Python Frequently Asked Questions
%) 3.11.8

Guido van Rossum and the Python development team

4 A 02, 2024

Python Software Foundation
Email: docs@python.org






Contents

1 —fiefty Python i RN 45

LT — AR . o o o
L1 AFELZ Python? . . . .. o
1.1.2 fHEZ Python BUBEIEA €7 . . . . .
1.1.3  {fiff] Python B (R BUHERRITE? . . . . . .
1.1.4  HEIESHE Python Sl 36?7 . o o o o
.15 AR Python JEEMIZFNE? . . o o o
1.1.6  Python [JASSRIE RS AMEAERI? . . . o o L
117  RELUAFES] Python U RIGTEEIZAR? . . . . . .
1.1.8  FRELLUITHUE Python [EIRASCLE? . o o o o o
1.1.9  HKKEHEEER, GE4 Python IHEE? ... ... ..
1.1.10 A[E4 Python BB M FIBEALS LB L5530 EEY . . L L o .
1111 GfaEtfS Python /i beta JIBLALAS? . . . . . . . .
1.1.12 ﬂ[lﬁkx Python S5 ami S AERIFE? . o o o
1.1.13 T B Python (LB iR esam ik 000 oo
1.1.14 ﬁ.ﬁ%ﬁﬁ/\ Python FJEE? . L L L
1.1.15 www.python.org P ELVEF S BZEMREI? . . . o oo
1.1.16  [EUHEELEAE Python? . . . . . o o
1.1.17 FRFHEE [Monty Python FYAATRGRE ] WG? . . . . . .. ... ... .. ... ..
1.2 FEEEHFRR Python . . . . L L
1.2.1  Python FURZETEUMAI? . o . o e
1.22 AL/ AL Python? ..o e
123  AEAEMEEWEZME Python SERLEEE? ... .
1.2.4  Python KATEMIEAMMEHIIBIEE? . . . . o
1.2.5 ¥} Python $ A “E@;&‘%%@L ......................
1.2.6  Python ¥ A A P FEHE Hfﬁfﬁﬁﬁg%ﬁ-ﬁ%éﬁ 1=
2 FEKPHEEH WA
21 HH F”ﬁ,%% ...............................................
2.1.1 A T A FERE IS R B, A s, P BRI TS Dh R BBl ? . . . . L
2.1.2 7@.7@]: LREEIE -4k bug sATERE A HT? . .
2.1.3  How can I create a stand-alone binary from a Python script? . . . . . ... ... ... ..
2.1.4  Are there coding standards or a style guide for Python programs? . . . ... .. ... ..
22 Corelanguage . . . . . . . . . . e e
2.2.1  Why am I getting an UnboundLocalError when the variable has a value? . . . . . . .. ..
222  Python Wyl SO A MO HERIRI? .o
2.2.3  Why do lambdas defined in a loop with different values all return the same result? . . . . .
2.2.4  How do I share global variables across modules? . . . . ... ... ... .........
2.2.5 What are the "best practices” for using import ina module? . . . . . .. ... ... ...
2.2.6  Why are default values shared between objects? . . . . . ... ... ... ... .....
2.2.7  How can I pass optional or keyword parameters from one function to another? . . . . . . .




2.3

24

2.5

2.6

2.7

2.2.8  §|# (arguments) FIZ ¥ (parameters) A EIRE? ... ... L
229  [EWHEBEM listy HEHEE HStX? .
2.2.10 How do I write a function with output parameters (call by reference)? . . . ... ... ..
2.2.11 How do you make a higher order function in Python? . . . . . . . .. .. ... ... ...
2212 Afif#E Python HIEIEMILE? . . o o o
2213 WUAHRFIMIETIEEUBIE? .
2214 FOFERBBUBE B ZTE? o
2.2.15 What's up with the comma operator’s precedence? . . . . . . . . ... ... ... ....
2216 BHEALHOACHY ZICHEET? . .
2.2.17 Isit possible to write obfuscated one-liners in Python? . . . . . . . ... ... ... ...
2.2.18 What does the slash(/) in the parameter list of a function mean? . . . .. ... ... ...
BPHITER
230 WMAHEE T OSHEEM R GEMIEBY
232 [EMHEI 22710 [A[E -37 o o e
2.3.3  How do I get int literal attribute instead of SyntaxError? . . . . . .. .. ... ... ...
234 T EREEEBEE? . ..
235 WM EEIETE? ..
2.3.6  HowdoImodify astringinplace? . . .. ... . . . ... ...
2.3.7  How do I use strings to call functions/methods? . . . . . . .. ... ... . ... .....
2.3.8  Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings? . . . .
2.3.9 Isthere ascanf() or sscanf() equivalent? . . . . . . ... ... .. ...
2.3.10 ’UnicodeDecodeError’ % UnicodeEncodeErro’ it A HEIZE B . . . . . . .. . ...
2.3.11 CanIend a raw string with an odd number of backslashes? . . . . . ... ... ... ...
Performance . . . . . . . . L e
24.1 My program is too slow. Howdo Ispeeditup? . . . . . . ... ... ... ... .....
2.4.2  What is the most efficient way to concatenate many strings together? . . . . . . . . . . ..
Sequences (Tuples/Lists) . . . . . . . o v o o i i e e e e e
2.5.1 How do I convert between tuples and lists? . . . . . .. . ... .. ... .. ... ...
2.5.2 What'sanegative index? . . . . . . . . . . e e e e e e
2.5.3 How do I iterate over a sequence in reverse order? . . . . .. ... .. ... ... ....
2.54 How do you remove duplicates froma list? . . . . . . .. ... ... ..
2.5.5 How do you remove multiple items fromalist . . . ... ... .. ... .. .......
2.5.6 How do youmake an array in Python? . . . . .. .. ... ... ... .
2.5.7 How do I create a multidimensional list? . . . . .. ... ... ... ... ........
2.5.8  How do I apply a method or function to a sequence of objects? . . . . . . ... ... ...
2.5.9  Why does a_tuple[i] += [item’] raise an exception when the addition works? . . . . . ..
2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in Python? . . . . .
2.5.11 How can I sort one list by values from another list? . . . . . .. ... ... ........
WIE e
2.6.1  AFEHEEE] (class)? . . v o e
2.6.2  AHER ¥ (method)? . . . .
2.6.3  Whatisself?. . . . . . . . e
2.6.4  How do I check if an object is an instance of a given class or of a subclass of it? . . . . . .
2.6.5 Whatisdelegation? . . . . . . . . . . e
2.6.6  How do I call a method defined in a base class from a derived class that extends it?

2.6.7  How can I organize my code to make it easier to change the base class? . . . . ... ...
2.6.8  How do I create static class data and static class methods? . . . . . ... ... ... ...
2.6.9  How can I overload constructors (or methods) in Python? . . . . . ... ... ... ...
2.6.10 TItrytouse __spam and I get an error about _SomeClassName__spam. . . ... ... ..
2.6.11 My class defines __del__ but it is not called when I delete the object. . . . ... ... ..
2.6.12 How do I getalist of all instances of a givenclass? . . . . ... ... .. ... ......
2.6.13 Why does the result of 1d () appear to be notunique? . . . . . . .. .. ... ... ...
2.6.14 When can I rely on identity tests with the is operator? . . . . . .. ... ... ... ...
2615 FHETERATS O RERIER?
2.6.16 HowdolIcachemethodcalls? . . . . . . . .. .. ... ... . ...
B .
27.1 Howdolcreatea.pycfile? . . . ... .. ... ... ..
2.7.2  How do I find the current module name? . . . . . . ... ... ... ... ... ...,




2.7.3  How can I have modules that mutually import each other? . . . . . ... . ... ... .. 37

2.7.4  __import_ (x.y.z) [i[{# <module x>, HFFR/EEFER 22 .. ... L. 37

2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does
thishappen? . . . . . . . . L e 38
Rt w1 T R S 39
3.1 [EUHE Python fii & HEMF BIARIEITAA?  « . o 39
3.2 [EMHEIFC e fe fi B i B AR B B &E T L 39
33 [EMREiGEA M ARETE? .« o o o 40
3.4  [FfHE) Python “FHRRTTEEEN? . . . . . e 40
3.5  [EM] Tself ] ZE 3% (method) SESEFIMEN I — B BRAREMIH? . . . . . . . . . ... 40
3.6 [EaF8 NAEAEHEE S (expression) I FIFGURIERE? . . . .. 41
3.7 [EMfaf Python 3 jA—SE REECVE I ¥k (150 listindex()), 3 —26ffi iR (132 len(list))? 41
3.8 [EMi join() ZFH HyEmidEER g1 (ist) BiUC4H (tuple) Y57 . . o 41
3.9 BUANEFIEZHY . . 42
3.10 [EfHE) Python [FIEIA switch 5 case PEIA? . . . . . . o 42
301 [EMUREELE Hes DB T4, MM AEE RN e s o 43
3.12 [EMfi] lambda SR RREAABHIARIL? 43
3.13 Python ] AR: S iaaE S . CREm oMmEsESIE? .. ... o 43
3.14 Python QIMAAFHEETIEENT . . 43
3.15 [EMa] CPython ANl I B Z AL BICHEHI? . . . oo oo 44
3.16 7 CPython &5 3iE, [EMATARLIEBEEANGHRET ... . o 44
3.17 [EWaEAEICAL (tuple) FIERF (list) 40 M ERIZIRE? . . .. 44
3.18 H%1 (list) ¥E CPython 2 /EEIEMEMI? . . o . o o 44
3.19 M (dictionaries) 7F CPython W2 /EEIEAEMI? . . . . . o o o 45
320 EUFHLAGEE—ERATTEIIT . 45
3.21 [EM listsort() A2 EMEHEFMBESI? . . o 46
3.22  WHa[{E Python Hrd5 & FEIHI i H— A T HLED (interface spec)? . . . . . . . ... .. 46
323 EMHIEIA goto BEYE? . . o o 47
3.24 [ENT&ETER (string) REEARBHEIAEE? . . o o oo 47
3.25 [Efa] Python [FJA 8 MEBUMERY with BOARZC? o o o o 47
3.26 [FIfif[E)4: 2§ (generator) A48 with BOART? .. o oo L 48
3.27 [EMafif. while, def. class BUARREIETEYE? . . . . . . 48
3.28 [EMfi] Python A AEsB A A ARG FIZSE? . . . . . 49
4 PRSP FE S e HE SN R 51
41 BRI . . e 51
4.1.1  How do I find a module or application to perform task X? . . . . . ... ... ... ... 51
4.12  WEEIW PAFR 3| math.py (socket.py, regex.py, Z5...) APFAEZR? ..o L. 51
413  FRUMIME Python script FATHE Unix? . . . . . o 52
414  BEATEAA Python i curses/termeap 47 . . ..o 52
4.1.5 Is there an equivalent to C’s onexit() in Python? . . . . . . . ... ... ... ... .... 52
4.1.6  Why don't my signal handlers work? . . . ... ... .. ... oo L oo, 52
42 EEEE e 53
421  aEES Python AR CfE? o L o o 53
4.2.2  How do I create documentation from doc strings? . . . . . . ... ... ... ... ... 53
423 Howdolgetasingle keypressatatime? . . . . .. ... ... ..., 53
43 AT . . e e 53
431 WM AT GERRRT 53
432  FRWBMATHEUTFHEEEST: BAE? ... 54
4.3.3  How do I parcel out work among a bunch of worker threads? . . . . . ... ... ... .. 54
4.3.4  What kinds of global value mutation are thread-safe? . . . . . ... ... ... ...... 55
435  REEBEEIAREEIBIE? 56
4.4 EABELERHE L e 57
441  ERAEE? (DARHMBEZEME.) . . 57
442  WMEIERERE? . . 57
443  WMAEEL (BRESA) THEMIEIERIY L 57
4.4.4  Tcan't seem to use os.read() on a pipe created with os.popen(); why? . . ... ... ... 58




445  WMAEEUTS] (RS232) HEEIR? . ..
4.4.6  Why doesn’t closing sys.stdout (stdin, stderr) really close it? . . .. ... ... ......
45 A% (Network)/AABE4EE% (Internet) B2 . . . . . o o o o o
45.1 Python AWFEE WWW T H? . ... ... ...
452  fafsisE CGI F ¥k H (submission) METHOD=POST)? . . ... ..........
453  FREEHAAERAREBEA HTML? . .
454  Wa[fE Python [EIASEERLTME? . . o o
4.5.5 How do I avoid blocking in the connect() method of a socket? . . . ... ... ... ...
4.6 R . . . e
4.6.1  Are there any interfaces to database packages in Python? . . . . . . . ... ... .. ...
4.6.2  How do you implement persistent objects in Python? . . . . . ... ... ... ... ...
47 BUERFIEUE . .. .
471  WHAAE Python WRAE RRBEREHL? . . . . . L
I FE/ 1ok A K R R AR
51 FADATE CHFEZEACHIERIIE? . .
52 ADME C++ AL HOHBRAIE? .
53 B CAREE; mAHMSEEIE? ...
54 WA C#ATIEE Python BIAZL? . o o L o
5.5 How can I evaluate an arbitrary Python expression from C? . . . . . .. .. ... ... .. ....
5.6 WHAHE Python PP HFHREL CAH? . . o o
57  Gfar{d ] Py_BuildValue() ZESATEREMIICAL? . . . o
5.8 HMTHE CRPMUBICEIIITIE?  © o o
5.9  FefaddHie PyErr_Print() B8 (804 T4r] BJ 48 5] stdout/stderr FERPE)? . .. .. L L. L.
5.10 WA C AZBUT Python ZRETIIRAH? . . . . . .
5.11 How do Iinterface to C++ objects from Python? . . . . . . .. .. ... ... ... ... ..
502 IR GBI T AL, (A make KRBT EUHE? L.
503 WIEETEELERREE? . o e
5.14 FRABAEFRNY Linux R &5 42— Python 4, {H2Hv/ b, EIHE? ... .. ..
515 WA TERgEmA ] B TARSEEEIIALY Lo o
5.16  WHAHR R E LM g++ £9% _ builtin_new B __pure_virtual? . . .. ... ... ... ....
5.17 CanlIcreate an object class with some methods implemented in C and others in Python (e.g. through
INhEritance)? . . . . . . . o e e e e e e e e e e e e
1£ Windows {4 ] Python ¥y bR 45
6.1  Wa[{E Windows /E2E R Fi[EL#EAT Python F2X7 . . . . . o .
6.2 Wi Python [EIASTT DAEIAT? . . . o o
6.3 [FfHF) Python AR FEEEFHEHFE I ARERRLE? . . . . . . o o
6.4  WUAHE Python EIAREWETTHATAE? . . o o o o
6.5 *.pydEEFELDLL FHE]? . . . . e
6.6 WK Python fix A Windows JEHIFEZA? . . o L
6.7 WP IESmEEASAEFR AT Python JFLAMS AR A tab? . . . Lo
6.8  WHIHEARZEREE PR Keypress? . . . v o v v e e
6.9 W f#[E)E I api-ms-win-crt-runtime-11-1-0.dll Y8522 . . . . . . .. L
Wl B2 05 1T 5 A o % B I 2
71 EIEMHERAEANE (GUD IR REE . . . e
7.2 Python ML GUIELE? . . o e e e
7.3 Tkinter IR . . .
730 WMABRLS Tkinter BEFIARR? ... L.
732  BEWVPDMESRFVOREIE TR FHE? .
733  FRImEEEE(EI4E (key binding) ¥E Tkinter F{E/H: EVHE? ... ... ... ...
[[EMHE) Python 24 fEFRIMBER |- 7 5 WL E 4
8.1 AHEHZ Python? . . . . . . ..
8.2  [EMHE Python g EFRIUMERE 12 . o o
83 FREEMIEATIEIRE Python ME? . . . . . L
fhriti ¢

73
73




B [ ig se[EIW] Sk
Python SCFRIERRET . . o o o o o

B.1

C aviBLBzhE

C.1

C3

WO . L
C2  BAAHEAHEA T S Python MUAAIMEER . . . . o o oo
JARY PYTHON 3.11.8 ) PSF $2MES4T . . o o e
Fi7* PYTHON 2.0 () BEOPEN.COM SZHEGAT .« o o o e e e e e i
PR PYTHON 1.6.1 ) CNRIFZRESAT . . o oo e o e e e
FAPYTHON 0.9.0 2 12 ¥ CWILHES AT . . o o oo oo
A1 A PYTHON 3.11.8 [EIRH SCf4-EIfE Ui () ZERO-CLAUSE BSD 4748 . . . . . . ..
B ERCE R REELEGH . . .

C.2.1
C22
C23
Cc24
C.25

C3.1
C32
C33
C34
C35
C3.6
C3.7
C3.38
C3.9

C3.11
C3.12
C3.13
C3.14
C3.15
C.3.16
C3.17
C3.18
C3.19
C.3.20

D JihEE Y

#51

Mersenne
Sockets

TWiISter . . . . . . e e e e e e e

JEAHE socket R .« .« o o o o
Cookie B . . . .

HATIBE

UUencode Eil UUdecode PRT, .« -« v v v v o o e e e e e e e e e e e e e
XML BRI Lo

test_epoll

Selectkqueue . . . . . . . . . L e e e e e
C.3.10 SipHash24 . . . . . .
strtod B dtoa . . . . .. e

OpenSSL

libmpdec

W3C CUN BIEEME o

Audioop
asyncio

93
93

95

95

96

96

97

98

99

99
100
100
101
101
102
102
103
103
104
104
105
105
106
109
109
110
110
111
111
112
112

115

117




vi



CHAPTER 1

—fizhy Python EREE &K

1.1 —RR &
1.1.1 (/& Python?

Python J& — M E:EN . HEN. WM ERZFTES. &G TH4. B4, B ReZE (dynamic
typing). JFH T FEAYE AR ERIUE], DA class (HE)). BHE X BYLFE AR R T2 A R A kst
i, FANFEF X (procedural) e FEF (functional) F2xUEEHEF. Python & & 1 H KW D) BB EL AL 15 I 1Y
FEYE . EATHE RS RIE S ER A, AR TERE RSN, EHAE C 8 C++ FfAETRE. B
A DAEE TR s, 6 A5 0] #2301/ (programmable interface) [ A3, %, Python
[E)fY (portable): B REEATAERTZ Unix {5484 [ A04F Linux fil macOS, tHAE#EFTHE Windows |

AR WL, FH1E tutorial-index BLG. Python 4525 45 1 n] 45 1) HC A /4 U BR DA % B2 Python
ON<e/ 8

1.1.2 {+[ElZ Python kiR S s 7

Python ¥ #% 34> € (Python Software Foundation) & —{W 87 [ JE2& FIE AL , B #EA Python 2.1 MiE 2 1%
FRAS I IURE . PSF B i dv 7E A4 % Python 25 BE5TE 5 AH BH ) BRI B2 987, DAL E 8 Python [y fifi
. PSF & E484EE https://www.python.org/psf/,

TEERABRA PSF 20l . SR T Python HABIEMRA M, #5% PSF a0 E B &Mt S8k

1.1.3 fE/ Python B5% {E fay ki 4 PR &1105 ?

PRET A AR RS AT AT R AR 2, N EARGR FE A, (B BLAEVRIEWE A ATAT B Python (1 [ETHA S Hp
BURE S ORERD T o A SRAREST ORERLRI , SR W] DA Python FIATISE A%, AR IRESE B (&
M ARE ) 8585 Python [YEVA, = DASLAE B 2084 H5[E) 5 Python (E)N . 8%, FRAMGIA G A0 B 0TE
JITA 19 Python 3 Hli& .

s 2E) P20, BRI R AREIRH R PSF #2404 SO A,

Python FEEIZEIERIHE, 7T N HERF AR E . SSER R IR ABIS 2 &l



https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://docs.python.org/3/license.html
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, £(F] 3.11.8

1.1.4 E#F+E Python Sk &li&EH % ?

PAF 22 H1 Guido van Rossum IF#£55 B8 — V1A BR 46 1 3 7 5 i i 2 -

FAE CWI 1) ABC /N A B4 Bl 5 TR S5 A, i B/ DAL 4, R
FITARZ B BT RGN . S22 72 Python INREMVIEIR, W50 SrHREEA THGA >0 L
PATAM AR B i oRHUE] (47 Python Rt AR Ei#R L ACATH] ) .

F¥ ABC BT A L4, HRWEEEWF26E. MEHERT ABC g (BIHEE) &K
LB HILE AT EI’J HE L, ezt e KM EY —. TG LA
MMW&+%@$,&@mwm&%&%ﬁﬁ%ﬁ,IIETMmmamﬁ%QMmmsﬁ
& A B 5h K 53 4h— 2% Python T RE A HEVAFIGEFE AL A -

FRERFIEAE CWI B Amoeba ﬁﬁi%f’ﬁ%? BN TAE, FAMTFE—E 4 C #2208 Bourne
shell EIACE U1 5 EAEFT A G4 P, HE) Amoeba A [ O 0 & GEFENY A T, T dE g £l B2
Hoft Bourne shell #EFTAFHL. FoAE Amoeba H1 PSSR 48R, (EFR Db 5 2 6 SMEERE
K Ert i S ThReny B .

oA, —FERARIL ABC RYFRAE AT AFFI Amoeba 2 8P I A VAR 5 1 B 2 %
ﬁ—k TR E Amoeba B REF R BIRN, FrAKEE, RFE T AR Z ARG

Tf 1989 AE Y EGE A B, AL A hRei, PrAREE ARG —T . 7EH T AR —FL,
HfESRFRIH 3 R S ARAEI UL I 85 g, {H Python 7 Amoeba S5 H ) 1531 TG
ez I SN I Y eei R E s IRl el | W = A Gl DRV o

199142 H, #l—FEZig e, REEMTEES USENET. HAhKHEE#RE Misc/
HISTORY HHZ .

1.1.5 {+[FI& Python ERBIEE ?

Python TR BBz RS AT LA AR E 3 2 A R Y

(GRS PRt T — AR A Rk A, s T A R (IEMIFRN, Unicode, %2 i 22 [E5H
%f) A A (HTTP, FTP, SMTP, XML-RPC. POP. IMAP), #(# T4 (Foillat. HERCE.
RHEIMT. M Python FEXH) PAMAEZRERG M (RAIFI, MRS, TCP/IP i3 (socket)) SH
Ik, F5#% library-index ) HE), PATHERI M. ook, A %A HMEE = K75, H54f Python
£ 25| (Python Package Index) 5{5?&1 AR LT

1.1.6 Python BIMRAHR R M2 INTE(ER) ?

Python - HAS & A 5% (E]"A.B.C” 5"A.B”:
A [E T 2RASE - R GTERR S A FUE SRS R A S .
o BIEWRBERUA S - HA 0 R B0 /)N 5 5 L B R R
o C [EUIMBAR S 38— @ (e AR IR SRR 18 IE 8571 (bugfix release) #1il.

(TR A ) AT AR 2 S S G IE R MUAR o TE— (R D REBE A UAS R MER I B, i — 201 B R i
A, FURIE] alpha, beta S fEBEEEAT A (release candidate) . Alpha /@77 1fi i AR dpe A AL By LB AT A
FI Wi alpha BEAHRUA Z [ /T2 B EUR & 4 N840 . Beta RUEEIRR S, R THAR M, HAREd
SRR, TSR EATRAS G oRAT, BT TR IE R RO, A E I T

Alpha. beta 11588 ST RAEA — H B MIARAK
* Alpha JUA B aN", Hor N 2 3L H B MY By
* Beta ilRASIREEDNT, Hot N 2 LB MY BT .
o RSB AUA AR B TN, Hi N BN BT

2 Chapter 1. —fi%iY Python ¥ RIZ &%


https://pypi.org
https://pypi.org

Python Frequently Asked Questions, £[F) 3.11.8

EAEEE), FraEsE 2.0aN W AREERE S E) 2.0bN WA 5, T 2.0bN MRASEERZESE) 2.0reN 1)
A Z B, HEAIERELE 2.0 BUZ B .

P aT AR [+ BB GSE, Bl [2.2+ ), BB RBA NS, EEE CPython [ B %8 %
P EE., HEL, 8 - RINEKRERAS SRS %, A S SER & m s~ — R R A,
EIREE] a0l fZ, Bt [2.4a0].

See the Developer’s Guide for more information about the development cycle, and PEP 387 to learn more about
Python’s backward compatibility policy. See also the documentation for sys.version, sys.hexversion,
and sys.version_info.

1.1.7 HEMTFE Python BYRIGEEEIA ?
BT Python JEUAGHE 347 i 7K T PAYE python.org BiUAS:, 7 https://www.python.org/downloads/. 5 H B
B vh JE UG HE A DATE https://github.com/python/cpython/ Bif5: .

JEIATGEEAT IR — B DA ezip MEAHY tar A%, B 5S¢ C JFARES. Sphinx #%:UAEIW]SC/:. Python i
AmA . FBIAR, DARML Rl A 3 T s R IETE A2 B UNIX -5 F, #2 I PASE
B Bt e B AT

RS U S JE AR S A A R, 35 2 (E) Python BHEE L B4 1 T 11 Getting Started” B

1.1.8 HEN{THEE Python BY[FIBAIL {4 ?
Python [ Hif& & i A A HEEBH S04 AT#E https://docs.python.org/3/ #k 5] . PDF. &l Sc 5 m] Rk HTML
JRA W AT FE https://docs.python.org/3/download.html %3],

[EJBH 342 DA reStructuredText 4% X458, [Elfl Sphinx [EIBH S22 T H ERE . [FIRA S0 reStructured Text J5
1R 52 Python [ UG M5 #E4 TR —FB45) -

1.1.9 HERRDFHEENX, HIFH Python gy ?

ARIZ BRI ERE . BOEE] S weorial-index
a3k Python FEsURkEI I ERE M A, WHRBEREEIIR, FH2EEH .

1.1.10 F(IJ%F Python = [&a95 R840 25 B0 4 &1 8RB 7

A —{H 3 B 4H (newsgroup), comp. lang.python, WA —{H# {455 EE (mailing list), python-list. 3
T AH RIS A2 B o A 10 A 3 1) WERRAEE G R, BRI AT (515 #E. comp. lang. python
MR, GREeRREE S SCE, 1 Usenet [1 3 #38 ik fe[F g FlIg AR U=,

BB A S AR R, 7T AFE comp.lang.python.announce ], g — M8 IR B A 188 o
#E, FREERA TR SR EHAETE python-announce (i 1 A B TaT 5T E

IR TP AL T S e A E ML BT BRE ALA SE 2 i, W DAFE hittps://www.python.org/community/lists/ ¢ F] .

1.1. —fREA 3


https://devguide.python.org/developer-workflow/development-cycle/
https://peps.python.org/pep-0387/
https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
https://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://www.python.org/community/lists/

Python Frequently Asked Questions, £(F] 3.11.8

1.1.11 #n{TE{§ Python iy beta BIEIRZA ?

Alpha F1 beta %% 75 i 7% 7] DA 4% https://www.python.org/downloads/ B 5. FF A 19 %% 15 i A &5 €r 76
comp.lang.python Fl comp.lang.python.announce i Bif£4H [ H 77, 11 €7 Python 1 H https://www.python.org/
HrE Al RSS BT E B2 W Y

PRULATAFE HT Git SAFHL Python [ BREEMUA . L FEAMEE, #E2(E Python Fi#f L B 45

1.1.12 n{a{R3Z Python RS RMEFIEMER ?

FE AR g% (bug) BUIR AT —{H1EHIFEZ (patch), 5 A https:/github.com/python/cpython/issues fy i
BIEN AP

B B o] B % Python IS 2 ¥R, 552[E) Python Bt A\ HJE 1.

1.1.13 2EHMAR Python BEME R E0T# &% 7

UL 25 T ik BRI B Python g7
5 Python 1 0 EHRAE 1991 4B, EBLAE OB B LB T .

Guido van Rossum /1 Jelke de Boer, [ {ifi /i Python F2=\ 5t sE 5 BB I ELE A R es |, CWI
ZH], AL, HAW (19914 12 H), FrasirEery, 26 283-303 .

1.1.14 FIEHER Python B& ?

A, RO &M, WEELZ LSRR, 552[F python.org [ wiki 7E https://wiki.python.org/moin/
PythonBooks B i #F i{EE H 1 5. .

PRULTT DATEAR 55 18 S B 85 [Python ], [E1i#h i #5i Monty Python (145 s sl WA [Python ] Fi

=B

1.1.15 www.python.org BYE B (i 5 7EWBE) ?

Python B EREH R ET 44, iy Python BERERE Rk MK B, RRAN AR L.

1.1.16 [EFl{+EJZEHZ[E] Python ?
% Guido van Rossum BAIGE/E Python I, fthti iF¥EEE 1970 4E4t BBC Z It H [ Monty Python [1 74T

S ] B UBIAS . Van Rossum gREMh R 2 & 4. S S inn 2 5, HIbthEE s
FE(E) Python,

1.1.17 BFEEE [Monty Python B9RITEEE | 15 ?
AR, [HEHEB.

4 Chapter 1. —fi%iY Python ¥ RIZ &%


https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://github.com/python/cpython/issues
https://devguide.python.org/
https://ir.cwi.nl/pub/18204
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, £[F) 3.11.8

1.2 ZEEE#FR P Python

1.2.1 Python g9 404a ?
JEWERE. B 1991 454G, KA 6 ) 18 18 ARG Mipiie oA, m HiEE AR g giErT.
7 3.9 i flR, Python &F 12 {5 K & R — (R DI REEEA T AR (PEP 602).

BHEE N B R ST B E R S E IR B R A, TR SL B 70 RO RS e M Bt i . S aR1BIE
BET HRAS R B AR SR BE R A AR SR 225 (Bl 3.5.3, 3.6.2), iEUehR A el H A EE BN ek
BIEBA AT, Hea&e 8o BEREIE, B H S5 5 0 HTE— R 50 S5 5005 1 88 15 A
g,

HRORT AR BT A BEIRF A AT DATE Python Rl F1 1T E4% 3] . Python 45 Wi f 2L [t 4% (production-ready) 1
FiAS 2 Fl 3xo HEBSIIBUASAE 3.x, BCRUAS BRI i B i V2 o ) 1y e R T S0 - SR 2.x (TR Bl e
ZEA, (HE O,

1.2.2 /D A\TfE{ER Python?

TREA AT RGN, (BB SR R DA E Y .

Python J& il DAS B T, FTOAAN &G 858 0%, 1 ELE W DA RF 2 R Rl A 480 A, [FB R 2 Linux
BATRE S —if, T AR B e w-te ik S s B i s (.

comp.lang.python i Bl BFAH JEH 1% B, (HEIAEATA Python I I F A ErEaz it Al 8 R i L 2 IR E

1.2.3 HFEHEAEEMZEMER Python SERE % ?
A AT Python (B EE R, #52[F https://www.python.org/about/success. F £ #1384 71 Python 7
AL EIT AR AR A FF 2 AN IR 2w AR AR A ERK

#5328 H 1Y Python HZAHE Mailman (5] 5 A5 B 2R Zope JIEH RS o 2% Linux 2477,
404 Red Hat, EL4E/] Python 4% 1 #0043y 2o A2 a0 K R A i . [EIRR(# ] Python
A TlfIFE Google, Yahoo Al Lucasfilm Ltd.

1.2.4 Python RRTFARI SR/ WL FEIG = ?

#5 & https://peps.python.org/ 22[F] Python $#[EFJ# 22 (Python Enhancement Proposal, PEP), PEP 2 F skdiiRA—
TR d 17 Python BT P RERY s wt SO, BHEME TR ER B AT R S AR 5. FE =4k — i 4[E) [Python
X.Y Release Schedule (#7iliE32) ] (1 PEP, Hrp XY 22— 4R A B EEA A .

T BHESErAE python-dev TS| 5l &t -

1.2.5 ¥ Python R H A HEMN S FERETEE 7

—fBORIE), AjEE . At A O AR BOE 4T Python RS, FTERRS hiEMIE e, el AR
g —/ N B, B AR . RIEARTT AR IR, (53R & 5 s B 4 R R s i
MR T ARG R /4 Python [958, MR — T Tt & MEr s s

UNR— T e S T, AR(E— e TR AL TR B A . PEP 5 #3587 205 | i 2 ) R AHZS (backward-
incompatible) FJAE T, [7] I 20380 (0011 25 P LA/ IME . P B0 AR -

1.2. ZEEE 5 $H Python 5


https://peps.python.org/pep-0602/
https://www.python.org/downloads/
https://peps.python.org/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://www.list.org
https://www.zope.dev
https://www.redhat.com
https://peps.python.org/
https://mail.python.org/mailman3/lists/python-dev.python.org/
https://peps.python.org/pep-0005/

Python Frequently Asked Questions, £(F] 3.11.8

1.2.6 Python #it APIBYEX &5 M = BT IEFHY

aliiR

B AT SR ik 6 i — ARy R 5 M AB AU [ETRE 5 (statically typed language) FHAR AR, JELEREFH 1§02
Pascal, C, 5@ C++ 5 Java PyEAH T4k . 2t 245 Python {EEMBATAY S —HE =, BEMTARE @215
4. Python H A il Bl H— B sl Ml — (R 2RO BRME R 2V, e 22, A MRS
(1] Python ] DARHEERA: Sy % o 2 AR AR 500, ) n B A3 A0 DR E P st . ] Python,
F%%ﬁﬂﬁ%&ﬁ%%$@ﬁ,%mﬂﬁﬁﬁ?omﬁﬁﬁﬂ%iﬁéﬁﬁ¢ﬁ%ﬂ@%%ﬁﬁ%%
o

SR AT A A T R U R 24 2K E), I FIRERLERE S R A B AN . B84 UHE R
MEREE, EENS TRem s . BN AR Sl B R RS — s . AR st —80 i, [
Bredokl. MEAREAHE, SEMAHEPEAERESREZ, (AFE24AMNE —wB R, BA
— e B IR R

Python {147 £ H AT o) 68 W B REAR G 5 —RH 7 . 18 Java —h§, Python A —{H 2L B ek U
PR B2 W] DALE AR ) S D e IR AR Ut S e, ELiE Se s R M — 2y . IR IEAA g
FEA AR E R DU S RERHAAEAT P i B et . Bl i I BRE R a0, B2 A W] DATE B B R S AL BN i )
[l IRF, 75 B R T A Sy R e ol P AT o e mT DA B AR ARG AT (code reuse) FR
. 182 PyGame 4555 = J7 BEAH AT By 1A AE (e B2 A= iy B2 221 G I

Python (1) BB = F et 66 B4 E R EIE AR Ut R SRl 5 TR . AR W] AR — (A T B AR L i
gﬁgﬁﬁﬂﬁﬁ*%A@ﬁ%ﬁﬁ%%%oM%@ﬁ%%ﬁmﬂ$ﬂ)%mmwtﬂ%,@ﬁﬂ%
B :

Bl
o

>>> L = []

>>> dir (L)

['_add__"', '__class_ ', '_ _contains_ ', '__delattr_ ', '__delitem_ ',
' _dir_ ', '__doc__', '_eq ', '__format__', '_ge_"',

' __getattribute__ ', '_ _getitem ', '__gt_ ', '__hash_', '__iadd__"',
' dmul_ ', '__init_ ', '__iter ', '_le_ ', '_len_ ', '__1t_ "',

' mul_ ', '_ne_ ', '_new__', '_ _reduce__ ', '_ reduce_ex__ ',

' _repr_ ', '__reversed_ ', '_rmul__ ', '__setattr_ ', '__setitem__ ',
' _sizeof_ ', '__str__ ', '_ _subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']

>>> [d for d in dir (L) if '_ ' not in d]

["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append(...)
L.append (object) —-> None -- append object to end

>>> L.append (1)
>>> L

[11]

BT HES, WA AR, B SO IGE ER AN 6 i B Al .

Python t. 45 {2 #F1%) IDE. IDLE /2 Python (j— 1 {%°F-2 IDE, ‘& DA Python %555 [E){di i} Tkinter. Emacs i
P G AR = BUNIE Emacs A7 —{l JEH 471 Python BixX . i3 LU S a1 IR IR 2 P AR RE P A wEA 28 B (syntax
highlighting) . [ BIAHHE, LARLESH SR IIPIUE B B3 . AT Python SRMHEBIINSERENTIE, 3
22[F) Python wiki ,

AR ARAE B Python TEEF S P ROBEI , ARVTRE&A BLER AN edu-sig F{F T .

6 Chapter 1. —fi%iY Python ¥ RIZ &%



https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER 2

EXREERBEESE

21 BREE

211 BERAUTLMERAERBRE, ERPEHE, PRMITEREIBRES?
A

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop
into any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by
using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle3), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of
pywin32 project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
A YRR SEML Python B A LB %E T RS MIERETIAE. EaH:
* Wing IDE
* Komodo IDE
e PyCharm



https://github.com/python/cpython/blob/main/Tools/scripts/idle3
https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
https://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, £(F] 3.11.8

2.1.2 FUHTRAEIRICEK bug HMTIIESH ?
A1

Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; with a C compiler you can embed all your modules into a new program, which is then linked with
the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
 Nuitka (J5F5)
* Pylnstaller (J5F4)
e PyOxidizer (J5F4)
o cx_Freeze (I5F4)
* py2app (f#BE macOS)
* py2exe ({#FR Windows)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

ia Bt ai:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

T PARIAT, (H R E B X

8 Chapter 2. EXRABERHER


https://pylint.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
https://github.com/python/cpython/tree/main/Tools/freeze
https://nuitka.net/
https://pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
https://www.py2exe.org/
https://peps.python.org/pep-0008/

Python Frequently Asked Questions, £[F) 3.11.8

>>> x = 10

>>> def fool():
print (x)
x += 1

3 UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

J

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to
x, the compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the
uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)
x += 1

>>> foobar ()
10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def fool():

x = 10
def bar():
nonlocal x
print (x)
x +=1
bar ()
print (x)
>>> foo()
10
11

2.2.2 Python RYIE i % B e i 8 BAHHIRA ?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You'd have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 9



Python Frequently Asked Questions, £(F] 3.11.8

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares|[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called --- not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2 1i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be O in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4
>>> squares|[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module
object get reflected everywhere. For example:

config.py:

[x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

10 Chapter 2. EXRBERAMESR



Python Frequently Asked Questions, £[F) 3.11.8

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the singleton design pattern, for the same reason.

2.2.5 What are the "best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules -- e.g. sys, os, argparse, re

2. third-party library modules (anything installed in Python’s site-packages directory) -- e.g. dateutil,
requests,PIL.Image

3. locally developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the "import <module>" form of import. They fail
when the 2nd module wants to grab a name out of the first ("from module import name”) and the import
is at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to
move imports into a function if the modules are only ever used in that function. Note that loading a module the first
time may be expensive because of the one time initialization of the module, but loading a module multiple times
is virtually free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the
module is probably available in sys .modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something ...
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

2.2. Core Language 11



Python Frequently Asked Questions, £(F] 3.11.8

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. In-
stead, use None as the default value and inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo (mydict={}):

fH2:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is
to cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called "memoizing”, and can be implemented like this:

# Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache|[ (argl, arg2)]

# Calculate the value

result = ... expensive computation

_cache[ (argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and **:

def f(x, *args, **kwargs):
kwargs['width'] = '"14.3c'

g(x, *args, **kwargs)

12 Chapter 2. EXRBERAMESR




Python Frequently Asked Questions, £[F) 3.11.8

2.2.8 5|% (arguments) 12 & (parameters) HHIEL] ?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what kind of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo. bar Fl kwargs J& func (Y28 SR, RN func BF, fHlin:

[func(42, bar=314, extra=somevar) }

42 ., 314 fll somevar 25| #.

2.29 [+ list 'y’ th&FER list 'x* ?
WRARE 7RG BRA AR SR -

=[]
= x

.append (10)

>>>
>>>
>>>

KKK X

>>>
[10]
>>> x
[10]

PRTT R A AEEVHELS— (U IS v 5 th 7 .
[ED A 5 1265 R0 52 L T

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list -- it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) list @mutable, & 3EWREARAT DASE B AMEIA

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> = 5 # ints are immutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

HKoX X
|

>>>
6
>>> y

J

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int
6) and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the
ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example v .append (10) and y.sort () ) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted (y) ) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types
of operations confused. So if you mistakenly write v . sort () thinking it will give you a sorted copy of y, you'll
instead end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list +=

2.2. Core Language 13



Python Frequently Asked Questions, £(F] 3.11.8

[1, 2, 3] isequivalentto a_list.extend([1, 2, 3]) and mutates a_1list, whereas some_tuple
+= (1, 2, 3) and some_int += 1 create new objects).

[EFFE:

 If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and
all the variables that refer to it will see the change.

 If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve
the desired effect in a number of ways.

1) By returning a tuple of the results:

>>> def funcl (a, b):

a = 'new-value' # a and b are local names
b=Db+ 1 # assigned to new objects
return a, b # return new values

>>> x, y = 'old-value', 99

>>> funcl (x, V)

("new-value', 100)
. J

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

>>> def func2(a):

al0] 'new-value' # 'a' references a mutable 1ist
all] = a[1] + 1 # changes a shared object
>>> args = ['old-value', 99]

>>> func?2 (args)
>>> args

["new-value', 100]
. J

4) By passing in a dictionary that gets mutated:

e 3
>>> def func3(args):

args['a'] = 'new-value' # args 1is a mutable dictionary

args['b'] = args['b'] + 1 # change it in-place
>>> args = {'a': 'old-value', 'b': 99}

>>> func3(args)
>>> args
{'a': '"nmew-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:
def _ _init__ (self, /, **args):
for key, value in args.items() :
setattr(self, key, value)

EET—TD

14 Chapter 2. BEXFRERFHZE




Python Frequently Asked Questions, £[F) 3.11.8

(B E—H)

>>> def funcéd (args):

args.a 'new—value' # args is a mutable Namespace

args.b args.b + 1 # change object in-place
>>> args = Namespace (a='old-value', b=99)
>>> func4 (args)
>>> vars (args)
{'a': "mew-value', 'b': 100}

L

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define 1inear (a, b) which returns a function £ (x) that computes the value a * x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

i T

class linear:

def _ init__ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

In both cases,

[taxes = linear (0.3, 2) J

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential (linear) :
# _ init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

P n] AR e 2 T TR AR R -

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

HERET—T

2.2. Core Language 15




Python Frequently Asked Questions, £(F] 3.11.8

(B E—H)
def down (self):
self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

EEW inc (). dec () fl reset () FRAGILZAHIR SRS MR —FK.

2.2.12 #n{g7E Python hEEaeE ?

In general, try copy.copy () or copy.deepcopy () for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

[newdict = olddict.copy () }

JEH AT LA Y] F (slicing) :
[new_l = 1[3] }

2.2.13 Tk BB S AR B ?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2214 HIERENTRRWIHL LT 7

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to
a value; the same is true of de f and c1ass statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> g = B()
>>> b = a

>>> print (b)
<__main__ .A object at 0x16D07CC>
>>> print (a)
<__main__ .A object at 0x16D07CC>

J

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to "know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

1E comp.lang.python H', Fredrik Lundh ¥ $1- 355/ [ 4G H T — (R AR T ) LU I -

SRRARLEFT R Fa B EE 24—k [ (W) ABRBREFRENAT, EUAH
O - AR EMAHEI MR A (A ) REMMmE (W) ..

e MR R EARE AT, SFERARGAT, SR ERE %!

16 Chapter 2. EXRBERAMESR



Python Frequently Asked Questions, £[F) 3.11.8

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "all in "bll, "all
(False, 'a')

|

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

[(nau in llbll), ngn

)

not:

["a" in ("b", nau)

)

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters

in assignment statements.

2216 EEEZHN C WY’ ?” = BEF?
B, SEEIR

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[[expression] and [on_true] or [on_false]

J

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is

always better touse the . .. 1f ... else ... form.

2.2.17 Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, slightly adapted

from Ulf Bartelt:

from functools import reduce

# Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x, y=y:y%x, range (2, int (pow(y,0.5)+1))),1),range(2,1000)))))

# First 10 Fibonaccli numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,£f)) if x>1 else 1:
f(x,f), range(10))))

# Mandelbrot set

print ( (lambda Ru,Ro, Iu,Io,IM,Sx,Sy:reduce (lambda x,y:x+'\n'+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro, Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:xty,map (lambda x,xc=Ru, yc=yc, Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,Vy,k, f=lambda xc,yc,x,y,k,f: (k<=0)or (x*x+ty*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f) :f(xc,yc,x,y,k,f):chr(

64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)), range(Sx))) :L(Iut+y* (Io—Iu)/Sy), range (Sy
y))) (-=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

# \__ _ / /] / |__ lines on screen

# v v / / columns on screen

EET—TD

2.2. Core Language

17




Python Frequently Asked Questions, £(F] 3.11.8

# / / / maximum of "iterations"

e

range on y axis
# / range on x axis

(R L —5)

B, AEAEREVERE !

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally usable name. Upon calling a function that accepts positional-only
parameters, arguments are mapped to parameters based solely on their position. For example, divmod () is a

function that accepts positional-only parameters. Its documentation looks like this:

>>> help (divmod)
Help on built-in function divmod in module builtins:

divmod (x, y, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod ()

with keyword arguments would lead to an error:

>>> divmod (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 BFHFEH

2.3.1 IMHERE 7S E LI/ ERI R 7

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase ”0”. For example, to set

the variable ”a” to the octal value ”10” (8 in decimal), type:

>>> a = 0010
>>> a
8

999

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase "x”.

Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xab
>>> g
165
>>> b
>>> b
178

0XB2

18 Chapter 2. EXRBERAMESR



Python Frequently Asked Questions, £[F) 3.11.8

2.3.2 [Fft(El-22//10 @148 -3 ?

It’s primarily driven by the desire that i % J have the same sign as j. If you want that, and also want:

[i::(i//j)*j+(i%j)

J

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// Jjneedtomake i % 7J have the same sign as i.

There are few real use cases for 1 % J when j is negative. When 7 is positive, there are many, and in virtually all
of them it’s more useful for i % j tobe >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 %
12 == 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a SyntaxError because the period is seen
as a decimal point:

>>> 1. class_
File "<stdin>", line 1
1. class_

A

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 ._ class_
<class 'int'>
>>> (1)._ _class_

<class 'int'>

2.3.4 mfTsFREDDRS ?

For integers, use the built-in int () type constructor,e.g. int ('144"') == 144. Similarly, float () converts
to floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 holds true, and
int ('0x144") raises ValueError. int (string, base) takes the base to convert from as a second op-
tional argument, so int ( '0x144"', 16) == 324. If the base is specified as 0, the number is interpreted using
Python’s rules: a leading 00’ indicates octal, and *0x’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__ ('os') .system("rm -rf S$HOME") which would
erase your home directory.

eval () also has the effect of interpreting numbers as Python expressions, so thate.g. eval ('09") gives a syntax
error because Python does not allow leading 0’ in a decimal number (except °0’).

23. Bifuzs 19



Python Frequently Asked Questions, £(F] 3.11.8

2.3.5 g LEseE ?

To convert, e.g., the number 144 to the string ' 144", use the built-in type constructor str (). If you want a hex-
adecimal or octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings
and formatstrings sections, e.g. "{:04d}".format (144) yields '0144"' and "{:.3f}".format (1.0/
3.0) yields '0.333"'.

2.3.6 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data,
try using an 10.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = io.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

7

>>> sio.write("there!™")
6

>>> sio.getvalue ()
'Hello, there!'!

>>> import array

>>> a = array.array('u', s)
>>> print (a)

array('u', 'Hello, world')
>>> a[0] = 'y'

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'vello, world'

2.3.7 How do | use strings to call functions/methods?

There are various techniques.

» The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function
.

¢ Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

20 Chapter 2. BEXFRERFHZE



Python Frequently Asked Questions, £[F) 3.11.8

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar (self):

f = getattr (foo_instance, 'do_' + opname)
£0)

Use 1locals () to resolve the function name:

def myFunc () :
print ("hello")

fname = "myFunc"
f = locals () [fname]
£0

2.3.8 Isthere an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
"\r\n"

o "\r\n")

>>> lines.rstrip("\n\zr")

'line 1 "'

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional ”sep” parameter which is useful if the line uses something other than whitespace as
a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf and better suited for
the task.

23. Bifuzs 21



Python Frequently Asked Questions, £(F] 3.11.8

2.3.10 'UnicodeDecodeError’ 5’UnicodeEncodeErro’ $iREH([/E=E?

#% 22 [F) unicode-howto.

2.3.11 Can | end a raw string with an odd number of backslashes?

A raw string ending with an odd number of backslashes will escape the string’s quote:

>>> r'C:\this\will\not\work\"
File "<stdin>", line 1
r'C:\this\will\not\work\"

A

SyntaxError: unterminated string literal (detected at line 1)

There are several workarounds for this. One is to use regular strings and double the backslashes:

>>> 'C:\\this\\will\\work\\’
"C:\\this\\will\\work\\"

Another is to concatenate a regular string containing an escaped backslash to the raw string:

>>> r'C:\this\will\work"' "\\'
"C:\\this\\will\\work\\'

It is also possible to use os.path.join () to append a backslash on Windows:

>>> os.path.join(r'C:\this\will\work', ''")
'C:\\this\\will\\work\\'

J

Note that while a backslash will escape” a quote for the purposes of determining where the raw string ends, no
escaping occurs when interpreting the value of the raw string. That is, the backslash remains present in the value of
the raw string:

>>> r'backslash\'preserved'
"backslash\\'preserved"

Also see the specification in the language reference.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
» Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
* Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

» Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

e It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

29 Chapter 2. BEXFRERFHZE



Python Frequently Asked Questions, £[F) 3.11.8

* Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

* Use the right data structures. Study documentation for the bltin-types and the collections module.

¢ When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the 1ist.sort () built-in method or
the related sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

 Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your program will be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

hz%:
7 wiki B VAT S A A AR R R

2.4.2 What is the most efficient way to concatenate many strings together?
str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concate-
nation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str. join () atthe
end:

chunks = []

for s in my_strings:
chunks.append (s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use 1o0.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the += operator):

result = bytearray ()
for b in my_bytes_objects:
result += Db

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items
in the same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c").If
the argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when
you aren’t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3]andlist('abc') yields['a', 'b', 'c'].Ifthe
argument is a list, it makes a copy just like seq[:] would.

2.5. Sequences (Tuples/Lists) 23


https://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, £(F] 3.11.8

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)

index and so forth. Think of seq[—-n] as the same as seg[len (seq) -n].

Using negative indices can be very convenient. For example S [ : —1] is all of the string except for its last character,

which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function:

for x in reversed(sequence) :
# do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

[mylist = list (set (mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is

easier and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter (keep_function, mylist)
mylist[:]
mylist[:] = [x for x in mylist if keep_condition]

(x for x in mylist if keep_condition)

The list comprehension may be fastest.

24 Chapter 2. EXFBRERMER


https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, £[F) 3.11.8

2.5.6 How do you make an array in Python?

Use a list:

[["this", 1, "]..S", "an", "array"] }

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that NumPy and other third party packages define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

{lisp_list = ("like", ("this", ("example", None) ) ) J

If mutability is desired, you could use lists instead of tuples. Here the analogue of a Lisp car is 1isp_1ist [0]
and the analogue of cdris 1isp_list [1]. Only do this if you’re sure you really need to, because it’s usually a lot
slower than using Python lists.

2.5.7 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

[>>> A = [[None] * 2] * 3 J

This looks correct if you print it:

>>> A
[ [None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
* 3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5. Sequences (Tuples/Lists) 25


https://numpy.org/
https://numpy.org/

Python Frequently Asked Questions, £(F] 3.11.8

2.5.8 How do | apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a list comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function(obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:
obj.method ()

for obj in mylist:
function (obj)

2.5.9 Why does a_tuple[i] += [item’] raise an exception when the addition
works?

This is because of a combination of the fact that augmented assignhment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we'll use a 1ist and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the
tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]
['foo', 'item']

26 Chapter 2. BEXFRERFHZE



Python Frequently Asked Questions, £[F) 3.11.8

To see why this happens, you need to know that (a) if an object implements an __iadd__ () magic method, it
gets called when the += augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, __iadd__ () isequivalent to calling extend () on the list and returning the list. That’s
why we say that for lists, += is a "shorthand” for 1ist .extend ():

>>> a_list = []

>>> a_list += [1]

>>> a_list

[1]

= SEE A

>>> result = a_list.__iadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_1ist was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__ (['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ () succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple [0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the 1ist . sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.11 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> 1list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something') ]
>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

2.5. Sequences (Tuples/Lists) 27




Python Frequently Asked Questions, £(F] 3.11.8

2.6 Yi¥F

2.6.1 {HER%T (class) ?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and meth-
ods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

2.6.2 {+FIE&%AiE (method) ?

A method is a function on some object x that you normally call as x.name (arguments...). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined asmeth (self, a, b,
c) should be called as x.meth (a, b, c) for some instance x of the class in which the definition occurs; the
called method will think it is called as meth (x, a, b, c).

BB REIENT [self] 7 i% (method) & 3 Fovd»| v — 2 ZRRREIE R 2,

2.6.4 How do | check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance (obj, cls). Youcan check if an object is an instance of any of a number
of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

) ), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that isinstance () also checks for virtual inheritance from an abstract base class. So, the test will return
True for a registered class even if hasn’t directly or indirectly inherited from it. To test for "true inheritance”, scan
the MRO of the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register (P)

>>> ¢ = C()

>>> isinstance(c, C) # direct
True

>>> isinstance(c, P) # indirect
True

€ & A}

28 Chapter 2. BEXFRERFHZE




Python Frequently Asked Questions, £[F) 3.11.8

(B E—H)
>>> isinstance (c, Mapping) # virtual
True

# Actual inheritance chain
>>> type(c).__mro_
(<class 'C'>, <class 'P'>, <class 'object'>)

# Test for "true inheritance"
>>> Mapping in type(c).__mro_
False

Note that most programs do not use isinstance () on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if
you have a function that does something:

def search (obj):
if isinstance (obj, Mailbox) :
# code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
# code to search a mailbox

class Document:
def search(self):

# code to search a document

obj.search ()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self. outfile = outfile

def write(self, s):
self._outfile.write (s.upper())

def _ getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before
calling the underlying self._outfile.write () method. All other methods are delegated to the underlying
self._outfile object. The delegation is accomplished viathe __getattr__ () method; consult the language
reference for more information about controlling attribute access.

26. Y% 29




Python Frequently Asked Questions, £(F] 3.11.8

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved,
the class must define a __setattr__ () method too, and it must do so carefully. The basic implementation
of __setattr__ () isroughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict_  [name] = value

Most__setattr__ () implementations must modify self.__dict__ tostore local state for self without caus-
ing an infinite recursion.

2.6.6 How do | call a method defined in a base class from a derived class that
extends it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super () .meth () # calls Base.meth

In the example, super () will automatically determine the instance from which it was called (the se 1 f value), look
up the method resolution order (MRO) with type (self) .__mro__, and return the next in line after Derived
in the MRO: Base.

2.6.7 How can | organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:

BaseAlias = Base

class Derived (BaseAlias) :

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:
count = 0 # number of times C.__ _init__ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

J

c.count also refers to C. count for any ¢ such that isinstance (¢, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.__class__ back to C.

30 Chapter 2. BEXFRERFHZE



Python Frequently Asked Questions, £[F) 3.11.8

Caution: within a method of C, an assignment like sel1f.count = 42 createsanew and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a
method or not:

[C.count = 314 J

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
# No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

J

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you'd write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init__ (self, *args):

The same approach works for all method definitions.

26. Y% 31



Python Frequently Asked Questions, £(F] 3.11.8

2.6.10 I try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are "mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where classname is the current class name with any
leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the ”_classname__spam” attribute, and
private values are visible in the object’s __dict___. Many Python programmers never bother to use private variable
names at all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () -- it simply decrements the object’s reference count, and
if this reaches zero ___del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you're trying
to reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can
run gc.collect () toforce a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you’re done with them. The close () method can then remove attributes that refer to subobjects. Don’t
call __del_ () directly -- __del__ () should call close () and close () should make sure that it can be
called more than once for the same object.

Another way to avoid cyclical references is to use the weak re £ module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor
to keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in
CPython, this is the object’s memory address, it happens frequently that after an object is deleted from memory, the
next freshly created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272

(HERET—TD

32 Chapter 2. BEXFRERFHZE



Python Frequently Asked Questions, £[F) 3.11.8

(L —5)
>>> id(b)
13891296

2.6.14 When can | rely on identity tests with the is operator?

The is operator tests for object identity. The testa is b isequivalentto id (a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to
return a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are
three circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is guar-
anteed that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assign-
ment s [0] = x,itis guaranteed that s[0] is x.

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a =
None and b = None, itis guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and st r which aren’t guaranteed to be singletons:

>>> a = 1000

>>> b = 500

>>> ¢ = b + 500
>>> a is c

False

>>> a = 'Python'
>>> b = 'Py'

>>> ¢ = b + 'thon'
>>> a is c

False

Likewise, new instances of mutable containers are never identical:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English
in code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create
a singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a
method that behaves like dict .pop ():

_sentinel = object ()

def pop(self, key, default=_sentinel):
if key in self:
value = self[key]
del self[key]
return value

BET—3

26. Y% 33


https://peps.python.org/pep-0008/

Python Frequently Asked Questions, £(F] 3.11.8

if default is _sentinel:
raise KeyError (key)
return default

(R L —5)

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code

from being confused by objects such as f1oat ('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__ ():

def _ contains_ (self, wvalue):
for v in self:
if v is value or v == value:
return True
return False

2.6.15 FHACIN{AIEHIF o8 BHIhEFRHER ?

When subclassing an immutable type, override the __new___ () method instead of the __init__ () method. The

latter only runs affer an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate (date) :
"Always choose the first day of the month"
def _ new__ (cls, year, month, day):
return super()._ _new__ (cls, year, month, 1)

class NamedInt (int) :
"Allow text names for some numbers"

xlat = {'zero': 0, 'one': 1, 'ten': 10}
def _ new__ (cls, value):
value = cls.xlat.get (value, value)
return super()._ _new__ (cls, value)

class TitleStr(str):
"Convert str to name suitable for a URL path"

def _ new_ (cls, s):
s = s.lower() .replace(' ', '-")
s = '"'".join([c for c in s if c.isalnum() or c == '-"'])
return super()._ _new__ (cls, s)

ia SERET AT AR IR BB -

>>> FirstOfMonthDate (2012, 2, 14)
FirstOfMonthDate (2012, 2, 1)

>>> NamedInt ('ten')

10

>>> NamedInt (20)

20

>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

34 Chapter 2. EXRBERAMESR




Python Frequently Asked Questions, £[F) 3.11.8

2.6.16 How do | cache method calls?

The two principal tools for caching methods are functools.cached_property () and functools.

lru_cache (). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference

to the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The
disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without

bound.

Iru_cache 77 {558 A BA T #E15 | Bk Bl E05 el 51, SRl E edsr 8 Emilns .

The advantage of the least recently used algorithm is that the cache is bounded by the specified maxsize. The disad-

vantage is that instances are kept alive until they age out of the cache or until the cache is cleared.

This example shows the various techniques:

class Weather:
"Lookup weather information on a government website"

def _ init_ (self, station_id):
self._station_id = station_id
# The _station_id is private and immutable

def current_temperature (self):
"Latest hourly observation"
# Do not cache this because old results
# can be out of date.

@cached_property

def location(self):
"Return the longitude/latitude coordinates of the station"
# Result only depends on the station_id

@lru_cache (maxsize=20)

def historic_rainfall (self, date, units='mm') :
"Rainfall on a given date"
# Depends on the station_id, date, and units.

J

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the

cached_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the /ru_cache approach work when the station_id is mutable, the class needs to define the __eq

__hash__ () methods so that the cache can detect relevant attribute updates:

() and

class Weather:
"Example with a mutable station identifier"

def _ init_ (self, station_id):
self.station_id = station_id

def change_station(self, station_id):
self.station_id = station_id

def _ _eqg (self, other):
return self.station_id == other.station_id

def _ hash__ (self):
return hash(self.station_id)

@lru_cache (maxsize=20)
def historic_rainfall (self, date, units='cm'):

€ & A}

26. Y%

35



Python Frequently Asked Questions, £(F] 3.11.8

(L —5)
'Rainfall on a given date'
# Depends on the station_id, date, and units.

2.7 1558

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file
was created) a . pyc file containing the compiled code should be created in a __pycache___ subdirectory of the
directory containing the . py file. The . pyc file will have a filename that starts with the same name as the . py file,
and ends with . pyc, with a middle component that depends on the particular python binary that created it. (See
PEP 3147 for details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source
file, meaning that the __pycache___ subdirectory cannot be created. This can happen, for example, if you develop
as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing a module and Python has the ability (permissions, free space, etc...) to create a ___pycache___ subdirec-
tory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you
have a top-level module foo.py that imports another module xyz . py, when you run foo (by typing python
foo.py as a shell command), a . pyc will be created for xyz because xyz is imported, but no . pyc file will be
created for foo since foo. py isn’t being imported.

If you need to create a . pyc file for foo -- that is, to create a . pyc file for a module that is not imported -- you
can, using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py')

This will write the .pyc toa __pycache__ subdirectory in the same location as foo . py (or you can override
that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can
do it from the shell prompt by running compileall.py and providing the path of a directory containing Python
files to compile:

[python -m compileall . }

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable ___name__. If this has the
value '__main__ ', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main():
print ('Running test...')

if name ==
main ()

36 Chapter 2. BEXFRERFHZE


https://peps.python.org/pep-3147/

Python Frequently Asked Questions, £[F) 3.11.8

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
* main imports foo
¢ Empty globals for foo are created
* foo is compiled and starts executing
e foo imports bar
* Empty globals for bar are created
* bar C¥HmHE R HALT
* bar imports foo (which is a no-op since there already is a module named foo)
* The import mechanism tries to read foo_var from foo globals, tosetbar. foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is
still empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.
A (20) =] RemmEy .

Guido van Rossum recommends avoiding all uses of from <module> import .. .,and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module>.<name>.

Jim Roskind B /E ARSI s DA N 91 745 1 25 BR -
* exports (globals, functions, and classes that don’t need imported base classes)
e import AL
* active code (including globals that are initialized from imported values).
Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

i 2 EEAAM BHE .

2.7.4 __import__('x.y.z’) B4 <module 'x’>, PHEELIEZ z?

Consider using the convenience function import_module () from importlib instead:

[z = importlib.import_module('x.y.z")

2.7. {54 37



Python Frequently Asked Questions, £(F] 3.11.8

2.7.5 When | edit an imported module and reimport it, the changes don’t show
up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is
imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

[from modname import some_objects }

will continue to work with the old version of the imported objects. If the module contains class definitions, existing
class instances will not be updated to use the new class definition. This can result in the following paradoxical
behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C{() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance 1s false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c.__class_ ))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

38 Chapter 2. BEXFRERFHZE



CHAPTER 3

REHMELERBESE

3.1 [Ef+(E] Python f& R #EHERSBRIR 1T 5340 7

Guido van Rossum {5 1 A HE 2 7 A AR AR A, (E) EL 3 i — i Python RS A I A FF 2 FORK. #F
2 NEELE — B R 2 Rt s b T i 2 he

P EEAT /SRS, DR T B SSRGS AL R4 B . T C s OB B
IR PR RE S B

if (x <= vy)
xX++;
Y7

Z++;

R PHEIR, U x++ BOA @ peT, (AaEesile N A AR B, BIR a3 CRis
PEEE ARG IS MEr A, B EMEE x > v, Hy REEDT.

PRIEIE) A BB ELAS R 45 5% . Python W HAWGE A ) B BRI MK 10 E 58 . £ CREE, A
i%ﬁﬁ%ﬁﬁ%ﬁ%%ﬁf {EERIE IR, S (SURLAEEE) 5 MR
R A UHS S & 9L begin/end BT AE—4T. B @l fes VIR IR B At s ), AR BEAE Sy
WA EIR S PR E2RE], — ek E— (A ss (SO 20 % 30 47). 20 4711 Python 25
Pl 20 471 C FEsNAE W AMCE 2 5. SR (E)A B ar B4 R i 48 BRI AR B — st ([E0 4 e o o
HERRERECA B, (A Ris it s T E ).

32 DD ERMENHBETRIFTENER?

g SR

39



Python Frequently Asked Questions, £(F] 3.11.8

3.3 [EfF RSB H AL THERE ?

o0 P12 T S R 4 R R R 7 -

>> 1.2 - 1.0
0.19999999999999996

RIK
([,

CPython [ £loat HEIIH T C i double MEAEfF. —Mf float WIFMEG AR EARTE (B
53 fiiye) AFE kR A, Python Flf] C ZCHE R B, 1M Mb i 45 6 HC B FLAR o (1 B B 2 15y
AREE . EFR R B OE S KE), Python il C. Java SR Z SZ WO IV HE = A — HRIVATE.

2 W T AR B R e 3, (REM L i B s ol o, s (), EDA N REs RS RA T 4% -

B[EliE /2 Python {1 bug, [HIEEIAZ. EHR Python #-FEVABHE, M2 Qfaf WEBE 7 B oA

T

[>>> x = 1.2

]

x [EM R (R#E6E) 1.2 BfhsHE, MEHRSHEBER 1.2, DI—RIBEIRE, e etfrnEe:

[1.0011001100l10011001100l10011001100110011001100110011 (binary)

J

1 3 IR (LT 2 -

[1.1999999999999999555910790149937383830547332763671875 (decimal) }

53 SLICHIKTE # Python nf LA 15 & 16 /NEALAHERREE -
SR AR I DAZEEIAE Python FERAY 7 B S — 3.

3.4 [FIft(E] Python R TTEE) ?

HRFZ A

H—Je2he: FiEFH AT B, FATRE T DATE R (i IRy (ot 70 e e 2 9, T 2 Al ) f 2 TR 6 5K
SR E A . TE R TCAL (tuple) FNERS (list) AHE i S

73— B EZAE Python Hr, FHIRIMT—k [HA ), [EGHEMITE G 8 &M M o E: W
B, 7 Python HBEMEEMATEI B M7 H [eight].

3.5 [ [self] #F5ik (method) 5 $Fa0F0 B —EEHARE(E A ?

HHEARGE Modula-3 T 2. BEERFZREHE, Ml AEZIEHEH .

S, AT AW BL R T 77 (method) S BEf) Ginstance) (I, Tl (AR, EPfE
RAHE (class) FUE 3, WA H) self.x o self.meth (), BEETRNFREHLAIIN R IF L2 T Bl 52
NS , AE Cor (), KA L o (ED B 2 A1 B 3 P2 — {EL7E Python (EIIEIA [ bkt
R DR T TR A S ACHERE . 79 Cot Al Java HOTRRCREASTHS B 55 B (B 4% BN
FIAR m_, DA R W2 3 2 L R AT T

S5, R R AR I M o P s A R A O B R, VRN T R EREYE . AE C++ (B, SRR
REUR — e A S B ol 7 2 G SR s, WAZESEA « ¢ 5T - {H4E Python [B], AR DA IS A
baseclass.methodname (self, <argument list>)., &fF _ init_ () HF¥EEITH, $HEREAE
— {4 R P ) B 0 e B RGBT A Oy Y T R il B

etk , ABRED T BT B R R REVA A DRI (E) el 97E Python @ (e 5E[E) 7E ek X EIREEIR(E
g d (ELEVA DI S 5 A teh) , T DA 352 — (0 0y vk AR e B A ia (R S VRSB T2 ST 38 0 1 4
T S kA B, SEAE RS T I ([T R0%) . C+ B ASRE 75EfFd, {2 Python [Elf, i
(E1 52 M0 s R 1 5 ) 8 45 A o SRS VR 2 . (ELRE I AR se 1€ . var 3t AT AR S 7 1 R IR i e

40 Chapter 3. REFFIERERMESR



Python Frequently Asked Questions, £[F) 3.11.8

[ 2H, A B P B R b R IR se 1 £ . var BRI PR E A AR ELF R OINE
7o [EVA)REED, (a6 duf s ORI B 91 8 A7 A0 WAL AS W) 1) i 4% 25 1] (namespace) , TR 75 2245 #F Python Ll
FEE—

3.6 FHTHAFGEEEH (expression) P {ERIEREH ?

{i¢ Python 3.8 ks, KA LAEEIH 1!
TRURIES U S ES T« = ATEER A IR (A -

while chunk := fp.read(200):
print (chunk)

2 il i PEP 572,

3.7 [F)fa Python #A—ThEEBE{EER A% (1R 2 list.index()), B—
BERAER (=2 len(list)) ?

111 Guido Ff[E):

(—) #—2e@oRkE), WSEEERAE LR — wist (Rhat!) SRR
EAEAEMMES, ST RAENE LR B OB R M A 5 S . AHARAE x*(a+b) iE
AT FERIN x*a + x*b PR, FEECE— Tl 0 AT R Rtk 1 AR S A 1

(Z) EHEDBAEE len(x), Ffoil BRIMRERE. E&FF T RMS-
g R, SRR . HEM, EIED xlen(), FMFLHIE x HFEAEL,
[EIFEE T — RN s AR T —E A B len( BFORAE], JBF])— I FAEWUS (mapping)
HEIE get( 2 keysO 1k, SRR REMEE write() Jy ik, AT e 2GR,

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 [Lid join() BF &R FHEMIESRT (list) HTTH (tuple) 57% ?

H Python 1.6 2 1%, RS ARG HAMENMER BUE), WAEItrE, —Senl DURI-F ER AT Y ok XA AT IR 2 g
IR . RT3, (A — AT 2N BRI :

[u’ ll.join([llvl 121, l4l, '8', '16']) ]

FRE S
["1, 2, 4, 8, 16" ]

A 1A 3 8 R P A

S il

4 BUEEE: [0 (string literal) (SR80 FORACIORAL, WPy, (o oAk
LR (. AT T DA e RO S L, I o S A R AR (T

%

AR B R R [RORAEM PSR E R — M e Gl o . (AR, AR
ARTEE M. FERREER, € split () ST EH kLR, FEEHIN A A S A ) :

["1, 2, 4, 8, 16".split (", ") ]

P

TE TR M — {7 ER SO [ R E R A R EE (BURESIEZE ) i TR i

join () TR L, HEREMMRRHGE, (R@5 T 7 20 B M 5 ep s, [Ef A A
B W2 [ BT R B OT ARAE IR A SR B 1, G046 B SR HTEE]. 7 bytes Al
bytearray Pt A R I T -

3.6. [fIHFHEFEH (expression) PEREREH ? 41


https://peps.python.org/pep-0572/
https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, £(F] 3.11.8

3.9 BIMEEBRAESR?

WERE BIAMEEN , — 1 try/except [ 2 JEH AR . FHE L, SUHBISNEAT & AU 78
Python 2.0 DART, & bR 2 AH 5 LAY -

1252578
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

i A TE IR TEDRHE 18 7 SR 2 BORF A A R e A G 2. A SRERANL, IRIERZ 5T AL

if key in mydict:
value = mydict [key]
else:
value = mydict[key] = getvalue (key)

Byt EIEERE, Rt value = dict.setdefault (key, getvalue (key)), AifaHA
1E getvalue () REANKWIFGEA G, ST AR ST,

3.10 [Ff+El Python [FIEFI# switch 5 case BRiR= ?

In general, structured switch statements execute one block of code when an expression has a particular value or set of
values. Since Python 3.10 one can easily match literal values, or constants within a namespace, with amatch ...

case statement. An older alternative is a sequence of if... elif... elif... else.
URTTREMEAR 2, AR VT DA 7 B 2SR fry e 5. SR 091
functions = {'a': function_1,

'b': function_2,

'c': self.method_1}

func = functions[value]
func ()

EFAIFI Y HEIR i, AR AT AR AR S ki e getattr O SRAUE— PRIl

class MyVisitor:
def visit_a(self):

def dispatch(self, value):

method_name = 'visit ' + str(value)
method = getattr(self, method_name)
method ()

J

FAERAE RSN LR, DOEMEO TRERBR visit_. EE MRS, —HRERAEER
VRAOME, DO AT DABE R A AR S 2 B 75 vk

Imitating switch with fallthrough, as with C’s switch-case-default, is possible, much harder, and less needed.

42 Chapter 3. RFHFIELEEREER



Python Frequently Asked Questions, £[F) 3.11.8

31 EUFREESRR LRERTHE, MECREXRRISERES
= ?

BRE— MRFEH, AT EE Python (X HEEIHE (stack frame) #rif 22— C (HEEIHE. [RIRE, $H7T
EAFR] ABBIRFIEIY Python, [ 5¢ BE A B AR AL JHEE S04 C BT 4K

BE T M, JEHET (Stackless) Python 54 TR s T Hap IR, [k T C .

3.12 [E{T lambda EE X F B S MAR ?

Python [ lambda 38 5 AN g 40 75 BRA 2 P ) Python [ 55 HE S8 4 5 i HRL 0 7038 3 X i B . 4R
i, #£ Python [EE[EIA J& —MF g A0 . AMRAEHADEE 5 H A M 7. 20 §ERY) lambda, Python ) lambda
FUE— RS 2 2 pR R ] i — @F"“ﬁ%‘z@&

PR 482 Python [EIf— 8 {4 (first class objects), i L AT DATE [ 385 &6 8 ()9 5 2 . Rt E— A lambda
T A [ e 1) o =X ) 1 B il 2 R AN T B 2 A — (i bR X BB et & 2 — M Eﬁé“%ﬁ?ﬁ%ﬁiﬁi@iﬁ%
4 (FI1 lambda e X ) 4 R[] ) !

3.13 Python TR EFHEEES. CESHHMEESE?

Cython R DA% s — {16 7 B2 08 A 22 4581 ilﬁ?%ﬂﬁ Python JiAS . Nuitka J&—(H4E ) 4iE 4, 7 PAIE Python 4
SR C++, A B AR IR 52 ¥ Python 355 .

3.14 Python in{g&ERiCERE ?

Python FT {5 #5 7 BR A A1 F BRETRA BU1E . Python AYEZNEEEVECPython {fi i 2 B FHK (reference counting) <A

BIRFRAFE A, B — R AR 4L 2 IR AG B (reference cycle) . & AT O B AR08 430 R 3k

gf( ST A TR ER EERAH B I . oo BATSRML T ol AT B8R . IBUG S AE R g A sl s 2
R

IR, FEHARTLAE (452 Jython 5k PyPy) w, & il (502 A BT e S s A5 R Tl Ml 4 SRARF) Python
RS R B EA 2 BGRB8 (A R e S B LU iU N R A L

15— Python BEffHt, RSB (78 CPython W AIE RSN ) 7TAE v St T (fle descriptor)
I

f = open(file)

for file in very_long_list_of_files:
c = f.read (1)

TR L, (1] CPython (192 IEEHAAIAEHEJT 5 (destructor scheme), 4353 £ 1T HEIRHR & Bl PH AT T T 5Y
?’J.Tﬁf 5 SR AR 23R Bl (GO) YRS, B LU ST G [ HLA T REAR R A4 g ] 42 il £
[EVRH A

AR A BARA AR TETE AL Python BLAERAS sP#fal VAR, HIOAR I8 55 2 1 Bl PHAR S 52 61 with
oA, anst—A, AERIERAE PRI R, Al g R e

with open(file) as f:

for file in very_long_list_of files:
c = f.read (1)

3. EfIFRtE RS LEBRTHE, MEEAERRENEERESR? 43


https://github.com/stackless-dev/stackless/wiki
https://cython.org/
https://www.nuitka.net/
https://www.jython.org
https://www.pypy.org

Python Frequently Asked Questions, £(F] 3.11.8

3.15 [Efa CPython 7<{i FiSE % 18 #0491 35 B e i3 1 ?

—, BEARE CHERMEDIRE, FILMA P EWEIR. (¥, FAIHIE Bochm GC p&UE ., AT i HIA R X
% P AT S PR, RN 4T, MEMEE K2 HeEEN, WERES, ZREEH Python
FHAR I 2 T A — 2e B . )

AR B AE (GC) AE Python i fix A At FIRE2C et a1 — {1 B8 . #E 857 1Y Python F2 3 [E1H 2k ]
PATEAZEHE ) malloc() 11 free() (BB GC R =X EEFLHLAY LM AS s {H—{# 23 Python i ) F R =X T REARLH
B f) malloc() Fll free() E: At M, 1WA J2 A Python fit), PABIFEAKRIE], CPython FIEf{E malloc() I free() )
TR B A -

3.16 & CPython #Res, FHTFFBMRCIEERSHIBI 7

”‘“%EE%J Python Iff, (¢ Python FAH ) 42l iy 44 2 [ AR W (HE AR 2 Er gl Rl (e A TRIRS N IR, 15
RE@ L. A LERiEm R nt C sUHEIBUTRY, AR RERREAL (P14 1572 Purify Z ) T H &4
9[’*) RIMT, Python 7 B A I IRF % € BERE i B I B B Bl E R 1«

WARARAE 2 ENA Python TEREHRLIRRERF IR E RO PY, IRAT AN atexit ML ACHAT G ENHIEIRR Y el
o

3.17 [EMTEIETH (tuple) F0EF (list) 43 5 B FHHEYRE 7

B AN TCALAEAR 2 5 A B AL, (HE A AE S AR )7 . JCAL W PAAE AL Pascal 19 42 [E) (record) B
52 C %5 HE (struct), J&—/NEEAHBABHE A BB A R ZEI SR S, PA—AE A TEE . 226I5R(E,
A T G ARAEE Z ] DA B R A e = AR AL

I3, A E AR HAEE IS (array). AT DA R [ R EEY 0, HEEIEEAE . G200
[, os.listdir ('.") MEHTFHEEMER, NOEFRIPIIFIR. MR T &AEERELE
fHHE, *ﬁﬁ%li‘sﬂ’ﬁz’*%ﬂﬁ At EriEFEEE.

JCHARA WS, R—BICHE, AR eI B A (] — (. mERgarsE, BT RAGR AT
PABCEENE Y TR . AR C R i AREF I 8, BT DA RRHE TCAEL g, T H B LR

3.18 &3l (list) # CPython 2 EIIE EfY ?

CPython (541 (list) FE [ 2 v 882 BE RS (array), A28 Lisp 55 5 M EEFEHE 51 (linked list), EE/E
k, ﬁ%;ﬁlii;ﬁ%ﬂ@%@@ﬁﬁ (reference) [i%1), [EIHEFS ) M 45 () F5 422 (pointer) A 84 FEAEAE 2 41 1)
FEEBH A HE(E

Pt MRTIRAREPIREE a (1] AAERERIONEOE R T ME MR .

HORTIRORTI SR AR, [ RN [E TR 2 U A I RCE, &1Fﬁﬁ)ﬂ~ﬁblﬁﬁ'ﬂﬁﬁ
iR, EBESVAHEE KRS, 2R RN ), BT AU R A T R N T

44 Chapter 3. RFHFIELEEREER



Python Frequently Asked Questions, £[F) 3.11.8

3.19 5t (dictionaries) £ CPython h 2 E([FIE {ElY ?

CPython {47 St I m] 8 K/ AEE]R (hash table) FEAFRY . LR B i (B-tree), 7Ei¥ad (HAIEIILAH
SLIEAE) A B R, B L hmEIf .

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function.
The hash code varies widely depending on the key and a per-process seed; for example, "Python” could hash to -
539294296 while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then
used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing keys that
all have different hash values, this means that dictionaries take constant time -- O(1), in Big-O notation -- to retrieve
a key.

3.20 [FEFRER—FRTTEE ?

PR UL AR R IR (GRS M 4R B S o SR TSRS, MRy T PARICSE , HIE)
AE AL B — A B . (DGR i N TSR B T 2R B T SR B, BT DASE R IS I T ()25
%, EIRERETFIh S E Y, EEEEEA RSN, AR iR
AR, R, HEMmAEESI AR AR .

WA AR SR I EE ) RG], EAEE ST . tuple (1) B @@ — A L —FK(E
ZRMCAL. MCALRAN AT SRR, T DA AT DA AR 7 i i o o

WA NS —EOR R R TR

o HERFIEAGIRLE (Prfk i) AGRE. B R, IERS A R R R S — (AR e
BHATIN. BHID:

mydict = {[1, 2]: '12'"}
print (mydict[[1, 21])

EAF I KeyError B4k, W (1, 2] B id EH—ATAE AT2ARK . EGEE, 5
FEMERZ N == AL, AN is,

» BE—ERIERR. E—tr e, HERFGZEE, Ml acrsm, irARE e
TR — A a5 EE

o RFFEIIEERRE, (A& AEEE M., WARA/ NGBS ER) T iEMEs, GEd
PLEEIRY bug, Al fH] R HEE T — ﬁ%ﬁ%i%mw TE d.keys () FORFEEHS AT DA B L1
38

o EER B B, MR B R . B N LR 0 R, kAR T
A A R G AR ED G AT — (R GRS A0 MU B T DA ) 1 T A e A L ot
BB —K, 2R E O e g EE.

AR EE RS L-ﬁ@¢&ETM%% {HEE A SRS RA A — @T“%#@%ﬁ~@ﬁ
_eq__ () Ml _hash__ () riEmEIE . ELE@%%#&@EW S (BULMRLISHE) o
w%%ﬁﬁmﬁ%ﬁ(ﬁﬁmmﬁﬂﬂﬁﬁm%ﬁ)*mﬁ%%ﬂﬁ@%ﬁﬂﬁo

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def _ _eqg (self, other):
return self.the_list == other.the_list

def _ hash_ (self):
1l = self.the_list
result = 98767 - len(l) *555
for i, el in enumerate(l) :
try:
(BT —F)

3.19. =8 (dictionaries) #£ CPython f 2 ELEERY ? 45




Python Frequently Asked Questions, £(F] 3.11.8

(L —5)
result = result + (hash(el) % 9999999) * 1001 + 1
except Exception:
result = (result % 7777777) + i * 333
return result

A, MErE AT R R, HEA R E AN W] AR E] (unhashable) IR (7 1) T BETE o

WAk, NEYIRGEFHT, MR ol == 02 (Blol._eq_ (02) is True), H]hash(ol) ==
hash (02) (Blol.__hash_ () == o02.__hash__()), SEFFELHEENT . QIR L EHER
il R s A A ) A (I 6 A 45 W o B S TE 3 i AT .

7% ListWrapper, W 205E (60 5658 9 (45 oo, (ETIE 9 HR 91 500 RE RIC8 DABE S AN IE 35 A 77 88 2
B AR O AR USSR AR TR AN R R PO BER , AR A 2B, @ BT

3.21 [Elfd list.sort() A EESHEFBRIR T ?

FEESRIEE T, EBFIEE—GA LR E. ik, list.sort () HEAERIIEMHDT. [ET4HR
BEPRIE(ES, Al (HE PR 51 B b2, EIRT ZHE AR B Fp o, A
BRI/ O S

TSR AR AR A R BT 51, T AR [EEEAY sorted () o b AR AEAY WTIEUR A (iterable) ACHEF
HSLHERS, Bz G, AR E & ER s 7 E e g

for key in sorted (mydict) :
# do whatever with mydict [key]. ..

3.22 3n{a7E Python chig & F0(L)HI {3 Fl — {8 4+ @M € (interface spec) ?

g2 C++ Fl Java S55E S HE 0L TRUHAG N IORLRE, (A T REBAL R BN R A, 2 AR ELEHE
T A I E BT A /T AR A R TR s A R B

Python 2.6 Ml A T abc BL#H, ZARTAT DA E %4 % KIS [E) (Abstract Base Class, ABC). A& DA fii
fl isinstance () Ml issubclass () HCHE RS — {0 B ] ol 2 8 E 2 6 B AR 7 3 00 5 2R (.
M collections.abc BALEFR T — &5 T H W4 H)KEE), %2 Iterable, Container
MutableMapping,

#f Python ZE[E], 271 R (BT DA SO0 3 1 AR A A2 21

— 1 St AL 1 WRUE F PR AL 1 0] BRI (regression testing),  [EWREIERLAL /Y I LB AT —ALAED. 72
Python LA 1 A3 EI A BT, (EHROEA By [ 3 3R] RIMERLAL AT TR SR, gk
SRAT A MR YT A T B T4 ] (stub) BEBEACH S IR, doctest Fl unittest BEAHEEE =Jr iy HIlt
HEZR T DA 2 At A AU 1 B Sl R AR A (D A

An appropriate testing discipline can help build large complex applications in Python as well as having interface
specifications would. In fact, it can be better because an interface specification cannot test certain properties of a
program. For example, the 1ist .append () method is expected to add new elements to the end of some internal
list; an interface specification cannot test that your 1ist . append () implementation will actually do this correctly,
but it’s trivial to check this property in a test suite.

R HAECE AR D, AR e R BRI ER AFRUR bR T HIBUHEE) B %% (test-driven develop-
ment) J&—{HHAGBSZ B R Rt 7 ik, M EERSeTe R RRErE, MR BE RN Z . &
X Python L AR FF AR AR HIA T AL A HIR

46 Chapter 3. REFFIERERMESR



Python Frequently Asked Questions, £[F) 3.11.8

3.23 [Fl{a[E}#F goto &% ?

TE 1970 4548, AAM T f# 2 [EG PR il goto ErEiEuR AL . i ABRFAME YY) [ 2RI #2085 (“spaghetti”
code). TEFMFEFE, EHRAFEY, HEA LT AGET 52 (PA Python 2R[E], i it BidzCAl
or., and } if-else i 5L) FEIE (Jf] while fl for AR, WHEE A continue fll break).

P mT AR B AR ARAL [ 45 ARG goto ], B EZE AT DAFS pR =Ny . 1R 22 N5 4 n] DA 5 (8 A3 £
C. Fortran F1HAhEE S ERHE AP HA [gol F1 [gotol, filtn:

class label (Exception): pass # declare a label

try:
if condition: raise label () # goto label

except label: # where to goto
pass

ERARRERIRBEEIEE), EE% I E 2 oto M. F/NOMEH .

3.24 [CHast=r e (r-string) FEELAR G ?

SORSHEHRED, AR AE ARSI SR EI &5 2 - R o AR T 38 ) S e E) 6 S 5% 2 195 | R ISR (escapes), 4
J— R AR AT A 7 H

ki R T ARG ] © S AHE S B I (ERLRIEERRA) — (7 AT
SRR IR 10 45 P S AHER MOt PFDASEF A ALAF A B, S 0Ac T — A AHED
B B TSI 1 A PTIREY F 0L IE RO

AR AR E B Y. Windows [BRAEA A, #HTERE Windows ROz — At

[f = open ("/mydir/file.txt") # works fine! }

WEARARE L DOS $8 9 M BAE ARG, ilHlA (1 A A il -

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

3.25 [Fi{q] Python [FH B EK{EAY with BRiRZ ?

Pytho;i i1 with BOAR e T — B AT, M AFIBE R e B A TR NS . — 2 E g iam
——F E/\Jml:l )F% :

with obj: }

a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

{HAE Python, 18 T &5 W2 A

FEHAFEFIE, 132 Object Pascal, Delphi FiIl C++, (i 2 EIRERUE], iy AT A nT DATE A b i 2 Wi —
T B IR . &2 EIAE I SR TE AW RO, A A L FRR 8 A (8 2 U A7 T (scope)
Python {8 F i1 2 By AEAUE] . IF AFRAM AN AT R4 1 R0 A0 A T IR O 0 B A B B P 2 o 5B T EAE L
FYRFOEDIPE P ORI BRS I o 8 BEAS AR R BEACR A0 , FRAPI SR AS 0 AT VAR 8 1k i ) - [l
. BRI EE L

3.23. [Efg[E)# goto &% ? 47



Python Frequently Asked Questions, £(F] 3.11.8

PAF B 56 B R [ 491 -

def foo(a):
with a:
print (x)

|

E B ARG Tal A—Mm [x] @RRJEYE. AR4%, Python EIEIEM (LIRS B 1 .
TEGE [al Je—ABEBuh, R Ergs B AHES? W — (R 2 E MmE] [x1, ARAEE M with [ &9
BEAING? nfRRT L, Python B fB Y R o151 TSR 458 50 IR 4

SR, with BOAKERIRE R (B DR ) 9 T2 2 g T A IR AR I . AR BT

21
42
63

function (args) .mydict [index] [index] .a
function (args) .mydict [index] [index] .b
function (args) .mydict [index] [index] .c

|

JERZ R IE R

ref = function(args) .mydict[index] [index]
ref.a 21
ref.b 42
ref.c = 63

EWARTIHUTHE R R, FIE Python )4 REAE AT E{EBUTRYRFIREE L, T2 U R ZEMAT
fEAT— U R

3.26 EHT[FI4 28 (generator) R E with BEART ?

WA B AT, HEEVAE 28 B RS BE (context) 45 P38 & MEyAIE#EAFE. RIEEH R E), BA:-#82 0%
B R (terator) , B 55 58 WU N T5 B4 - B BAPH . (HANSRARTE B EE, VRV LATE with iz = [ET
[ contextlib.closing(generator) | 3¢ 0 #E .

3.27 [FMa if. while. def. class fiRX FDIEEF5E ?

FEEPE T RE TR (fh ABC 5EFAVEBRISHA) . AR #if):

if a == Db
print (a)

PAL:

if a == Db:
print (a)

|

VERREE A0 RSB Al —Se iy s R . WTDASE e — B, — {8 552 Al e (A FAQ &1 il 1 (I
i, & PR SESCHIIA

T3 —fA/INE R 1 S8 O A A S A, MR B R A T AR E R R R 2
A, TS B0 2 S ERS R i RE USRI .

48 Chapter 3. REFFIERERMESR



Python Frequently Asked Questions, £[F) 3.11.8

3.28 [Elfq Python 5t B 7£ 5B 5 F0 Tl K i hn_LiE5% ?

Python FRFFARTEERSY . JTALAI S B &5 R m HaZ 9k -

(i, 2, 3,1
("a', "%, "e@",)
d = {
'a": [1, 51,
"B": [6, 7], # last trailing comma is optional but good style

EA 2 R A ATET -

WAREALERS) ST ER AT, SRR e R TR R ED F,  EWRAN AR —
Frim a2 5%, BALTIE R AR, A S GRS

A/l TR e RO A B B, Bl

x = [
"fee",
"fiell
"foo",
"fumll

]

B IERAAVIEITE, EAHE G = [feel. [fiefoo . [fuml. JkiEFefamN_LiZgEDARfE
TEERR .

FURFAE AL SR ML A R R A 5 [E A

3.28. [Efg Python 5t RF7ESR5IF0 T4l Kk h_EE 5% ? 49



Python Frequently Asked Questions, £(F] 3.11.8

50

Chapter 3. BEIHFIERERHZHE



cHAPTER 4

v

R EMRE TR E REE

Ry

4.1 EREAXHE

4.1.1 How do | find a module or application to perform task X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you'll learn what’s in
the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another web search engine. Searching
for "Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 BREIST L% F] math.py (socket.py, regex.py, Z...) KiEHEE ?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule. c,
somewhere in a C source directory (not on the Python Path).

A (%) =ff Python gl
1) DA Python % %5 FRLAL (.py)s
2) H CgismIE ek A R4l (dll. pyd. so. sl %F);
3) M C sy [FIBE B an gl e (A ;. A5 L list, FHEA

import sys
print (sys.builtin_module_names)

51


https://pypi.org
https://www.google.com

Python Frequently Asked Questions, £(F] 3.11.8

4.1.3 FHin{a{E Python script #1177 Unix ?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed
by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

[#l/usr/local/bin/python }

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program.
Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

[#J/usr/bin/enV'python }

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at
all. In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nww.n

exec python $0 1+"s@"

The minor disadvantage is that this defines the script’s __doc___ string. However, you can fix that by adding

[77doc77 = """ . .Whatever...""" }

4.1.4 2&EHEHAK Python B4 curses/termcap E4 ?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution -- there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV
curses such as colour, alternative character set support, pads, and mouse support. This means the module isn’t com-
patible with operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes
that fall into this category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

[handler(signum, frame) }

so it should be declared with two parameters:

def handler (signum, frame) : J

52 Chapter 4. FHXEFIRFEEEMTERRE


https://github.com/python/cpython/tree/3.11/Modules

Python Frequently Asked Questions, £[F) 3.11.8

4.2 mRRE

4.2.1 3fAIE Python =Tt ?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module
and runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods -- and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore
the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The ”global main logic” of your program may be as simple as

if name == "__main_ ":

main_logic ()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of function and class behaviours, you should write test
functions that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each
module. This sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make
coding much more pleasant and fun by writing your test functions in parallel with the “production code”, since this
makes it easy to find bugs and even design flaws earlier.

”Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name_ == "__main_ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavail-
able by using “fake” interfaces implemented in Python.

4.2.2 How do | create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating
API documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large
module to learn.

4.3 #ITH#E

4.3.1 IEAEAMTHRERER ?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

42. #REE 53


https://epydoc.sourceforge.net/
https://www.sphinx-doc.org

Python Frequently Asked Questions, £(F] 3.11.8

4.3.2 FHPITHMFBOFET: DD ?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads
no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task (name, n):
for i in range(n):
print (name, 1)

for i in range (10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10) # <——————————————————————————— f

J

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The
reason is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep(0.001) # <—— !
for i in range(n):
print (name, 1i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10)

J

Instead of trying to guess a good delay value for time . sleep (), it’s better to use some kind of semaphore mech-
anism. One idea is to use the queue module to create a queue object, let each thread append a token to the queue
when it finishes, and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do | parcel out work among a bunch of worker threads?

The easiest way is to use the concurrent . futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a . put (ob3j)
method that adds items to the queue and a . get () method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

# The worker thread gets jobs off the queue. When the queue is empty, it
# assumes there will be no more work and exits.
# (Realistically workers will run until terminated.)
def worker () :
print ('Running worker')
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except queue.Empty:

€ & A}

54 Chapter 4. FHXEFIRFEEEMTERRE



Python Frequently Asked Questions, £[F) 3.11.8

(B E—H)
print ('Worker', threading.current_thread(), end='" ")
print ('queue empty')
break
else:
print ('Worker', threading.current_thread(), end='" ")
print ('running with argument', argqg)
time.sleep(0.5)

# Create queue
g = queue.Queue ()

# Start a pool of 5 workers

for i in range(5):
t = threading.Thread(target=worker, name='worker "% (i+1))
t.start ()

# Begin adding work to the queue
for i in range (50):
g.put (1)

# Give threads time to run
print ('Main thread sleeping')
time.sleep (5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument O
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be
set via sys.setswitchinterval (). Each bytecode instruction and therefore all the C implementation code
reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that "look atomic”
really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append (x)
L1.extend (L2)
x = L[1]

x = L.pop ()

€ & A}

4.3. BITHE 55




Python Frequently Asked Questions, £(F] 3.11.8

(L —5)
L1[i:j] = L2
L.sort ()
X =Yy
x.field =y
D[x] =y
D1.update (D2)
D.keys ()

These aren’t:

i =i+l
L.append (L[-11])
L[i] = L[3]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__ () method when their reference
count reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists.
‘When in doubt, use a mutex!

435 FREBIL S EEREE 7

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor
server machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that
(almost) all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the "free threading”
patches) that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar ex-
periment in his python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread
performance (at least 30% slower), due to the amount of fine-grained locking necessary to compensate for the removal
of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative
with dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor
class in the new concurrent . futures module provides an easy way of doing so; the multiprocessing
module provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done.
Some standard library modules such as z1ib and hashlib already do this.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then
wouldn’t be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount
of work, because many object implementations currently have global state. For example, small integers and short
strings are cached; these caches would have to be moved to the interpreter state. Other object types have their own
free list; these free lists would have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is
likely that 3rd party extensions are being written at a faster rate than you can convert them to store all their global
state in the interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each inter-
preter in a separate process?

56 Chapter 4. FHXEFIRFEEEMTERRE



https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, £[F) 3.11.8

4.4 WA B

4.4.1 IR ER ? (IR H tpiERME...)

Use os.remove (filename) or os.unlink (filename) ; for documentation, see the os module. The two
functions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir (); use os.mkdir () to create one. os.makedirs (path) will cre-
ate any intermediate directories in path that don’t exist. os.removedirs (path) will remove intermediate
directories as long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.
rmtree ().

WEFMAIEZ, 35 os.rename (0ld_path, new_path),

To truncate a file, open it using £ = open (filename, "rb+"),and use f.truncate (offset); offset
defaults to the current seek position. There’s also os. ftruncate (fd, offset) for files opened with os.
open (), where fd is the file descriptor (a small integer).

The shut il module also contains a number of functions to work on files including copyfile (), copytree (),
and rmtree ().

4.4.2 nfaEEHER ?

The shutil module contains a copyfile () function. Note that on Windows NTES volumes, it does not copy
alternate data streams nor resource forks on macOS HFS+ volumes, though both are now rarely used. It also doesn’t
copy file permissions and metadata, though using shutil.copy?2 () instead will preserve most (though not all) of
it.

4.4.3 IMEREEER (MWEBA) ZEMHIEH ?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string
containing binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
X, y, z = struct.unpack(">hhl", s)

The *>’ in the format string forces big-endian data; the letter *h’ reads one “short integer” (2 bytes), and I’ reads one
”long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

#iE):  To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to
open () ). If you use "r" instead (the default), the file will be open in text mode and f . read () will return str
objects rather than bytes objects.

44. ENBRKH 57


https://en.wikipedia.org/wiki/NTFS#Alternate_data_stream_(ADS)
https://en.wikipedia.org/wiki/Resource_fork

Python Frequently Asked Questions, £(F] 3.11.8

4.4.4 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is alow-level function which takes a file descriptor, a small integer representing the opened file. os.
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read n
bytes from a pipe p created with os . popen (), you need to use p.read (n).

4.4.5 INfEIHFERFFS| (RS232) EiR 7

¥ Win32, OSX. Linux, BSD. Jython, IronPython:
https://pypi.org/project/pyserial/

#it Unix, 7522 Mitch Chapman [#] Usenet A5 3 :
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open () function, £.close () marks the Python file
object as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This
also happens automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by
C. Running sys.stdout.close () marks the Python-level file object as being closed, but does not close the
associated C file descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to
do (e.g., you may confuse extension modules trying to do I/O). If it is, use os.close ():

os.close(stdin.fileno())
os.close (stdout.fileno())
os.close (stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 §8i& (Network)/fBIE{#8E% (Internet) 25

4.5.1 Python Hjj& WWW T R ?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/
WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at https://web.archive.org/web/
202102241836 19/http://phaseit.net/claird/comp.lang.python/web_python.

58 Chapter 4. FHXEFIRFEEEMTERRE


https://pypi.org/project/pyserial/
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com
https://wiki.python.org/moin/WebProgramming
https://wiki.python.org/moin/WebProgramming
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, £[F) 3.11.8

4.5.2 n{gEHE CGl RE % (submission) (METHOD=POST) ?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do
this easily?

i), iER M urllib. request [ FHH:

#!/usr/local/bin/python
import urllib.request

# build the query string
gs = "First=Josephine&MI=Q&Last=Public"

# connect and send the server a path
req = urllib.request.urlopen ('http://www.some-server.out—there'
'/cgi-bin/some-cgi-script', data=gs)
with req:
msg, hdrs = reqg.read(), reg.info()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode (). For example, to send name=Guy Steele, Jr.:

>>> import urllib.parse
>>> urllib.parse.urlencode ({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr."'

%
urllib-howto [EJ4 S i) .

4.5.3 FFEE% (A DIRHERE@EIE4E HTML ?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 fn{a4 Python F)A 53X Ei {4 ?
i A ME PR B smtplib,

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input ("From: ")
toaddrs = input ("To: ").split(',")
print ("Enter message, end with ~D:")
msg = "'
while True:

line = sys.stdin.readline()

if not line:

break

msg += line

# The actual mail send

server = smtplib.SMTP ('localhost"')
server.sendmail (fromaddr, toaddrs, msg)
server.quit ()

4.5. #i% (Network)/#@E{#8EE (Internet) X 59



https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, £(F] 3.11.8

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it
is /usr/1lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out.
Here’s some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
p = os.popen (" -t -i" % SENDMAIL, "w")
p.write("To: receiverQRexample.com\n")
p.write ("Subject: test\n")
p.write ("\n") # blank line separating headers from body
P "Some text\n")
.write ("some more text\n")
sts = p.close()
if sts != 0:
print ("Sendmail exit status", sts)

.write

e}

4.5.5 How do | avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect (), you will either connect immediately (unlikely) or get an exception that contains the error number as
.errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different
OSes will return different values, so you're going to have to check what’s returned on your system.

You can use the connect_ex () method to avoid creating an exception. It will just return the errno value. To poll,
you can call connect_ex () again later -- 0 or errno.EISCONN indicate that youre connected -- or you can
pass this socket to select.select () to check if it’s writable.

ffilE): asyncio BUAHARML T —fHE M iy BT Et AR L s AR, w7 R A s I H ZE A B A RS . 6
=77 Twisted bR U HE— MR RAT HIN eSS & R A5 %

4.6 EEE
4.6.1 Are there any interfaces to database packages in Python?

Ao

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is also the
sqglite3 module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files,
sockets or windows), and the she 1 ve library module uses pickle and (g)dbm to create persistent mappings containing
arbitrary Python objects.

60 Chapter 4. FHXEFIRFEEEMTERRE


https://twisted.org/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, £[F) 3.11.8

4.7 HBFE(E

4.7.1 {7 Python ch: R s 8y ?
BEMERAL random FEME T — M BEMEMCE iR . ARG

import random
random.random ()

TE I IELEE [0, 1) A P (E v B A 7
AL TR 2 A N A s, Bl
* randrange (a, b) G [a, b) FREEW—HEE.
* uniform(a, b) G [a, b) FEEEWFEH.
* normalvariate (mean, sdev) ¥RE (i) 2 EHEATERE (sample).
— ST B R U B A TR, Bl
* choice (S) Gt E/Fo hugkie—EETR.
e shuffle (L) € JFHb (in-place) $THL list, BPREHEHEST .
HAH— M Random KHE], ARWT DA B 514k DA ST 2 (08 7 1) BE A AL s «

4.7. BBEFRE

61



Python Frequently Asked Questions, £(F] 3.11.8

62

Chapter 4. FHXEFIRFEEEMTERRE



CHAPTER D

BR/BANERBES

5.1 FKETLITE C hEITB IR ?

KM, RATATE C @A &kt 0 Bl EE S BB [E@HSA, extending-index SCA4 A A B E)
g

RZ Wb A el Y Python 2548 th &5 18 16 12

5.2 FZOTLITE C++ REIIHCHIEAE 7

Yes, using the C compatibility features found in C++. Place extern "C" { ... } around the Python include
files and put extern "C" before each function that is going to be called by the Python interpreter. Global or static
C++ objects with constructors are probably not a good idea.

53 B CRH: ERFHMEER?

LHRARE O C AR 2B AL, MERET I A8 ERAEE A

Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the cor-
responding C code. Cython and Pyrex make it possible to write an extension without having to learn Python’s C
APL

If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping
the library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for
wrapping C++ libraries.

63


https://cython.org
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://www.swig.org
https://github.com/Python-SIP/sip
https://cxx.sourceforge.net/
https://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, £(F] 3.11.8

5.4 wnfast C #ITERE Python Rikx ?

The highest-level function to do this is PyRun_SimpleString () which takes a single string argument to be
executed in the context of the module _ _main__ and returns O for success and —1 when an exception oc-
curred (including SyntaxError). If you want more control, use PyRun_String(); see the source for
PyRun_SimpleString () in Python/pythonrun.c.

5.5 How can | evaluate an arbitrary Python expression from C?

Call the function PyRun_String () from the previous question with the start symbol Py_eval_input; it parses
an expression, evaluates it and returns its value.

5.6 wnfay#¢ Python H{pigE C {H ?

That depends on the object’s type. If it’s a tuple, PyTuple_Size () returnsitslengthand PyTuple_GetItem ()
returns the item at a specified index. Lists have similar functions, PyList_Size () and PyList_GetItem().

For bytes, PyBytes_Size () returnsits length and PyBytes_AsStringAndSize () provides a pointer to its
value and its length. Note that Python bytes objects may contain null bytes so C’s strlen () should not be used.

R RE), HERRE AR NULL, AREFMA PyBytes_Check (). PyTuple_Check ().
PyList_Check () ZER=.

There is also a high-level API to Python objects which is provided by the so-called ’abstract’ interface -- read
Include/abstract.h for further details. It allows interfacing with any kind of Python sequence using calls
like PySequence_Length (), PySequence_GetItem (), etc. as well as many other useful protocols such
as numbers (PyNumber_Index () etal.) and mappings in the PyMapping APIs.

5.7 wnfafE A Py_BuildValue() Bi{ER & ERIITH ?

B IR . T PyTuple_Pack () .

5.8 nfat C Mm% ?

The PyObject_CallMethod () function can be used to call an arbitrary method of an object. The parameters
are the object, the name of the method to call, a format string like that used with Py_Buildvalue (), and the
argument values:

PyObject *
PyObject_CallMethod (PyObject *object, const char *method_name,
const char *arg_format, ...);

This works for any object that has methods -- whether built-in or user-defined. You are responsible for eventually
Py_DECREF () ’ing the return value.

B, AT 10, 0 FEIREZRY PR seek” Tk (RSUEEYHEIEEDE) -

res = PyObject_CallMethod(f, "seek", "(ii)", 10, O0);
if (res == NULL) {

. an exception occurred ...
I3

else {

(HERET—TD

64 Chapter 5. FEHRANE RHEEE



Python Frequently Asked Questions, £[F) 3.11.8

Py_DECREF (res) ;

(R L —5)

Note that since PyObject_CallObject () always wants a tuple for the argument list, to call a function without

arguments, pass ”()” for the format, and to call a function with one argument, surround the argument in parentheses,
e.g. ”(1)”.

5.9 Fin{aiEE PyErr_Print() By (S{ETENLH B stdout/stderr B

In Python code, define an object that supports the write () method. Assign this object to sys.stdout and

Rim)?

sys.stderr. Call print_error, or just allow the standard traceback mechanism to work. Then, the output will go
wherever your write () method sends it.

BB IR S o, stringTo HH(E):

>>>
>>>
>>>
>>>
>>>
foo
hell

import io, sys

sys.stdout = io0.StringIO()
print ('foo')

print ('hello world!")

sys.stderr.write(sys.stdout.getvalue())

o world!

A custom object to do the same would look like this:

>>>
>>>

>>>
>>>
>>>
>>>
>>>
foo
hell

import io, sys

class StdoutCatcher (io.TextIOBase) :

def _ init_ (self):
self.data = []

def write(self, stuff):
self.data.append(stuff)

import sys

sys.stdout = StdoutCatcher ()
print ('foo')

print ('hello world!")

sys.stderr.write(''.join(sys.stdout.data))

o world!

5.10 wnfar#it C =E A Python (R B AYIEHE 7

You can get a pointer to the module object as follows:

[modu

le = PyImport_ImportModule ("<modulename>") ;

)

If the module hasn’t been imported yet (i.e. it is not yet present in sys.modules), this initializes the module;

otherwise it simply returns the value of sys.modules["<modulename>"].

Note that it doesn’t enter the

module into any namespace -- it only ensures it has been initialized and is stored in sys.modules.

You can then access the module’s attributes (i.e. any name defined in the module) as follows:

[attr

= PyObject_GetAttrString (module,

"<attrname>") ;

Calling PyObject_SetAttrString () to assign to variables in the module also works.

5.9. Fin{aiEE PyErr_Print() B9 (SR{ETENH B stdout/stderr B TH) ? 65



Python Frequently Asked Questions, £(F] 3.11.8

5.11 How do | interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually, begin by reading the "Extending
and Embedding” document. Realize that for the Python run-time system, there isn’t a whole lot of difference between
C and C++ -- so the strategy of building a new Python type around a C structure (pointer) type will also work for
C++ objects.

i C+ i JdE, FESE S CRHE; A LR

5.12 HEALEIERHET —@EE#E, {8 make k7T [EMHE?

Setup must end in a newline, if there is no newline there, the build process fails. (Fixing this requires some ugly shell
script hackery, and this bug is so minor that it doesn’t seem worth the effort.)

5.13 N EIE ST EHpRE ?

When using GDB with dynamically loaded extensions, you can’t set a breakpoint in your extension until your extension
is loaded.

In your . gdbinit file (or interactively), add the command:

[br _PyImport_LoadDynamicModule

IRI%, HRIEST GDB I :

$ gdb /local/bin/python
gdb) run myscript.py

gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

5.14 FABHEFEH Linux Rk LiRZE—(@ Python £, {BEH/D—L4E
£. EHE?

Most packaged versions of Python don’t include the /usr/1ib/python2.x/config/ directory, which con-
tains various files required for compiling Python extensions.

1t Red Hat I, %% python-devel RPM AHCHUGIL BRI 5 -
#J5* Debian, J#4fT apt—-get install python-dev,

5.15 fnfait [ EP@|A | ESH [REEEAN]?

Sometimes you want to emulate the Python interactive interpreter’s behavior, where it gives you a continuation prompt
when the input is incomplete (e.g. you typed the start of an ”if” statement or you didn’t close your parentheses or
triple string quotes), but it gives you a syntax error message immediately when the input is invalid.

7E Python 1, ARATPAMHE codeop AR, & FEAMEHE TN & (parser) 1947(E]. 142 IDLE A 1 E .

The easiest way to do it in C is to call PyRun_InteractiveLoop () (perhaps in a separate thread) and let
the Python interpreter handle the input for you. You can also set the PyOS_ReadlineFunctionPointer ()
to point at your custom input function. See Modules/readline.c and Parser/myreadline. c for more
hints.

66 Chapter 5. FE/MBAFERFEER



Python Frequently Asked Questions, £[F) 3.11.8

5.16 Tk FIRFEFEE) g++ 5% _ builtin_new 8  pure_virtual ?

To dynamically load g++ extension modules, you must recompile Python, relink it using g++ (change LINKCC in the
Python Modules Makefile), and link your extension module using g++ (e.g., g++ —-shared -o mymodule.so
mymodule. o).

5.17 Can | create an object class with some methods implemented
in C and others in Python (e.g. through inheritance)?

), R AEARET ], f4n int, list, dict %,

Boost Python (K z(BE (BPL, https://www.boost.org/libs/python/doc/index.html) ML T —F{E C++ FATIL R
TEM % (BIARATDAGE I BPL SR C++ Siss 4% e 1)) .

5.16. N4k BIkEFHEAY g++ FF5E _ builtin_new 5 __pure_virtual ? 67


https://www.boost.org/libs/python/doc/index.html

Python Frequently Asked Questions, £(F] 3.11.8

68

Chapter 5. fFE/HAEREER



CHAPTER O

7 Windows {& A Python i RS & &

6.1 I{T7E Windows {E% % #(F5E{T Python 12X ?

T A PR B R T A B A . WCRARASH A [ 4R Fot) UTREst, IbiE SRR ENA g 2 AHE)
e ASRRR, IR AT T

BRARR G AR S PR EEERN, MIRIRAOI G ERTaE [ ar SR 7ol | 475 # O\ Windows fiy
Lo T, RATPAER A P S omd HCHNLERAELE . (RERZREEIR I T R E R
PIEIRIF S Windows [y 4R T o), BillHARABGENK:

[C:\> }
PR REA—B, HAmE e fER A HALEZE, HIRT e &R A5 & B LIA T A S

[D:\YourName\Projects\Python> }

B ER R BE IS A e i B, DA SR B3 38 B I ) A B . — BURIEE) s b — MBI A, (st Rt
"] PAJEAT Python F23 T

YRFFE T, AR Python [E1AA 78 % 5 —EABE] Python A 3% B iR/ P AR L. H s iU mEAs,
o H A AL TS, SRR IAT R LTS DAEAT AR RE s TR, ARSI e £ HE R 08 2 R B AR 1Y
Python g7

5, WFREHECRR ) UL G B py” B DB E A8 2. WRARC A BHE— R S5
MRz A 4 py [EHE T return 8 :

[C:\Users\YourName> Py }

R1% . IRIERZE BT T 7 -

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)].
—on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

PREREEIE RS T EEEC] . SR IREEEA B8 7y im A Python AN SGERA X, E7ESR
RERATEGE B M. 52 Python SEIRININEEZ —. BAMRITEN R MEAXEAEE R, WTLAMRSRIL
ifig:

69



Python Frequently Asked Questions, £(F] 3.11.8

>>> print ("Hello")
Hello

>>> "Hello" * 3
'HelloHelloHello'

w2 Nt B AEE Dy (8 EU AT o PR s A R . A R ARG R G B) 5K Python 33% , I exit ()
PR AR ctrl A 2, AMEI P Enter” S#PAIR[H] Windows iy 52787 IC.

PRVTREIE S 3 B — IR ThRERIEE , 42 M4 » i 42X » Python 3.x » Python (#447), BF
PARE— R R R >>> JORTI0. WRREN, S EMAERIEN exit () RABMEA ctrl-2
FIUEI A Windows TEAEREIR 0 B A T B [python] iy, [EEIRA 1L ERERS IS HLBAPA .
BAERMAIE py > CHERE, MARAT DAKRIY Python [EIASR 4G E . /Rl ZH(E] Python [E)A 4 7@ )3
AR BT3B AE . B ARAY Python [EIARGA st |, ElghmAE hello.py, HARMAQIERTICIER
(¥ HE) (home directory) HIEF i BHE), AREIfRt & & FIBUBIA T iEZ -

[C:\Users\YourName>

L, BUEARIEREA oy I EEARES, A6 py fr M RigE 4 14 Python:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 #nfa{E Python EIATILLEATT 7

1£ Windows I, fZE) Python 224 RE 30BN py R 44 S AR 22452 (Python.File) 47T BW, [EIER%AE
ZRE R R —(E B A A R T H 2% (D: \Program Files\Python\python.exe "$1" $*), &
JEDAHIE)AR 5B A B foo.py” FTE A IE Ay SR FICHA T AR R 7 2 R B oy A foo” ACEATEIAR
AN LR 2, RIFRZ5 . py $ihh 2 PATHEXT S35 # .

6.3 [[Ift(E] Python HFRFJREELRIFFMHA GERMLE ?

i@ # Python 7f Windows b [EIEj15AER M, EEH &AL, [F%2 Python AT EMRE
ISR A REIEVE) . B TS N B, Python 7 HAth Windows F &% E W AT T, MARLE R %
DLT- A A [R]  BCE

e M1 R AT R 2 0 R ) R A A R L BB R DT ARG . I R R e A 5
1EE ML B E B K B AR RS BT A SO, &g | Am R B D8 &l . SulEmasis b
WO TR T RO, DARECR B 1M A IC B REECA ] . 3 McAfee 0 B [EHR BT A AR 5 R U0 REIUS )
I, Bl E N ERE .

6.4 wnfa# Python [EIARFETT#ITIE ?

=% 2 [F|[How can I create a stand-alone binary from a Python script?s% 2 i 7]t T RN EWERT A4 p0 T B3

=]

=3

70 Chapter 6. 7£ Windows {#F Python B9 REZ&E



Python Frequently Asked Questions, £[F) 3.11.8

6.5 *.pyd {§2 % H DLL #HE] ?

B, pyd BEBULUR A, At 2@ E, RRE 4 ([E foo.pyd [ DLL, HI'E %2 HA KX
PyInit_foo (). #EEARAPAKS import foo” £5 A Python [ElZ%, Python ¢ €% 28 foo.pyd (DA} foo.py.
foo.pyc) , NS Python 0 E|'E, A& EHITN PyInit_foo () A EWIIHI. VRERSE IR .exe B
foo.lib %k (link). [HF)RE €r8%L Windows B3k DLL (U 777E .

fn AL, foo.pyd 18 27 p& {5 2 PYTHONPATH, Hi Windows J{] A48 27 foo.dll fERFE AR . 14k, foo.pyd
RA LM, AT ISR B T8 dll, U3 L 0. A48, Wi
¥ import foo, foo.pyd 52 EEA). fF DLL #, #i45 2Pl _ declspec (dllexport) FEJRIAHE A
WEE . fE.pyd H, AL RAE ] H RN list (FB%1)) e sk,

6.6 I0{T4% Python &\ Windows & FHi2stch ?

1t Windows Jf FI R 2 ik A Python ELwe AR AT DA AT -

1. ANSEE 1% Python 7 % /R (1).exe # . ¥E Windows |-, Python 4782 —1# DLL 7 jig P A 41
(¥ import, T ARLERIALAS B /2 DLL. (& 2% — AR IEG S . ) Bz
pythonNN.d11l; Bl RS C: \Windows\System {1, NN J& Python 4, fFlan”33” w2

& Python 3.3,

PRRT DA 388 P R AN [7] 7 5 2B 45 3] Python o A IRF LS (load-time linking) F/R 25H 45 %] pythonN .
Lib, M 7B ES 45 (run-time linking) 578 258 45 5] pythonNN . d11 . (—f%[Ef#: pythonNN. 1ib
& pythonNN.d11 A% T import lib” . &2 H @ [FISEE:RS & FAF9%. )

AT A R K TR, g FE A e S e AT IR . R RS ZH ] Win-
dows LoadLibraryEx () # = (routine) 3K # A pythonNN.d11l., #%Fe =A% 0678 1 Windows
GetProcAddress () # AT IEE, KT pythonNN.d11 Hiff) (RIE] Python C API [f))
R ARG R AN Python C APT FE3 R C R2xUAG, B A2 AT DA {38 Lo FR i i A
EIHAE .

2. WNSRARGE ] SWIG, BRI n]#EHA b 37— Python [ 7oA |, %ASLAH 8 1 A2 210 R RT method

(J73%) w4 Python i}, SWIG EIRpE AT I Y BTG . AR, et C Rl
FEEIRexe fE () VR8N DLL RS, TiE WAL T4

3. SWIG j# s — i init pRX (—H C /), HARBEIE TN 2. i, e 4
2 leo, HIF init KX EAA4[E initleo(). WA B SWIG shadow class (#H[E]), HI init pR =€y
#4[F] initleoc(), 18 &I 4R L4 shadow class filf H i K 2 #4517 helper class.
PRAT DA B 2 g C Rl 45 2] exe AR AR R, PFRYA) 451k pR X0 28 30 import A5 4H i
Python! (i& 2% A IFAFHI P FHE. )

4. fEZ, ARATABE I AN RESHS , AR B SERE AL 4R 1L Python FL##%4R .

#include <Python.h>

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

5. Python ) C APLA WA FE, QSRR MSVC (A # E: pythonNN.dIl F ik ) LA Sk,
18 LU R R A A

MRE 1 i FILE * 51800 AE TR SR R, L 4Ee (multi-compiler) [t B35 6 482
VEVER, HEEHE g2 as ¥ struct FILE MRS AN REENEBERE, SR _ IR
_ R

[/ 2: SWIG £ void iR ([E)4: %€k aX (wrapper) I € [E)4: DA AR :

6.5. *.pyd 2% DLL R ? 71



Python Frequently Asked Questions, £(F] 3.11.8

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobj;

1%, Py_None j2&—fHE 4, ‘E@EME] IR, $51i pythonNN.dIl [ —FEAFE] _Py_NoneStruct
EIRE R AR MR, MR U TE 2 g R ol G . st SR Ul B [ -

[return Py_Buildvalue(""); ]

A ATRERT AGE ] SWIG 1) stypemap fir 4 DA H BIEF TR B, MEARTOR BE AR IE W IEME (3
se—fH5E 2R SWIG Hi T ).

6. fifi /il Python shell [FIZ 4 /R Windows & I F2 3 [ER 2 1 — 1 Python B a5 0 A 2 — i 327 ;
LT S T R E R B R . BN, fR (2K wxPythonWindow class) JEq% B E ).
—f (A B iE . S a% 0 % #E: 3 Python FFRAHEMRA L M. IR W] DA Python [ i/o &
E 1] (redirect) | 1] 29 S PR ARALMI 44, R BEAR L 75 243 & read() FI write() method [
Python ¥ (AR SEAAH P e 38) SEPTRA T .

6.7 0{aIR5 L IR EEREFLET Python [RIGEE B tab ?

FAQ AN 1] tab, H. Python Jal#%+5 S PEP 8 A/ #iaX Python RExCA 6 H 4 2545 5 18 22 Emacs
1) python 1A FH &HE

FEAT My &, i ab A MR Gl I . MSVC FeigJy Tite —bk,  FLWT DARERA i ()l
FAZEAE: T A » 3R > Tabs, NEHN [THR) RSB, f [Tab K/ 1 THHER/N sEE 4,
IR [ A B4

MR A tab FIZSHEE T S B oo B &, H] Python €5]%f IndentationError B TabError,
PRULTATDAEAT tabnanny B, ZERUBLA R AR H [ .

6.8 NI ERPAERE L THRE keypress ?

@Fﬁ msvert B, &2 —AEAER) Windows B A . BEFR T Mkl kbhit (), #ZRUEi
ijﬁ’ﬁ%ﬂ%ﬂ@i (keyboard hit), PAKMRI getch (), #ZRN GRS —HFxHA @ﬂé},ﬂéEﬂtﬂ

6.9 fN{THET;EiR api-ms-win-crt-runtime-11-1-0.dl f93&58 ?

{3111 Windows 8.1 ST FLBLACING, 25 oK GAE ITATH ST, U A 67 Python 3.5 DA FHONTA S 4 525
WEE). AT HEORAR FE R AE 332 S E ELAR SRR, SR v E R, 353 9 Microsoft i % 71
T ASHB 8% C Runtime 58740573 -

72 Chapter 6. 7£ Windows {#F Python B9 REZ&E


https://peps.python.org/pep-0008/
https://support.microsoft.com/en-us/help/3118401/
https://support.microsoft.com/en-us/help/3118401/

CHAPTER /

BRERENEE REESE

71 BRERESTE (GUI) BE REE
7.2 Python & GUI 4 7

Python [AJERIERRAS € 63— Tcl/Tk /N T HAE (widget set) () {2 m) A 1ET, FRE tkinter. 35 7] B /22
%4 (HEE B E1E Python By R L # HEH 1 TifcA ) AR . A8 Tk BFEATERR (B8
JRAAE R, 352 [F) Tcl/Tk 1 . Tcl/Tk F macOS. Windows Fll Unix F-& 42 5¢ 4 7] [E] (portable) 1] .

MARIREA T 6, 2 Hofh 8584 . 7E python wiki b Al DS — {05 1 £ 1A L4513 S0 11
GUI HEZE I 5.

7.3 Tkinter By

7.3.1 infaaR$E Tkinter EAER ?

U4 (freeze) s —fH REA L T ARUM T H . FEORAS Tkinter I REARE, a2 AR URN 2 HIEM
a7, PAETRZ M R TIR TR 2E Tel F1 Tk bR =X

One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.

BUS S EIE R LA AR, RS R R B Y Tol AR A3 AR b . — ] Bk
T.HZ SAM (stand-alone modules, 37440 ), B2 Tix EEFTARAY—EB4 (https:/tix.sourceforge.net/)

FEAE SAM gt B IS E T @& Tix, ¥ Python [J Modules/tkappinit.c H1J Tclsam_init () %
PR AT S RIEnY , [EFIEE libtclsam A libtksam 5# %5 (/R T fEt € include Tix pRz)E ) .

73


https://www.python.org/downloads/
https://www.tcl.tk
https://wiki.python.org/moin/GuiProgramming#Cross-Platform_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
https://tix.sourceforge.net/

Python Frequently Asked Questions, £(F] 3.11.8

732 EBULHEHEFIVOERE Tk EH?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code
a bit. Tk has the equivalent of Xt's Xt AddInput () call, which allows you to register a callback function which
will be called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.3.3 FHEEZ R (key binding) 7 Tkinter h{EA: [F{+E] ?

An often-heard complaint is that event handlers bound to events with the bind () method don’t get handled even
when the appropriate key is pressed.

B R, [R5 EIp/ N TREIER [ (keyboard focus) |, w2t Th [EIWSCF b B A 45 B
A ER. W, BE-ENTH, fRehgRan (EREHREE; #2[E takefocus #IH) .

74 Chapter 7. EERENEERMEE



CHAPTER 8

[[EMH(E) Python #REERIER L 7] FREEE

8.1 {+FI& Python?

Python @ —MAEAFEF . EHM R AT R T [H[E Python B A Z) S EINRES . EAE—
LEE AR B g AR N SRR S TR (e eSS O B 38 N ST, B140 Google,
ENC Nty E R /N

AR ERE S Z B Python BYRIGH, 7T RASENE Python 15257 157 | B ARETH -

8.2 [Flft(F] Python #Zedt FEF pY keS| 2

FUREEBLG S Python IREET, (RICIMARFSHN , WOH T RE B I T R TR 2.
o LS TR R 0 0 1 A0 A e R A L EL 85 T Pythons Aol 2 Ll — S e 9 85 1)
W EL AT e 22

o LAY S =5 BRI RELA Python 3 F A1 H 224 1 Python, SEtki A AEIA L,
1€ GUI A2 48 frl i A L () AR AR A

o BBk Windows #5222 Python, % 2488 I SCFH T, FRAM45:%0 HP B Compaq M i
A% AR TH 3% 224 Python, HHSRAY HP i Compagq #5737 BE T H A2 1% Python 355 T .

. ﬁgﬂ‘ﬁ@ﬁ/{\ Unix &%t, 40 macOS F1—2¢ Linux F47TRASTE 204 Python; "B 90 S e RLpi 2224
[E,

8.3 F [ B1TEIBR Python 15 ?

FHEAKE Python 122455 EE .

A NI L E 4 Python, ARWT BATRSIREIRE, B A @i LM & . Windows ERERKH, W
il & (Control Panel) Hhag HIGH /A2 IR AR AR MR 2% -

7 Python S #5155 =Ty M RE L6 , ARt ] AT ER, Az N AU R IR AT . IR RZ
P AR 2 e T R T A LB EJ: Python,

TR RS Python, AEERBERE . BRI F AL THANZ ERAT W, & BITRERE,
i Python #8257 11 T AAR UM VA IEHHUAT. BEH MR, A BemR RS,

75


https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, £(F] 3.11.8

76

Chapter 8.

[[Eft(E] Python #RkERMME L 7| BRHESR



APPENDIX A

>>>

83X shell (Y FEE Python 7R850, 5 WU RETE B o DA LB 5 e A TR RS S 01

AR

2to3

o TE— WA HER RS IR . FE— BT A A E R4S (delimiter, BITNIESE. 74558, 1E3E
gk =519%) R, sURTEE— Mg (decorator) 2 1%, Tlii AR HEHE, T B2 shell
JRHYTEF Python $2/R5 TG

o Fi# Ellipsis,

— {6 Python 2.x F2 A5 EE Python 3.x FEalAY TH, & BB/ 0 A A A
TERCL I, T L A A R T i A 1 3 R A T g e 2R

2t03 FE ] AEEHE R B DA Lib2to3 gl il Bt T — (MBS A I8, 7E Tools/scripts/
2to3. w2[E 2to3-reference.

abstract base class (il 3L KE])

g R EHIE (REE ABC) $#{IL T M ER N E R E, 1EEduck-typing (B TFE)) A4 7.
HAMBIR TR, B2 hasattr (), AIEASEMEUR M M GA0SEER (61406 FH ST ¥ (magic
method)) . ABC [EJfJ[EJ#E 1 subclass (FHiE]) , BMENHER 5 —1 class (JEE]) , {Hg50]
¥t isinstance () } issubclass () ¥k #2[E abe BALMERN 3044, Python A 7 £ B
ABC, HINERI G (7F collections. abe #ifl). 7 (7F numbers ). B (FF 1o i)
J import FAGERFIEALS (FE importlib.abe BifH). KA A abe B E . H O ABC.

annotation ([FJf)

— BRI class B, BRI 2 B0 R EHE AR BB O RRED . BRIEOL, e AR AE[Eoype hine (B
EHER) .

TEATERR (runtime), [ 353 00 [ RR SV A AE I, (B4Rt 0, class JBMERTR X W EfR, &5
Bl e ASAH . class FIpKEUH) __annotations_ FRFREMET .

#8522 [Elvariable annotation. function annotation. PEP 484 1 PEP 526, 1502 %A tohheERY .
R A (EVRR A A B 8y 75 5% 2 [F] annotations-howto .

argument (5[4)

WY pR 2 R BB 45 function (B{method ) W{H. 5|8CE WifE:

77


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Frequently Asked Questions, £(F] 3.11.8

o B4 7| B (keyword argument): FERFNFIY | PLERE)IT (identifier, 14 name=) BHFEMIS |3,
o2 DA ** KA dictionary (i) [EI{E R EERYS ¥ Bilun, 3 Al 5 #J2EPAR complex ()
WY F ) ) g [

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

* 12 % 3| 8K (positional argument): A ZBHH 5| BN 51#. (7E S | o AE— 85 B RAE R &
B, A (5) fEE * 2 & ierable (PJEWCIIE) TIOTCHEPER. G0, 3RS HZAT
ERCENOIVACGIE &

complex (3, 5)
complex (* (3, 5))

G BCE WA E Sl X M R A A e, R SERE A R AR R I, 552 calls T2, 75
Ak b, ATATE S SR AT DA AR — 5 [ Rl (B G i o A [

A2 ERTEEparameter (23%) WBH . W ABER 7] S0 4 3= M ey £[F], PAK PEP 362,

asynchronous context manager (JE[RIZB 5B BIZS)
— i AT AFE ] async with BRIAX i RSP F, MESEMEFR __aenter_ () M
__aexit__ () method (J¥%) AG=MHINY. H PEP 492 5] A

asynchronous generator (JERIBEIA:ZS)
—{l€r [A{# asynchronous generator iterator (AE[F]ZEEIEEENLES) MER . BEREKSG —(HPL async
def E KA FER (coroutine function), ERFIMEEME T vield R, ABAM—RYIAH
i async for [FIREMIME.

T M ATRE I A AR — AR P A ek X, (EAERELiEs , WT e R Fn 3k Bl 7 [E A BEX
% (asynchronous generator iterator). #—HFREN TR ENERE, MO E BN, PAREGE
o

— AR A EVE RS R A R await BRI, PAK async for fll async with PR,

asynchronous generator iterator (JE[R]2G(EIZ:2SEICES)
—{ fyasynchronous generator (FEFEVERY) RSB

& s —{Masynchronous iterator (AEFIEENLHE), B EDA __anext_ () method gIFY K, &[] {EH—
E T % R {4 (awaitable object), %A EAFAATIE A E AR R T80, HEBE N —M yield
B yield GE{E AR, ERt B0 S ke (35 M s M E iy wy PR . HaE
R ¥ EA ZBERENS P __anext_ () [BIMEM WS AR BIER, &R E LK
AT, 52 (E PEP 492 f1 PEP 525,

asynchronous iterable (25 [ [EfCHf:)
— M Y, BV PATE async for BRAA R . UWHREMW _aiter_ () method [A] & —
{®asynchronous iterator (JEFZEICEE). B PEP 492 2| A,

asynchronous iterator (JEFRIZBECZS)
—{HEME _aiter_ () Ml__anext__ () method ¥k, _ anext_ () WEN{E—{#awaitable
(WS E) o async for GENTAERIEENMR AN __anext__ () method i [l /it ] 26 R4 14,
HP'E5|% StopAsyncIteration ffl4b. H PEP 492 5| A,

attribute ()&M)
— R LI A B RO ME, RZ(E K RE 75 1 ) 40 P i 502X (dotted expression) [ 44 g 22 B . 3]
an, WP o H—HE N a, HIFZETERELA 0.0 #i2HE.

WER—E T, 6T — AR B identifiers T e 36 2 #h([E)4F (identifier) 118 14 & 4
FIRERY, BIANGEA] setattr () o 1RIEFRI B 1 M6 0 1 BE 2 B SR xR, T2 5 B
getattr () FKESE.

awaitable (W[ Z:55911)
— [ T AFE await R X P HEEH AP 4. B0 PA R — Wcoroutine (hHE) , @ — A
__await__ () method ¥, 352 ([E PEP 492,

78 Appendix A. #iiEER


https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Frequently Asked Questions, £[F) 3.11.8

BDFL
Benevolent Dictator For Life (&S {-28M#3% ), X 44 Guido van Rossum, Python [ .

binary file (- if:l#$5R)
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

s Eext file (XFHESE), ER—MHAEERIREA str WERY.

borrowed reference (fi%J]22H)
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

$borrowed reference WENY Py_INCREF () DA B HE (in-place) ¥ [EElstrong reference 245 ik 1
¥, BRAERZE AN RBTE SR — IR A 2 IR i 8E(E). Py_NewRef () Rz HT HIHA EEr— 188

Hstrong reference,

bytes-like object (JEfc4lhitk)
—1 3 4% bufferobjects H.BEEIRE ) C-contiguous SRV . BHIEHER bytes, bytearray
flarray.array P, PAKEFZ % M) nemoryview Y. FEALTCAER Y4 PT F A b8 2H — 3 1
R A S SR A RA . A R RS S RE I socket (FHEE) k.

G L TR R AT . (EIIA SR RS L AR [ R S A e AL R
AR SR (E W )Y 4T bytearray, PAK bytearray ) memoryview. i85 75 25
il ERM AP EA AT (TMERER BN TR ) s S dE bytes, PAM bytes
Y memoryview,

bytecode ({IC&HE)
Python 1) J5% 4 1 & 4 i i AL CALAS , B2 Python F2:UAE CPython BLFEES T YEBFRTE. #% (L
TCAHAS R PR pyc BT, PAESE R TR — AR R R RE s peskl (W] DA 7 S L 18
EgREN CAHME) . S [T EEES (intermediate language) | #2E) 281 THE— W virtual machine
(EWttar) b, sZEW S G AT B 3 1 O AH A% 3 HE A M #3105 (machine code), ZEERMZ, 17
TCAH RS PR a2 VAR R R Python [EHEMEAS 2 HIEAENY , R BEXE AR [RUA Y Python 2 [H] AR+

(LTS8 25 2 7] DATE dis ASTAH A [ HH SO 4R 3

callable (wW:nL#{t:)
—{H callable J& R] ARGIFERY AR 424, WU IR AT REDA R A B0 — A5 1 8 (3% Wargument) :

[callable(argumentl, argument2, argumentN) }

—A function BLEGEAH fjmethod FJ2 callable, —{HAEVE __call__ () J7¥ERY class 2 B il 2
callable,

callback ([a[if)
VIS | S5 R 1) — 18 B 2X (subroutine) R, &7 A A LA R ] B e LA 7«

class (JiE])
— P A A e AR . Class 11922 230 7 @ £ & method £ 3%, 182 method 1] DA
£ class 1B LI THAE.

class variable (HE[E/528)
—fHAE class "PREFR, HIERZLBEAE class IR (RXBINEFE class B ) wiis ok sy,

complex number ([E14%})
—HI AR EHAR ST, TR BT G 2R [ B A — W ERR 2 F. [Eldogh 2
[ElEEA (-1 PR POECERT, AR SR g (E 1, TR RE) 5. Python
[ T HEHE %, ©rARENRERIRES; FRRaE - mesn 5 sime, sl
3+175. #EHF math BEAEIR THERH M RER, F5600 cmath B4, 00 12— A5
MR EEET e . IARIEG 20 2 B e MoK, AR T AR VR T DA% 42 b Z 0 T

79


https://gvanrossum.github.io/

Python Frequently Asked Questions, £(F] 3.11.8

context manager ([5EE5PNES)

An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable (fiEsem)
SR, FAE T DMRSE B SCRIE BT A BT AN IR o 38 BHBISA T 4% W el f3% 47 [ (Thread-Local Storage),
f,\qj — R B A T4 T RE R A AR (. SR, BRI, E—MefTa I Re e
L TEEE, Wit E R g, BAEEFTAYAERI 2T (concurrent asynchronous task) ¥
bﬁﬁﬁiﬂkﬁ?ﬂ’]lﬂ nﬁ%. contextvars,

contiguous (JHAEIT])
R —f 4218 [ 52 C-contiguous 5% & Fortran contiguous, I’ & e Hipi i E S 480 . B4 (zero-
dimensional) {4 [ %S /2 C M Fortran contiguous ., F—#ft (one-dimensional) [#i%1| /| 4518 H W JELERD
TR RS PO A AR RO HES , TR PR P LR IERY . 7F 2 4% (multidimensional) C-contiguous [
F, FERC R Ok ) NE w7 A R T R, ARefR— ﬂil f—f;é' |5t . SR, 7 Fortran contiguous
Wz, ARG bk

coroutine ()
P IR, (subroutine) (19— EIFREAAY LA . FIFLS 1 5 M I B e A e 55—
EGR . R AT ALE FF LS N R B IR Bl A L SR AR . EMREEIA asyne de £ BRIAZHE
HIE. HaE2([E PEP 492,

coroutine function (FErA=)
—fA ] i corourine (FhFE) PIFRIRES. — M FEENEEVA asyne def Rz, [Ev]EE
W await., async for fll async with B8, BSLEEFH PEP 492 5] A,

CPython

Python X FETHIEUEE/E (canonical implementation), ##$1H¥E python.org |, [CPython] & {7k
FEAENERERE T, DA SR B SR S W E/E, 40 Jython Y IronPython.

decorator (Z:fiizZ%)
—E PR, B R X 1_% B @wrapper #EvA, 1 E)—7f R =X 1y 82 () (function
transformation), SEffEFIHE L& classmethod () #l staticmethod () .

SEMPREE FURRNE. DL T 9 6k S A R

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

Class HWAFTEARIRI AR &, EAEARE A . B Eeips e 20, #H2E R E %M class
S FEMEI S

descriptor (1iiA%%)
Any object which defines the methods ___get__ (), set_ (),or __delete__ (). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

B A 2% method )8 2451, w52 descriptors B A2 5 H .

dictionary (“=iit)
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary comprehension (L4 &iEE)
—TEBER YA, AR T [ER S ) e e R, [ PR A SR DA - i ]

80 Appendix A. fiisE%&


https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Frequently Asked Questions, £[F) 3.11.8

results = {n: n ** 2 for n in range(lO)}@’EE*@?iﬂia @/E’TT% @%ET@”E

n ** 2, #52I[F] comprehensions.

dictionary view (‘FzHUiGH)
ft dict.keys (). dict.values( Zﬁdict items () [BMEAY BRI T AR . B3R
TP EH B AR, B RN T S E) ﬁ*ﬁ%ﬁ‘%fi]ﬂﬁ_‘kb AE) B AR
HHE)sE R list (F2%1)), ZEHH llst dlctVlew) ([ dict-views

docstring ([EIH)
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing (W5 24[E])
— MR RS, BN R RE AR R R BB R 2 e R T LA IERER A E . B AR 2
()52, method B J&§ 1 € ¥ 4 Hb P s . (TSR e AR ARG — G 71 HLn e e 1% — (B
T, BB —EL BT, 1) KHEEG A mmIEs e 2E, osstefeSs e @2 m N
(polymorphic substitution) &3l () @G . T8 T RE R ] type () B{ isinstance () H
. (ERwEEE, WTAIE R AU 46 %08 k38 [0 (abstract base class) RAGFE. ) SR, BEH
€A hasattr () HlEt, SU2EAFP B EEEHEWE .

EAFP
Easier to ask for forgiveness than permission. (753K % SR AL ) BT LAY Python 4%
JEHS G e A R S B AT, B %R %ﬂi?ﬁﬁﬂﬂwﬁﬁ%fﬂ% 128 7o 7 () LRt g JEL S
HEF O RIFET LM try fl except PR, B2 HMEET (Fln0 C) & WALBYL &%
e T ¥

expression (R
— B DA A ER (R RE . EAIEEE, —MER s cs . 4. B, EE TR
W S RO SRR, T 2O PR RE 1] i Eﬁiﬁg/ﬁ\ﬁﬂnn QKIEJE’JXE, IRE B ERil]
Python 33 & M 2 A %’%75 —Lstatement (BRIAZ) RNEEBHMEER, i1 while, B
{E (assignment) 2 ik, A2 E R .

extension module (§§ FEEiZH)
—fHPA C B C++ Sas 4l, ‘&Ml Python i) C API ARELAZ.O K fifi i H R X B EAT H ) .

f-string (f GzH8)
PA T 5 F BT R SRl R E) [f 2R, B R R SO SR . S
PEP 498,

file object (K§R¥1F)
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

HE b, AR R =B R4 R BN BRI LT R . ETIANATETE 1o
B e S . BRI R M open () MR,

file-like object (JikEZRMTk)
file object (REZEWIME) W IFIFEF-

filesystem encoding and error handler (2% & %% M HIZE s R B AR, )
PYt/}Ilzon JR T — TR AR A A SR IR R X, AR B A2 R Mo, PASGK Unicode %t
MRS

T R S A A PR B BE LT IR AR FIr G /i 128 BN TeA . WIS R R S A a2 (L oL e, HI
API (R 5| % UnicodeError,

sys.getfilesystemencoding () fll sys.getfilesystemencodeerrors () I A HRNEL

TR 5 25 2 A B AP o B R X

filesystem encoding and error handler (&2 2 &% 4 1% 1 $% 3% jE FH 6 =) & #E Python [E] & Hr |y
PyConfig_Read () PRI KA E: #2&[F filesystem_encoding, PAM PyConfig [ E

81


https://peps.python.org/pep-0498/

Python Frequently Asked Questions, £(F] 3.11.8

filesystem_errors,
Hag2Fllocale encoding ([FI4AE)

finder (=}HH7Y)
—fEPiE, g EREIEAER import AL R loader (FALR) -

¢ Python 3.3 BRUG, 5 W RRIETL ) AR ES . 7LIEAE S48 22 (meta path finder) €[] sys .meta_path,
Wi ¥448 78 B 4 2% (path entry finder) € {fi[f] sys.path_hooks.

#2(F PEP 302. PEP 420 fIl PEP 451 D\ T W Z 401 .

floor division (i) FHUEKR:)
) A iy 55 B IR I RS M R . 1) R B RVA I T2 / /0 B, R 11 // 4
T4 R 2, B float (FREKM) ZURVEFTMIENG 2.75 AWM. #UE, (-11) // 4 Mg
-3, WEE -2.75 $ie T HEHIE& 2. #2([E PEP 238,

function (R
— B EOART, B AEE eE Y ] e — S et ] AR R AR B (8 7| B, s [Tl
RS A AT, iz Eparameter (23%). method (J7%%), PAM function FEfi

function annotation (F=XEIFE)
bR X 2 el o EE A — B annotation ([EJRE) o

A LR FE R 2 Ee = g, BTGS2 MME int 518, EeA—@ int [
H{E:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

pR 2 EIRE A REAE function ZEFIA FEANARRE
it 2Elvariable annotation #1 PEP 484, B/ IWIhEmHiiA. BRERBNRETEER T, Bzl

annotations-howto.,

future
future BiAR: from _ future_  import <feature>, /R4 Eae i ISLLLE Python 7R
PRI B WA P U EREE M A R YA SR BE 28, AR s E B4, 1M __future_ BIAHAIGEE T
featre (F14%) WRERIME. i import PUASAHFISE B BORAE, /RVT LAE 1 B0 ) BE 2 Rf 1
WHHEE| EE S, DAREMEE e (2 48) B IIRE:

>>> import __future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection (b nlik)
RO S PR R R, I BRI AR FE . Python AT IR MUK, 25 2 MR EF#L (reference
counting), DA K — 1 & [F) g ] A1 A B 22 BE G B2 (reference cycle) A9 8 17 3% M UL #% (cyclic garbage
collector) Z&5¢ Lo 3R MISGHR W] AGE A g AR4H S8 LA T4

generator ([E4:%%)
— {8 & [l i generator iterator ([EVEZRENRER) BIEX. BHEERG -MEFKEX, BEARNZE
WBET vield #EHA, BEEE—RINME, BEE W HR for [FlE, s20A next () X, R
R A — R .

TE TR AR R —EE AR R, (EAER LS, WAl ReRFonEle SERE. B—H%
BN RERENERE, A e aTaE, DA RIEEE.

generator iterator ([F)ZE:#$ENCES)
— il thgenerator ([E1A:2%) BR=CHT L IHI
M yield GrEiEm iy, ER B Em kg (G5 ks s S b wy k) . #E
i)%%ﬁ%%@@ﬁ%:, BT LR B AT (BRI 0 hg R ) IRr 0 T B A 1 ek = A
).

82 Appendix A. #iiEER


https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Frequently Asked Questions, £[F) 3.11.8

generator expression ([EJZL:#$i#%)
—(AghEERERNERER. EHEERG MEEEE, BmEE M for T4, & TFHE
T EE s AR 1 ). sZALAER e AN E pa X E AR 2 R

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function ({Z7pX;)
1 £ 2 M R AR B BRI X, % o XSS [ A R (BB E R [ (S . o] 3 % (0 O A
1, 2R EEE A (dispatch algorithm) 2R([E]5E

Wt Flsingle dispatch (B—3HEF) B H . functools.singledispatch () #Afirefl PEP
443,

generic type ({Z747I[E])
— 1 AE[EY 2 ¥ 1k (parameterized) frype (ZU(E]); WHE—M ZaHE, B2 list fldict. B
R R [Elde = FE 2 .

s 2z ME4 BE. PEP 483, PEP 484, PEP 585 il typing f54H.

GIL
#5 2 (Flglobal interpreter lock (43 2225481) .

global interpreter lock (43 B 45%$3H)
CPython T i¥%4a T FHIBE ST, FH DARECRBE R R A — AT 45 BELAT Python [¥ibyrecode ({3 T#H
) . SRR (LRERENERE, dict) HEHEREFTAFE (concurrent access)
HIf@BE, BEA%HI W] DM fk CPython AU EFE. SH 38l H %8s, G B ER S M EZ T4
(multi-threaded), {H 1 /2 i n 22 JE BRSO RS2 REERR LA — RS 4F4T 1 (parallelism).

SR, AR FERA, MEum M B SE =, B MR s Rt e A T I A kA (E) S R R 4R
(computationally intensive) FfFE#5RE, T AR GIL. B4b, fE#AT VO KF, GIL 482 ey fifhs.

W HE S TR GIPATA ] By (VAT RS A0 B B S 2 R A LR g ) 55 I [EIR L
o1, WEE—BiE— R E T, SRk, —RRE, HElcasaeme, g
PR REIRERT 2, MM AT 58 o A AR

hash-based pyc (FEI k& pyc)

— (AL ICALH (bytecode) BT A7AE , & I AE[EVE AN /2 3 HE IR A AR R A B AR A R [, e e HoA
Wtk . w52 [F pyc-invalidation.,

hashable (7] §fE))
An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (it needs an __eq__ () method). Hashable objects which
compare equal must have the same hash value.

ALEENE: (hashability) {fi— Y7 AT i dictionary (F4tt) RYHERI set (Ffr) HIMRE, HEELH
R B T A EN .

ﬁ%ﬁiﬂ’] Python AT SEEA) (1452 nTREEIRY s ATE A%ty (B1AN list 5 dictionary) [EIAVE; TiA

SRS (I tuple (JCAL) Al frozenset) , U HEMYICE 2 TER, B4 S 420 i
B AR B E class IECBL, )5S L6 (e gl v s () n] AR (ET Y [:TF?TFUFH%%EH%E%K
RAMER (BRAFEMEECHR), meEMpEER04 3 EMr 1d(

IDLE
Python f¥] Integrated Development and Learning Environment (%54 BHESELEEEEES ) . idle 2—fHEAR
) AR AN LR AR IR ST, BRI Python FYEETE BRI TR — A g 11t

immutable (An]%&H1k)
— A HA B ERE. Anl Sy aiEs . A wple (Joél) . BEHWIFE A REBICER
NSRS [ A (b ZE R G A, MBS, — B . MR B R R ENE Ry, i E
B, i dictionary (L) g —{H S .

import path (5] A J&1%)
—HOLE (Eipksesa 8 ) BIANFE, ARSI ELEAE import BLAH Iy, €rifipath based finder (ELjitE%&

83


https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Frequently Asked Questions, £(F] 3.11.8

By tads) BN ACE . AE import IR, S ESIREHZH A sys.path, HERTEMN
(subpackage) M, EMAHERAEEMH) __path__ B,

importing (5| A)
— (R . —EBLA ) Python FE=UA AT DAE A MR AR, ) — AR AL H 17 Python A2 A5 .

importer (5IA%})
— (A RIS AR AL BB R finder (FAg8%) tRloader (BALR) WF-

interactive ( H.Ej1))
Python 7 — i BB X H 4%, ﬁ%ﬁ‘%TMTE%%%E@?EE‘?TE%/\%LEWHL%‘? SERIRATE
MEIHER EMPEER. HEES) python, ATHFEALMG# (W] BEHE b7/ B RS 1Y) 5 138 B ge g
B). aalE iR s i n JeE E R (R help(X))

interpreted (Pi%Y)
Python & —HE 55, MA S MRS Ki@iﬁﬂﬁl [ 43 7] e LeAs , R ENA (37 T4 A (bytecode)
SR AR AR o 1B FR RIS 0] DAEAEMGELT, 1A TS I R ST o — A T4 %ﬁﬁ%{lﬁ
B Hibnh ol et oA Han B e / BREE, N eMmpofeaE s ams .
Flinteractive (HEIH) .

interpreter shutdown (P 7SFH)
i Python 2R 9k ZKBHPANY , B arf A— BRIy B, FEM e B i A s e e & IR, 11
ﬂlﬂ‘%zﬂﬂlﬁﬁ BRSPS . B E 2RI 3R =k % (garbage collecior). & REEE #5648
TE WA HERG X (destructor) 5555 | F A1 (weakref callback), [FRUf7H A (o RE =05 . 7 BH P I B b
% gi{;&;?? BRI RREFSN, HEE ISR EATTAER T (7 A6l ek X Bkl
g ]

BB EERE, & __main_ BASUEPHETOEARC BT
iterable (W[[EMCHI1E)

An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or witha __getitem__ () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator ([E{t2%)

An object representing a stream of data. Repeated calls to the iterator’s __next___ () method (or passing
it to the built-in function next () ) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

£ typeiter 3CH ] AR B B 2 &l

CPython ‘B fE &l fifi: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

key function ()
# o U B B 30 (collation function) 2 — i AT IEIY (callable) R, & [ml fE—{i 1] R HE)F (sorting)
HERF (ordering) W{H. BTN, locale.strxfrm() 1k F AR E) A —1{H TR I A HE 1 Y HE
JF

Python Wiy 2 TR, %52 DA R 2R B CRBOE P el AL 7 30 B min O max ()

sorted (). list.sort (). heapg.merge (). heapg.nsmallest (). heapg.nlargest ()

84 Appendix A. #iiEER



Python Frequently Asked Questions, £[F) 3.11.8

Ml itertools.groupby () .

TR AT DA, . B, str.lower () method W] PAFEIEIAR 43K/ NES HE T 11 88 i
Ao B, B R W] AME lambda SHAPE, filN lambda r: (r[0], r[2]). 5i4h,
operator.attrgetter (). operator.itemgetter () fll operator.methodcaller ()

ARG R A R X (constructor) o I AR fE N2 AN BT SRR S HE A, S E N HEY .

keyword argument ( J§#525 [45)
#t2(Flargument (5]85).

lambda
i B —expression (GEE ) FrAH M — B 4 fTEIK =X (inline function), A 3% b8 =045 P 0y ISR (A .

#£57 lambda KX HFEVE 2 lambda [parameters]: expression

LBYL

Look before you leap. (= JM%A7. ) & T8 A 6 RS Er7E A TP I el A 2 T, WAt It S e
. B EAFP ﬁT}F/EJZ%JLH: HEMRre2aair2 1 BT,

fE— ﬁl%?—ﬂ THEERSE T, LBYL aCAFE [ =] Al [#&47] Z 51 A T #iEN& 4 (race condition) )
JEBE . BIANIPA FAREAHS 1f key in mapping: return mappinglkeyl, QUSRI —{HBATHTE
WEZ B ELEE R, 1€ mapping HRERR T key, RIFZAE=CHGHE € 3K L{E]F‘ﬁ%?."w\)ﬂié (lock)
s fifi | EAFP il 7 XA iRl

list (#i51)
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension ( H 5|45 & 315
— e 1 AR — M 3 51 G AR A e R, ([ R PR A SR DA — 1 List (Rl B 2L )5 5. result =
["{:#04x}'.format (x) for x in range (256) if x % 2 == 0] &[E4E —{HFEP list,
Hod 0 3 255 iEE], Bra Ees oS s ox.). if FAESREER. WA, 1
range (256) FHITH TCREES SR

loader (EARY)
—EREER AR . T EEFR—AAE load_module () [ method (J5%:). HAZLEE
Setlifinder (Fggs) . HE2AHH2E PEP 302, Bg]ﬁAabstractbase class (IR, &%

2[F) importlib.abc.Loader.

locale encoding ([ I8 Zi5)
£ Unix [, ‘B2 LC_CTYPE B Em 5. B PAH locale.setlocale(locale.
LC_CTYPE, new_locale) #%E.

7r Windows |, ‘B2 ANSIfCHEE (code page, fil#l "cpl252"),
T£ Android 1 VxWorks |-, Python {#i[f] "ut £-8" /E[E] | 54w .
locale.getencoding () can be used to get the locale encoding.
WEE A filesystem encoding and error handler

magic method (JE#kr Jji:)
special method (455K ) W—E3EE =X 6] 25

mapping ()
— AR Y, B BAAREN AR, HAEE A abstract base classes (i 5 &R H(E]) o,
collections.abc.Mapping B{ collections.abc.MutableMapping f$8E R method, #i
Blfi4E dict .collections.defaultdict.collections.OrderedDict fllcollections.
Counter,

meta path finder (JCHETEabIEY)
—MEL 18 sys.meta_path [ [F[{E# 1 finder (FFAGER) . TCHEIRFAGARELIL A A B 548 255 (path
entry finder) M BEZAR
B A TCIE R B A EAE ) method, 352(F] importlib.abc.MetaPathFinder,

metaclass (JCE])
— 7 class [y class, Class 5 FEiB A% € 73 37— class Zf5. —1# class dictionary (F8) , DA S —1#

85


https://peps.python.org/pep-0302/

Python Frequently Asked Questions, £(F] 3.11.8

base class (FICHHE]) #9513, Metaclass 5578 =MD #, [E#E3 class, K14 n)
FEAHE S e I FE R A B /E . Python (4RI BEAE Y E BEEIE ST F %71 metaclass. KEBMH) A
FHERAFEW T H, (R FHEN, metaclass 1] DARALEIR HABHME £, 2MEw ks
EF A, B a4t BEFET . BEIEEAIRE (singleton), DAKFFZE HALAIT S

B %2 &5 A DATE metaclasses 25 i 14k 2 .

method (J5#)
—{7E class A< EEIgE 2 A K. A0SR method VEEIE: class B il i — {0 & M gieny , HIE K &5
KB EREE 95— Hargument (5190 (M5 Mol HWAE self). BB funcion (HX)
Flinested scope (EMRAE ) .

method resolution order (Jj 7. /M IE)T)
T VSR IE S e AT PR R B i AR, base class (ELEHAE]) B aplEF. BN 2.3 RE
4>, Python FL3#a% FT i F T BN ER, 552 (E] Python 2.3 [ A MRITIE)T .

module (Ei%H)
—{E#54F: Python PR A AHAK ¥ (organizational unit) ({4 . BHA —EmAEH, BEUEER
(1) Python ¥4} LA ZFE Hiimporting WAL, #HEA 2 Python,

st 2 (Elpackage (£44).
module spec (L4 )

—fH a4 S, B HREABHR import A &, B & importlib.machinery.
ModuleSpec [—{EEH .

MRO
i 2 [Emethod resolution order (75 ¥EFENTIET ) o

mutable ([5E47})
AT DA B, BHERFEMN i O o SRS Eimmuable (R EPE) .

named tuple (F#Ic4H)
#iak [named tuple (P42 7C4H) J 2487 tuple BRI LM HEIEY class, H B[] (indexable) Tt
F AT DA PR 44 8 1 AR A 3 Se U5k class AT DARAT HoAB I fRbE

5 2[R [F))2 named tuple, {U3fH time.localtime () Ml os.stat () [EENHE. H—MHFT

& sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from t uple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace (i #23i)
SHBE R . 4 25 P2 DA dictionary (SFHL) #EEEME. A IWIsiy . Ak K EE ) a4 25
MAEY 4+ (7€ method ") A SR a2 25 M. 54 25 MRS PT 1k a2 E%, AR . B
i, K3 builtins.open Ml os.open () i E M) 24 25 WA 4 . fir 44 25 106
HH et [ 2 MBS AE B A —H pR X, RIS W Pk S v Atk . BN, %t random. seed ()
B itertools.islice () FHfEHLFE S, B R A E 2 B random fll itertools FRAITEEAE.

namespace package (7 Z23MIE:)
—{l PEP 420 package (£{F) , & HEEAEEI T2 (subpackage) fy—{H %525 . v 44 45 & {4 0] fE
Ef g 2R, mHEEARE M ARG R —fregular package (IEREN) , HEEMEEAS
__init_ .py BfEREE.

Az Emodule (KAL) .

36 Appendix A. #iiEER


https://www.python.org/download/releases/2.3/mro/
https://peps.python.org/pep-0420/

Python Frequently Asked Questions, £[F) 3.11.8

nested scope (HURERIR)
fiE(E]22 I8 /Mg 7€ 3§ (enclosing definition) F [RS8 RE J7. BRBIARIE], — {0 =X AN SR 2 7E o — M e X
e, MEMEREE2RINg R Pse. e, EREEEET, SR 1EHEEE k2
W, T R ek s e e B (i Ik P R S B IR, A MU A Ak 44
2 EEUCE A . nonlocal P IMNEEHEIE TR A

new-style class (FiAJ(E])

Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object (¥1F)
HAREE (BrEoE) MoiEznFTE] (method) MYEMIEERl. B R Mnew-style class (Hiz\HE
[E]) At base class (FLRHEED) .

package (£if})
— W Python fAjmodule (F41), & AL T4 (submodule) By 2 IEEIH) T (subpackage), %
W EE, EFmERA __path_ EHR— Python #i4H .

Wak2Elregular package (TFFHEME) Fnamespace package (64423 MEME).

parameter (Z)
AE function (pRx) B method 7 5§ ¥ —fH iy 24 B #E (named entity), &4 B 3% bk 2\ BB 32 32 19—
Margument (51#0), SAEFLFE FRR2SMEE 8. G H FREAR RS 8EA
* positional-or-keyword (1B BT )« H&HH— W] DAd% 18 12 B SURAEEIM 425 7| Sl R 1)
18, ERSHIMTERERL, GIMPATIR foo 1 bar:

[def func (foo, bar=None): ... J

* positional-only (FEFROZE) : H5H—ME L REHL I OL BAR AL T | . FEpRE S 2 8 R
W /50, WnT DAERZ P OCHT T E SR E RO E 2 8, HIANLAR ) posonlyl 11 posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... ]

* keyword-only (MEFRBHSET ) : H8HI—MH X BECABHSE 7 RIER B0 5 [ #. TERdUE 361 2 W%k
A AT R 2 U (var-positional parameter) Bi& ALY * 700, BT DAFERAR Ty
TEFRMERBEHE T2, BIWPATHY kw_onlyl Hl kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... }

* var-positional (fEREMEIE) : 45U —HBELMERF PSR BLi 7 5 | . (TEC B 2 8
ARG | M AN . BRSO ERIE L2 WA E L~ HOEFR, BIIPAT Y

args:

[def func (*args, **kwargs): ... }

* var-keyword ({F7Z8CR BT ) FEATPTHHRALE S BRI |3 (FEC g2 B2
?ggﬁ%%ﬁi%?%l%iZﬁl‘)o EHZUEERE LS AT I ~~ AEs8ny, Filan b
| F ) kwargs .

ST ARG | ORI AR s F5 Y, 0T DAE— 6585 e 1y 5 | B o TR (-

75 il 2 BT 5E R Wargument (5180) FH. & RIEEPR7] $fe 2 2 May £[F), inspect.
Parameter class, function Z i, DA PEP 362,

path entry (#{€51H )
TEimport path (GIABEAE) "PEI—MERLE, Wiparh based finder (BEFABALHI B G2H % (E
242 import FYREAL .

path entry finder (¥%{%3H H =-4%%)
Wi sys.path_hooks HIF{— a] BEHH{4: (callable) (& Bl —1{#path entry hook) Bt R/ — T finder ,
BB AR PA—{Epath entry g RiASAH .

BT IR AR TE H A2 EAE ) method, 352 ([F) importlib.abe.PathEntryFinder,

87


https://peps.python.org/pep-0362/

Python Frequently Asked Questions, £(F] 3.11.8

path entry hook (%% i H(E))
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder (JLRPEELIT M%)
THBE USEAE F 48 55 (meta path finder) 2 —, "B &FE—@limport path 118 FH54H .

path-like object (FHPRIEH1E)
— R FRRAE R RS BT DU — R BRI str 8 bytes ¥4, w2 —M
BHVF os.PathLike W EWWMH. BB os. fspath () K, —f%4E os.PathLike WE
AT DA E(EIE] str 85 bytes MR R I4FE; 1M os.fsdecode () M os.fsencode () HI
SYEVAT A AR str M bytes HI%E%. i PEP 519 5] A.

PEP
Python Enhancement Proposal (Python J[F4#222). PEP 22—k sHEIRSCf4E, & REE] Python #1832
B, B2 Python )—(F B Bh B ol % B e YRR P Al B BE . PEP JER% B4R LA 1R A0 S A
PAS B 22 ) RE O AR IR L

PEP WA TE HIY, 22 B E R P FE 2 ALFE v B Sl 1 R ) 2 S, ARRE A
Python (1% #HEVRIIFEE, & SeilFRi 1= 2l . PEP 1)1 2 & e te ot e ) d vy el e (B 5
.

#H2[F PEP 1,

portion (354))
1 B — H [E)p ) — 4R 58 (M mTRE A TE — 1R zip A5 ), 35 SEAR ZE R 3 — MRl iy 44 25 TH] B4 (namespace
package) Tk, WIlE PEP 420 H1)E 3.

positional argument ({5 5|45
s Flargument (3]38).

provisional API (%47 API)
AT APL 248, (EHAME R =L 4 AH 25 1 (backwards compatibility) fRa&Hr, #E#HERR T APLL
BESR LN T, HEe MBI, M EER A ERWET, FE%.0E A SR
EELE, Wnged BB mEAHANE T (LR AR . % EEA G mEmHhE L
—HA APT YA A Z AR B e B B AN BRI e f i IRy, e A etk

ISR AT APL, B AAHZS Y 8 S8 Gl i) [ MRy %2 ) — STl B [
ATB9R € 2 mT REH th— M 1) AR AR A AR E )y 52

e {28 A (S A A 4 o X R B B TR PN BT, T B SR AR = 1 Ry ] 25 B A I R Y et B
it 2E PEP 411 T 2 41 .

provisional package (‘E17%1)
it (Elprovisional API (%47 API),

Python 3000
Pythorj&x FIVARERE (RAATIRIER, HWRH 3 B e e R 2. ) dnl AR 25 ([E]
[Py3k].

Pythonic (Python Jal#&t])
—(EAVE S —BoAEUHS, EEA] T Python 3 5 Il FBIE T GE, A2 8 1 HAB RS 58 RIS
ACECVERRCAS . (U4, Python Hrig WLy —ME B YL, RMH—M for BUAX, #H—MrIERY
PRI TR EATEIE . 3F 2 HAbRE S EEA S 280, BT AR#E Python (1 A\ AT IR € i
JH — (8 e B e AU

for i in range(len(food)):
print (food[i])

2T, DA AR E . 3AA7 Python Jalks :

for piece in food:
print (piece)

38 Appendix A. #iiEER


https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Python Frequently Asked Questions, £[F) 3.11.8

qualified name (Pl %5 )
—f B4R, B BRI — AL A 23 AE 33 s AL H 2 260 class, pRUEK method
[EEE8], 4 PEP 3155 e s, EHR TR ph U1 class 5, BRE 24 FR B (42 Rl A ) -

p
>>> class C:

class D:
def meth (self):
pass

>>> C.__ _gqualname_

IC’

>>> C.D.__gqualname_
'C.D'

>>> C.D.meth.__ _qualname_
'C.D.meth'

WA G EALRE, ©ATRE & & (fully qualified name) ;23R B SERE B 73 B BR AR, ELFEAT AR
MAZEM, Bl email .mime.text:

>>> import email .mime.text
>>> email.mime.text._ name_
'email .mime.text'

reference count (W)
EA AP S IR R 2 BT R B R, B e (deallocated).
WA 51 GE A Python FEASHH A AR H|, (HEEECPyhon BEM—MBIHE TR . BX5 njrﬁiﬁ—fbkﬂjf
i getrefcount () pRERME—fEFEE Y141 2 BETEL.

regular package (IF#£1):)
— B S package (£4F), FIIN—@EEA __init__.py fHEMHEIE.

A2 Elnamespace package (4453 &A1) o

__slots__
TE class [ERFR— &4, EHmBERESEOBMENZH, AR E G dictionary (), 3K
AR . MERR BRI, H bﬁ%’i%ﬁ%ﬂiﬁ%ﬂﬁ@ﬂ% E‘ﬁ?ﬁ%%ﬁﬁ@ﬁ*@%ﬂtﬁﬁg [oH] o
(memory-critical) f JfE I R =X H A7 AR = B I 2 RS

sequence (J3:41)
An iterable which supports efficient element access using integer indices via the __getitem__ () spe-
cial method and defines a ___len__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (), butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension (&4 4HiE)
— T B vk, AR W EAR ) i AT S e R, R PR A R DA set
[[f#, results = {c for ¢ in 'abracadabra' if c not in 'abc'} GEA—{HFEE
set: {'r', 'd'}., §EZ -comprehensmnsc

single dispatch ( ¥.—3RFf)
generic function (JZEIR) FABEEM—TEER, 7RG, BIER IR E R 5 #d BE.,

slice (VJK")
— B P, Bl E A S Blsequence (JPH) BR800 BB R 2 8 AT 5T (sub-
script notation) [, A4 H ZMET, MFEEF 2 M E S, FlUl variable_name[1:3:5],
TEFESE (FE) £R9enyERs, & slice Y.

89



https://peps.python.org/pep-3155/

Python Frequently Asked Questions, £(F] 3.11.8

special method ($#%kJ5:)
— R4 Python [ BTN () method, Ff ¥ RARRIERATHAEGES, FANHNE:. 57 method ()44
- 7E BHEE AN &5 e A Wi R R(E Spec1a1 method £ specialnames H1 5 #E4H[EJRH .

statement (A=)

B — M (suite, —ARAXMG [EHL]) P—EBor. BEAKT PUE—Mexpression (5T
X)), HESHBET (Fli01if. while B for) MEZREEEMZ —.
static type checker

An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

strong reference ([F/Z)
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_ INCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

Py_NewRef () pRaCA] A ES, BB 2R, @K, 76E B E2 BAE RS 6, WETE
#ZE2 M Fipn] py DECREF () R, DAREGENR—MF2 M.

FiEsEborrowed reference (2 M),

text encoding (3L FHHE)
Python )5 H3 2 Unicode 5% (code point) )79 (7L U+0000 — U+10FFFF 2 ). #
SRETE R, CAR LD (A G TAL .

ﬂ%#ﬁ]?jﬁ?ﬁﬂﬁc&fn%ﬂf?ﬁm FRE) [ 4t ), 10807 JC AL 51 8 B or % - B B AR ED [ AR5
(decoding)

A Z AR ST LSRG (codecs), “EMBESIREE [ 3074 1.

text file ()L%iﬁ%)
— A REE AT A st Y —{Rfile object (FEEYIF) . EH, SCFHEEREE FRFRITH
PG| ,‘%7]4{;", (byte-oriented datastream) [E)€r [ B g Mirext encoding (SCF4iE) . CFREEMBI T4
PASCEREE (e 8 'w') BHEARZE, sys.stdin, sys.stdout DA io.StringIo IEH.

B 2(Elbinary file (ZHERIREZE), B2 —HEEEEBRE A 2815 T4 & 1 (bytes-like object) g
ESY/ 1L

triple-quoted string (= 5| 3EEIEH)
H =R 595 () sG55 O EERA N — @5 MR T MEEA fALER 85| 555 T
g EIRE, EERFZIEA, B RAE K. BN AFET R 4 & A BKE) (unescaped)
(L SRR S 5%, 107 ELE MR TR 8 184 5T (continuation character) St W] AMS 2 AT, & i1 E
192 4w 55 (EJHA 7 5 R A 1

type (ZI[E])
—fi#l Python ¥ {4 Z[EIElE T & A ESE A EYARE —EAE. — Y ¢-rZLE v]
PAHER __class__ BHARLFH, A type (obj) KR,

type alias (FUEIFI%)
— BN ) 3w, B A B IS E 46— R EST (identifier) ST .

HIEFIE)4 i 42 [FI32 = (type hint) 84 . Bild:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:
pass

ATAR BGERE, SEEA AT

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

#2[E typing Fl PEP 484, F HIIRERIHREIA .

90 Appendix A. fiisE%&


https://peps.python.org/pep-0484/

Python Frequently Asked Questions, £[F) 3.11.8

type hint (%I([E$25)
—fannotation ([EVRE), EHGE—MHEE. —H class J& = — 1 ok =) 2 8k o] (1 T A E

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

43 A B class JB ME AR X OR & s ) MR ER R, AW A typing.
get_type_hints () RLEHL
#2(F typing fl PEP 484, 45 I REMIHIIA.
universal newlines (3#)JH[ET5C)
— T fif 55 SCF AL (text stream) [ 72K, @%W\Tﬁﬁﬁ%ﬁ.ﬁ.. TS5 Unix 17 R IE G

"\n'., Windows {&f '\r\n" FIE5 Macintosh 1& %] '\r'. FHA[E PEP 278 1 PEP 3116, DA K&
J* bytes.splitlines () HHINAIE.

variable annotation (525[F)F%)
—{W 5, class B annotation ([EIFE) .

[E 4 Bnl, class FEVERE, MR(EESEIEMEN:

class C:
field: 'annotation'

SMEREE R MR L ERRT (ype hint): BN, SEES BRI EHIG int (CEE) (A

[count: int = 0

SRR RRVATE annassign T8 HiA FEANRARRE -

nﬁ/ 2[F) Fifunction annotation ( it‘*%) PEP 484 #1 PEP 526, %‘ﬁlﬁ[ﬁlﬂﬁl@ﬂ(ﬁﬁﬁo 2] ﬁ@*%ﬂ‘]%ﬁ
Eﬁﬁﬁ{f % nﬁ/ . annotations-howto,

virtual environment ([FJHEERES)
— il o4 /P B (cooperatively isolated) [ THEEE, HERE Python [ A 35 FIE P R A5 AZE A 4R
Python ¥§([EVEF, A € [ —(f &t LA T H A Python i HI A2 A TEIE A T4
Wtz venv,

virtual machine ([EJHEZS)
—HR5E 4 S I E FE A0 BB I (computer) . Python Y EJRERE % 64T H bytecode ((iTCALME) ey
Fr s A e A AR

Zen of Python (Python Z[F])

Pyihon i RISCEPIIIEE, SUDEE MR IS DS B TR
JCEBA [import this] ZRK4LF|E

91


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Frequently Asked Questions, £(F] 3.11.8

92

Appendix A. #iiEER



APPENDIX B

BARELEFIRA S 14

i SEEI] SO 7 Sphinx  (— & (E) Python [EIW]SCHF IR RS O SCPRIERERR ) 4B reStructured Text 45
TR R AR R i

Wil Python B B, ik H 1155 1 T EI SCARBLE AR BB BAT TR, AR ERI AR, #5572
reporting-bugs FUTHT, [ AH BRIl FAM i BBy B B A

et
e Fred L. Drake, Jr., Jflf Python SCPF T HAERYAITE # DA K — KM EIERIVES
* A3 reStructuredText F1 Docutils T 41/ Docutils B2 ;
e Fredrik Lundh 454, Sphinx #¢//#) Alternative Python Reference #1#| 1 #1521 F & .

B.1 Python {898 BRKE

% NFR I Python 13 M35 . Python 4223 p% 2 )& A1 Python [FIH] (4 B kil . Python B (E) R 4G i h
TAT M ERE R, # 7 Misc/ACKS .

TEFAE] Python A (1488 g B B8R A 4 3 35 [EDRR A [ET ] SO - e T A B R g AL A !

93


https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

Python Frequently Asked Questions, £(F] 3.11.8

94

Appendix B. B8 (FBAS #



appeENDIX C

i E IR

C.1 &icio

Python 2 1 7 B S22 0 5 AR R 2T 97 B (CWI, R https://www.cwinl/) [ Guido van Rossum & 1990
ERFHETAE, B 2/EE—EEE ABC SEE1E4E . [F)%8 Python 08 T &£ 3K B Hifth A EER,
Guido {32 H FEAEH .

1995 4E, Guido {r4E JE 5i M 25 WriE i B KA B iF 9T A 5] (CNRI, 5, https://www.cnri.reston.va.us/) #4548
fliAE Python fit) T4, EWEAREIEFE 7%l iy 2 AR A .

2000 4£ 7. H, Guido F1 Python #%.0» B % [#] ) 2% 2| BeOpen.com [E])i{,37. T BeOpen PythonLabs [# [ . [
4+ H , PythonLabs [ P53 Digital Creations (¥i[E] Zope Corporation; & https://www.zope.org/). 2001
4E, Python ##43L4-6r (PSF, K https://www.python.org/psf/) 37, g —{HEEHEA Python FHE %2
EHEIRENT A7 1) IR R 44K . Zope Corporation J& PSF f)—H & & &

Jir A7 B Python JRAKSZBHIRAY (A BB EFE, 2(E hups//opensource.org/) . M b, KEH{HAE4
By Python JAS, o2 GPLAHZAH; DAR FARAE 4 25 M A 1 22 [E.

BMRE BB Fn wEE GPL &% 7

09.0%F 12 A 1991-1995 CWI =
132152 1.2 1995-1999 CNRI 2
1.6 1.5.2 2000 CNRI &
2.0 1.6 2000 BeOpen.com 75
1.6.1 1.6 2001 CNRI =
2.1 2.0+1.6.1 2001 PSF w
2.0.1 2.0+1.6.1 2001 PSF 2
2.1.1 2.1+2.0.1 2001 PSF 2
2.12 2.1.1 2002 PSF =
2.1.3 2.1.2 2002 PSF 7=
22 PAE 2.1.1 2001 £4 PSF 2

fiiE): GPL MALIAF R 21E GPL R #[El Python, A4 GPL, A1) Python FZHEHS AT DA 455 (1)
BRI, (AR B 5 o IR . GPL A2 B #2 HE(L 1S Python W] PA%S & A /E GPL R
SHE R EH B ERRERIARTT.

95


https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, £(F] 3.11.8

IR 2SN T, £ Guido FRE NIATH, FfHE LA 1 B [ R(E AT A

C.2 FANREMHLIEMFGXER Python BHISHER

Python FCHFIEI SR RZAE 2 LR PSF 424 &4

% Python 3.8.6 B4R, [EIHASCH:rpagaifl, R BN HAWRE XA, 2908 FEIZHE (dual licensed) 7 PSF #%
WEA #1 VA K Zero-Clause BSD % #¢ .

A LEHAN A Python SRR BLA R R B0 S5 SEARRER G BB REZ LR — g . B RE 2
FHERI A SERETE L, 2 O T 3R 09 34 20

C.2.1 ¥ PYTHON 3.11.8 §Y PSF %&£

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSEF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.8 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.8 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All.
—~Rights

Reserved" are retained in Python 3.11.8 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.8 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.8.

4. PSF is making Python 3.11.8 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.8 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.8
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF

96 Appendix C. ;BERiZiE



Python Frequently Asked Questions, £[F) 3.11.8

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.8, OR ANY.
—~DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—~This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—or any

third party.

8. By copying, installing or otherwise using Python 3.11.8, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 4 PYTHON 2.0 ) BEOPEN.COM R &#

BEOPEN PYTHON BHIRFZRES 4055 1 I

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(BT —1D

C.2. ARFRHURMFXMERA Python BEHIIER 97




Python Frequently Asked Questions, £(F] 3.11.8

(B E—H)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 ¥ PYTHON 1.6.1 g CNRI iR &#

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark

EET—3

98 Appendix C. ;BERiZiE




Python Frequently Asked Questions, £[F) 3.11.8

(R L —5)

sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 ¥ PYTHON 0.9.0 & 1.2 gy CWI i1R{EEH

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 Fi* PYTHON 3.11.8 [FEAX 4+ FI#2 X 5y ZERO-CLAUSE BSD #%4#

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. ARFRHURMFXMERA Python BEHIIER

99




Python Frequently Asked Questions, £(F] 3.11.8

C.3 #usr(F#kRany iR 8 MBI

AT A S R O Y R SR G B, B2 AE Python FEEICAS H P [Ei 55 =ik i .

C.3.1 Mersenne Twister

_random BAH S T LA hitp://www.math.sci.hiroshima-u.ac. jp/~m-mat/MT/MT2002/emt19937ar.html ] N
EZFIRE RS . AT 2R AR U Y 52 8 i -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

100 Appendix C. ;HEELIRE



http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, £[F) 3.11.8

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 FEFE ¥ socket JR 7%

asynchat fll asyncore fAL & DA R AR :

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB 101



https://www.wide.ad.jp/

Python Frequently Asked Questions, £(F] 3.11.8

C.3.4 Cookie &1

http.cookies HiZH L& DA AR :

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 #{TIEN

trace B W& DA
portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

102 Appendix C. ;HEELIRE



Python Frequently Asked Questions, £[F) 3.11.8

C.3.6 UUencode £ UUdecode &E=

uu BAL L5 DA

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Eixf2FFueoy

xmlrpc.client PEAHALE DA FE:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. #ugFIakienyIR{E BB

103




Python Frequently Asked Questions, £(F] 3.11.8

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

select BLHIHfHY kqueue 714 & DA RN -

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

104 Appendix C. ;AEEZ#E



Python Frequently Asked Questions, £[F) 3.11.8

C.3.10 SipHash24

Python/pyhash. c f§ %47 Marek Majkowski’ 554 Dan Bernstein f{ SipHash24 JEEVERIEE. B8
PAT R -

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod H dtoa

Python/dtoa.c fHEHALT CHY doa fil strtod pR, F A C A EEKE BE 17 BE ORI =2 5 HAHE) . AR %
FefiTA: H David M. Gay @7 [R5 , 1235 BIAE W] DA https://web.archive.org/web/20220517033456/http:
/Iwww.netlib.org/fp/dtoa.c N, #2009 4E 3 H 16 H kR 1R G648 2005 DA IR RE B 2 REAZE Y -

/****************************************************************

The author of this software is David M. Gay.

E

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

E O

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

*
*
*
*
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*
*
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

**************************************************************/

C.3. #ugFIakienyIR{E BB 105



https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Frequently Asked Questions, £(F] 3.11.8

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later
releases derived from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

(HEBT—TD

106 Appendix C. ;HEELIRE




Python Frequently Asked Questions, £[F) 3.11.8

(B E—H)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(BT —H)

C.3. #ugFIakienyIR{E BB 107




Python Frequently Asked Questions, £(F] 3.11.8

(B E—H)
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

108 Appendix C. ;HEELIRE




Python Frequently Asked Questions, £[F) 3.11.8

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

BRARfE R E _ctypes PR EE] ——with-system-1ibffi, FHHIFZMTTE H—HES libfi JFAA1HS
B B AR AR

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 109




Python Frequently Asked Questions, £(F] 3.11.8

C.3.15 zlib

URAE R S BAR B 2lib A KR PABOR Ik R 2110 JE5E, ARz se g M — M EE 2ib [5G
AR R A 2

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc {#i Y 3EEIFE (hash table) F4E, J2DA cfuhash B2 ([FIRLAE:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(HEBT—TD

110 Appendix C. ;AEEZ#E




Python Frequently Asked Questions, £[F) 3.11.8

(R L —5)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

MdEfE 7 _decimal B4R EE] -—with-system—-1libmpdec, 7 A% B4 € H—H(El 2 libmpdec
PR X JBE 1 ) A A

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N B EH

test AP CI4N 2.0 HIFLEM (Lib/test/xmltestdata/cl14n-20/) 24 W3C #du} https:
/Iwww.w3.0org/TR/xml-c14n2-testcases/ #A52%, HEHR 3-clause BSD #Z#Eyt #(E):

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(BT —H)

C.3. #ugFIakienyIR{E BB 111


https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Python Frequently Asked Questions, £(F] 3.11.8

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(R L —5)

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/

sox/12.17.7/sox-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUD-
ING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRAC-
TICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE IN-
FRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect

and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

EET—3

112 Appendix C.

DR



https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

Python Frequently Asked Questions, £[F) 3.11.8

(R L —5)
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #ugFIakienyIR{E BB 113



Python Frequently Asked Questions, £(F] 3.11.8

114 Appendix C. ;AEEZ#E



APPENDIX D

=
i
|mit
If

Python 13z 3 [EJHA SCH4- 04 IURE :

Copyright © 2001-2023 Python Software Foundation {3 & —HJHEF] .

Copyright © 2000 BeOpen.com {4 i — I HEF]

Copyright © 1995-2000 Corporation for National Research Initiatives {4 &4 —JHEF
Copyright © 1991-1995 Stichting Mathematisch Centrum {88 —4JJHEF) .

SERMR R A T 2 105 5 St

115



Python Frequently Asked Questions, £(F] 3.11.8

116 Appendix D. IREE&



5

ERFEIERF

o717

2to3,77

>>> 77

__ _future_ , 82

__slots_ ,89

Y
PATH, 52
PYTHONDONTWRITEBYTECODE, 36

A

abstract base class (& EEHE) ,77

annotation ([EE) ,77

argument (5%) ,77

¥ parameter (£%) W2, 12

asynchronous context manager (3 [ ¥ &
BEEE) T8

asynchronous generator iterator(JE[|%F
)4+ #EIRE) ,78

asynchronous generator (FEFEF[F4 %) ,78

asynchronous iterable (3 [ T EI 47 4)
, 78

asynchronous iterator (Eﬂifﬁ]ﬁﬁ%’é) ,78

attribute (BM) ,78

awaitable (T&&44) ,78

B

BDFL, 79

binary file (ZiE#MZE) ,79

borrowed reference (EH%E) ,79
bytecode (fLT#l#) ,79

bytes—like object (LT E4H) ,79

C

callable (FHFey44F) ,79
callback (E’]“?) .79
C-contiguous (C ﬁ%fﬁ) , 80
class variable (’»K/E%%() 79
class (H[E)) ,79

complex number (%{) , 79
context manager (FEEZHE) ,80
context variable (‘%fﬁ%%{) , 80
contiguous (FEZH) , 80

coroutine function (HEZER) ,80
coroutine (#H4E) ,80
CPython, 80

D

decorator (ZHAF#) ,80

descriptor (H##%) ,80

dictionary comprehension (FHiF4AEH),
80

dictionary view (FH#ip4H) ,81

dictionary (F#) ,80

docstring ([El# &) , 81

duck-typing (%FA[E) ,81

E

EAFP, 81
expression (EHER) ,81
extension module (¥EFAEAL) , 81

F

f-string (f F&) ,81

file object (ﬁ%%ﬁ‘) , 81

file-like object (Mt E# ) ,81

filesystem encoding and error
handler (1§ £ Z 4 % 7 1 # & R
EHR) ,81

finder (&%) ,82

floor division (@Tﬂ%%&) , 82

Fortran contiguous (Fortran #E#H) , 80

1

function annotation (&R [EIE) ,82
function (B =) ,82

G

garbage collection (B E ) , 82

generator expression ([HJ4 BEHZRX) , 82,
83

generator iterator ([EH4 ZEKZ) ,82

generator ([F4#) ,82

generic function (A ER) ,83

generic type (ZAAN) ,83

GIL, 83

global interpreter lock (& HZEHH) ,
83

117



Python Frequently Asked Questions, £(F] 3.11.8

Fl

hash-based pyc (#[[EZE#HN pyc) ,83
hashable (F#([Elf) ,83

IDLE, 83

immutable (R #44) ,83

import path (F|IAE/E) ,83

importer (5|A#&) ,84

importing (3] \) , 84

interactive (E#H) ,84

interpreted (EE%%) , 84

interpreter shutdown (HZHEHH) ,84
iterable (F[EMRRYH) , 84

iterator (TJQ%%) , 84

K

key function (#®=R) ,84
keyword argument (HF5|%) ,85

L

lambda, 85

LBYL, 85

list comprehension (B7|4&AEH) ,85
list (7)) ,85

loader (#A#%) ,85

locale encoding (EHE %) , 85

M

magic
method (7\7«‘2) , 85
magic method (EMT FiE) .85
mapping (#m) ,85
meta path finder (TCHEEFHE) ,85
metaclass (flj%k,ﬁ\) ,85
method resolution order (FEMATE)F) ,
86
method (7‘?&3) , 86
magic, 85
special, 90
module spec (ﬁ?ﬂ%ﬂ%) , 86
module (#4) , 86

MRO, 86
mutable (F&4#) ,86
N

named tuple (Mf4&JC4L) , 86
namespace package (% ZHEH) , 86
namespace (#H%& =MH) ,86

nested scope (;‘ﬁﬁkf’?}ﬂﬁﬁ) , 87
new-style class (F#[F) ,87

@)
object (#1fF) ,87

F)
package (B#) ,87

paramet

er (5% .87

H argument (5|#%) &2, 12

PATH, 52

path based finder (HERAEBwZmE) |88
path entry finder (BAEIEE FigH)

path entry hook (%1% EHIEF)

path entry (H18IHE) ,87
path-like object (MBE4#) , 88

PEP, 88

portion (3 4) ,88

positional argument (ﬁﬁ?l%@ 5

provisi
provisi
Python
Python
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PYTHOND
Pythoni

Q

qualifi

R

onal API (%47 API) ,88
onal package (WATEH)
3000, 88

Enhancement Proposals
1,88

5,5

8,8,33,72

238,82

278,91

302, 82,85

343, 80

362,78, 87

387,3

411, 88

420, 82, 86, 88

443,83

451, 82

483,83

484,717, 82,83, 90,91
492,78, 80

498,81

519, 88

525,78

526,77,91

572,41

585, 83

602,5

3116,91

3147, 36

3155, 89
ONTWRITEBYTECODE, 36
c (Python EAMH ) , 88

ed name (RE4H) ,89

reference count (£ E# %) ,89
regular package (EEHEH) ,89

S

sequenc

set comprehension (£44%46E%) ,89

single

e (JF5l) .89

dispatch (E—3Z) ,89

slice (1K) ,89

special

method (F %) ,90

, 88

88

, 88

, 87

118

#5l



Python Frequently Asked Questions, £[F) 3.11.8

special method (%% i) ,90
statement (EHZR) ,90

static type checker, 90
strong reference ([FI&E) ,90

T

text encoding (X F4&#) ,90

text file (XFHE) ,90

triple-quoted string (Z 5| #EF#) , 90
type alias (E[FEIE4%) , 90

type hint (E[EHETF) ,91

type () ,90

U

universal newlines (#AEATE L) ,91

\Y

variable annotation (##H([EFE) ,91
virtual environment (Tﬁ%@%{iﬁ) , 91
virtual machine ([EJ#H# %) ,91

Z

Zen of Python (Python ZI[F]) ,91

%35l 119



	一般的 Python 常見問答集
	一般資訊
	什麼是 Python？
	什麼是 Python 軟體基金會？
	使用 Python 時有任何版權限制嗎？
	當初為什麼 Python 會被創造出來？
	什麼是 Python 擅長的事情？
	Python 的版本編號系統是如何運作的？
	我要如何得到 Python 的原始碼複本？
	我要如何取得 Python 的說明文件？
	我從來沒有寫過程式，有沒有 Python 的教學？
	有沒有 Python 專屬的新聞群組或郵件討論群？
	如何取得 Python 的 beta 測試版本？
	如何提交 Python 的錯誤報告和修補程式？
	是否有關於 Python 的任何已出版文章可供參考？
	有沒有關於 Python 的書？
	www.python.org 的真實位置在哪裡？
	為什麼要取名為 Python？
	我需要喜歡「Monty Python 的飛行馬戲團」嗎？

	在真實世界中的 Python
	Python 的穩定性如何？
	有多少人在使用 Python？
	有沒有任何重要的專案使用 Python 完成開發？
	Python 未來預期會有哪些新的開發？
	對 Python 提出不相容的變更建議是否適當？
	Python 對於入門的程式設計師而言是否為好的語言？


	程式開發常見問答集
	常見問題
	是否有可以使用在程式碼階段,具有中斷點,步驟執行等功能的除錯器？
	有沒有工具能夠幫忙找 bug 或執行靜態分析？
	How can I create a stand-alone binary from a Python script?
	Are there coding standards or a style guide for Python programs?

	Core Language
	Why am I getting an UnboundLocalError when the variable has a value?
	Python 的區域變數和全域變數有什麼規則？
	Why do lambdas defined in a loop with different values all return the same result?
	How do I share global variables across modules?
	What are the "best practices" for using import in a module?
	Why are default values shared between objects?
	How can I pass optional or keyword parameters from one function to another?
	引數 (arguments) 和參數 (parameters) 有什麼區別？
	為什麼更改 list 'y' 也會更改 list 'x'？
	How do I write a function with output parameters (call by reference)?
	How do you make a higher order function in Python?
	如何在 Python 中複製物件？
	如何找到物件的方法或屬性？
	我的程式碼如何發現物件的名稱？
	What's up with the comma operator's precedence?
	是否有等效於 C 的 "?:" 三元運算子？
	Is it possible to write obfuscated one-liners in Python?
	What does the slash(/) in the parameter list of a function mean?

	數字和字串
	如何指定十六進位和八進位整數？
	為什麼 -22 // 10 回傳 -3？
	How do I get int literal attribute instead of SyntaxError?
	如何將字串轉換為數字？
	如何將數字轉換為字串？
	How do I modify a string in place?
	How do I use strings to call functions/methods?
	Is there an equivalent to Perl's chomp() for removing trailing newlines from strings?
	Is there a scanf() or sscanf() equivalent?
	'UnicodeDecodeError' 或 'UnicodeEncodeErro' 錯誤是什麼意思？
	Can I end a raw string with an odd number of backslashes?

	Performance
	My program is too slow. How do I speed it up?
	What is the most efficient way to concatenate many strings together?

	Sequences (Tuples/Lists)
	How do I convert between tuples and lists?
	What's a negative index?
	How do I iterate over a sequence in reverse order?
	How do you remove duplicates from a list?
	How do you remove multiple items from a list
	How do you make an array in Python?
	How do I create a multidimensional list?
	How do I apply a method or function to a sequence of objects?
	Why does a_tuple[i] += ['item'] raise an exception when the addition works?
	I want to do a complicated sort: can you do a Schwartzian Transform in Python?
	How can I sort one list by values from another list?

	物件
	什麼是類別 (class)？
	什麼是方法 (method)？
	What is self?
	How do I check if an object is an instance of a given class or of a subclass of it?
	What is delegation?
	How do I call a method defined in a base class from a derived class that extends it?
	How can I organize my code to make it easier to change the base class?
	How do I create static class data and static class methods?
	How can I overload constructors (or methods) in Python?
	I try to use __spam and I get an error about _SomeClassName__spam.
	My class defines __del__ but it is not called when I delete the object.
	How do I get a list of all instances of a given class?
	Why does the result of id() appear to be not unique?
	When can I rely on identity tests with the is operator?
	子類別如何控制不可變實例中存儲的資料？
	How do I cache method calls?

	模組
	How do I create a .pyc file?
	How do I find the current module name?
	How can I have modules that mutually import each other?
	__import__('x.y.z') 回傳 <module 'x'>，那我怎麼得到 z？
	When I edit an imported module and reimport it, the changes don't show up. Why does this happen?


	設計和歷史常見問答集
	為什麼 Python 使用縮排將陳述式進行分組？
	為什麼我會從簡單的數學運算得到奇怪的結果？
	為何浮點數運算如此不精確？
	為什麼 Python 字串不可變動？
	為何「self」在方法 (method) 定義和呼叫時一定要明確使用？
	為何我不能在運算式 (expression) 中使用指派運算？
	為何 Python 對於一些功能實作使用方法（像是 list.index()），另一些使用函式（像是 len(list)）？
	為何 join() 是字串方法而非串列 (list) 或元組 (tuple) 方法？
	例外處理有多快？
	為什麼 Python 內沒有 switch 或 case 陳述式？
	為何不能在直譯器上模擬執行緒，而要使用作業系統的特定實作方式？
	為何 lambda 運算式不能包含陳述式？
	Python 可以被編譯成機器語言、C 語言或其他種語言嗎？
	Python 如何管理記憶體？
	為何 CPython 不使用更多傳統的垃圾回收機制？
	當 CPython 結束時，為何所有的記憶體不會被釋放？
	為何要把元組 (tuple) 和串列 (list) 分成兩個資料型態？
	串列 (list) 在 CPython 中是怎麼實作的？
	字典 (dictionaries) 在 CPython 中是怎麼實作的？
	為何字典的鍵一定是不可變的？
	為何 list.sort() 不是回傳排序過的串列？
	如何在 Python 中指定和強制使用一個介面規範 (interface spec)？
	為何沒有 goto 語法？
	為何純字串 (r-string) 不能以反斜線結尾？
	為何 Python 沒有屬性賦值的 with 陳述式？
	為何產生器 (generator) 不支援 with 陳述式？
	為何 if、while、def、class 陳述式裡需要冒號？
	為何 Python 允許在串列和元組末端加上逗號？

	函式庫和擴充功能的常見問題
	常見函式問題
	How do I find a module or application to perform task X?
	哪裡可以找到 math.py (socket.py, regex.py, 等...) 來源檔案？
	我如何使 Python script 執行在 Unix？
	是否有適用於 Python 的 curses/termcap 套件？
	Is there an equivalent to C's onexit() in Python?
	Why don't my signal handlers work?

	常見課題
	如何測試 Python 程式或元件？
	How do I create documentation from doc strings?
	How do I get a single keypress at a time?

	執行緒
	如何使用執行緒編寫程式？
	我的執行緒似乎都沒有運行：為什麼？
	How do I parcel out work among a bunch of worker threads?
	What kinds of global value mutation are thread-safe?
	不能擺脫全局直譯器鎖嗎？

	輸入與輸出
	如何刪除檔案？（以及其他檔案問題...）
	如何複製檔案？
	如何讀取（或寫入）二進位制資料？
	I can't seem to use os.read() on a pipe created with os.popen(); why?
	如何存取序列 (RS232) 連接埠？
	Why doesn't closing sys.stdout (stdin, stderr) really close it?

	網路 (Network)/網際網路 (Internet) 程式
	Python 有哪些 WWW 工具？
	如何模擬 CGI 表單送出 (submission) (METHOD=POST)？
	我應該使用什麼模組來輔助產生 HTML？
	如何從 Python 腳本發送郵件？
	How do I avoid blocking in the connect() method of a socket?

	資料庫
	Are there any interfaces to database packages in Python?
	How do you implement persistent objects in Python?

	數學和數值
	如何在 Python 中生成隨機數？


	擴充/嵌入常見問題集
	我可以在 C 中建立自己的函式嗎？
	我可以在 C++ 中建立自己的函式嗎？
	寫 C 很難；還有其他選擇嗎？
	如何從 C 執行任意 Python 陳述式？
	How can I evaluate an arbitrary Python expression from C?
	如何從 Python 物件中提取 C 值？
	如何使用 Py_BuildValue() 建立任意長度的元組？
	如何從 C 呼叫物件的方法？
	我如何捕捉 PyErr_Print() 的輸出（或任何印出到 stdout/stderr 的東西）？
	如何從 C 存取用 Python 編寫的模組？
	How do I interface to C++ objects from Python?
	我使用安裝檔案新增了一個模組，但 make 失敗了；為什麼？
	如何為擴充套件除錯？
	我想在我的 Linux 系統上編譯一個 Python 模組，但是缺少一些檔案。為什麼？
	如何從「無效輸入」區分出「不完整輸入」？
	如何找到未定義的 g++ 符號 __builtin_new 或 __pure_virtual？
	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	在 Windows 使用 Python 的常見問答集
	如何在 Windows 作業系統裡運行 Python 程式？
	如何使 Python 腳本可以執行？
	為什麼 Python 有時需要這麼長的時間才能開始？
	如何從 Python 腳本製作可執行檔？
	*.pyd 檔是否與 DLL 相同？
	如何將 Python 嵌入 Windows 應用程式中？
	如何防止編輯器在我的 Python 原始碼中插入 tab？
	如何在不阻塞的情況下檢查 keypress？
	如何解決遺漏 api-ms-win-crt-runtime-l1-1-0.dll 的錯誤？

	圖形使用者介面常見問答集
	圖形使用者介面 (GUI) 的常見問題
	Python 有哪些 GUI 套件？
	Tkinter 的問答
	如何凍結 Tkinter 應用程式？
	是否可以在等待 I/O 時處理 Tk 事件？
	我無法讓鍵繫結 (key binding) 在 Tkinter 中作用：為什麼？


	「為什麼 Python 被安裝在我的機器上？」常見問答集
	什麼是 Python？
	為什麼 Python 被安裝在我的機器上?
	我能夠自行刪除 Python 嗎？

	術語表
	關於這些說明文件
	Python 文件的貢獻者們

	沿革與授權
	軟體沿革
	關於存取或以其他方式使用 Python 的合約條款
	用於 PYTHON 3.11.8 的 PSF 授權合約
	用於 PYTHON 2.0 的 BEOPEN.COM 授權合約
	用於 PYTHON 1.6.1 的 CNRI 授權合約
	用於 PYTHON 0.9.0 至 1.2 的 CWI 授權合約
	用於 PYTHON 3.11.8 說明文件內程式碼的 ZERO-CLAUSE BSD 授權

	被收錄軟體的授權與致謝
	Mersenne Twister
	Sockets
	非同步 socket 服務
	Cookie 管理
	執行追蹤
	UUencode 與 UUdecode 函式
	XML 遠端程序呼叫
	test_epoll
	Select kqueue
	SipHash24
	strtod 與 dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N 測試套件
	Audioop
	asyncio


	版權宣告
	索引

