
o BT {H5E# Python FxCy (TEARZEETH);
o HAT—(RRAL I ;
o FIM—EEIELS exec () BB TFHI;

131

The Python Language Reference, &[] 3.11.8

9.3 EEIX&A
B A A DA R A TR
interactive_input = [stmt_list] NEWLINE | compound_stmt NEWLINE

E%EE@&XT7*%(%E@ﬁ)ﬂéﬁﬁﬁ%ﬁ%ﬁ%ﬁ*@%ﬁ;E%E%%%ﬁ%ﬁ%%A
E %géA\tH EE o

9.4 EENX&®A

eval () BUHNER A, EFAMHENEH. fES eval () FFHGBUHAAATEA:

eval_input = expression_list NEWLINE*

132 Chapter 9. REERITH

cHAPTER 10

This is the full Python grammar, derived directly from the grammar used to generate the CPython parser (see Gram-
mar/python.gram). The version here omits details related to code generation and error recovery.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group
indicates a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead
(i.e., is required not to match). We use the | separator to mean PEG’s “ordered choice” (written as / in traditional
PEG grammars). See PEP 617 for more details on the grammar’s syntax.

PEG grammar for Python

ommmmmmmmmmmmmmmm e = START OF THE GRAMMAR =========== ———————————e ==

General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

— These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

The order of the alternatives involving invalid rules matter

(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information):

rule_name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the
rule:

rule_name [return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any 1in
Python.

el e2

S o R H R Y R R Y T R O I R R Hh R R HR R R HR R R
|

BE T

133

https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, %[3.11.8

(R L —5)
Match el, then match e2.
el | e2
Match el or eZ.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, 1like so:
rule_name[return_type]:

| first_alt

| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?
Optionally match e.

Match zero or more occurrences of e.

e+

Match one or more occurrences of e.

s.e+

Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e

Succeed if e can be parsed, without consuming any input.

le

Fail if e can be parsed, without consuming any Input.

#
#
#
#
#
#
#
#
#
#
#
#
#
e*
#
#
#
#
#
#
#
#
#
#
#
Commit to the current alternative, even i1f it fails to parse.
#

STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: ' (' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

GENERAL STATEMENTS
== ==

statements: statement+
statement: compound_stmt | simple_stmts

sStatement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:

| assignment

| star_expressions

| return_stmt

| import_stmt

(BT —H)

134 Chapter 10. EEMFEEREE

The Python Language Reference, %[F] 3.11.8

(L —5)
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt

compound_stmt :

| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated _rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs]
[('(' single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield_expr | star_expressions
augassign:
["+="
‘ | I
| Vs
[r@="
| /=
R
[r&="
["=
| rast
| Tge=0
| '>>="
| rRx=
=

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

global_stmt: 'global' ', '.NAME-+

nonlocal_stmt: 'nonlocal' ', '.NAME+

del_stmt:
| 'del' del_targets &(';' | NEWLINE)

(BT —H)

135

The Python Language Reference, &[] 3.11.8

(B E—H)
yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt: import_name | import_from

Import statements

import_name: 'import' dotted_as_names
note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:
| "from' ('.' | '...')* dotted_name 'import' import_from_ targets
['"from' ('.' | '..."')+ 'import' import_from_targets
import_from_targets:
["('" import_from_as_names [','] ")'
| import_from_as_names !','
‘ Tk
import_from_as_names:
[', '.import_from_as_name+
import_from_as_name:
| NAME ['as' NAME]
dotted_as_names:
| ','".dotted_as_name+
dotted_as_name:
| dotted_name ['as' NAME]
dotted_name:
| dotted_name '.' NAME
| NAME

COMPOUND STATEMENTS

,,,,,,,,,,,,,,,
block:
| NEWLINE INDENT statements DEDENT
| simple_stmts
decorators: ('Q' named_expression NEWLINE)+

Class definitions

class_def:
| decorators class_def_ raw
| class_def_raw

class_def_ raw:
| 'elass' NAME ['(' [arguments] ')'] ':' block

Function definitions
function_def:
| decorators function_def_raw

| function_def_raw

function_def_raw:

(BT —H)

136 Chapter 10. EEMFEEREE

The Python Language Reference, &[] 3.11.8

(B E—H)
| 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].

—block

Function parameters

,,,,,,,,,,,,,,,,,,,
params:
| parameters
parameters:
| slash_no_default param_no_default* param with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc
Some duplication here because we can't write (',' | &')'),

which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ',
| param_no_default+ '/' &'")'
slash _with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'

star_etc:
| "*' param_no_default param_maybe_default* [kwds]
['"*' param_no_default_star_annotation param maybe_default* [kwds]
|
|

'x*? ', ' param_maybe_default+ [kwds]

kwds
kwds:

["**' param_no_default

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'

(BT —H)

137

The Python Language Reference, &[] 3.11.8

(B E—H)
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

,,,,,,,,,,,,
if_stmt:

| '"if' named_expression ':' block elif_ stmt

| 'if' named_expression ':' block [else_block]
elif stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_Dblock:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

,,,,,,,,,,,,,
for_stmt:

| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]

| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.

—[else_block]

With statement

,,,,,,,,,,,,,,
with_stmt:
| 'with' ' (' ','.with_item+ ','? ')' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &('," | ")'" | ':")
| expression

Try statement

,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally_block
| 'try' ':' block except_block+ [else_block] [finally_block]
| '"try' ':' block except_star_blockt+ [else_block] [finally_block]

Except statement

except_block:
| 'except' expression ['as' NAME] ':' block
| 'except' ':' block

(BT —H)

138 Chapter 10. EEMFEEREE

The Python Language Reference, &[] 3.11.8

except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally_block:
| 'finally' ':' block

Match statement
match_stmt:

| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT
subject_expr:

| star_named_expression ',' star_named_expressions?

| named_expression

case_block:

(el b —50

guard:

"case" patterns guard? ':' block

'if' named_expression

patterns:

open_sequence_pattern
pattern

pattern:

as_pattern
or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| "|'.closed_patternt

closed_pattern:

| literal_pattern
| capture_pattern

| wildcard_pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern

| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
| signed_number ! ('+' | '-')
| complex_number
| strings
| '"None'
| '"True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:
| signed_number ! ('+' | '-')
| complex_number
| strings
| 'None'
| '"True'
| 'False'

(BT —H)

139

The Python Language Reference, &[] 3.11.8

(R L —5)

complex_number:
| signed_real_ number '+' imaginary_number
| signed_real_number '-' imaginary_number

signed_number:
| NUMBER
| '-' NUMBER

signed_real_number:
| real_number
| '-' real_ _number
real_number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
‘ !ll n NAME !(l'l ‘ l(l ‘ l:l)

wildcard_pattern:
‘ " "

value_pattern:
[attr (. | "(" | '=")

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:
| '('" pattern '")'

sequence_pattern:
| '[' maybe_sequence_pattern? ']'
| "(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:
| ','.maybe_star_pattern+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| '"*' pattern_capture_target
| '"*'" wildcard_pattern

mapping_pattern:
‘ Al { Al Al } A
(T 5

140 Chapter 10. EERFEERBE

The Python Language Reference, %[F] 3.11.8

[{'
'
[T{'

items_patter
items_patter

items_pattern:
[', '.key_value_pa

key_value_pattern:
| (literal_expr |

double_star_pattern:
| "**' pattern_cap

class_pattern:
| name_or_attr
| name_or_attr
| name_or_attr
| name_or_attr

positional_patterns:
| ','.pattern+

keyword_patterns:
[', '.keyword_patt

keyword_pattern:

| NAME '=' pattern
EXPRESSIONS
,,,,,,,,,,,
expressions:

| expression (','

| expression ','

| expression
expression:

disjunction 'if'

| disjunction

| lambdef
yield_expr:

| 'yield' 'from' e

| 'yield' [star_ex

star_expressions:
| star_expression
| star_expression
| star_expression

star_expression:
| "' bitwise_or
| expression

star_named_expressions:

star_named_expression:
| "' bitwise_or
named_expression

assignment_expression:

double_star_pattern

(L —5)
Al , Al } A}
double_star_pattern

l}l

L]
LI |
’

v
’

v
PR

I}l

n

n '?

ttern+

attr) pattern

ture_target

l)'
positional_patterns
keyword_patterns ',

positional_patterns

L}
r
o

l)l

! keyword_patterns

’

L
P2

l)l

ern+

(']

expression)+

disjunction 'else' expression

xpression
pressions]

(G

star_expression)+ [',']

(', ']

', '.star_named_expression+

(BT —H)

141

The Python Language Reference, &[] 3.11.8

(R L —5)

| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':='

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| 'not' inversion
| comparison

Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq_bitwise_or

| noteqg bitwise_or
| lte_bitwise_or

| 1lt_bitwise_or

| gte_bitwise_or

| gt_bitwise_or

| notin_bitwise_or
| in_bitwise_or

| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' bitwise_or
noteq_bitwise_or:

| ('"!'=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

Bitwise operators
bitwise_or:

| bitwise_or '
| bitwise_xor

' bitwise_xor

bitwise_xor:
| bitwise_xor '”~' bitwise_and
| bitwise_and

bitwise_and:

(BT —H)

142 Chapter 10. SEEMEEREE

The Python Language Reference, %[F] 3.11.8

(L —5)
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
| sum

Arithmetic operators

sum:
| sum '+' term
[sum '-' term
| term
term
| term '*' factor
| term '/' factor
| term '//' factor
| term '$%' factor
| term 'Q@' factor
| factor
factor:
| '+' factor
| '-' factor
| '~'" factor
| power
power:

| await_primary '**' factor
| await_primary

Primary elements
Primary elements are things like "obj.something.something", "obj[something]",
—"obj (something)'", "obj"

await_primary:
| AWAIT primary

| primary
primary:
| primary '.' NAME
| primary genexp
| primary ' (' [arguments] ')'
| primary '[' slices ']'
| atom
slices:
| slice !'',"!
| ','.(slice | starred_expression)+ [',"']
slice:
| [expression] ':' [expression] [':' [expression]]
| named_expression
atom:

(BT —H)

143

The Python Language Reference, &[] 3.11.8

(L —5)
| '"True'
| 'False'
| '"None'
| strings
| NUMBER
| (tuple | group | genexp)
| (list | listcomp)
|
|

(dict | set | dictcomp | setcomp)
Al Al

['"('" (yield_expr | named_expression) ')'

Lambda functions

lambdef:
| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param_no_default+ lambda_param_with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ','
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ', '
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
["*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
["*' ', ' lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| "**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

(BT —H)

144 Chapter 10. SEEMFEENBE

The Python Language Reference, %[F] 3.11.8

(s —E)
LITERALS

strings: STRING+

list:
| '"['" [star_named_expressions] ']'
tuple:
["(' [star_named_expression ',' [star_named_expressions] 1 ")
set: '{' star_named_expressions '}'
Dicts
,,,,,
dict
['{'" [double_starred_kvpairs] '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:

| "**' bitwise_or

| kvpair
kvpair: expression ':' expression
Comprehensions & Generators
for_if clauses:

| for_if clause+

for_if clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
listcomp:

| '[' named_expression for_if_ clauses ']'

setcomp:
| '{' named_expression for_if_ clauses '}'

genexp:
['"('" (assignment_expression | expression !':=') for_if clauses ')'

dictcomp:
| '{' kvpair for_if_clauses '}'

FUNCTION CALL ARGUMENTS

==============c=c==c=oo
arguments:

| args [','] &")'
args:

| ','.(starred_expression | (assignment_expression | expression !':=") !'=")+_
—['," kwargs]

| kwargs
kwargs:

(BT —H)

145

The Python Language Reference, &[] 3.11.8

(L —5)
| ', '".kwarg_or_starred+ ',' ','.kwarg_or_double_starred+
| '",'.kwarg_or_starred+
| ','.kwarg_or_double_starred+

starred_expression:
| '*' expression

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression

| "**' expression

ASSIGNMENT TARGETS

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','
| star_target (',' star_target)* [',']
star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
["*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:

(' target_with_star_atom '")'
'(' [star_targets_tuple_seq] ')'
[" [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| '(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead
| t_primary ' (' [arguments] ')' &t_lookahead

(BT —H)

146 Chapter 10. EERFEERBE

The Python Language Reference, &[] 3.11.8

| atom &t_lookahead

t_lookahead: '(' |

l[l ‘ LI

Targets for del statements

del_targets: ','.del_target+ [',']
del_target:
| t_primary '.'

l[l

NAME !t_lookahead
| t_primary slices ']' !t_lookahead

| del_t_atom

del_t_atom:

| NAME
["(' del_target ')'
["('" [del_targets] ")
| '[" [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

','.expressiont ',' '*' expression ','

', '.expression+ ',' '*!

expression

|

|

| ','.expression+ ',' '**' expression
| "*' expression ',' '"**' expression
| '*' expression

| "**' expression

| ','.expression+

func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT)
| TYPE_COMMENT

Vkox Y

= START OF INVALID RULES

(el b —50

expression

Must be followed by indented block

147

The Python Language Reference, &[] 3.11.8

148 Chapter 10. SEEHEERIEE

APPENDIX A

>>>

83X shell (Y FEE Python 7R850, 5 WU RETE B o DA LB 5 e A TR RS S 01

AR

2to3

o TE— WA HER RS IR . FE— BT A A E R4S (delimiter, BITNIESE. 74558, 1E3E
gk =519%) R, sURTEE— Mg (decorator) 2 1%, Tlii AR HEHE, T B2 shell
JRHYTEF Python $2/R5 TG

o Fi# Ellipsis,

— {6 Python 2.x F2 A5 EE Python 3.x FEalAY TH, & BB/ 0 A A A
TERCL I, T L A A R T i A 1 3 R A T g e 2R

2t03 FE] AEEHE R B DA Lib2to3 gl il Bt T — (MBS A I8, 7E Tools/scripts/
2to3. w2[E 2to3-reference.

abstract base class (il 3L KE])

S EREE (UAHE ABC) #2467 —Fe @A, (EEduck-typing (45 T84E) W7,
HAMBI AT, B2 hasattr (), RFSEISCEMA M EEE (FInEE 4 7 i% (magic
method)) . ABC [EIFI[EJ#E) subclass (FHE]) , B MEREEK H 5 class (BIE]) , HA77 8
isinstance () } issubclass () #ih; #FH2(E abe B4 EIB] 4. Python F & £ E#E M
ABC, HINERIEHE (1F collections.abe #i#l). 7 (7F numbers i), B (FF 1o i)
J import FAFERFIE ALY (FE importlib.abe BifH). KA A abe B E 7. H O ABC.

annotation ([FJf)

—ESLEA R class L. B 2 Bk Il EE AT BB RO RRE) . BRAEO), BN ARAEEpe hine (B4
[ER)

TERUATEAN (runtime) , [53) EVRE SRR DIAF I, (R AdiBs L, class B PEAN R SCR B, &2 ()
PURAFAEAAL L class FIpAY __annotations_ FpRE ML

#8522 [Elvariable annotation. function annotation. PEP 484 1 PEP 526, 1502 %A tohheERY .
R A (EVRR A A B 8y 75 5% 2 [F] annotations-howto .

argument (5[4)

WY pR 2 R BB 45 function (B{method) W{H. 5|8CE WifE:

149

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, &[] 3.11.8

o B4 7| B (keyword argument): FERFNFIY | PLERE)IT (identifier, 14 name=) BHFEMIS |3,
o2 DA <+ 1A dictionary () BB EIERS [#. BN, 3 F 5 #HIZPAT complex ()
L] v) [5 |

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

* 12 % 3| 8K (positional argument): A ZBHH 5| BN 51#. (7E S | o AE— 85 B RAE R &
B, A (5) fEE * 2 & ierable (PJEWCIIE) TIOTCHEPER. G0, 3RS HZAT
ERCENOIVACGIE &

complex (3, 5)
complex (* (3, 5))

G e WA E SR X T M R A A . B SCRCIE IR S AR R, 52 EICalls T . 75
Ak b, ATATE S SR AT DA AR — 5 [Rl (B G i o A [

St s BRI parameer (Z280) W6H . & LEE D5 ERS ¥ Min2EE, L% PEP 362,

asynchronous context manager (JE[RIZB 5B BIZS)
—fil W] LA filasyne with BORP B BB Y MF, B 2 E#EE R aenter ()
Ml_aexit__ () method (J5¥k) 4. H PEP 492 5] A,

asynchronous generator (JERIBEIA:ZS)
— Al & [8] & asynchronous generator iterator (FE[FHFAEZSEES) MERR . BHEERG —Mhasync
def EFM LR (coroutine function), {H AR R EEE Tyield AKX, AN RS0 H
Wasyne for [FIREME.

Ta [0 ATREE AR R — (AR A E A g e X, (EAE RS iE , Wl e 23Rk R FEA BEX
% (asynchronous generator iterator), #—RFIEN B ERENERE, IO 6 A2 BLAMNHE, DABEGIE;
.

— AR EVE RS R A R & awaic ME X, PAasync for fllasync with PR,

asynchronous generator iterator (JE[R]2G(EIZ:2SEICES)
—{ fyasynchronous generator (FEFEVERY) RSB

& s —Masynchronous iterator (FE[FIEENRES), HBEPA__anext_ () method #EIFN KR, G [a]{E—
T 2 R4 {4 (awaitable object), W EASHATIAER A EERS KA 10, HABERE N —Myield
HHyield GEEEHARET, ERU M ENATIREE (55 ks s L B i oy BRC) . &k
R EA SERE NS —P_anext_ () FEA SRR AA R0 R, Be sk
BT, 352([F PEP 492 fil PEP 525,

asynchronous iterable (25 [[EfCHf:)
— @, B PAfEasync for BRIAX R . LHEKEEM__aiter () method [n] {#—
{®asynchronous iterator (EFIHECEE). B PEP 492 2| A,

asynchronous iterator (JEFRIZBECZS)
—HEVE__aiter () fll__anext__ () method ¥, _ anext_ () W/E[RE—{#awaitable
(WEEREYE) o asyne for GRNTIERZEEIRZFM__anext_ () method Jif [al 1) o] 45 Re 0 F,
HFI'EG[% stopAsyncIteration fil4h. H PEP 492 5] A,

attribute ()&M)
— R LI A B RO ME, RZ(E K RE 75 1) 40 P i 502X (dotted expression) [44 g 22 B . 3]
an, WP o H—HE N a, HIFZETERELA 0.0 #i2HE.

WR— MY, T AR 2 i dentifiers and keywordsfT 8 382 i([E)4F (identifier) ()
T RETRERY, BN setattr () o 1005 BRI JE MK ey o) B 20 P i SRR I, T2 TR
B getattr () REUHFE.

awaitable (w[Z51¥¥1t:)
— il W] PAAEawait 38 g A W . B W LR — Mcorouine (T #E) B2 — fH
f__await__ () method B9¥I{F. 7352 (L PEP 492,

150 Appendix A. ffj g%

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python Language Reference, &[] 3.11.8

BDFL
Benevolent Dictator For Life (&S {-28M#3%), X 44 Guido van Rossum, Python [.

binary file (- if:l#$5R)
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

s Eext file (XFHESE), ER—MHAEERIREA str WERY.

borrowed reference (fi%J]22H)
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

$borrowed reference WENY Py_INCREF () DA B HE (in-place) ¥ [EElstrong reference 245 ik 1
¥, BRAERZE AN RBTE SR — IR A 2 IR i 8E(E). Py_NewRef () Rz HT HIHA EEr— 188

Hstrong reference,

bytes-like object (JEfc4lhitk)
—1 3 4% bufferobjects H.BEEIRE) C-contiguous SRV . BHIEHER bytes, bytearray
flarray.array P, PAKEFZ % M) nemoryview Y. FEALTCAER Y4 PT F A b8 2H — 3 1
R A S SR A RA . A R RS S RE I socket (FHEE) k.

G L TR R AT . (EIIA SR RS L AR [R S A e AL R
AR SR (E W)Y 4T bytearray, PAK bytearray) memoryview. i85 75 25
il ERM AP EA AT (TMERER BN TR) s S dE bytes, PAM bytes
Y memoryview,

bytecode ({IC&HE)
Python 1) J5% 4 1 & 4 i i AL CALAS , B2 Python F2:UAE CPython BLFEES T YEBFRTE. #% (L
TCAHAS R PR pyc BT, PAESE R TR — AR R R RE s peskl (W] DA 7 S L 18
EgREN CAHME) . S [T EEES (intermediate language) | #2E) 281 THE— W virtual machine
(EWttar) b, sZEW S G AT B 3 1 O AH A% 3 HE A M #3105 (machine code), ZEERMZ, 17
TCAH RS PR a2 VAR R R Python [EHEMEAS 2 HIEAENY , R BEXE AR [RUA Y Python 2 [H] AR+

(LTS8 25 2 7] DATE dis ASTAH A [HH SO 4R 3

callable (wW:nL#{t:)
—{H callable J& R] ARGIFERY AR 424, WU IR AT REDA R A B0 — A5 1 8 (3% Wargument) :

[callable(argumentl, argument2, argumentN) }

—All function B GEH K method FR 2 callable, — G BAE__call () ¥R class 22 B HHL 21
callable,

callback ([a[if)
VIS | S5 R 1) — 18 B 2X (subroutine) R, &7 A A LA R] B e LA 7«

class (JiE])
— P A A e AR . Class 11922 230 7 @ £ & method £ 3%, 182 method 1] DA
£ class 1B LI THAE.

class variable (HE[E/528)
—fHAE class "PREFR, HIERZLBEAE class IR (RXBINEFE class B) wiis ok sy,

complex number ([E14%})
—HI AR EHAR ST, TR BT G 2R [B A — W ERR 2 F. [Eldogh 2
[ElEEA (-1 PR POECERT, AR SR g (E 1, TR RE) 5. Python
[T HEHE %, ©rARENRERIRES; FRRaE - mesn 5 sime, sl
3+175. #EHF math BEAEIR THERH M RER, F5600 cmath B4, 00 12— A5
MR EEET e . IARIEG 20 2 B e MoK, AR T AR VR T DA% 42 b Z 0 T

151

https://gvanrossum.github.io/

The Python Language Reference, &[] 3.11.8

context manager ([5EE5PNES)
An object which controls the environment seen in a with statement by defining __enter__ () and

__exit__ () methods. See PEP 343.

context variable (Ji5hE5s))
— s g, HAE T AR BE B SCAOIE SR MG BT AN [R] o 58 IS4 T 4% RISk f3# /7 [(Thread-Local Storage),
EHA, — AN T T R A AEME. 2R, BN, R s ae e
BT, MRS EE Mg, RIEETTRYIER2T# (concurrent asynchronous task) Hi, #f
béﬁ%[ﬂj(%ﬂglﬂo %%% contextvars,

contiguous (JHAEIT])
R —f 4218 [52 C-contiguous 5% & Fortran contiguous, I’ & e Hipi i E S 480 . B4 (zero-
dimensional) {4 [%S /2 C M Fortran contiguous ., F—#ft (one-dimensional) [#i%1| /| 4518 H W JELERD
TR RS PO A AR RO HES , TR PR P LR IERY . 7F 2 4% (multidimensional) C-contiguous [
Fr, FERC RO NE T A I R, AR — RS s b et 81, £ Fortran contiguous
Wz, ARG bk

coroutine ()
s 2 WX (subroutine) (1) — il B FIEE AT 2. R 22 e R0 BRfe] 26l 3t (B 7 — {1 e
EOR . AR AEERF 2 AR A R B et A BRI . EMEEEI asyne der BRI
HIE. HaE2([E PEP 492,

coroutine function (FErA=)
—{H [coroutine (FA2) PFRIRR. —MHRERXFE asyne der Bk iesk, EnTREew
“rawait, async for fllasync with B8, 5L h PEP 492 5] A,

CPython

Python F2 355 A B /E (canonical implementation), #%#7i7E python.org . [CPython | 31/ #7
FHTEL R A, Al M B R B RE F R EAE, 40 Jython B IronPython,

decorator (Z:fiizZ%)
—E R, TR E S R, W E TG ewrapper #EE, B El-—E R X1 8 (] (function
transformation), SEHFESHE REME classmethod () Fl staticmethod () .

Fe e REA U RN . VAT W ol U SRR 58 R SRR -

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

Class WAFTER FIAOMES, (EFEASEIBAE . BREHHNELEE, F2[E 502 &Hfcass
& S EJRA S

descriptor (1iiA%%)
Any object which defines the methods ___get__ (), set__(),or __delete__ (). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

B A A S method [2 EH, a2 ElImplementing DescriptorsB iR 244 F 4555 .

dictionary (“=iit)
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and__eqg () methods. Called a hash in Perl.

dictionary comprehension (L4 &iEE)
—MEZEW I, HARER T E Y i s e R, [B A R DA 52 i]

152 Appendix A. fijEE%R

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, %[F] 3.11.8

results = {n: n ** 2 for n in range (10) } FEE—HFH, BA5 TH# n B FE

n ** 2, #2(ElDisplays for lists, sets and dictionaries .

dictionary view (‘FzHUiGH)
¢ dict.keys (). dict.values(Zﬁdict items () BMERYAPREEFHAGHE . © MRt
TP EH B AR, B RN T S E) Sﬂ‘ﬁﬁ‘%fi@ﬁ_‘kb A A EE D SR
HHE)sE R list (F2%1)), ZEHH llst dlctVlew) ([dict-views

docstring ([EIH)
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing (W5 24[E])
— MR RS, BN R RE AR R R BB R 2 e R T LA IERER A E . B AR 2
() J2, method o J& I & LA P Y Sl . (TR e Bl ARG — Iﬁ%?ﬁ'ﬁﬂﬂqiﬁﬂi@ [E5
T, BB —EL BT, 1) KHEEG A mmIEs e 2E, osstefeSs e @2 m N
(polymorphic substitution) &3l () @G . T8 T RE R] type () B{ isinstance () H
. (ERwEEE, WTAIE R AU 46 %08 k38 [0 (abstract base class) RAGFE.) SR, BEH
GEH hasattr () Wik, S2EAFP R REETEM .

EAFP
Easier to ask for forgiveness than permission. (F5RELLLFERE VT ER S) BT KA Python 4l
JEHS G e A R Sk B AT, B % RS %ﬂi?ﬁﬁﬂﬂwﬁﬁ%fﬂ% 128 7o 7 () LRt g JEL S
HiF R TR ZN try Mexcept X, ZHAEETZ MRS (Flan C) % RALBYL EA%
e T ¥ 1

expression (R
— B AR EDR (AR . EAREE], —MEE e oy, SR, BEFR. EE TRt
WY S R o B, IS L T A e e — L. ?Fg/ﬁ\ﬁi%nn QKIEJE’JXE, [E)3E A 1)
Python 35 5 Ml H 2. 57'9[\75 —statement (F%‘*JE) NRERE I AEE RS, plinwhile, B
{H (assignment) #/2 FfA, WA EHEE .

extension module (§§ FEEiZH)
—fHPA C B C++ Sas 4l, ‘&Ml Python i) C API ARELAZ.O K fifi i H R X B EAT H) .

f-string (f =)
PA e 5 E [ERIE TR SOREE RRE [f FE], BRI T LRSI . RS
PEP 498,

file object (K§R¥1F)
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

HEE, A=MAEZY: A0 =548 5. Sl =S s S LT R . BT io
B P oE SR . @A ZW MR A2 open () MR,

file-like object (ks RPE)
file object (FEZWIME) HIFZET

filesystem encoding and error handler (2% Z &% 4 il HISE 5 R B R 2X,)
Python fr{s f i) — R AmAS RN SR BE LR 20, I ACRAS K HEZE R S, ALK Unicode %l
FVERER S

T R S A A PR B BE LT IR AR FIr G /i 128 BN TeA . WIS R R S A a2 (L oL e, HI
API (R 5| % UnicodeError,

sys. getfilesystemencoding () fll sys.getfilesystemencodeerrors () pRICH HRNEL

TR 5 25 2 A B AP o B R X

filesystem encoding and error handler (&2 2 &% 4 1% 1 $% 3% jE FH 6 =) & #E Python [E] & Hr |y
PyConfig_Read () PRI KA E: #2&[F filesystem_encoding, PAM PyConfig [E

153

https://peps.python.org/pep-0498/

The Python Language Reference, &[] 3.11.8

filesystem_errors,
Hag2Fllocale encoding ([FI4AE)

finder (=}HH7Y)
—fEPiE, g EREIEAER import AL R loader (FALR) -

¢ Python 3.3 BRUG, 5 W RRIETL) AR ES . 7LIEAE S48 22 (meta path finder) €[] sys .meta_path,
Wi ¥448 78 B 4 2% (path entry finder) € {fi[f] sys.path_hooks.

#2(F PEP 302. PEP 420 fIl PEP 451 D\ T W Z 401 .

floor division (i) FHUEKR:)
) A iy 55 B IR I RS M R . 1) R B RVA I T2 / /0 B, R 11 // 4
T4 R 2, B float (FREKM) ZURVEFTMIENG 2.75 AWM. #UE, (-11) // 4 Mg
-3, WEE -2.75 $ie T HEHIE& 2. #2([E PEP 238,

function (R
— B EOART, B AEE eE Y] e — S et] AR R AR B (8 7| B, s [Tl
R A AT. s Eparameier (230). method (J53), PAR G X € &REEH.

function annotation (F=XEIFE)
bR X 2 el o EE A — B annotation ([EJRE) o

A LR FE R 2 Ee = g, BTGS2 MME int 518, EeA—@ int [
H{E:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

R BRI RREAE 5 X8 R A RE AR
it 2 [Elvariable annotation F1 PEP 484, &4 HIhREMiiA. BIRERWREATE %, B2l

annotations-howto.,

future
future TR X X: from __future_ import <feature>, I/~ 4 as il AL LELE Python kK
A B A1 HRAS R R EVEEHE R R B E 38, ARG mi A, T __future_ BUAHHIGEIT
feature (F14%) WRERI{E. i import PUASAHFISE B HORAE, /RVT LAE 1 BT 0) BE 2 Rf 1
WHCHIBMEE S, AREMRES e (S0 5) mEERMTI6E:

>>> import __future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (b nlik)
RO S PR R R, I BRI AR FE . Python AT IR MUK, 25 2 MR EF#L (reference
counting), DA K — 1 & [F) g] A1 A B 22 BE G B2 (reference cycle) A9 8 17 3% M UL #% (cyclic garbage
collector) Z&5¢ Lo 3R MISGHR W] AGE A g AR4H S8 LA T4

generator ([E4:%%)
— i €r [al i generaior iterator (FVEZFEIRES) IR, BHEERG MEFHEX, EARKLE
WETyield #FERX, REEA—RIIME, B0 R for B, oi/2PA next () B, FFRE
RHAH)—EME

TE TR AR R —EE AR R, (EAER LS, WAl ReRFonEle SERE. B—H%
BN RERENERE, A e aTaE, DA RIEEE.

generator iterator ([F)ZE:#$ENCES)
— il thgenerator ([E1A:2%) BR=CHT L IHI
Ty ield GEEEIET, [EREMERATRAE (CU5E Es O E P vy AR HEA
HERE R, TR Ik m b ST (BEARSE AR F Rp AR 2 50 B AR 1 s U AR]) o

154 Appendix A. fijEE%R

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, &[] 3.11.8

generator expression ([EJZL:#$i#%)
—(AghEERERNERER. EHEERG MEEEE, BmEE M for T4, & TFHE
T EE s AR 1). sZALAER e AN E pa X E AR 2 R

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function ({Z7pX;)
1 £ 2 M R AR B BRI X, % o XSS [A R (BB E R [(S . o] 3 % (0 O A
1, 2R EEE A (dispatch algorithm) 2R([E]5E

Wt Flsingle dispatch (B—3HEF) B H . functools.singledispatch () #Afirefl PEP
443,

generic type (JZ%!1%(F])
— (R AEEWi 2 Btk (parameterized) fijnype (BUE]); dlH 2% % 2(E], %52 list Ml dict, ¥
B A [Ele = M,

s 2z ME4 BE. PEP 483, PEP 484, PEP 585 il typing f54H.

GIL
#5 2 (Flglobal interpreter lock (43 2225481) .

global interpreter lock (43 B 45%$3H)
CPython T i¥%4a T FHIBE ST, FH DARECRBE R R A — AT 45 BELAT Python [¥ibyrecode ({3 T#H
) . SRR (LRERENERE, dict) HEHEREFTAFE (concurrent access)
HIf@BE, BEA%HI W] DM fk CPython AU EFE. SH 38l H %8s, G B ER S M EZ T4
(multi-threaded), {H 1 /2 i n 22 JE BRSO RS2 REERR LA — RS 4F4T 1 (parallelism).

SR, AR FERA, MEum M B SE =, B MR s Rt e A T I A kA (E) S R R 4R
(computationally intensive) FfFE#5RE, T AR GIL. B4b, fE#AT VO KF, GIL 482 ey fifhs.

W HE S TR GIPATA] By (VAT RS A0 B B S 2 R A LR g) 55 I [EIR L
o1, WEE—BiE— R E T, SRk, —RRE, HElcasaeme, g
PR REIRERT 2, MM AT 58 o A AR

hash-based pyc (FEI k& pyc)

—{E L TCAE (bytecode) 74, B FH A EVELINT AN /2 6 B A bt 2 1 Jpe A A W R[], e o oAy
etk . #E2[ECached bytecode invalidation .

hashable (7] §fE))
An object is hashable if it has a hash value which never changes during its lifetime (it needsa ___hash__ ()
method), and can be compared to other objects (it needs an ___eg__ () method). Hashable objects which
compare equal must have the same hash value.

ALEENE: (hashability) {fi— Y7 AT i dictionary (F4tt) RYHERI set (Ffr) HIMRE, HEELH
R B T A EN .

ﬁ%ﬁiﬂ’] Python AT SEEA) (1452 nTREEIRY s ATE A%ty (B1AN list 5 dictionary) [EIAVE; TiA

SRS (I tuple (JCAL) Al frozenset) , U HEMYICE 2 TER, B4 S 420 i
B AR B E class IECBL,)5S L6 (e gl v s () n] AR (ET Y [:TF?TFUFH%%EH%E%K
RAMER (BRAFEMEECHR), meEMpEER04 3 EMr 1d(

IDLE
Python f¥] Integrated Development and Learning Environment (%54 BHESELEEEEES) . idle 2—fHEAR
) AR AN LR AR IR ST, BRI Python FYEETE BRI TR — A g 11t

immutable (An]%&H1k)
— A HA B ERE. Anl Sy aiEs . A wple (Joél) . BEHWIFE A REBICER
NSRS [A (b ZE R G A, MBS, — B . MR B R R ENE Ry, i E
B, i dictionary (L) g —{H S .

import path (5] A J&1%)
—HOLE (Eipksesa 8) BIANFE, ARSI ELEAE import BLAH Iy, €rifipath based finder (ELjitE%&

155

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, &[] 3.11.8

By tads) BN ACE . AE import IR, S ESIREHZH A sys.path, HERTEMN
(subpackage) M, EMAHERAEEMH) __path__ B,

importing (5| A)
— (R . —EBLA) Python FE=UA AT DAE A MR AR,) — AR AL H 17 Python A2 A5 .

importer (5IA%})
— (A RIS AR AL BB R finder (FAg8%) tRloader (BALR) WF-

interactive (H.Ej1))
Python 7 — i BB X H 4%, ﬁ%ﬁ‘%TMTE%%%E@?EE‘?TE%/\%LEWHL%‘? SERIRATE
MEIHER EMPEER. HEES) python, ATHFEALMG# (W] BEHE b7/ B RS 1Y) 5 138 B ge g
B). aalE iR s i n JeE E R (R help(X))

interpreted (Pi%Y)
Python & —HE 55, MA S MRS Ki@iﬁﬂﬁl [43 7] e LeAs , R ENA (37 T4 A (bytecode)
SR AR AR o 1B FR RIS 0] DAEAEMGELT, 1A TS I R ST o — A T4 %ﬁﬁ%{lﬁ
B Hibnh ol et oA Han B e / BREE, N eMmpofeaE s ams .
Flinteractive (HEIH) .

interpreter shutdown (P 7SFH)
i Python 2R 9k ZKBHPANY , B arf A— BRIy B, FEM e B i A s e e & IR, 11
ﬂlﬂ‘%zﬂﬂlﬁﬁ BRSPS . B E 2RI 3R =k % (garbage collecior). & REEE #5648
TE WA HERG X (destructor) 5555 | F A1 (weakref callback), [FRUf7H A (o RE =05 . 7 BH P I B b
% gi{;&;?? BRI RREFSN, HEE ISR EATTAER T (7 A6l ek X Bkl
g]

BB EERE, & __main_ BASUEPHETOEARC BT
iterable (W[[EMCHI1E)

An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or witha ___getitem () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The o statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator ([E{t2%)

An object representing a stream of data. Repeated calls to the iterator’s __next___ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or useitin a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

£ typeiter SCH] AR B B 2 &l

CPython ‘B fE &l fifi: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

key function ()
o U B B 30 (collation function) 2 — i AT IEIY (callable) R, & [ml fE—{i 1] R HE)F (sorting)
HERF (ordering) W{H. BTN, locale.strxfrm() 1k F AR E) A —1{H TR I A HE 1 Y HE
JF

Python Wiy 2 TR, %52 DA R 2R B CRBOE P el AL 7 30 B min O max ()

sorted (). list.sort (). heapg.merge (). heapg.nsmallest (). heapg.nlargest ()

156 Appendix A. ffj g%

The Python Language Reference, &[] 3.11.8

Ml itertools.groupby () .

A RTE R DA, . B, str.lower () method W] PAFEIEIAR 43K/ NEs HE T 11 88 i
Ao B, R PARE L ambda AR PHETE, HI40 lambda r: (r[0], r[2]). J34h,
operator.attrgetter (). operator.itemgetter () Fl operator methodcaller ()

ARG R A R X (constructor) o I AR fE N2 AN BT SRR S HE A, S E N HEY .

keyword argument (2575 185%)
#t2(Flargument (5]85).

lambda
i B —expression (GEE) FrAH M — B 4 fTEIK =X (inline function), A 3% b8 =045 P 0y ISR (A .

#£57 lambda KX HFEVE 2 lambda [parameters]: expression

LBYL

Look before you leap. (= JM%A7.) & T8 A 6 EUHS Er7E A TP I el A e 2 T, WAt It S e
. B EAFP ﬁT}F/ﬁkiﬁfﬂﬁ HERRORETAETZ 11 BUANAAE.

1E— ﬁl%%ﬂ TR, LBYL JrAUHAE [=1 A [4&47] Z M5 AT BEF (race condition) 1)
Ja\Bg . BIUA N RES A 1f key in mapping: return mapping(key], WIS —(H#ATHIAE
P2 R AT, A€ mapping RGBT key, RIZAEACHEAL & KL 52 LB T DA FT 8 (lock)
a6l T EAFP 85 7 AR (E .

list (#i51)
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension (H 5|45 & 315
— e 1 AR — M 3 51 G AR A e R, ([R PR A SR DA — 1 List (Rl B 2L)5 5. result =
["{:#04x}'.format (x) for x in range (256) if x % 2 == 0] &[E4E —{HFEP list,
Hop g 0 3 255 @EE], Fra @+ g8 (0x.), i FAEBREE. WREsE, [l
range (256) FHITH TCREES SR

loader (EARY)
—EREER AR . T EEFR—AAE load_module () [method (J5%:). HAZLEE
Setlifinder (Fggs) . HE2AHH2E PEP 302, Bg]ﬁAabstractbase class (IR, &%

2[F) importlib.abc.Loader.

locale encoding ([I8 Zi5)
£ Unix [, ‘B2 LC_CTYPE B Em 5. B PAH locale.setlocale(locale.
LC_CTYPE, new_locale) #%E.

7r Windows |, ‘B2 ANSIfCHEE (code page, fil#l "cpl252"),
T£ Android 1 VxWorks |-, Python {#i[f] "ut £-8" /E[E] | 54w .
locale.getencoding () can be used to get the locale encoding.
WEE A filesystem encoding and error handler

magic method (JE#kr Jji:)
special method (455K) WI—E 3EE =[5 285 .

mapping ()
— AR Y, B BAAREN AR, HAEE A abstract base classes (i 5 &R H(E]) o,
collections.abc.Mapping B{ collections.abc.MutableMapping f$8E R method, #i
Blfi4E dict .collections.defaultdict.collections.OrderedDict fllcollections.
Counter,

meta path finder (JCHETEabIEY)
—MEL 18 sys.meta_path [[F[{E# 1 finder (FFAGER) . TCHEIRFAGARELIL A A B 548 255 (path
entry finder) M BEZAR
B A TCIE R B A EAE) method, 352(F] importlib.abc.MetaPathFinder,

metaclass (JCE])
— 7 class [y class, Class 5 FEiB A% € 73 37— class Zf5. —1# class dictionary (F8) , DA S —1#

157

https://peps.python.org/pep-0302/

The Python Language Reference, &[] 3.11.8

base class (LML) (513K, Metaclass B35 H 255 =058, [E@S7 class. KZ AP 1E 4]
FEalEl 5 G — MR B E . Python [RFE)Z JEAE A B REIEH V7 F #T 1Y) metaclass . K4 1
HERRFEN TR, [ER2ETFERE, metaclass 7] AFRIEEIR HAPRERARE 2. EME#H R
[EVE AP S TaE etk . BEWIESL . FAER OIS (singleton), DAKHFZ HABMEHS -

2 G E] DATE Metaclasses 3 i H 33 o

method (J5#)
—{7E class A< EEIgE 2 A K. A0SR method VEEIE: class B il i — {0 & M gieny , HIE K &5
KB EREE 95— Hargument (5190 (M5 Mol HWAE self). BB funcion (HX)
Flinested scope (EMRAE) .

method resolution order (Jj 7. /M IE)T)
T VSR IE S e AT PR R B i AR, base class (ELEHAE]) B aplEF. BN 2.3 RE
4>, Python FL3#a% FT i F T BN ER, 552 (E] Python 2.3 [A MRITIE)T .

module (Ei%H)
—{E#54F: Python PR A AHAK ¥ (organizational unit) ({4 . BHA —EmAEH, BEUEER
(1) Python ¥4} LA ZFE Hiimporting WAL, #HEA 2 Python,

st 2 (Elpackage (£44).
module spec (L4)

—fH a4 S, B HREABHR import A &, B & importlib.machinery.
ModuleSpec [—{EEH .

MRO
i 2 [Emethod resolution order (75 ¥EFENTIET) o

mutable (n]5&Y{}:)
AP A B IR, (HAERFE IR 1d O « A Eimmuable (CRTT89){4) .

named tuple (F#Ic4H)
#iak [named tuple (P42 7C4H) J 2487 tuple BRI LM HEIEY class, H B[] (indexable) Tt
F AT DA PR 44 8 1 AR A 3 Se U5k class AT DARAT HoAB I fRbE

5 2[R [F))2 named tuple, {U3fH time.localtime () Ml os.stat () [EENHE. H—MHFT

& sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from t uple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace (i #23i)
SHBE R . 4 25 P2 DA dictionary (SFHL) #EEEME. A IWIsiy . Ak K EE) a4 25
MAEY 4+ (7€ method ") A SR a2 25 M. 54 25 MRS PT 1k a2 E%, AR . B
i, K3 builtins.open Ml os.open () i E M) 24 25 WA 4 . fir 44 25 106
HH et [2 MBS AE B A —H pR X, RIS W Pk S v Atk . BN, %t random. seed ()
B itertools.islice () FHfEHLFE S, B R A E 2 B random fll itertools FRAITEEAE.

namespace package (7 Z23MIE:)
—{l PEP 420 package (£{F) , & HEEAEEI T2 (subpackage) fy—{H %525 . v 44 45 & {4 0] fE
Ef g 2R, mHEEARE M ARG R —fregular package (IEREN) , HEEMEEAS
__init_ .py BfEREE.

Az Emodule (KAL) .

158 Appendix A. ffj g%

https://www.python.org/download/releases/2.3/mro/
https://peps.python.org/pep-0420/

The Python Language Reference, &[] 3.11.8

nested scope (LR 1)
AE(E)2: B 41 5 5 (enclosing definition) T SA B RE). BROIPKRE], — (A =N U 2R 7E 5 — e X
PES, WIEMRELES MAMNEmA TR, SR, EEESEET, SRIENSEE RS
BRI P MREL o Dt o 5 M REAE (e A PP I B Ry A e IR, o R A Al i 44
ZEFTHRIEEA . nonlocal ZHFEIMNEMEEIEITR A

new-style class (FiAJ(E])

Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like _ slots_ , descriptors, properties,
_ _getattribute__ (), class methods, and static methods.

object (¥1F)
HAREE (BrEoE) MoiEznFTE] (method) MYEMIEERl. B R Mnew-style class (Hiz\HE
[E]) At base class (FLRHEED) .

package (£1})
— W Python fAjmodule (F41), & AL T4 (submodule) By 2 IEEIH) T (subpackage), %
b, Bl __path_ EHER—8 Python 54 .

Wak2Elregular package (TFFHEME) Fnamespace package (64423 MEME).

parameter (Z)
AE function (pRx) B method 7 5§ ¥ —fH iy 24 B #E (named entity), &4 B 3% bk 2\ BB 32 32 19—
Margument (51#0), SAEFLFE FRR2SMEE 8. G H FREAR RS 8EA
* positional-or-keyword (1B BT)« H&HH— W] DAd% 18 12 B SURAEEIM 425 7| Sl R 1)
18, ERSHIMTERERL, GIMPATIR foo 1 bar:

[def func (foo, bar=None): ... J

* positional-only (FEFROZE) : H5H—ME L REHL I OL BAR AL T | . FEpRE S 2 8 R
W /50, WnT DAERZ P OCHT T E SR E RO E 2 8, HIANLAR) posonlyl 11 posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

* keyword-only (MEFRBHSET) : H8HI—MH X BECABHSE 7 RIER B0 5 [#. TERdUE 361 2 W%k
A AT R 2 U (var-positional parameter) Bi& ALY * 700, BT DAFERAR Ty
TEFRMERBEHE T2, BIWPATHY kw_onlyl Hl kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... }

* var-positional (fEREMEIE) : 45U —HBELMERF PSR BLi 7 5 | . (TEC B 2 8
ARG | M AN . BRSO ERIE L2 WA E L~ HOEFR, BIIPAT Y

args:

[def func (*args, **kwargs): ... }

* var-keyword ({F7Z8CR BT) FEATPTHHRALE S BRI |3 (FEC g2 B2
?ggﬁ%%ﬁi%?%l%iZﬁl‘)o EHZUEERE LS AT I ~~ AEs8ny, Filan b
| F) kwargs .

ST ARG | ORI AR s F5 Y, 0T DAE— 6585 e 1y 5 | B o TR (-

75 5 2 BV 35 R Wargument (5188) W H . W E b 05 800 2 82 #1172 [F, inspect.
Parameter class. X & &%, PAK PEP 362,

path entry (¥&f€3iH)
LEimport path (5| ABEEE) HH—EALE, WMipath based finder (FEIRPBEECHIFRIGR) GBS FHZOIEH
Rag 2 import PRI .

path entry finder (PX4%3HH =Hi7%)

W sys.path_hooks Hf{—{H n] FFR) {4 (callable) (Bl —{Wparh entry hook) Fr|al{4f)—7d finder,
EABEUT LA path entryie (AL -

BT IR AR TE H A2 EAE) method, 352 ([F) importlib.abe.PathEntryFinder,

159

https://peps.python.org/pep-0362/

The Python Language Reference, &[] 3.11.8

path entry hook (%% i H(E))
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder (JLRPEELIT M%)
THBE USEAE F 48 55 (meta path finder) 2 —, "B &FE—@limport path 118 FH54H .

path-like object (FHPRIEH1E)
— R FRRAE R RS BT DU — R BRI str 8 bytes ¥4, w2 —M
BHVF os.PathLike W EWWMH. BB os. fspath () K, —f%4E os.PathLike WE
AT DA E(EIE] str 85 bytes MR R I4FE; 1M os.fsdecode () M os.fsencode () HI
SYEVAT A AR str M bytes HI%E%. i PEP 519 5] A.

PEP
Python Enhancement Proposal (Python J[F4#222). PEP 22—k sHEIRSCf4E, & REE] Python #1832
B, B2 Python)—(F B Bh B ol % B e YRR P Al B BE . PEP JER% B4R LA 1R A0 S A
PAS B 22) RE O AR IR L

PEP WA TE HIY, 22 B E R P FE 2 ALFE v B Sl 1 R) 2 S, ARRE A
Python (1% #HEVRIIFEE, & SeilFRi 1= 2l . PEP 1)1 2 & e te ot e) d vy el e (B 5
.

#H2[F PEP 1,

portion (354))
1 B — H [E)p) — 4R 58 (M mTRE A TE — 1R zip A5), 35 SEAR ZE R 3 — MRl iy 44 25 TH] B4 (namespace
package) Tk, WIlE PEP 420 H1)E 3.

positional argument ({5 5|45
s Flargument (3]38).

provisional API (%47 API)
AT APL 248, (EHAME R =L 4 AH 25 1 (backwards compatibility) fRa&Hr, #E#HERR T APLL
BESR LN T, HEe MBI, M EER A ERWET, FE%.0E A SR
EELE, Wnged BB mEAHANE T (LR AR . % EEA G mEmHhE L
—HA APT YA A Z AR B e B B AN BRI e f i IRy, e A etk

ISR AT APL, B AAHZS Y 8 S8 Gl i) [MRy %2) — STl B [
ATB9R € 2 mT REH th— M 1) AR AR A AR E)y 52

e {28 A (S A A 4 o X R B B TR PN BT, T B SR AR = 1 Ry] 25 B A I R Y et B
it 2E PEP 411 T 2 41 .

provisional package (‘E17%1)
it (Elprovisional API (%47 API),

Python 3000
Pythorj&x FIVARERE (RAATIRIER, HWRH 3 B e e R 2.) dnl AR 25 ([E]
[Py3k].

Pythonic (Python JAK& 1))
—fEARYE S — B AR, EER T Python 555 e WIWIE HRE, AR H MRS F % R
REAVEREAAS. 40, Python Hhig RLAY— B HYE, REH M ror BASK, S MrrES ¢
T A TR EITEIRE . 2 HasE s PR SEEA A, FTeAR R Python (1) A A IRy & ()
— B R A A

for i in range(len(food)):
print (food[i])

2T, DA AR E . 3AA7 Python Jalks :

for piece in food:
print (piece)

160 Appendix A. fijEE%R

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python Language Reference, &[] 3.11.8

qualified name (P} 92 #45%)
—fH [E AR, B BURRE— ALY A Ve 3 R B4 e 5619 class, BRI EL method f1)
(B8], 40 PEP 3155 thptE s, SR TEJE Y B 3 UR class T3, BRE 24 REEELHA) (444 R AH] -

p
>>> class C:

class D:
def meth (self):
pass

>>> C.__ _qualname_

ICV

>>> C.D.__qualname_
'C.D'

>>> C.D.meth.__ _qualname_
'C.D.meth'

WA G EALRE, ©ATRE & & (fully qualified name) ;23R B SERE B 73 B BR AR, ELFEAT AR
MAZEM, Bl email .mime.text:

>>> import email .mime.text
>>> email.mime.text._ name_

'email .mime.text'

reference count (W)
R — YR 2 R A 2 EET IR 2R, o if#IREL S (deallocated), &
WE 51 GE A Python FEASHH A AR H|, (HEEDECPyhon BER — MBI T . BT RT DA
N getrefcount () PR IREIE—HERE Y2 BEHE

regular package (IF#£1):)
— B S package (£4F), FIIN—@EEA __init__.py fHEMHEIE.

etz Elnamespace package (423 .

__slots__
e class [FIFY—ME B 1, EHHBUCESEOEENZSHE, PUIERE G dictionary (FHL) , %K
i RO . MEARRZROTAR T, (HE A B DO MG Y, e OR BR A0 I A O 1 e
(memory-critical) [FI A= A7 e K B 20 5 LB T

sequence (J3:41)
An iterable which supports efficient element access using integer indices via the ___getitem _ () spe-
cial method and defines a ___7en__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __ getitem () and
__len__ (), butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable

keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension (4548 % EiE)
— BB, HARER— AT B b i) &R e, [0 FR A SR A —] set
i, results = {c for c in 'abracadabra' if c not in 'abc'} &[F4—{HF
set: {'r', 'd'}. #H&EDisplays for lists, sets and dictionaries.,

single dispatch (¥.—3RFf)
generic funcion (ZHUM) WHREM—TETEN, FEML, BEAEMSERR LR B —5 | S B,

slice (VJH)
—fE 1, EE R Brsequence (JFH) WMo B —BHY R 72 8 N AAF 9% (sub-
script notation) [1, #FE4H 2 MET, AAEHFE MM A E S, Flilvariable_name[1:3:5].
ERESE (M) A3EmERS, &#iH slice Yt

161

https://peps.python.org/pep-3155/

The Python Language Reference, &[] 3.11.8

special method ($#%kJ5:)
—TE @4 Python [BRF-NL[H) method, i ¥ 5EAE B FIR A TILMGE S, 1Y%, jZ 78 method (144
il e PSRRI 45 B A Wi R IR(E Spec1al method ¥ESpecial method names 45 #E41EIH .

statement (A=)

B — A (suite, —ARAXME [EHL)) P—EBor. BRI LR —Mexpression (I
®), RESHBET (Hlinir, while K ror) MEMEEERKZ—.
static type checker

An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

strong reference ([F/Z)
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_ INCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

Py_NewRef () pRaCA] A ES, BB 2R, @K, 76E B E2 BAE RS 6, WETE
#ZE2 M Fipn] py DECREF () R, DAREGENR—MF2 M.

FiEsEborrowed reference (2 M),

text encoding (3L FHHE)
Python)5 H3 2 Unicode 5% (code point))79 (7L U+0000 — U+10FFFF 2). #
SRETE R, CAR LD (A G TAL .

ﬂ%#ﬁ]?jﬁ?ﬁﬂﬁc&fn%ﬂf?ﬁm FRE) [4t), 10807 JC AL 51 8 B or % - B B AR ED [AR5
(decoding)

A Z AR ST LSRG (codecs), “EMBESIREE [3074 1.

text file ()L%iﬁ%)
— A REE AT A st Y —{Rfile object (FEEYIF) . EH, SCFHEEREE FRFRITH
PG| ,‘%7]4{;", (byte-oriented datastream) [E)€r [B g Mirext encoding (SCF4iE) . CFREEMBI T4
PASCEREE (e 8 'w') BHEARZE, sys.stdin, sys.stdout DA io.StringIo IEH.

B 2(Elbinary file (ZHERIREZE), B2 —HEEEEBRE A 2815 T4 & 1 (bytes-like object) g
ESY/ 1L

triple-quoted string (= 5| 3EEIEH)
H =R 595 () sG55 O EERA N — @5 MR T MEEA fALER 85| 555 T
g EIRE, EERFZIEA, B RAE K. BN AFET R 4 & A BKE) (unescaped)
(L SRR S 5%, 107 ELE MR TR 8 184 5T (continuation character) St W] AMS 2 AT, & i1 E
192 4w 55 (EJHA 7 5 R A 1

type (ZI[E])
—fi#l Python ¥ {4 Z[EIElE T & A ESE A EYARE —EAE. — Y ¢-rZLE v]
PAHER __class__ BHARLFH, A type (obj) KR,

type alias (FUEIFI%)
— BN) 3w, B A B IS E 46— R EST (identifier) ST .

HIEFIE)4 i 42 [FI32 = (type hint) 84 . Bild:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:
pass

ATAR BGERE, SEEA AT

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

#2[E typing Fl PEP 484, F HIIRERIHREIA .

162 Appendix A. fiisE%&

https://peps.python.org/pep-0484/

The Python Language Reference, &[] 3.11.8

type hint (%I([E$25)
—fannotation ([EVRE), EHGE—MHEE. —H class J& = — 1 ok =) 2 8k o] (1 T A E

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

A d 5 W, class B MERTR X CR & Wik & 80 R E4R R, #W LM typing.
get_type_hints () RLEHL
#2(F typing fl PEP 484, 45 I REMIHIIA.
universal newlines (3#)JH[ET5C)
— Tl i 5 SCE AL (text stream) [1) 7 2, @%W\Tﬁﬁﬁ%ﬁ.%.. TS5 Unix 17 R IE G

"\n'., Windows 1&%] '\r\n"' £ Macintosh &% '\r'. F52[[E PEP 278 #il PEP 3116, DAKH
J* bytes.splitlines () HHINAIE.

variable annotation (525[F)F%)
—{W 5, class B annotation ([EIFE) .

[E 4 Bnl, class FEVERE, MR(EESEIEMEN:

class C:
field: 'annotation'

SMEREE R MR L ERRT (ype hint): BN, SEES BRI EHIG int (CEE) (A

[count: int = 0

5 B FIR I REEAE Annotated assignment statements= i 4 SEAT I T2

nﬁ/ 2[F) Fifunction annotation (it‘*%) PEP 484 | PEP 526, El ﬁﬁt%ﬁ?ﬂ‘]ﬁﬁﬁo 2] ﬁi\%%%ﬁ
Eﬁﬁﬁ{f % nﬁ/ . annotations-howto,

virtual environment ([FJHEERES)
— {17 VE B (cooperatively isolated) ¥l fTE2 45 , AE#E Python {5] 2 1 I A2 A5 DAZE 45 A THA
Python #EEIE A, MA@ $H 7] — 18 R 5% F3EA T Al Python i A2 1T EEA: T4,

St 2[E venv,

virtual machine ([EJHEZS)
—B5E 4 ph A T SR AR (computer), Python [[EHEAE RS €814 T i bytecode (iTCALNE) 4iEes
g A AL

Zen of Python (Python 2[F])
Python g5t HI B3 BLE 51 5% ﬂ‘ﬁﬁﬂﬁﬁ"ﬁﬁiﬁﬂ@ﬂ?ﬁtmm AT DA A) A T
JCEBA [import this] ZRK4LF|E

163

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, &[] 3.11.8

164 Appendix A. fiisE%&

APPENDIX B

BARELEFIRA S 14

i SEEI] SO 7 Sphinx (— & (E) Python [EIW]SCHF IR RS O SCPRIERERR) 4B reStructured Text 45
TR R AR R i

Wil Python B B, ik H 1155 1 T EI SCARBLE AR BB BAT TR, AR ERI AR, #5572
reporting-bugs FUTHT, [AH BRIl FAM i BBy B B A

et
e Fred L. Drake, Jr., Jflf Python SCPF T HAERYAITE # DA K — KM EIERIVES
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx #¢//#) Alternative Python Reference #1#| 1 #1521 F & .

B.1 Python {898 BRKE

% NFR I Python 13 M35 . Python 4223 p% 2)& A1 Python [FIH] (4 B kil . Python B (E) R 4G i h
TAT M ERE R, # 7 Misc/ACKS .

TEFAE] Python A (1488 g B B8R A 4 3 35 [EDRR A [ET] SO - e T A B R g AL A !

165

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, &[] 3.11.8

166 Appendix B. RSt FEAY &

appeENDIX C

i E IR

C.1 &icio

Python 2 1 7 B S22 0 5 AR R 2T 97 B (CWI, R https://www.cwinl/) [Guido van Rossum & 1990
ERFHETAE, B 2/EE—EEE ABC SEE1E4E . [F)%8 Python 08 T &£ 3K B Hifth A EER,
Guido {32 H FEAEH .

1995 4E, Guido {r4E JE 5i M 25 WriE i B KA B iF 9T A 5] (CNRI, 5, https://www.cnri.reston.va.us/) #4548
fliAE Python fit) T4, EWEAREIEFE 7%l iy 2 AR A .

2000 4£ 7. H, Guido F1 Python #%.0» B % [#]) 2% 2| BeOpen.com [E])i{,37. T BeOpen PythonLabs [# [. [
4+ H , PythonLabs [P53 Digital Creations (¥i[E] Zope Corporation; & https://www.zope.org/). 2001
4E, Python ##43L4-6r (PSF, K https://www.python.org/psf/) 37, g —{HEEHEA Python FHE %2
EHEIRENT A7 1) IR R 44K . Zope Corporation J& PSF f)—H & & &

Jir A7 B Python JRAKSZBHIRAY (A BB EFE, 2(E hups//opensource.org/) . M b, KEH{HAE4
By Python JAS, o2 GPLAHZAH; DAR FARAE 4 25 M A 1 22 [E.

BMRE BB Fn wEE GPL &% 7

09.0%F 12 A 1991-1995 CWI =
132152 1.2 1995-1999 CNRI 2
1.6 1.5.2 2000 CNRI &
2.0 1.6 2000 BeOpen.com 75
1.6.1 1.6 2001 CNRI =
2.1 2.0+1.6.1 2001 PSF w
2.0.1 2.0+1.6.1 2001 PSF 2
2.1.1 2.1+2.0.1 2001 PSF 2
2.12 2.1.1 2002 PSF =
2.1.3 2.1.2 2002 PSF 7=
22 PAE 2.1.1 2001 £4 PSF 2

fiiE): GPL MALIAF R 21E GPL R #[El Python, A4 GPL, A1) Python FZHEHS AT DA 455 (1)
BRI, (AR B 5 o IR . GPL A2 B #2 HE(L 1S Python W] PA%S & A /E GPL R
SHE R EH B ERRERIARTT.

167

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, &[] 3.11.8

IR 2SN T, £ Guido FRE NIATH, FfHE LA 1 B [R(E AT A

C.2 FANREMHLIEMFGXER Python BHISHER

Python FCHFIEI SR RZAE 2 LR PSF 424 &4

% Python 3.8.6 B4R, [EIHASCH:rpagaifl, R BN HAWRE XA, 2908 FEIZHE (dual licensed) 7 PSF #%
WEA #1 VA K Zero-Clause BSD % #¢ .

A LEHAN A Python SRR BLA R R B0 S5 SEARRER G BB REZ LR — g . B RE 2
FHERI A SERETE L, 2 O T 3R 09 34 20

C.2.1 ¥ PYTHON 3.11.8 §Y PSF %&£

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSEF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.8 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.8 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All.
—~Rights

Reserved" are retained in Python 3.11.8 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.8 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.8.

4. PSF is making Python 3.11.8 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.8 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.8
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF

168 Appendix C. ;HEELIRE

The Python Language Reference, &[] 3.11.8

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.8, OR ANY.
—~DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—~This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—or any

third party.

8. By copying, installing or otherwise using Python 3.11.8, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 4 PYTHON 2.0) BEOPEN.COM R &#

BEOPEN PYTHON BHIRFZRES 4055 1 I

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(BT —1D

C.2. ARFRHURMFXMERA Python BEHIIER 169

The Python Language Reference, &[] 3.11.8

(B E—H)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 ¥ PYTHON 1.6.1 g CNRI iR &#

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark

EET—3

170 Appendix C. ;AEEZ#E

The Python Language Reference, &[] 3.11.8

(R L —5)

sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 ¥ PYTHON 0.9.0 & 1.2 gy CWI i1R{EEH

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 Fi* PYTHON 3.11.8 [FEAX 4+ FI#2 X 5y ZERO-CLAUSE BSD #%4#

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. ARFRHURMFXMERA Python BEHIIER

171

The Python Language Reference, &[] 3.11.8

C.3 #usr(F#kRany iR 8 MBI

AT A S R O Y R SR G B, B2 AE Python FEEICAS H P [Ei 55 =ik i .

C.3.1 Mersenne Twister

_random BAH S T LA hitp://www.math.sci.hiroshima-u.ac. jp/~m-mat/MT/MT2002/emt19937ar.html] N
EZFIRE RS . AT 2R AR U Y 52 8 i -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

172 Appendix C. ;AEEZ#E

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, &[] 3.11.8

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate

source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 FEFE ¥ socket JR 7%

asynchat fll asyncore fAL & DA R AR :

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB

173

https://www.wide.ad.jp/

The Python Language Reference, &[] 3.11.8

C.3.4 Cookie &1

http.cookies HiZH L& DA AR :

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 #{TIEN

trace B W& DA
portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

174 Appendix C. ;AEEZ#E

The Python Language Reference, &[] 3.11.8

C.3.6 UUencode £ UUdecode &E=

uu AL DA :

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Eixf2FFueoy

xmlrpc.client PEAHALE DA FE:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB

175

The Python Language Reference, &[] 3.11.8

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BLHIHfHY kqueue 714 & DA RN -

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

176 Appendix C. ;AEEZ#E

The Python Language Reference, &[] 3.11.8

C.3.10 SipHash24

Python/pyhash. c f§ %47 Marek Majkowski’ 554 Dan Bernstein f{ SipHash24 JEEVERIEE. B8
PAT R -

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod H dtoa

Python/dtoa.c fHEHALT CHY doa fil strtod pR, F A C A EEKE BE 17 BE ORI =2 5 HAHE) . AR %
FefiTA: H David M. Gay @7 [R5 , 1235 BIAE W] DA https://web.archive.org/web/20220517033456/http:
/Iwww.netlib.org/fp/dtoa.c N, #2009 4E 3 H 16 H kR 1R G648 2005 DA IR RE B 2 REAZE Y -

/**

The author of this software is David M. Gay.

E

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

E O

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

*
*
*
*
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*
*
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

**/

C.3. #ugFIakienyIR{E BB 177

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, &[] 3.11.8

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later
releases derived from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

(HEBT—TD

178 Appendix C. ;AEEZ#E

The Python Language Reference, %[F] 3.11.8

(B E—H)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(BT —H)

C.3. #ugFIakienyIR{E BB 179

The Python Language Reference, &[] 3.11.8

(B E—H)
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

180 Appendix C. ;HEELIRE

The Python Language Reference, &[] 3.11.8

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

BRARfE R E _ctypes PR EE] ——with-system-1ibffi, FHHIFZMTTE H—HES libfi JFAA1HS
B B AR AR

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 181

The Python Language Reference, &[] 3.11.8

C.3.15 zlib

URAE R S BAR B 2lib A KR PABOR Ik R 2110 JE5E, ARz se g M — M EE 2ib [5G
AR R A 2

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc {#i Y 3EEIFE (hash table) F4E, J2DA cfuhash B2 ([FIRLAE:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(HEBT—TD

182 Appendix C. ;HEELIRE

The Python Language Reference, &[] 3.11.8

(R L —5)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

MdEfE 7 _decimal B4R EE] -—with-system—-1libmpdec, 7 A% B4 € H—H(El 2 libmpdec
PR X JBE 1) A A

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N B EH

test AP CI4N 2.0 HIFLEM (Lib/test/xmltestdata/cl14n-20/) 24 W3C #du} https:
/Iwww.w3.0org/TR/xml-c14n2-testcases/ #A52%, HEHR 3-clause BSD #Z#Eyt #(E):

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(BT —H)

C.3. #ugFIakienyIR{E BB 183

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, &[] 3.11.8

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(R L —5)

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/

sox/12.17.7/sox-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUD-
ING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRAC-
TICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE IN-
FRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect

and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

EET—3

184 Appendix C.

DR

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, %[F] 3.11.8

(R L —5)
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 185

The Python Language Reference, &[] 3.11.8

186 Appendix C. G E{ZE

APPENDIX D

=
i
|mit
If

Python 13z 3 [EJHA SCH4- 04 IURE :

Copyright © 2001-2023 Python Software Foundation {3 & —HJHEF] .

Copyright © 2000 BeOpen.com {4 i — I HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SERMR R A T 2 105 5 St

187

The Python Language Reference, &[] 3.11.8

188 Appendix D. IREE&

5

ERFHIEF
..., 149
ellipsis literal ([EfF%E) , 19
string literal (F&E¥ %) ,10
! patterns, 117
v(E55)
string literal (F&E &%) ,10
- ([E%)
binary operator (ZGEHEF) ,88
unary operator (—GEHEF) ,87

b(BHER)
AR T B, 12
(%)
attribute reference (BM %) ,83
B b, 14

" (%5158)
string literal (F&E &%) ,10
string literal (F &% %) ,10

(HFF5R)
comment ([EIf#) ,6
source encoding declaration (JR#A%
HEE) 6
s (BL%)
operator (EHEF) ,87

augmented assignment (¥[EIEE) , 100
& (Fn9%)
operator (EHEF) ,88
&:
augmented assignment (H[EIF{E) , 100
O (E#95%)
call (=) ,84
class definition (HEEZE®) , 126
function definition (BRXE %) , 124
generator expression ([E4 BE&HR) ,
78
tuple display, 76
R EEAZES K, 08
* (B%)
function definition (BRXE%) , 125
import statement (BIAMRR) , 106

operator (#EHEF) ,87

A expression list (BERX &7) ,93
B R, 85

TERE AR S R P, 98

function definition (BRXE%X) , 125
operator (EHEF) ,86

B R o, 85

T F B R, T8

* k=

augmented assignment (H[EIEE) , 100

augmented assignment (H[EIF{E) , 100
+ (M%)
binary operator (ZGEHZF) ,88
unary operator (—GEHEF) ,87
+=
augmented assignment (H[EIE{E) , 100
4 (E%) 576
argument list (B|#7F %) ,84
expression list (FERFFK) ,126
expression list (EERX=E7]),77,78,93
expression list (BERF| %) , 101
identifier list (k[%EHE), 107,108
import statement (B AM#AER) , 105
parameter list (Z¥F|K) , 124
slicing (1K) , 84
T F HLEE R, 78
W EEF K, 98
with statement (with BE®RR) ,114
/ (#HE)
function definition (BXE%) , 125
operator (EHEF) ,87
//
operator (EEF) ,87
/ /=
augmented assignment (¥[EIEE) , 100
/=
augmented assignment (H[EIF{E) , 100
0b
integer literal (E#H%H) ,14
0o
integer literal (E# ¥) ,14
0x

189

The Python Language Reference, &[] 3.11.8

integer literal (E#¥H) ,14
2to3, 149
(5 %)
annotated variable ([EJE##) , 100
compound statement (%}Fﬂﬂiiﬁ) , 110,
111, 114, 115, 124, 126
function annotations (& X[[EE) , 125
lambda expression(lambda #E &),93
slicing (1K) , 84
T EEE K, T8
TR T B o, 12
= (E9ER) .92
i (298) L 109
< (R)
operator (EEF) ,89
<<
operator (EHEF) ,88
<<=
augmented assignment (H[EIEK{E) , 100
<=
operator (EHEF) ,89

operator (EEF) ,89

augmented assignment ([EIEK{E) , 100
= (F#)

assignment statement (BEEAR) 8

class definition (HEE#%) ,42

for help in debugging using
string literals (£ H F & % #
HATRRSE) , 12

function definition (BRXE %) , 124

B R, 84
operator (& F) ,89

function annotations (& RK[E) , 125
> (K#)
operator (EHEF) ,89
>S=
operator (EEF) ,89
>>
operator (EHEF) ,88
>>=
augmented assignment (H[EF{E) , 100
>>> 149
e (%)
class definition (HEZE®) , 126
function definition (BRXE %) , 124
operator (EHEF) ,87
11 (F#95%)
list expression (BFEZR) ,77
subscription (T4) ,83
A EAES K, 08
\ (R4HE)
escape sequence (BtEF7]) , 11
AN\
escape sequence (BkEFZ]) ,11

\a

escape
\b

escape
\f

escape

sequence (BkEFF]) , 11
(kEF7) |11
(BEF7) , 11

(BkEF71) 11

sequence

sequence

escape
\n

escape
\r

escape
\t

escape
\U

escape
\u

escape

sequence

(BkEF31) , 11

sequence

sequence (BkEFF) , 11

(EF31) .11
(BkEF7) | 11

sequence
sequence
sequence (BkEFF]) , 11

(EF31) 11
(BREF7) | 11

escape sequence

escape sequence
~ (FEANEE)
operator (&) ,88

>
|

augmented assignment (¥[EIEE) , 100
(&E)
ABAEE P, 14

_, identifiers (%) ,9

_, identifiers (#[F#) ,9

__abs__ () (object 897 i%), 50
__add__ () (object 897 i%), 49
__aenter__ () (object 8977 i%), 54
__aexit__ () (object 897 i%), 54
__aiter__ () (object 897 i%), 54

_all (WEEAHAEM) , 1006
)

__and__ () (object 857 i%), 49
__anext__ () (agen 897 i%), 82
__anext__ () (object 897 %), 54
__annotations__ (function &% I+), 23
__annotations__ (BEREBEMH) ,23
__annotations__ (#HABM) ,26
__annotations_ (jéﬁ)% M), 27
__await__ () (object 897 i%), 53
__bases__ (HEEBEK) .27
__bool__ () (object 897 i%), 37
__bool__ () (MtFi) .47
__bytes__ () (object 497 %), 35

_ cached_ , 68

__call__ () (object 897 i%), 47
_call__ () (WtEF#) .86

_ _cause__ (FIAEMK) ,103
__ceil__ () (object 897 i%), 50

__class__ (EWB®K) ,27
_class__ (F#¥ cell) ,43
__class__ (##BH) ,38

__class_getitem__ () (object t938[El% i%), 45
__classcell__ (HEF#4=MmEE) ,43

190

#5l

The Python Language Reference, &[] 3.11.8

closure

closure

__ (function 84 /8 1%), 22

(BRXEM) 22

__code__ (function 898 %), 23

__code_

__complex_
__contains__ ()
__context_

__debug__,

_ defaults_
_ defaults_

(BREM%E) ,23

) (object 6975 i%), 50

(object 849 7 %), 48

(B4 EE) L 103

101

(function &4 /8 %), 23
(BXEMHE) .23

__del__ () (object 897 i%), 34

__delattr___
__delete_
__delitem___

) (object 497 %), 38
) (object 4975 i%), 39
) (object 4975 i%), 48

__dict__ (function &y l%/fi), 23

_dict___
_dict___
_dict__
__dict___
dir |
dir ()

_divmod___

(L&J‘E}%T)
(EpEME) .
(EALEN) |

(EE M)
HWABENE) .

(object t 7 7‘%), 38

) (object 897 i%), 49

__doc__ (function 84 /% 1+), 23
oc__ (method %4 B 1k), 24

__doc__ (
__doc__ (
__doc___ (
__doc___ (
__enter__ (

HAEM) 23
FIEEME) 24
HAEM) |
x}f./%) .

) (object é’]ﬁzi:), 51

__eq__ () (object 897 %), 35

__exit__ () (object 897 i%), 51

_ file ,68

__file_ (#ALEM) .26
__float__ () (object 7 i%), 50
__floor__ () (object 457 i%), 50
__floordiv__ () (object 497 i%), 49
_ format__ () (object 897 i%), 35
__func__ (method &4 /& %), 24
__func__ (FEEM%E) .24

_ future_ , 154

future statement (future & R), 106

__ge__ () (object #97% i%), 35

__get__ () (object 47 i%), 39

_ _getattr___ (Tﬁ#ﬂ}%‘f@k) , 38
__getattr__ () (object 857 i%), 37
__getattribute__ () (object 847 i%), 37
__getitem__ () (object 897 %), 47
__getitem_ () (HBMHEFE) .33
__globals__ (function &% /8 1t), 22
__globals__ (F#RXEM) ,22

__gt__ () (object 9% i%), 35

__hash__ () (object 8497 i%), 36
__iadd__ () (object 857 %), 50
__iand__ () (object 857 i%), 50

_ _ifloordiv__ () (object #y7 i%), 50
__ilshift__ () (object #47% i%), 50
__imatmul__ () (object #47% i%), 50
__imod__ () (object 97 i%), 50

_ matmul__
_ _missing__ ()
__mod__ () (object &7 i%), 49

_ _mro_entries_
_mul__ () (object 847 i%), 49
_ _name__, 67

__next__ () (generator &7 i%), 80
__objclass___
__or__ () (object 897 i%),49
_ package_ , 67
__path_ ,68

__pos___() (object 7 i%), 50
__pow__
__prepare_
__qualname_
__radd__ () (object 897 i%), 49
__rand__ () (object 847 i¥), 49
__rdivmod___
__repr__ () (object 897 i%), 35

__imul__ () (object 897 i%), 50
__index__ () (object #47% i%), 50
__init__ () (object 847 i%), 34
__init_subclass___
__instancecheck___
__int__ () (object 847 i¥), 50
__invert_
__ior__ () (object 97 i%), 50
__ipow__ () (object 847 i%), 50
__dirshift_
__isub__ () (object 847 i%), 50
__iter__ () (object 897 i%), 48
_ itruediv___
__ixor__ () (object 897 i%), 50
_ _kwdefaults_
__kwdefaults_
__le__ () (object 847 i¥), 35
__len__ () (object 897 i%), 47
_len__ ()
_ _length_hint_
_ _loader_ , 67

) (object 89 38[E)7 i%), 41
) (class #4975 i%), 44

) (object 497 %), 50
) (object 0977 i%), 50

) (object 97 %), 50
(function &4 /% %), 23

(BREE) 23

(M thor %) 37
) (object 4975 i%), 47

__1shift__ () (object 857 i), 49
__1t__ () (object 97 %), 35
_ _main___

module (HAH) ,58, 131
) (object 0975 i%), 49
(object 8977 i%), 48

__module__ (function 848 1+), 23

_ module__ (method t4 /B %), 24
__module_ (&RXEMH) ,23
_module__ (FEBEMK) ,24
__module__ (EEEM) ,27

) (object 4 7 i%), 42

__name__ (function &4 /B %), 23
__name__ (method 84/ 1), 24

__name__ (BREKE) ,23
__name__ (FEBK) , 24
__name__ (H#HBMK) ,

__name__ (HEBEK) ,
__ne__ () (object 97 i%), 35
_neg__ ()

(object #4 7 i%), 50
new__ () (object #7 i%), 34

(object 4 /8 1), 39

) (object 8975 i%), 49
(TEEF &) .43
(function &4 /& 1), 23

) (object 2975 i%), 49

gL]

191

The Python Language Reference, &[] 3.11.8

__reversed__ () (object 497 i%k), 48
__rfloordiv__ () (object 897 i%k), 49
__rlshift__ () (object &7 i%), 49
__rmatmul__ () (object 8975 i%), 49
__rmod__ () (object 8497 i%), 49
_rmul__ () (object 897 i%), 49
__ror__ () (object 897 i%), 49
__round__ () (object #47% i%), 50
__rpow__ () (object 847 i%), 49
__rrshift_ () (object 8975 i%k), 49
__rshift_ () (object 8975 i%k), 49
__rsub__ () (object 897 i%), 49
__rtruediv__ () (object 47 i%), 49
__rxor__ () (object 847 i%), 49
__self__ (method &4 /8 %), 24
__self (77‘/2}?3%) , 24
__set__ () (object 897 %), 39
__set_name__ () (object b7 i%k), 41
__setattr__ () (object 4975 i%), 37
__setitem__ () (object &7 i%), 48
_ slots__, 161
_ spec_ ,068
__str__ () (object 847 i%), 35
__sub__ () (object 897 i%), 49
__subclasscheck__ () (class 97 %), 44
_ _traceback__ (#l4NEHE) , 103
__truediv__ () (object 8975 i%k), 49
__trunc__ () (object 7 i%), 50
__xor___ () (object 97 i%), 49
(v (HIR)

dictionary expression (F#&EERK) ,

78

set expression (£4EHERX) ,78

AN F EEHF, 12
€ 3:113))

operator (EZF) ,89

| =
augmented assignment (H[EIEE) , 100
~ (R IE)
operator (EHTF) ,87
8
PYTHONHASHSEED, 37
PYTHONNODEBUGRANGES, 30
PYTHONPATH, 70

A

abs

built-in function ([ElZE®ER) ,50
abstract base class (£ & EHEFE]) , 149
aclose () (agen b9 7 i%), 82
addition (#mr) , 88
and

bitwise (fL75) , 88

operator (EEF) ,92
annotated (%%)

assignment (BRf&) , 100
annotations (;F%)

function (®=R) ,125

annotation (;F%) , 149
anonymous ([%)
function (®E=R) ,93
argument (3] #) , 149
call semantics ("FWEE) , 84
function definition (BRX T %)
(&) ,22

, 124
function
arithmetic
conversion, 75
operation (#41E) ,binary (Z&fr) ,87
operation (#1E) ,unary (—75) ,87
array ([£3])
module (#4L) ,21
as
except clause (#4hF4) ,111
import statement (B AB®ER) , 105
keyword (BA#F) , 105,111,114, 115
match statement (ILEEHAR) ,115
with statement (with B#R) , 114
AS pattern, OR pattern, capture
pattern, wildcard pattern,
117
ASCITI, 4, 10
asend () (agen 897 %), 82
assert
statement (F#AR) ,101
AssertionError
exception (#4h) , 101
assertions (Bi%)
debugging (&%) , 101
assignment expression (REEERX) ,92
assignment (B{H)
annotated (;F%) , 100
attribute (BM%) ,98
augmented (¥#[E]) , 100
class instance (H[EIE#) attribute
(BiE) ,27
class (#[E]) attribute (BH) ,27
slice (41 H) ,99
statement (X R) ,21,98
subscription (T4&) ,99
target list (#7%]) ,98
async
keyword (BA#F) , 127
async def
statement (#AR) , 127
async for
statement (R R) , 127
A comprehensions (446E&E) ,77
async with
statement ([ﬁﬁ:‘iiﬁ) , 128
asynchronous context manager (F[F F &
BEEE) 150
asynchronous generator iterator(fﬂifﬁ]*}’
)4 #EIf* %) , 150
asynchronous generator (3| F[EI4E %), 150
asynchronous iterator ([FEHK &)
, 25

192

#5l

The Python Language Reference, &[] 3.11.8

(BR) ,25

function

borrowed reference (%K) ,151

asynchronous iterable (FFHF TERY#) break

, 150

statement (E®) , 104,110,113

asynchronous iterator (R FEIRE),150 built-in function ([FIZER)

asynchronous—generator ([FEIE &)
object (##) ,82

athrow () (agen #47 i%), 82

atom, 75

AttributeError
exception, 83

attribute (E#) , 18,150
assignment (ER{H) ,98

assignment (fX{f),class instance (¥

EEH) .27
assignment (B{E) ,class (#I[F]) ,27
class instance (HE'EH) ,27
class (%kﬁ) , 26
deletion ([E%) ,102
generic (& A) special, I8
reference (Za,ﬁ) , 83
special, 18
augmented ()
assignment (ER{E) , 100
await
keyword (H#£5F) ., 86,127
#A comprehensions (446#&E) ,77
awaitable (T &#&H4H) ,150

B
b'

bytes literal (T)’Lﬁ?ﬂ#’ﬁf() , 10
b"

bytes literal (fG#AL%EE) ,10
backslash character (RAEZETT) ,6
BDFL, 151
binary file (Zi###E %) ,151
binary literal (¥ %) ,14
binary (Zi&fr)

arithmetic operation (#1E) ,87

bitwise (fLJG) operation (#1E) ,88
binding (#i%)

name (4#%) , 124,126
binding (%)

global name (47%%) , 107

name (%#%) , 57,98, 105
bitwise (fL0)

and, 88

operation (#1E) ,binary (Zi#fr) , 88

operation (#1E) ,unary (—7) ,87
or, 89

xor, 88
blank line (§ l':'l?‘“ .7
block, 57

code (#X#) ,57
BNF, 4, 75

Boolean (#i#k)
object (4#) ,19
operation (#1E) ,92

abs, 50

bytes (fLt#l) ,35

call (%) ,86

chr, 20

compile (#3#) , 107

complex ([E#) ,50

divmod, 49

eval, 107,132

exec, 107

float, 50

hash (%?E) , 36

id, 17

int, 50

len, 20, 21, 47

object (##) ., 25,86

open, 27

ord, 20

pow, 49, 50

print, 35

range, 111

repr, 97

round, 51

slice (1K) ,33

type (A[E) , 17,42
built-in method (5%77&)

call (%#) ,86

object (##) , 25,86
builtins (3%)

module (#41) , 131
built-in (?%)

method (ﬁff) ,25
bytearray (fLL#EZF]) ,21
bytecode (fLT#i#) , 28,151
bytes literal (Tifl]?ﬂ#%k) , 10
bytes-like object (BT L) ,151
bytes (fLt#l) ,20

built-in function (FZZ=R) ,35
byte (f74) 20

C

c, 11
language (%) ,18,19,25,89

call
procedure, 97

callable (F¥Er44) , 151
object (##) ,22,84

callback (E®) ,151

call (W) , 84
built-in function ([EJE&E=R) , 86
built-in method ([E&¥ %) .86
class instance (HEIEH) , 86
class object (MEEWH) ,26,27,86
function (®ER) ,22,86
instance (&) ,47,86

gL]

193

The Python Language Reference, &[] 3.11.8

method (F) ,86

user-defined (f# l # & %) function

(#=) ,86

case

keyword (Bi#F) ,115

match, 115
case block, 117
C-contiguous (C HEH) , 152
chaining (4##)

comparisons ([%) , 89
chaining (fﬁﬁ,ff’%')

exception (W%) , 103
character (573773) , 20, 84
chr

built-in function (F#ZZR) ,20
class instance (FEI'EH)

attribute (/%’Té) , 27

attribute (B#) assignment (FK{H) ,27

call (®¢w) ,86

object (4#) ,26,27,86
class object (HEEMH)

call (%) 26,27, 86
class variable (E#%) ,151
class (H[E) ,151

attribute (BM#) ,26

attribute (B#) assignment (K{E) ,27

body, 43

constructor (Eﬁ@ ﬁ) ,34

definition (E#%) , 102,126

instance (&#l) ,27

name (%#%) ,126

object (##) , 26,86, 126

statement (FEHR) , 126
clause (F4) ,109
clear () (frame &9 7 i%), 32
close () (coroutine b7 %), 54
close () (generator ¥y 7 i%), 81
co_argcount (codeobject # B 1+), 29
co_argcount (BREHHEENM) |28
co_cellvars (codeobject t4 /& 1t), 29
co_cellvars (BREHHEENMK) |28
co_code (codeobject 44 /& %), 29
co_code (BER#HBHHBKLE) ,28
co_consts (codeobject #) /8 %), 29
co_consts (BEABYHBIE) ,28
co_filename (codeobject &% 1t), 29
co_filename (BRABYHENM) ,28
co_firstlineno (codeobject &/ I+), 29
co_firstlineno (BREBHHEMK) ,
co_flags (codeobject &% %), 29
co_flags (BABEMEBEN) .28
co_freevars (codeobject t4 /% k), 29
co_freevars (BAHBYHEENK) ,28
co_kwonlyargcount (codeobject &% %), 29
co_kwonlyargcount (BREYHEMK)
co_lines () (codeobject &7 i%), 30
co_1lnotab (codeobject & /& %), 29
co_lnotab (ERBEHHEEME)

28

,28

, 28

co_name (codeobject 44 /8 %), 29
co_name (BABHWHBEN) ,28
co_names (codeobject &) /& %), 29
co_names (BB HENM) .28
co_nlocals (codeobject t /& 1), 29
co_nlocals (RBREHHEEN) |28
co_positions () (codeobject 447 i), 30
co_posonlyargcount (codeobject #/% %), 29
co_posonlyargcount
co_qualname (codeobject t4 /% It), 29
co_qualname (BRBYHEEME) ,28
co_stacksize (codeobject) % 1+), 29
co_stacksize (BRAEBHHENK)
co_varnames (codeobject #) /% %), 29
co_varnames (FEREYHEK)
code object (ﬁi‘ﬁ%%ﬁ:) ,28
code (F£R7)

block, 57
collections

module (##) ,21
comma, 76

trailing, 93
command line (#4-%]) , 131
comment ([EIf#) ,6
comparisons ()

chaining (##4) , 89
comparison (W) , 35,89
compile (/ﬁﬁ%)

built-in function ([El&E &) , 107
complex literal ([E##% %) .14
complex number ([El#) ,151
complex (%{)

built-in function (%@iﬁ) , 50

number (#F) ,20

object (##) .20
compound (/E:\)

statement (&) , 109
comprehensions, 77

dictionary (F#) ,78

list (#87) ,77

set (£4) ,78
Conditional (#&#=R)

expression, 92
conditional (1’%{5}:;’&)

expression, 93
constant ('J%L'%() , 10
constructor (E%@Eﬁ)

class (#[E)) ,34
container (&%) ,18,26
context manager (FEHEGHEAE) ,51,152
context variable (¥ #8#) ,152
contiguous (GEAH) ,152
continue

statement (BE®RR) , 104,110,113
conversion

arithmetic, 75

string (¥ &) ,35,97
coroutine function (BHEER) ,152

, 28

, 28

(BXABHHBE)

28

194

#5l

The Python Language Reference, &[] 3.11.8

coroutine (##E) ,53,79,152
function (®=R) ,25
CPython, 152

D

dangling

else, 110
data (&%) ,17

type (R[E]) , 18

type (#[F]) , immutable, 76
dbm.gnu

module (f4H) ,22
dbm.ndbm

module (#%H) ,22
debugging (F&%#)

assertions (&%) , 101
decimal literal (+#fLFH) ,14
decorator (%%ﬁﬂ?%&) , 152
DEDENT token (##E[E]) ,7,110
def

statement (Fﬁiﬁiﬁ) , 124
default (TE#)

parameter (%#) value (ff) , 124
definition (F %)

class (#[E) , 102,126

function (&) ,102,124
del

statement (FEHRR) , 34,101
deletion (%)

attribute (BM#) , 102

target, 101

target list (#7%]) ,101
delimiters (ﬁﬁ%ﬁ?ff) , 15
descriptor (###) ,152
destructor (MH#EEX) ,34,98
dictionary comprehension (FHEALEE),

152

dictionary view (F#Apsd) , 153
dictionary (&F4#) ,152

comprehensions, 78

display, 78
object (##) , 21, 26,36, 78, 83,99
display

dictionary (F#) ,78

list (&%) ,77

set (£4) .78
division (B&) ,87
divmod

built-in function ([El&Z &) ,49
docstring (%?$) , 126, 153
documentation string (XfFF &) ,30
duck-typing (®FA[E]) , 153

E

e
RBAEE P, 14

EAFP, 153

elif

keyword (B#EF) ,110

Ellipsis
object (##) , 19
else
conditional expression (1%—\{4’—3%%15&) s
93

dangling, 110
keyword (B#£5) , 104,110, 111,113
empty
Tist (#7)) ,77
tuple, 76
empty (&#)
tuple (J04&) ,20
encoding declarations (source file)
(mEE (R %E)) .6
environment (#3) ,58
error handling (8§32 R#) ,59
errors ($63%) ,59
escape sequence (BkEFZF]|) , 11
eval
built-in function ([HIZ®) , 107,132
evaluation
order (JEJF) ,94
exc_info (sys ##¥) ,32
except
keyword (B4gE=F) ,111
except_star
keyword (B#E5) ,112
exception
AttributeError, 83
GeneratorExit, 81, 82
NameError, 76
StopAsyncIteration, 82
StopIteration, 80
TypeError, 87
ValueError, 88
ZeroDivisionError, 87
exception handler (fshRIFEHE) ,59
exception (#4h) , 59,103
AssertionError, 101
chaining (4£4) , 103
handler (JR#EH) ,32
ImportError, 105
raiseing, 103
StopIteration, 102
exclusive (#4M)
or, 88
exec
built-in function ([El&Z &) , 107
execution model (FATHA) ,57
execution (#AT)
frame, 57, 126
restricted (&) ,59
stack (#[F]) ,32
expression, 75
Conditional (fF#=) ,92
conditional (=) ,93
generator ([FIA#) ,78

gL]

195

The Python Language Reference, &[] 3.11.8

lambda, 93
list (7)) ,93,97
statement (E®R) ,97
yield, 79
expression (EEZR) ,153
lambda, 125
extension module (FEHAEL) , 153
extension (##%x)
module (fAH) , 18

f'
formatted string literal (#BRXLF &
W) 11
f"
formatted string literal (%iﬁ@(,?—”%
) 11
f-string (f F &) ,153
f_back (frame #4 /% 1), 31
f_back (frame B#) ,31
f_builtins (frame &4 /8 M), 31
f_builtins (frame EM#) , 31
f_code (frame 849 /8 %), 31
f_code (frame BM#) ,31
f_globals (frame 4/ 1), 31
f_globals (frame B#) ,31
f_lasti (frame 849 /8 %), 31
f_lasti (frame B) ,3l
f_lineno (frame 449/ %), 31
f_lineno (frame BM¥) ,31
f_locals (frame t4 /& %), 31
f_locals (frame B#) , 3l
f_trace (frame 89 /8 %), 31
f_trace (frame B#) ,31
f_trace_lines (frame 9% %), 31
f_trace_lines (frame B#) ,31
f_trace_opcodes (frame &5/ %), 31
f_trace_opcodes (frame B) ,3l
False, 19
file object (HZEWH) ,153
file-like object (MM ZEMH) ,153
filesystem encoding and error
handler (1§ £ A # % 7 f1 # 3% R
EEA) ,153
finalizer (BR#&®ER) ,34
finally
keyword (Bi#EF) , 102,104, 111,113
find_spec
finder (# &%) ,64
finder (Ff#&) ,154
finder (¥ H%#) ,064
find_spec, 64
float
built-in function ([El&EZER) ,50
floating point literal (FEHUEH) , 14
floating point (V#E)
number (#%) ,19
object (##) , 19

floor division (| FEUEK %) , 154
for

statement (X) , 104,110

#A comprehensions (&£4#&E) ,77
form

lambda, 93
format () (EE®R)
_str__ () (#fEFi) .35

formatted string literal (B RX{LF & F
2,12
Fortran contiguous (Fortran @?ﬁé’]) , 152
frame
execution (#A4T) ,57,126
object (##) ,31
free
variable (&%) ,58
from
import statement (B AMRAR) ,57,105
keyword (B#£5) ,79, 105
yield from expression (yield from
EHERX) 80
frozenset (/ﬁfi%’%ﬁ‘)
object (##) ,21
fstring (f F#) ,I12
f-string (f F&) ,12
function annotation (& RX[EIE) , 154
function (®R)
annotations ([EJf&) , 125
anonymous (E %) ,93
argument (3%) ,22
call (=) ,22,86
call ("®) ,user-defined (FH#FE %)
, 86
definition (E %) , 102, 124
generator ([EA£ %) ,79,102
name (%#%) ,124
object (4#) ,22,25,86, 124
user-defined (FRFEX) ,22
function (® =) ,154
future
statement (K& R) , 106

G

garbage collection (I E YY) , 17,154
generator expression ([El4 BEERK) | 154,
155
generator iterator (é%ﬁﬁ%&) , 154
GeneratorExit
exception, 81, 82
generator ([Fl4 %) ,154
expression, 78
function (®=R) ,25,79,102
iterator (Tﬁ%&) , 102
itorator ([Fft) ,25
object (##) ,29,78,80
generic function (ZA®R) ,155
generic type (EARA[F]) ,155
generic (EH)

196

#5l

The Python Language Reference, &[] 3.11.8

special attribute (B#) ,18
GIL, 155
global
name (#%#%) binding ([El4) , 107
statement (E®RR) , 101,107
global interpreter lock (&3 H = &4) ,
155
global (&)
namespace (@4 =MH) ,22
grammar () ,4
grouping (##L) .7
guard, 117

H

handle an exception (RIEFI4) ,59
handler (R H)

exception (WW") ,32
hash character (#HF%) ,6
hash-based pyc (?ﬁé’ﬁ%% pyc) , 155
hashable (T#[FH) , 155
hashable (T #[F]) ,78
hash (?E)

built-in function (%@ﬁ) , 36
hexadecimal literal (+NEMLFH) ,14
hierarchy (Fﬁl?@)

type (AE[E) ,18
hooks

import (3| \) ,64

meta, 64

path (B4E) ,64

|
id
built-in function (EZEZER) ,17
identifier, 76
identifier (#[F%) ,8
identity
test () ,91
identity of an object (#fH®(E) , 17
IDLE, 155
if
conditional expression (BHEER),
93
keyword (B#E5) , 115
statement (Fiifiit) , 110
A comprehensions (&%4&E&H) ,77
imaginary literal (ﬁk"%’ﬁf() , 14
immutable
data (##) type (A[F) .76
object (##) ,76,78
immutable object (RT&MH) ,17
immutable sequence (T # F7%)
object (##) ,20
immutable types (Z:W%iﬂ)
subclassing (F#EML) , 34
immutable (R #H#) ,155
immutable (R¥#)
object (4#) ,20

import hooks, 64
import machinery (5] N#4) ,61
import path (G| A#AE) ,155
ImportError

exception (T?Ml‘) , 105
importer (3| A\£) ,156
importing (Bl A) , 156
import (5])\)

hooks, 64

statement (FE#AR) , 26,105
in

keyword (B#E5F) ,110

operator (EZF) ,91
inclusive (/@/a\)

or, 89
INDENT token (4HAEFE]) ,7
indentation (%#) .7
index operation (Z35|#1E) ,20
indices () (slice 897 i%), 33
inheritance (#&) , 126
input (#A) , 132
instance (%’:%)

call (%) ,47,86

class (#[E) ,27

object (##) ,26,27,86
int

built-in function (E@ﬁ) , 50
integer literal (E# ¥ H) ,14
integer (i’—ﬁ%%’() , 20

object (##) ,19

representation (%) , 19
interactive mode (EE#R) , 131
interactive (E#H) , 156
internal type ([EIZFA[E) ,28
interpolated string literal (#HEF %

2,12

interpreted (E3EH) , 156
interpreter shutdown (E%%&Eﬁﬁﬁ) , 156
interpreter (H#EH) , 131
inversion (R #) ,87
invocation (#HA) ,22
io

module (H41) ,27
irrefutable case block, 117
is

operator (EEF) ,0I
is not

operator (EHEF) ,91
item selection (JEEHEH) ,20
item (IEH)

sequence (%) ,83

string (¥ &) ,84
iterable (FERYH) 156
iterable (TH([EI)

unpacking (ﬁ@@) ,93
iterator (ﬁ%&) , 156

gL]

197

The Python Language Reference, &[] 3.11.8

RBEE B, 15
Java
language (%) ,19

K

key function (#® =) ,156
key/value pair (#2/{H¥) ,78
keyword argument (B85 5|%) ,157
keyword (B4gEF) ,9

as, 105,111, 114, 115

async, 127

await, 86, 127

case, 115

elif, 110

else, 104,110, 111,113

except, 111

except_star, 112

finally, 102, 104, 111,113

from, 79, 105

if, 115

in, 110

yield, 79
key (8£) ,78

L

lambda, 157
expression, 93
expression (BEER) , 125
form, 93
language (%)
c, 18,19, 25, 89
Java, 19
last_traceback (sys #&¥F) ,32
LBYL, 157
leading whitespace (WMEZXH) ,7
len
built-in function ([EJ& &) ,20,21,47
lexical analysis (FELH) .5
lexical definitions (HEE%K) .4
line continuation (F|ZE#) ,6
line joining (F|&EH) ,5,6
structure (&) ,5
list comprehension (HE3|4&AEE) ,157
list (&%) ,157
assignment (Bf{d) ,target,98
comprehensions, 77
deletion ([EJi¢) target, 101
display, 77
empty, 77
expression, 93,97
object (M) ,21,77,83, 84, 99
target, 98, 110
literal, 76
literal (% #) ,10
loader (#FANE) ,064,157
locale encoding (B4) , 157

line

logical line (##7%]) ,5

loop control ([EIE#E4)
target, 104

loop (@)
statement (Fiﬁih) , 104, 110

M
magic
method (F#%) , 157
magic method (BT F &) ,157
makefile () (socket 77’«%?) , 27
mangling
name (%#%) ,76
mapping (#8k) , 157
object (##) ,21,27,83,99
match
case, 115
statement (f@ﬁ:‘iiﬁ) , 115
matrix multiplication (4E[EFE) ,87
membership ()fm/éi)
test (/ﬂ\lj—g}h) 991
meta
hooks, 64
meta hooks, 64
meta path finder (TCHEAEFMHE) 157
metaclass hint (THEEHET) ,43
metaclass (JCHEF) , 42,157
method resolution order (FEMMTE)F) |
158
method (F) ,158
built-in ([FJ#) ,25
call (*Fw) ,86
magic, 157
object (##) ,24,25,86
special, 162
user—-defined (ﬁ@ﬂ%‘fi%) ,24
minus ([E]) , 87
module spec, 64
module spec (HAM) ,158
module (#£41) , 158
_ main__, 58,131
array ([&%]) ,21
builtins ([E#) , 131
collections, 21
dbm. gnu, 22
dbm . ndbm, 22
extension (?}%ﬁ) , 18
importing (Bl A\) , 105
io, 27
namespace (@& %/) ,26
object (4#) , 26,83
sys, 112, 131
modulo (4&#) ,87
MRO, 158
multiplication () , 87
mutable object (H&4#) ,17
mutable sequence (&)77|)
object (##) ,21

198

E]

The Python Language Reference, %[F] 3.11.8

mutable (&Y 4) , 158
mutable (&)
object (4#) ,21,98,99

N

named expression (Mf&EHR) ,92
named tuple (Mf4&JG#4L) ,158
NameError
exception, 76
NameError (EW&I‘) , 38
names
private, 76
namespace package (& ZXMEH) ,158
namespace (#r%& M) ,57,158
global (43) ,22
module (#4H) ,26
package (£#) ,63
name (%#%) ,8,57,76
binding (#%) , 124, 126
binding ([El#) , 57,98, 105
binding ([FJ4) ,global, 107
class (H[E) , 126
function (®=R) ,124
mangling, 76
rebinding (Z#H[F4) ,98
unbinding (##®E4) , 101
negation (&&) ,87
nested scope (ﬁ%ﬂ(ﬁf}ﬂﬁ) , 159
new-style class (F=%[E]) , 159
NEWLINE token ([EM4THE[E]) ,5,110
None

object (4#) , 18,97

nonlocal

statement (Fﬁﬁ?&) , 108
not

operator (EHEF) ,92
not in

operator (EHZF) ,91
notation (i) ,4
NotImplemented

object (##) ,18
null

operation (#1E) , 101
number (#¥) ,14

complex ([El%) , 20

floating point (3#2F) ,19
numeric literal (BE®H) .14
numeric (&)

object (##) , 19,27

O

object.__match_args__ ([Fl# % &), 51
object.__slots_ ([Fla % %), 40
object (4#) , 17,159

asynchronous-generator (3 [F FE4)

, 82
Boolean (##k) ,19

built-in function ([EIZEZER) , 25,86

built-in method (5%77‘«‘2) , 25, 86

callable (T =EujsyfE) |22, 84

class instance (HEIEH) , 26,27, 86

class (#[E)) , 26, 86, 126

code (f2#) ,28

complex ([El#) ,20

dictionary (F#) ,21,26,36,78, 83,99

Ellipsis, 19

floating point (3#%) ,19

frame, 31

frozenset (HAE£4A) ,21

function (®R) ,22,25,86,124

generator ([El4 #) , 29,78, 80

immutable, 76, 78

immutable sequence (AH&F%) ,20

immutable (R #£) ,20

instance (&) ,26,27,86

integer (%&#) ,19

list (&%) ,21,77,83, 84,99

mapping (¥Bt) ,21,27,83,99

method (F %) ,24,25,86

module (f4H) , 26,83

mutable sequence (T #/JF7]) ,21

mutable (T &H) ,21,98,99

None, 18, 97

NotImplemented, 18

numeric (%{Tﬁ) , 19,27

sequence ([??'J) , 20, 27, 83, 84, 91, 99, 110

set type (£46A[) ,21

set (#£4) ,21,78

slice (1K) ,47

string (&%) , 83,84

traceback, 32, 103,112

tuple, 83, 84, 93

tuple (J04&) ,20

user—defined function ({ fl# & % &
=) , 22,86, 124

user-defined method (FHEFE&HF &),
24

octal literal (N\BfEEH) ,14
open

built-in function ([BIEZR) ,27

operation (#1E)

binary (:lﬁﬁl) arithmetic, 87
binary (Zi#{f) bitwise (fL75) ,S88
Boolean (#i#k) ,92

null, 101

power (W F) ,86

shifting (#%) , 88

unary (—JG) arithmetic, 87

unary (—Ji6) bitwise (fx7n) ,87

operators (EEF) ,15
operator (EEF)

([F1%8) , 87,88
(Ba9%) .87
(FnE) .88
(B9%) .87

*, 86

oo |

* X R

gL]

199

The Python Language Reference, &[] 3.11.8

+ (fm%E) , 87,88 path-like object (MEBHH) , 160
/ (R(E) ,87 path (#/%)
//, 87 hooks, 64
< () .89 pattern matching (#ERILE) ,115
<<, 88 PEP, 160
<=, 89 physical line (##7%|) ,5,6,11
1=, 89 plus (4m) , 87
==, 89 popen() (H os &) ,27
> (A®) ,89 portion (#4-) , 160
>=, 89 package (Ef#) ,63
>>, 88 positional argument ({L% 3| %) ,160
e (&) .87 pow
~ (A 88 built-in function ([ElZE®R) ,49, 50
| (#HF) ,89 power (W)
~ (k%) ,87 operation (#1E) , 86
and, 92 precedence (E4&JE)F)
in, 91 operator (EHEF) ,9%4
is, 91 primary (£%) ,83
is not, 91 print
not, 92 built-in function (FZZR) ,35
not in,91 print () (%@ﬁ)
or, 92 _str__ () (#fFiE) .35
overloading (£ #) ,33 private
precedence (ELJESF) ,94 names, 76
ternary (=Z70) ,93 procedure
or call, 97
bitwise (fZiG) , 89 program (=) , 131
exclusive (#H4h) , 88 provisional API (¥4T API) , 160
inclusive (&%) ,89 provisional package (¥4{TE#) ,160
operator (EZTF) ,92 Python 3000, 160
ord Python Enhancement Proposals
built-in function (E@ﬁ) , 20 PEP 1, 160
order (JE)7) PEP 8,90
evaluation, 94 PEP 236, 107
output, 97 PEP 238,154
standard, 97 PEP 252,39
overloading (% #) PEP 255,80
operator (EEF) ,33 PEP 278,163
PEP 302,61,73, 154, 157
P PEP 308,93
package (&) 62,159 PEP 318,125, 127
namespace (# % =f) ,63 PEP 328,73
portion (#4) ,63 PEP 338,73
regular (—#%) ,62 PEP 342,80
parameter (%) ,159 PEP 343,51, 115,152
call semantics (®FWEE) ,85 PEP 362, 150, 159
function definition (BRE%&) ,123 PEP 366, 08,73
value (f) ,default (FE3k) ,124 PEP 380, 80
parenthesized form, 76 PEP 411, 160
parser (H41%) .5 PEP 414,11
pass PEP 420,61, 63,68, 73, 154, 158, 160
statement (& R) , 101 PEP 443,155
path based finder (%7}/\%1@ W EA) 160 PEP 448,78, 806,93
path based finder (ERBEHWEZE) ,69 PEP 451,73, 154
path entry finder (BEHEEHZH%E) ,159 PEP 483,155
path entry hook (I HE) , 160 PEP 484,45, 101, 125, 149, 154, 155, 162, 163
path entry (E/EIEH) ,159 PEP 492,53, 80, 128, 150, 152
path hooks, 64 PEP 498, 14, 153

200 #5l

The Python Language Reference, &[] 3.11.8

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

519, 160
525, 80, 150
526, 100, 125, 149, 163
530,77
560,42, 46
562,38
563, 106, 125
570, 125
572,78,92, 119
585, 155
614,124,126
617,133
626,31
634,52,116, 123
636,116,123
3104, 108
3107, 125
3115,43,127
3116, 163
3119,44
3120,5
31209, 125,127
3131,8
3132,99
3135,44

PEP 3147,68

PEP 3155, 161
PYTHONHASHSEED, 37
Pythonic (Python JE#) , 160
PYTHONNODEBUGRANGES, 30
PYTHONPATH, 70

Q

qualified name (fRZEZ4%) ,161

R
r'

raw string literal (FE#FEFH) ,10
r"

raw string literal (B#HFEFEH) ,10
raise

statement (FEHRR) ,103
raise an exception (5]%%&]\) , 59
raiseing

exception (#14)) , 103
range

built-in function ([ElZER) , 111
raw string (}Eﬁé?%) , 10
rebinding (ﬁ%‘?ﬁé)

name (%#) ,98
reference counting (ZE3#) ,17
reference count (%M E) , 161
reference (%R)

attribute (BH#) ,83
regular package (EEMEH) , 161
regular (—#%)

package (&) ,62
relative (#8#)

import (Bl A) , 106
replace () (codeobject 07 i%), 31

repr
built-in function (FZZR) ,97
repr () (B#E&ER)
_repr__ () (#itrH#k) .35

representation (FR)
integer (%&#) ,19

reserved word (R¥F) ,9

restricted (Z[R)
execution (#A4T) ,59

return ([E/#)
statement (HE®HR) , 102,113
round

built-in function (FZZR) ,51

S

scope (fEFH) ,57,58
send () (coroutine 847 i%), 53
send () (generator 7 i¥), 80
sequence (JF7]) , 161
item (THEH) ,83
object (M) ,20,27,83,84,91,99, 110
set comprehension (£A&#&46EHE) 161
set type (%j‘m\iﬂ)
object (##) ,21
set (£6)
comprehensions, 78
display, 78
object (##) ,21,78
shifting (#%)
operation (#1E) ,88
simple
statement (FE#RK) ,97
single dispatch (E—3HE) , 161
singleton (E)
tuple (J04) ,20
slice (414) ,20,21,84, 161
assignment (BXfE) ,99
built-in function (%@ﬁ) ,33
object (4#) ,47
slicing (1K) , 84
soft keyword (%Eﬁ%?) ,9
source character set (/\}llé‘?ﬁ]%
space (%H) ,7
special
attribute (B#) ,18
attribute (BM¥) ,generic (ZA) ,18
method (F) , 162
special method (#% ¥ %) , 162
stack (ﬁﬁ)
execution (?}{hﬁ) ,32
trace (E[F) ,32
standard
output, 97
Standard C (¥ c) ,11
standard input (1‘?&?@)\) , 131
start (slice B HE) ,33

o>

) .6

gL]

201

The Python Language Reference, &[] 3.11.8

start (WHMHEENE) ,84
statement grouping (FERXELL) ,7
statement (Piﬂiit) , 162

assert, 101

assignment (Fﬂi{ﬁ) ,21,98

assignment (F:LF’QTE) annotated (7’%) >

100

assignment (B{f). augmented (¥[E]) ,

100

async def, 127

async for, 127

async with, 128

break, 104, 110, 113

class (#[E) , 126

compound ([El4&) , 109

continue, 104, 110, 113

def, 124

del, 34,101

expression, 97

for, 104, 110

future, 106

global, 101, 107

if, 110

import (B|\) , 26,105

loop ([EJA) , 104,110

match, 115

nonlocal, 108

pass, 101

raise, 103

return ([E/#) ,102,113

simple, 97

try, 32, 111

while, 104, 110

with, 51, 114

yield, 102
static type checker, 162
stderr (sys #&Ld) ,27
stdin (sys #w¥) ,27
stdio, 27
stdout (sys W) ,27
step (slice #YHEM) ,33
step (WAMHEIKE) .84
stop (slice #HBH) ,33
StopAsyncIteration

exception, 82
StopIteration

exception, 80

exception (#l4h) , 102
stop (WA HMHFREHK) ,84
string literal (F&EH¥ %) ,10
string (¥ &)

__format__ () (W#EFE) ,35

_str__ () (#tFF#*) .35

conversion, 35, 97
formatted literal (B ¥ H) ,12

immutable sequences (RTH#&JF75]) ,20

interpolated literal ({HEWE) ,12
item (JEEH) ,84

object (4#F) , 83,84
strong reference ([FJ& %) , 162
subclassing (F#EM)

immutable types (REFEME]) , 34
subscription (T4&) ,20,21,83

assignment (BR{E) ,99
subtraction ([E) , 88
suite (£#) ,109
syntax (%) ,4
sys
module (#4H) , 112,131
.exc_info, 32
sys.exception, 32
sys.last_traceback, 32
sys.meta_path, 64
sys.modules, 63
sys.path, 70
sys.path_hooks, 70
sys.path_importer_cache, 70
sys.stderr, 27
sys.stdin, 27
sys.stdout, 27
SystemExit ([EJZFI4) ,59

T
tab (RfLF) ,7
target, 98

deletion ([E%) , 101

list (#3]) ,98, 110

list (#%]) assignment (E{H) ,98

list (&#%)]) ,deletion ([Elf) , 101

loop control (@%&‘ﬁ%ﬂ) , 104
tb_frame (traceback ¥ /8 1), 32
tb_frame (traceback EM) ,32
tb_lasti (traceback b9 /& It), 32
tb_lasti (traceback EM) ,32
tb_1lineno (traceback &4/ 1t), 32
tb_lineno (traceback BE#) ,32
tb_next (traceback #4 /& 1), 32
tb_next (traceback JB) ,32
termination model (ZI-#A) ,59
ternary (=70)

operator (EZF) ,93
test (HIE)

identity, 91

membership (& &) ,91
text encoding (X F##) , 162
text file (LFEHE) ,162
throw () (coroutine &7 i%), 53
throw () (generator ¥7% i%), 80
token, 5
traceback

object (##) 32,103, 112
trace ([F)

stack (#[E]) ,32
trailing

comma, 93

SysS

triple-quoted string (ZB| 3T #) ,

162

202

#5l

The Python Language Reference, &[] 3.11.8

triple-quoted string (=595 &) , 10
True, 19
try
statement (®R) ,32, 111
tuple
empty, 76
object (4#) ,83,84,93
tuple (J0#L)
empty (Z#) ,20
object (4#) ,20
singleton (E4]) ,20
type alias (E[FE4%) , 162
type hint (E[EHETF) , 163
type of an object (W A[E) ,17
TypeError
exception, 87
types (#[F]) , internal ([EFF) ,28
type (A[F) , 18,162
built-in function ([ElE®ER) , 17,42
data (&%) ,18
hierarchy (&) , 18
immutable data (&%) ,76

string literal (F &%) ,10
u"

string literal (F&E¥ %) ,10
unary (—75)

arithmetic operation (#1E) ,87

bitwise (fLJ6) operation (#4E) ,87
unbinding (ﬁ@l@%#z")

name (£#%) , 101
UnboundLocalError, 58
Unicode, 20
Unicode Consortium, 10
universal newlines (3[4
UNIX, 131
unpacking (##4,)

dictionary (F#) ,78

iterable (T[E) ,93

A E R E Y, 85
unreachable object (FHEYH) ,17

F76) 163

unrecognized escape sequence (4 3k ¥ %

HEkEF 7)) |12
user—-defined function (FHFEHER)
object (##) , 22,86, 124
user-defined method (FHFEEZF)
object (##) ,24
user-defined (FHFEX)
function (®=R) ,22
function (®=R) call (¥#) ,86
method (j]'ff) ,24

Vv

value of an object (#HWE) ,17
ValueError
exception, 88

values

writing, 97
value (f&) ,78

default (¥E#) parameter (%) ,124
variable annotation (##H([F#) ,163
variable (##)

free, 58
virtual environment ([E##EEF) , 163
virtual machine ([FJ## %) ,163

W

walrus operator (BZEZEF) ,92
while

statement (K& R) , 104,110
Windows, 131

with
statement (E®RR) ,51,114
writing
values, 97
X
xor
bitwise (fZJjG) , 88
Y
yield

expression, 79

keyword (B##%) ,79
statement (X)) , 102
#pl, 81

Z

Zen of Python (Python Z[F]) ,163
ZeroDivisionError
exception, 87

gL]

203

	簡介
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	標準型別階層
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	字典

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	模組
	Custom classes
	Class instances
	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects

	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	協程
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Execution model
	Structure of a program
	Naming and binding
	Binding of names
	Resolution of names
	Builtins and restricted execution
	Interaction with dynamic features

	例外

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	模組
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	函式定義
	Class definitions
	協程
	Coroutine function definition
	The async for statement
	The async with statement

	最高層級元件
	完整的 Python 程式
	檔案輸入
	互動式輸入
	運算式輸入

	完整的語法規格書
	術語表
	關於這些說明文件
	Python 文件的貢獻者們

	沿革與授權
	軟體沿革
	關於存取或以其他方式使用 Python 的合約條款
	用於 PYTHON 3.11.8 的 PSF 授權合約
	用於 PYTHON 2.0 的 BEOPEN.COM 授權合約
	用於 PYTHON 1.6.1 的 CNRI 授權合約
	用於 PYTHON 0.9.0 至 1.2 的 CWI 授權合約
	用於 PYTHON 3.11.8 說明文件內程式碼的 ZERO-CLAUSE BSD 授權

	被收錄軟體的授權與致謝
	Mersenne Twister
	Sockets
	非同步 socket 服務
	Cookie 管理
	執行追蹤
	UUencode 與 UUdecode 函式
	XML 遠端程序呼叫
	test_epoll
	Select kqueue
	SipHash24
	strtod 與 dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N 測試套件
	Audioop
	asyncio

	版權宣告
	索引

