初始化,终结和线程¶
请参阅 Python 初始化配置 。
在Python初始化之前¶
在一个植入了 Python 的应用程序中,Py_Initialize()
函数必须在任何其他 Python/C API 函数之前被调用;例外的只有个别函数和 全局配置变量。
在初始化Python之前,可以安全地调用以下函数:
配置函数:
信息函数:
工具
内存分配器:
全局配置变量¶
Python 有负责控制全局配置中不同特性和选项的变量。这些标志默认被 命令行选项。
当一个选项设置一个旗标时,该旗标的值将是设置选项的次数。 例如,-b
会将 Py_BytesWarningFlag
设为 1 而 -bb
会将 Py_BytesWarningFlag
设为 2.
-
int
Py_BytesWarningFlag
¶ 当将
bytes
或bytearray
与str
比较或者将bytes
与int
比较时发出警告。 如果大于等于2
则报错。由
-b
选项设置。
-
int
Py_DebugFlag
¶ 开启解析器调试输出(限专家使用,依赖于编译选项)。
由
-d
选项和PYTHONDEBUG
环境变量设置。
-
int
Py_DontWriteBytecodeFlag
¶ 如果设置为非零, Python 不会在导入源代码时尝试写入
.pyc
文件由
-B
选项和PYTHONDONTWRITEBYTECODE
环境变量设置。
-
int
Py_FrozenFlag
¶ 当在
Py_GetPath()
中计算模块搜索路径时屏蔽错误消息。由
_freeze_importlib
和frozenmain
程序使用的私有旗标。
-
int
Py_HashRandomizationFlag
¶ 如果
PYTHONHASHSEED
环境变量被设为非空字符串则设为1
。如果该旗标为非零值,则读取
PYTHONHASHSEED
环境变量来初始化加密哈希种子。
-
int
Py_IgnoreEnvironmentFlag
¶ 忽略所有
PYTHON*
环境变量,例如,已设置的PYTHONPATH
和PYTHONHOME
。
-
int
Py_InspectFlag
¶ 当将脚本作为第一个参数传入或是使用了
-c
选项时,则会在执行该脚本或命令后进入交互模式,即使在sys.stdin
并非一个终端时也是如此。由
-i
选项和PYTHONINSPECT
环境变量设置。
-
int
Py_IsolatedFlag
¶ 以隔离模式运行 Python. 在隔离模式下
sys.path
将不包含脚本的目录或用户的 site-packages 目录。由
-I
选项设置。3.4 版新加入.
-
int
Py_LegacyWindowsFSEncodingFlag
¶ 如果该旗标为非零值,则使用
mbcs
编码和``replace`` 错误处理句柄,而不是 UTF-8 编码和surrogatepass
错误处理句柄作用 filesystem encoding and error handler。如果
PYTHONLEGACYWINDOWSFSENCODING
环境变量被设为非空字符串则设为1
。更多詳情請見 PEP 529。
適用:Windows。
-
int
Py_LegacyWindowsStdioFlag
¶ If the flag is non-zero, use
io.FileIO
instead ofWindowsConsoleIO
forsys
standard streams.如果
PYTHONLEGACYWINDOWSSTDIO
环境变量被设为非空字符串则设为1
。更多詳情請見 PEP 528。
適用:Windows。
-
int
Py_NoSiteFlag
¶ 禁用
site
的导入及其所附带的基于站点对sys.path
的操作。 如果site
会在稍后被显式地导入也会禁用这些操作 (如果你希望触发它们则应调用site.main()
)。由
-S
选项设置。
-
int
Py_NoUserSiteDirectory
¶ 不要将
用户 site-packages 目录
添加到sys.path
。由
-s
和-I
选项以及PYTHONNOUSERSITE
环境变量设置。
-
int
Py_OptimizeFlag
¶ 由
-O
选项和PYTHONOPTIMIZE
环境变量设置。
-
int
Py_UnbufferedStdioFlag
¶ 强制 stdout 和 stderr 流不带缓冲。
由
-u
选项和PYTHONUNBUFFERED
环境变量设置。
-
int
Py_VerboseFlag
¶ 每次初始化模块时打印一条消息,显示加载模块的位置(文件名或内置模块)。 如果大于或等于
2
,则为搜索模块时检查的每个文件打印一条消息。 此外还会在退出时提供模块清理信息。由
-v
选项和PYTHONVERBOSE
环境变量设置。
初始化和最终化解释器¶
-
void
Py_Initialize
()¶ - Part of the Stable ABI.
初始化 Python 解释器。 在嵌入 Python 的应用程序中,它应当在使用任何其他 Python/C API 函数之前被调用;请参阅 在 Python 初始化之前 了解少数的例外情况。
这将初始化已加载模块表 (
sys.modules
),并创建基本模块builtins
、__main__
和sys
。 它还会初始化模块搜索路径 (sys.path
)。 它不会设置sys.argv
;如有需要请使用PySys_SetArgvEx()
。 当第二次调用时 (在未事先调用Py_FinalizeEx()
的情况下) 将不会执行任何操作。 它没有返回值;如果初始化失败则会发生致命错误。備註
在 Windows 上,将控制台模式从
O_TEXT
改为O_BINARY
,这还将影响使用 C 运行时的非 Python 的控制台使用。
-
void
Py_InitializeEx
(int initsigs)¶ - Part of the Stable ABI.
如果 initsigs 为
1
则该函数的工作方式与Py_Initialize()
类似。 如果 initsigs 为0
,它将跳过信号处理句柄的初始化注册,这在嵌入 Python 时可能会很有用处。
-
int
Py_IsInitialized
()¶ - Part of the Stable ABI.
如果 Python 解释器已初始化,则返回真值(非零);否则返回假值(零)。 在调用
Py_FinalizeEx()
之后,此函数将返回假值直到Py_Initialize()
再次被调用。
-
int
Py_FinalizeEx
()¶ - Part of the Stable ABI since version 3.6.
撤销
Py_Initialize()
所做的所有初始化操作和后续对 Python/C API 函数的使用,并销毁自上次调用Py_Initialize()
以来创建但尚未销毁的所有子解释器(参见下文Py_NewInterpreter()
一节)。 在理想情况下,这会释放 Python 解释器分配的所有内存。 当第二次调用时(在未再次调用Py_Initialize()
的情况下),这将不执行任何操作。 正常情况下返回值是0
。 如果在最终化(刷新缓冲数据)过程中出现错误,则返回-1
。提供此函数的原因有很多。嵌入应用程序可能希望重新启动Python,而不必重新启动应用程序本身。从动态可加载库(或DLL)加载Python解释器的应用程序可能希望在卸载DLL之前释放Python分配的所有内存。在搜索应用程序内存泄漏的过程中,开发人员可能希望在退出应用程序之前释放Python分配的所有内存。
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause destructors (
__del__()
methods) to fail when they depend on other objects (even functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions may not work properly if their initialization routine is called more than once; this can happen if an application callsPy_Initialize()
andPy_FinalizeEx()
more than once.引发一个 审计事件
cpython._PySys_ClearAuditHooks
,不附带任何参数。3.6 版新加入.
-
void
Py_Finalize
()¶ - Part of the Stable ABI.
这是一个不考虑返回值的
Py_FinalizeEx()
的向下兼容版本。
进程级参数¶
-
int
Py_SetStandardStreamEncoding
(const char *encoding, const char *errors)¶ 如果要调用该函数,应当在
Py_Initialize()
之前调用。 它指定了标准 IO 使用的编码格式和错误处理方式,其含义与str.encode()
中的相同。它覆盖了
PYTHONIOENCODING
的值,并允许嵌入代码以便在环境变量不起作用时控制 IO 编码格式。encoding 和/或 errors 可以为
NULL
以使用PYTHONIOENCODING
和/或默认值(取决于其他设置)。请注意无论是否有此设置(或任何其他设置),
sys.stderr
都会使用 "backslashreplace" 错误处理句柄。如果调用了
Py_FinalizeEx()
,则需要再次调用该函数以便影响对Py_Initialize()
的后续调用。成功时返回
0
,出错时返回非零值(例如在解释器已被初始化后再调用)。3.4 版新加入.
-
void
Py_SetProgramName
(const wchar_t *name)¶ - Part of the Stable ABI.
如果要调用该函数,应当在首次调用
Py_Initialize()
之前调用它。 它将告诉解释器程序的main()
函数的argv[0]
参数的值(转换为宽字符)。Py_GetPath()
和下面的某些其他函数会使用它在相对于解释器的位置上查找可执行文件的 Python 运行时库。 默认值是'python'
。 参数应当指向静态存储中的一个以零值结束的宽字符串,其内容在程序执行期间不会发生改变。 Python 解释器中的任何代码都不会改变该存储的内容。Use
Py_DecodeLocale()
to decode a bytes string to get awchar_*
string.
-
wchar *
Py_GetProgramName
()¶ - Part of the Stable ABI.
返回用
Py_SetProgramName()
设置的程序名称,或默认的名称。 返回的字符串指向静态存储;调用者不应修改其值。此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
-
wchar_t *
Py_GetPrefix
()¶ - Part of the Stable ABI.
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules from the program name set with
Py_SetProgramName()
and some environment variables; for example, if the program name is'/usr/local/bin/python'
, the prefix is'/usr/local'
. The returned string points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-levelMakefile
and the--prefix
argument to the configure script at build time. The value is available to Python code assys.prefix
. It is only useful on Unix. See also the next function.此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
-
wchar_t *
Py_GetExecPrefix
()¶ - Part of the Stable ABI.
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules from the program name set with
Py_SetProgramName()
and some environment variables; for example, if the program name is'/usr/local/bin/python'
, the exec-prefix is'/usr/local'
. The returned string points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable in the top-levelMakefile
and the--exec-prefix
argument to the configure script at build time. The value is available to Python code assys.exec_prefix
. It is only useful on Unix.Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed in the
/usr/local/plat
subtree while platform independent may be installed in/usr/local
.Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same operating system generally also form different platforms. Non-Unix operating systems are a different story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share
/usr/local
between platforms while having/usr/local/plat
be a different filesystem for each platform.此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
-
wchar_t *
Py_GetProgramFullPath
()¶ - Part of the Stable ABI.
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default module search path from the program name (set by
Py_SetProgramName()
above). The returned string points into static storage; the caller should not modify its value. The value is available to Python code assys.executable
.此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
-
wchar_t *
Py_GetPath
()¶ - Part of the Stable ABI.
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName()
above) and some environment variables. The returned string consists of a series of directory names separated by a platform dependent delimiter character. The delimiter character is':'
on Unix and macOS,';'
on Windows. The returned string points into static storage; the caller should not modify its value. The listsys.path
is initialized with this value on interpreter startup; it can be (and usually is) modified later to change the search path for loading modules.此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
-
void
Py_SetPath
(const wchar_t*)¶ - Part of the Stable ABI since version 3.7.
Set the default module search path. If this function is called before
Py_Initialize()
, thenPy_GetPath()
won't attempt to compute a default search path but uses the one provided instead. This is useful if Python is embedded by an application that has full knowledge of the location of all modules. The path components should be separated by the platform dependent delimiter character, which is':'
on Unix and macOS,';'
on Windows.This also causes
sys.executable
to be set to the program full path (seePy_GetProgramFullPath()
) and forsys.prefix
andsys.exec_prefix
to be empty. It is up to the caller to modify these if required after callingPy_Initialize()
.Use
Py_DecodeLocale()
to decode a bytes string to get awchar_*
string.The path argument is copied internally, so the caller may free it after the call completes.
3.8 版更變: The program full path is now used for
sys.executable
, instead of the program name.
-
const char *
Py_GetVersion
()¶ - Part of the Stable ABI.
Return the version of this Python interpreter. This is a string that looks something like
"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"
The first word (up to the first space character) is the current Python version; the first characters are the major and minor version separated by a period. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as
sys.version
.
-
const char *
Py_GetPlatform
()¶ - Part of the Stable ABI.
Return the platform identifier for the current platform. On Unix, this is formed from the "official" name of the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is
'sunos5'
. On macOS, it is'darwin'
. On Windows, it is'win'
. The returned string points into static storage; the caller should not modify its value. The value is available to Python code assys.platform
.
-
const char *
Py_GetCopyright
()¶ - Part of the Stable ABI.
Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'
返回的字符串指向静态存储;调用者不应修改其值。 Python 代码可通过
sys.copyright
获取该值。
-
const char *
Py_GetCompiler
()¶ - Part of the Stable ABI.
返回用于编译当前 Python 版本的编译器指令,为带方括号的形式,例如:
"[GCC 2.7.2.2]"
返回的字符串指向静态存储;调用者不应修改其值。 Python 代码可以从变量
sys.version
中获取该值。
-
const char *
Py_GetBuildInfo
()¶ - Part of the Stable ABI.
返回有关当前Python解释器实例的序列号和构建日期和时间的信息,例如:
"#67, Aug 1 1997, 22:34:28"
返回的字符串指向静态存储;调用者不应修改其值。 Python 代码可以从变量
sys.version
中获取该值。
-
void
PySys_SetArgvEx
(int argc, wchar_t **argv, int updatepath)¶ - Part of the Stable ABI.
Set
sys.argv
based on argc and argv. These parameters are similar to those passed to the program'smain()
function with the difference that the first entry should refer to the script file to be executed rather than the executable hosting the Python interpreter. If there isn't a script that will be run, the first entry in argv can be an empty string. If this function fails to initializesys.argv
, a fatal condition is signalled usingPy_FatalError()
.If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies
sys.path
according to the following algorithm:If the name of an existing script is passed in
argv[0]
, the absolute path of the directory where the script is located is prepended tosys.path
.Otherwise (that is, if argc is
0
orargv[0]
doesn't point to an existing file name), an empty string is prepended tosys.path
, which is the same as prepending the current working directory ("."
).
Use
Py_DecodeLocale()
to decode a bytes string to get awchar_*
string.備註
It is recommended that applications embedding the Python interpreter for purposes other than executing a single script pass
0
as updatepath, and updatesys.path
themselves if desired. See CVE-2008-5983.On versions before 3.1.3, you can achieve the same effect by manually popping the first
sys.path
element after having calledPySys_SetArgv()
, for example using:PyRun_SimpleString("import sys; sys.path.pop(0)\n");
3.1.3 版新加入.
-
void
PySys_SetArgv
(int argc, wchar_t **argv)¶ - Part of the Stable ABI.
This function works like
PySys_SetArgvEx()
with updatepath set to1
unless the python interpreter was started with the-I
.Use
Py_DecodeLocale()
to decode a bytes string to get awchar_*
string.3.4 版更變: The updatepath value depends on
-I
.
-
void
Py_SetPythonHome
(const wchar_t *home)¶ - Part of the Stable ABI.
Set the default "home" directory, that is, the location of the standard Python libraries. See
PYTHONHOME
for the meaning of the argument string.The argument should point to a zero-terminated character string in static storage whose contents will not change for the duration of the program's execution. No code in the Python interpreter will change the contents of this storage.
Use
Py_DecodeLocale()
to decode a bytes string to get awchar_*
string.
-
wchar_t *
Py_GetPythonHome
()¶ - Part of the Stable ABI.
Return the default "home", that is, the value set by a previous call to
Py_SetPythonHome()
, or the value of thePYTHONHOME
environment variable if it is set.此函数不应在
Py_Initialize()
之前被调用,否则将返回NULL
。3.10 版更變: 现在如果它在
Py_Initialize()
之前被调用将返回NULL
。
线程状态和全局解释器锁¶
The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there's a global lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously increment the reference count of the same object, the reference count could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the
GIL may operate on Python objects or call Python/C API functions.
In order to emulate concurrency of execution, the interpreter regularly
tries to switch threads (see sys.setswitchinterval()
). The lock is also
released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information
inside a data structure called PyThreadState
. There's also one
global variable pointing to the current PyThreadState
: it can
be retrieved using PyThreadState_Get()
.
从扩展扩展代码中释放 GIL¶
大多数操作 GIL 的扩展代码具有以下简单结构:
Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.
这是如此常用因此增加了一对宏来简化它:
Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS
Py_BEGIN_ALLOW_THREADS
宏将打开一个新块并声明一个隐藏的局部变量;Py_END_ALLOW_THREADS
宏将关闭这个块。
上面的代码块可扩展为下面的代码:
PyThreadState *_save;
_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);
Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.
備註
Calling system I/O functions is the most common use case for releasing
the GIL, but it can also be useful before calling long-running computations
which don't need access to Python objects, such as compression or
cryptographic functions operating over memory buffers. For example, the
standard zlib
and hashlib
modules release the GIL when
compressing or hashing data.
非Python创建的线程¶
When threads are created using the dedicated Python APIs (such as the
threading
module), a thread state is automatically associated to them
and the code showed above is therefore correct. However, when threads are
created from C (for example by a third-party library with its own thread
management), they don't hold the GIL, nor is there a thread state structure
for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure()
and PyGILState_Release()
functions do
all of the above automatically. The typical idiom for calling into Python
from a C thread is:
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */
/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);
Note that the PyGILState_*
functions assume there is only one global
interpreter (created automatically by Py_Initialize()
). Python
supports the creation of additional interpreters (using
Py_NewInterpreter()
), but mixing multiple interpreters and the
PyGILState_*
API is unsupported.
Cautions about fork()¶
Another important thing to note about threads is their behaviour in the face
of the C fork()
call. On most systems with fork()
, after a
process forks only the thread that issued the fork will exist. This has a
concrete impact both on how locks must be handled and on all stored state
in CPython's runtime.
The fact that only the "current" thread remains
means any locks held by other threads will never be released. Python solves
this for os.fork()
by acquiring the locks it uses internally before
the fork, and releasing them afterwards. In addition, it resets any
锁对象 in the child. When extending or embedding Python, there
is no way to inform Python of additional (non-Python) locks that need to be
acquired before or reset after a fork. OS facilities such as
pthread_atfork()
would need to be used to accomplish the same thing.
Additionally, when extending or embedding Python, calling fork()
directly rather than through os.fork()
(and returning to or calling
into Python) may result in a deadlock by one of Python's internal locks
being held by a thread that is defunct after the fork.
PyOS_AfterFork_Child()
tries to reset the necessary locks, but is not
always able to.
The fact that all other threads go away also means that CPython's
runtime state there must be cleaned up properly, which os.fork()
does. This means finalizing all other PyThreadState
objects
belonging to the current interpreter and all other
PyInterpreterState
objects. Due to this and the special
nature of the "main" interpreter,
fork()
should only be called in that interpreter's "main"
thread, where the CPython global runtime was originally initialized.
The only exception is if exec()
will be called immediately
after.
高阶 API¶
These are the most commonly used types and functions when writing C extension code, or when embedding the Python interpreter:
-
type
PyInterpreterState
¶ - Part of the Limited API (as an opaque struct).
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same interpreter share their module administration and a few other internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter they belong.
-
type
PyThreadState
¶ - Part of the Limited API (as an opaque struct).
This data structure represents the state of a single thread. The only public data member is
interp
(PyInterpreterState*
), which points to this thread's interpreter state.
-
void
PyEval_InitThreads
()¶ - Part of the Stable ABI.
不执行任何操作的已弃用函数。
在 Python 3.6 及更老的版本中,此函数会在 GIL 不存在时创建它。
3.9 版更變: 此函数现在不执行任何操作。
3.7 版更變: 该函数现在由
Py_Initialize()
调用,因此你无需再自行调用它。3.2 版更變: This function cannot be called before
Py_Initialize()
anymore.自從版本 3.9 後不推薦使用,將會自版本 3.11 中移除。.
-
int
PyEval_ThreadsInitialized
()¶ - Part of the Stable ABI.
Returns a non-zero value if
PyEval_InitThreads()
has been called. This function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.3.7 版更變: The GIL is now initialized by
Py_Initialize()
.自從版本 3.9 後不推薦使用,將會自版本 3.11 中移除。.
-
PyThreadState *
PyEval_SaveThread
()¶ - Part of the Stable ABI.
Release the global interpreter lock (if it has been created) and reset the thread state to
NULL
, returning the previous thread state (which is notNULL
). If the lock has been created, the current thread must have acquired it.
-
void
PyEval_RestoreThread
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Acquire the global interpreter lock (if it has been created) and set the thread state to tstate, which must not be
NULL
. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.備註
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
-
PyThreadState *
PyThreadState_Get
()¶ - Part of the Stable ABI.
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL
, this issues a fatal error (so that the caller needn't check forNULL
).
-
PyThreadState *
PyThreadState_Swap
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Swap the current thread state with the thread state given by the argument tstate, which may be
NULL
. The global interpreter lock must be held and is not released.
The following functions use thread-local storage, and are not compatible with sub-interpreters:
-
PyGILState_STATE
PyGILState_Ensure
()¶ - Part of the Stable ABI.
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is matched with a call to
PyGILState_Release()
. In general, other thread-related APIs may be used betweenPyGILState_Ensure()
andPyGILState_Release()
calls as long as the thread state is restored to its previous state before the Release(). For example, normal usage of thePy_BEGIN_ALLOW_THREADS
andPy_END_ALLOW_THREADS
macros is acceptable.The return value is an opaque "handle" to the thread state when
PyGILState_Ensure()
was called, and must be passed toPyGILState_Release()
to ensure Python is left in the same state. Even though recursive calls are allowed, these handles cannot be shared - each unique call toPyGILState_Ensure()
must save the handle for its call toPyGILState_Release()
.When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure is a fatal error.
備註
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
-
void
PyGILState_Release
(PyGILState_STATE)¶ - Part of the Stable ABI.
Release any resources previously acquired. After this call, Python's state will be the same as it was prior to the corresponding
PyGILState_Ensure()
call (but generally this state will be unknown to the caller, hence the use of the GILState API).Every call to
PyGILState_Ensure()
must be matched by a call toPyGILState_Release()
on the same thread.
-
PyThreadState *
PyGILState_GetThisThreadState
()¶ - Part of the Stable ABI.
Get the current thread state for this thread. May return
NULL
if no GILState API has been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.
-
int
PyGILState_Check
()¶ Return
1
if the current thread is holding the GIL and0
otherwise. This function can be called from any thread at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return1
. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave differently.3.4 版新加入.
The following macros are normally used without a trailing semicolon; look for example usage in the Python source distribution.
-
Py_BEGIN_ALLOW_THREADS
¶ - Part of the Stable ABI.
This macro expands to
{ PyThreadState *_save; _save = PyEval_SaveThread();
. Note that it contains an opening brace; it must be matched with a followingPy_END_ALLOW_THREADS
macro. See above for further discussion of this macro.
-
Py_END_ALLOW_THREADS
¶ - Part of the Stable ABI.
此宏扩展为
PyEval_RestoreThread(_save); }
。 注意它包含一个右花括号;它必须与之前的Py_BEGIN_ALLOW_THREADS
宏匹配。 请参阅上文以进一步讨论此宏。
-
Py_BLOCK_THREADS
¶ - Part of the Stable ABI.
这个宏扩展为
PyEval_RestoreThread(_save);
: 它等价于没有关闭花括号的Py_END_ALLOW_THREADS
。
-
Py_UNBLOCK_THREADS
¶ - Part of the Stable ABI.
这个宏扩展为
_save = PyEval_SaveThread();
: 它等价于没有开始花括号和变量声明的Py_BEGIN_ALLOW_THREADS
。
底层级 API¶
All of the following functions must be called after Py_Initialize()
.
3.7 版更變: Py_Initialize()
now initializes the GIL.
-
PyInterpreterState *
PyInterpreterState_New
()¶ - Part of the Stable ABI.
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
Raises an auditing event
cpython.PyInterpreterState_New
with no arguments.
-
void
PyInterpreterState_Clear
(PyInterpreterState *interp)¶ - Part of the Stable ABI.
Reset all information in an interpreter state object. The global interpreter lock must be held.
Raises an auditing event
cpython.PyInterpreterState_Clear
with no arguments.
-
void
PyInterpreterState_Delete
(PyInterpreterState *interp)¶ - Part of the Stable ABI.
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have been reset with a previous call to
PyInterpreterState_Clear()
.
-
PyThreadState *
PyThreadState_New
(PyInterpreterState *interp)¶ - Part of the Stable ABI.
创建属于给定解释器对象的新线程状态对象。全局解释器锁不需要保持,但如果需要序列化对此函数的调用,则可以保持。
-
void
PyThreadState_Clear
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Reset all information in a thread state object. The global interpreter lock must be held.
3.9 版更變: This function now calls the
PyThreadState.on_delete
callback. Previously, that happened inPyThreadState_Delete()
.
-
void
PyThreadState_Delete
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear()
.
-
void
PyThreadState_DeleteCurrent
(void)¶ Destroy the current thread state and release the global interpreter lock. Like
PyThreadState_Delete()
, the global interpreter lock need not be held. The thread state must have been reset with a previous call toPyThreadState_Clear()
.
-
PyFrameObject *
PyThreadState_GetFrame
(PyThreadState *tstate)¶ - Part of the Stable ABI since version 3.10.
Get the current frame of the Python thread state tstate.
Return a strong reference. Return
NULL
if no frame is currently executing.也請見
PyEval_GetFrame()
。tstate 不可為
NULL
。3.9 版新加入.
-
uint64_t
PyThreadState_GetID
(PyThreadState *tstate)¶ - Part of the Stable ABI since version 3.10.
Get the unique thread state identifier of the Python thread state tstate.
tstate 不可為
NULL
。3.9 版新加入.
-
PyInterpreterState *
PyThreadState_GetInterpreter
(PyThreadState *tstate)¶ - Part of the Stable ABI since version 3.10.
Get the interpreter of the Python thread state tstate.
tstate 不可為
NULL
。3.9 版新加入.
-
PyInterpreterState *
PyInterpreterState_Get
(void)¶ - Part of the Stable ABI since version 3.9.
获取当前解释器。
Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
调用时必须携带GIL。
3.9 版新加入.
-
int64_t
PyInterpreterState_GetID
(PyInterpreterState *interp)¶ - Part of the Stable ABI since version 3.7.
Return the interpreter's unique ID. If there was any error in doing so then
-1
is returned and an error is set.调用时必须携带GIL。
3.7 版新加入.
-
PyObject *
PyInterpreterState_GetDict
(PyInterpreterState *interp)¶ - Part of the Stable ABI since version 3.8.
Return a dictionary in which interpreter-specific data may be stored. If this function returns
NULL
then no exception has been raised and the caller should assume no interpreter-specific dict is available.This is not a replacement for
PyModule_GetState()
, which extensions should use to store interpreter-specific state information.3.8 版新加入.
-
typedef PyObject *(*
_PyFrameEvalFunction
)(PyThreadState *tstate, PyFrameObject *frame, int throwflag)¶ 帧评估函数的类型
The throwflag parameter is used by the
throw()
method of generators: if non-zero, handle the current exception.3.9 版更變: 此函数现在可接受一个 tstate 形参。
-
_PyFrameEvalFunction
_PyInterpreterState_GetEvalFrameFunc
(PyInterpreterState *interp)¶ Get the frame evaluation function.
See the PEP 523 "Adding a frame evaluation API to CPython".
3.9 版新加入.
-
void
_PyInterpreterState_SetEvalFrameFunc
(PyInterpreterState *interp, _PyFrameEvalFunction eval_frame)¶ Set the frame evaluation function.
See the PEP 523 "Adding a frame evaluation API to CPython".
3.9 版新加入.
-
PyObject *
PyThreadState_GetDict
()¶ - 返回值:借入的引用。 Part of the Stable ABI.
Return a dictionary in which extensions can store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is available. If this function returns
NULL
, no exception has been raised and the caller should assume no current thread state is available.
-
int
PyThreadState_SetAsyncExc
(unsigned long id, PyObject *exc)¶ - Part of the Stable ABI.
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn't found. If exc is
NULL
, the pending exception (if any) for the thread is cleared. This raises no exceptions.3.7 版更變: The type of the id parameter changed from
long
tounsigned long
.
-
void
PyEval_AcquireThread
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Acquire the global interpreter lock and set the current thread state to tstate, which must not be
NULL
. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.備註
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.3.8 版更變: Updated to be consistent with
PyEval_RestoreThread()
,Py_END_ALLOW_THREADS()
, andPyGILState_Ensure()
, and terminate the current thread if called while the interpreter is finalizing.PyEval_RestoreThread()
is a higher-level function which is always available (even when threads have not been initialized).
-
void
PyEval_ReleaseThread
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Reset the current thread state to
NULL
and release the global interpreter lock. The lock must have been created earlier and must be held by the current thread. The tstate argument, which must not beNULL
, is only used to check that it represents the current thread state --- if it isn't, a fatal error is reported.PyEval_SaveThread()
is a higher-level function which is always available (even when threads have not been initialized).
-
void
PyEval_AcquireLock
()¶ - Part of the Stable ABI.
获取全局解释器锁。锁必须是先前创建的。如果该线程已经拥有锁,则会出现死锁。
3.2 版後已棄用: This function does not update the current thread state. Please use
PyEval_RestoreThread()
orPyEval_AcquireThread()
instead.備註
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.3.8 版更變: Updated to be consistent with
PyEval_RestoreThread()
,Py_END_ALLOW_THREADS()
, andPyGILState_Ensure()
, and terminate the current thread if called while the interpreter is finalizing.
-
void
PyEval_ReleaseLock
()¶ - Part of the Stable ABI.
Release the global interpreter lock. The lock must have been created earlier.
3.2 版後已棄用: This function does not update the current thread state. Please use
PyEval_SaveThread()
orPyEval_ReleaseThread()
instead.
子解释器支持¶
While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
The "main" interpreter is the first one created when the runtime initializes.
It is usually the only Python interpreter in a process. Unlike sub-interpreters,
the main interpreter has unique process-global responsibilities like signal
handling. It is also responsible for execution during runtime initialization and
is usually the active interpreter during runtime finalization. The
PyInterpreterState_Main()
function returns a pointer to its state.
You can switch between sub-interpreters using the PyThreadState_Swap()
function. You can create and destroy them using the following functions:
-
PyThreadState *
Py_NewInterpreter
()¶ - Part of the Stable ABI.
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code. In particular, the new interpreter has separate, independent versions of all imported modules, including the fundamental modules
builtins
,__main__
andsys
. The table of loaded modules (sys.modules
) and the module search path (sys.path
) are also separate. The new environment has nosys.argv
variable. It has new standard I/O stream file objectssys.stdin
,sys.stdout
andsys.stderr
(however these refer to the same underlying file descriptors).The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of the new interpreter is unsuccessful,
NULL
is returned; no exception is set since the exception state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global interpreter lock must be held before calling this function and is still held when it returns; however, unlike most other Python/C API functions, there needn't be a current thread state on entry.)Extension modules are shared between (sub-)interpreters as follows:
For modules using multi-phase initialization, e.g.
PyModule_FromDefAndSpec()
, a separate module object is created and initialized for each interpreter. Only C-level static and global variables are shared between these module objects.For modules using single-phase initialization, e.g.
PyModule_Create()
, the first time a particular extension is imported, it is initialized normally, and a (shallow) copy of its module's dictionary is squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension'sinit
function is not called. Objects in the module's dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).Note that this is different from what happens when an extension is imported after the interpreter has been completely re-initialized by calling
Py_FinalizeEx()
andPy_Initialize()
; in that case, the extension'sinitmodule
function is called again. As with multi-phase initialization, this means that only C-level static and global variables are shared between these modules.
-
void
Py_EndInterpreter
(PyThreadState *tstate)¶ - Part of the Stable ABI.
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current thread state. See the discussion of thread states below. When the call returns, the current thread state is
NULL
. All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling this function and is still held when it returns.)Py_FinalizeEx()
will destroy all sub-interpreters that haven't been explicitly destroyed at that point.
错误和警告¶
Because sub-interpreters (and the main interpreter) are part of the same
process, the insulation between them isn't perfect --- for example, using
low-level file operations like os.close()
they can
(accidentally or maliciously) affect each other's open files. Because of the
way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization
or (static) global variables.
It is possible to insert objects created in one sub-interpreter into
a namespace of another (sub-)interpreter; this should be avoided if possible.
Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter's dictionary of loaded modules. It is equally important to avoid sharing objects from which the above are reachable.
Also note that combining this functionality with PyGILState_*
APIs
is delicate, because these APIs assume a bijection between Python thread states
and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don't switch sub-interpreters between a pair
of matching PyGILState_Ensure()
and PyGILState_Release()
calls.
Furthermore, extensions (such as ctypes
) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using
sub-interpreters.
异步通知¶
A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the form of a function pointer and a void pointer argument.
-
int
Py_AddPendingCall
(int (*func)(void*), void *arg, )¶ - Part of the Stable ABI.
Schedule a function to be called from the main interpreter thread. On success,
0
is returned and func is queued for being called in the main thread. On failure,-1
is returned without setting any exception.When successfully queued, func will be eventually called from the main interpreter thread with the argument arg. It will be called asynchronously with respect to normally running Python code, but with both these conditions met:
on a bytecode boundary;
with the main thread holding the global interpreter lock (func can therefore use the full C API).
func must return
0
on success, or-1
on failure with an exception set. func won't be interrupted to perform another asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock is released.This function doesn't need a current thread state to run, and it doesn't need the global interpreter lock.
To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be scheduled to be called from the wrong interpreter.
警告
This is a low-level function, only useful for very special cases. There is no guarantee that func will be called as quick as possible. If the main thread is busy executing a system call, func won't be called before the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads. Instead, use the PyGILState API.
3.9 版更變: If this function is called in a subinterpreter, the function func is now scheduled to be called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list of scheduled calls.
3.1 版新加入.
分析和跟踪¶
The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported to the Python-level trace functions in previous versions.
-
typedef int (*
Py_tracefunc
)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)¶ The type of the trace function registered using
PyEval_SetProfile()
andPyEval_SetTrace()
. The first parameter is the object passed to the registration function as obj, frame is the frame object to which the event pertains, what is one of the constantsPyTrace_CALL
,PyTrace_EXCEPTION
,PyTrace_LINE
,PyTrace_RETURN
,PyTrace_C_CALL
,PyTrace_C_EXCEPTION
,PyTrace_C_RETURN
, orPyTrace_OPCODE
, and arg depends on the value of what:what 的值
arg 的含义
PyTrace_CALL
总是
Py_None
.PyTrace_EXCEPTION
sys.exc_info()
返回的异常信息。PyTrace_LINE
总是
Py_None
.PyTrace_RETURN
返回给调用方的值,或者如果是由异常导致的则返回
NULL
。PyTrace_C_CALL
正在调用函数对象。
PyTrace_C_EXCEPTION
正在调用函数对象。
PyTrace_C_RETURN
正在调用函数对象。
PyTrace_OPCODE
总是
Py_None
.
-
int
PyTrace_CALL
¶ The value of the what parameter to a
Py_tracefunc
function when a new call to a function or method is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not reported as there is no control transfer to the Python bytecode in the corresponding frame.
-
int
PyTrace_EXCEPTION
¶ The value of the what parameter to a
Py_tracefunc
function when an exception has been raised. The callback function is called with this value for what when after any bytecode is processed after which the exception becomes set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives these events; they are not needed by the profiler.
-
int
PyTrace_LINE
¶ The value passed as the what parameter to a
Py_tracefunc
function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by settingf_trace_lines
to 0 on that frame.
-
int
PyTrace_RETURN
¶ The value for the what parameter to
Py_tracefunc
functions when a call is about to return.
-
int
PyTrace_C_CALL
¶ The value for the what parameter to
Py_tracefunc
functions when a C function is about to be called.
-
int
PyTrace_C_EXCEPTION
¶ The value for the what parameter to
Py_tracefunc
functions when a C function has raised an exception.
-
int
PyTrace_C_RETURN
¶ The value for the what parameter to
Py_tracefunc
functions when a C function has returned.
-
int
PyTrace_OPCODE
¶ The value for the what parameter to
Py_tracefunc
functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by settingf_trace_opcodes
to 1 on the frame.
-
void
PyEval_SetProfile
(Py_tracefunc func, PyObject *obj)¶ Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be any Python object, or
NULL
. If the profile function needs to maintain state, using a different value for obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events exceptPyTrace_LINE
PyTrace_OPCODE
andPyTrace_EXCEPTION
.The caller must hold the GIL.
-
void
PyEval_SetTrace
(Py_tracefunc func, PyObject *obj)¶ Set the tracing function to func. This is similar to
PyEval_SetProfile()
, except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered usingPyEval_SetTrace()
will not receivePyTrace_C_CALL
,PyTrace_C_EXCEPTION
orPyTrace_C_RETURN
as a value for the what parameter.The caller must hold the GIL.
高级调试器支持¶
These functions are only intended to be used by advanced debugging tools.
-
PyInterpreterState *
PyInterpreterState_Head
()¶ Return the interpreter state object at the head of the list of all such objects.
-
PyInterpreterState *
PyInterpreterState_Main
()¶ 返回主解释器状态对象。
-
PyInterpreterState *
PyInterpreterState_Next
(PyInterpreterState *interp)¶ Return the next interpreter state object after interp from the list of all such objects.
-
PyThreadState *
PyInterpreterState_ThreadHead
(PyInterpreterState *interp)¶ Return the pointer to the first
PyThreadState
object in the list of threads associated with the interpreter interp.
-
PyThreadState *
PyThreadState_Next
(PyThreadState *tstate)¶ Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState
object.
线程本地存储支持¶
The Python interpreter provides low-level support for thread-local storage
(TLS) which wraps the underlying native TLS implementation to support the
Python-level thread local storage API (threading.local
). The
CPython C level APIs are similar to those offered by pthreads and Windows:
use a thread key and functions to associate a void*
value per
thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h
does not include the declaration of the TLS APIs,
you need to include pythread.h
to use thread-local storage.
備註
None of these API functions handle memory management on behalf of the
void*
values. You need to allocate and deallocate them yourself.
If the void*
values happen to be PyObject*
, these
functions don't do refcount operations on them either.
Thread Specific Storage (TSS) API¶
TSS API is introduced to supersede the use of the existing TLS API within the
CPython interpreter. This API uses a new type Py_tss_t
instead of
int
to represent thread keys.
3.7 版新加入.
也參考
"A New C-API for Thread-Local Storage in CPython" (PEP 539)
-
type
Py_tss_t
¶ This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key's initialization state. There are no public members in this structure.
When Py_LIMITED_API is not defined, static allocation of this type by
Py_tss_NEEDS_INIT
is allowed.
-
Py_tss_NEEDS_INIT
¶ This macro expands to the initializer for
Py_tss_t
variables. Note that this macro won't be defined with Py_LIMITED_API.
Dynamic Allocation¶
Dynamic allocation of the Py_tss_t
, required in extension modules
built with Py_LIMITED_API, where static allocation of this type
is not possible due to its implementation being opaque at build time.
-
Py_tss_t *
PyThread_tss_alloc
()¶ - Part of the Stable ABI since version 3.7.
Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT
, orNULL
in the case of dynamic allocation failure.
-
void
PyThread_tss_free
(Py_tss_t *key)¶ - Part of the Stable ABI since version 3.7.
Free the given key allocated by
PyThread_tss_alloc()
, after first callingPyThread_tss_delete()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument isNULL
.備註
A freed key becomes a dangling pointer. You should reset the key to NULL.
方法¶
The parameter key of these functions must not be NULL
. Moreover, the
behaviors of PyThread_tss_set()
and PyThread_tss_get()
are
undefined if the given Py_tss_t
has not been initialized by
PyThread_tss_create()
.
-
int
PyThread_tss_is_created
(Py_tss_t *key)¶ - Part of the Stable ABI since version 3.7.
Return a non-zero value if the given
Py_tss_t
has been initialized byPyThread_tss_create()
.
-
int
PyThread_tss_create
(Py_tss_t *key)¶ - Part of the Stable ABI since version 3.7.
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to by the key argument is not initialized by
Py_tss_NEEDS_INIT
. This function can be called repeatedly on the same key -- calling it on an already initialized key is a no-op and immediately returns success.
-
void
PyThread_tss_delete
(Py_tss_t *key)¶ - Part of the Stable ABI since version 3.7.
Destroy a TSS key to forget the values associated with the key across all threads, and change the key's initialization state to uninitialized. A destroyed key is able to be initialized again by
PyThread_tss_create()
. This function can be called repeatedly on the same key -- calling it on an already destroyed key is a no-op.
-
int
PyThread_tss_set
(Py_tss_t *key, void *value)¶ - Part of the Stable ABI since version 3.7.
Return a zero value to indicate successfully associating a
void*
value with a TSS key in the current thread. Each thread has a distinct mapping of the key to avoid*
value.
-
void *
PyThread_tss_get
(Py_tss_t *key)¶ - Part of the Stable ABI since version 3.7.
Return the
void*
value associated with a TSS key in the current thread. This returnsNULL
if no value is associated with the key in the current thread.
Thread Local Storage (TLS) API¶
3.7 版後已棄用: This API is superseded by Thread Specific Storage (TSS) API.
備註
This version of the API does not support platforms where the native TLS key
is defined in a way that cannot be safely cast to int
. On such platforms,
PyThread_create_key()
will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.
由于上面提到的兼容性问题,不应在新代码中使用此版本的API。
-
int
PyThread_create_key
()¶ - Part of the Stable ABI.
-
void
PyThread_delete_key
(int key)¶ - Part of the Stable ABI.
-
int
PyThread_set_key_value
(int key, void *value)¶ - Part of the Stable ABI.
-
void *
PyThread_get_key_value
(int key)¶ - Part of the Stable ABI.
-
void
PyThread_delete_key_value
(int key)¶ - Part of the Stable ABI.
-
void
PyThread_ReInitTLS
()¶ - Part of the Stable ABI.