5. 数据结构

本章深入讲解之前学过的一些内容,同时,还增加了新的知识点。

5.1. 列表详解

列表数据类型支持很多方法,列表对象的所有方法所示如下:

list.append(x)

在列表末尾添加一个元素,相当于 a[len(a):] = [x]

list.extend(iterable)

用可迭代对象的元素扩展列表。相当于 a[len(a):] = iterable

list.insert(i, x)

在指定位置插入元素。第一个参数是插入元素的索引,因此,a.insert(0, x) 在列表开头插入元素, a.insert(len(a), x) 等同于 a.append(x)

list.remove(x)

从列表中删除第一个值为 x 的元素。未找到指定元素时,触发 ValueError 异常。

list.pop([i])

删除列表中指定位置的元素,并返回被删除的元素。未指定位置时,a.pop() 删除并返回列表的最后一个元素。(方法签名中 i 两边的方括号表示该参数是可选的,不是要求输入方括号。这种表示法常见于 Python 参考库)。

list.clear()

删除列表里的所有元素,相当于 del a[:]

list.index(x[, start[, end]])

返回列表中第一个值为 x 的元素的零基索引。未找到指定元素时,触发 ValueError 异常。

可选参数 startend 是切片符号,用于将搜索限制为列表的特定子序列。返回的索引是相对于整个序列的开始计算的,而不是 start 参数。

list.count(x)

返回列表中元素 x 出现的次数。

list.sort(*, key=None, reverse=False)

就地排序列表中的元素(要了解自定义排序参数,详见 sorted())。

list.reverse()

反转列表中的元素。

list.copy()

返回列表的浅拷贝。相当于 a[:]

列表方法示例:

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count('apple')
2
>>> fruits.count('tangerine')
0
>>> fruits.index('banana')
3
>>> fruits.index('banana', 4)  # Find next banana starting a position 4
6
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()
'pear'

insertremovesort 等方法只修改列表,不输出返回值——返回的默认值为 None1 这是所有 Python 可变数据结构的设计原则。

还有,不是所有数据都可以排序或比较。例如,[None, 'hello', 10] 就不可排序,因为整数不能与字符串对比,而 None 不能与其他类型对比。有些类型根本就没有定义顺序关系,例如,3+4j < 5+7j 这种对比操作就是无效的。

5.1.1. 用列表实现堆栈

使用列表方法实现堆栈非常容易,最后插入的最先取出(“后进先出”)。把元素添加到堆栈的顶端,使用 append() 。从堆栈顶部取出元素,使用 pop() ,不用指定索引。例如:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2. 用列表实现队列

列表也可以用作队列,最先加入的元素,最先取出(“先进先出”);然而,列表作为队列的效率很低。因为,在列表末尾添加和删除元素非常快,但在列表开头插入或移除元素却很慢(因为所有其他元素都必须移动一位)。

实现队列最好用 collections.deque,可以快速从两端添加或删除元素。例如:

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry")           # Terry arrives
>>> queue.append("Graham")          # Graham arrives
>>> queue.popleft()                 # The first to arrive now leaves
'Eric'
>>> queue.popleft()                 # The second to arrive now leaves
'John'
>>> queue                           # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

5.1.3. 列表推导式

列表推导式创建列表的方式更简洁。常见的用法为,对序列或可迭代对象中的每个元素应用某种操作,用生成的结果创建新的列表;或用满足特定条件的元素创建子序列。

例如,创建平方值的列表:

>>> squares = []
>>> for x in range(10):
...     squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

注意,这段代码创建(或覆盖)变量 x,该变量在循环结束后仍然存在。下述方法可以无副作用地计算平方列表:

squares = list(map(lambda x: x**2, range(10)))

或等价于:

squares = [x**2 for x in range(10)]

上面这种写法更简洁、易读。

列表推导式的方括号内包含以下内容:一个表达式,后面为一个 for 子句,然后,是零个或多个 forif 子句。结果是由表达式依据 forif 子句求值计算而得出一个新列表。 举例来说,以下列表推导式将两个列表中不相等的元素组合起来:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

等价于:

>>> combs = []
>>> for x in [1,2,3]:
...     for y in [3,1,4]:
...         if x != y:
...             combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

注意,上面两段代码中,forif 的顺序相同。

表达式是元组(例如上例的 (x, y))时,必须加上括号:

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = ['  banana', '  loganberry ', 'passion fruit  ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
  File "<stdin>", line 1, in <module>
    [x, x**2 for x in range(6)]
               ^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

列表推导式可以使用复杂的表达式和嵌套函数:

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4. 嵌套的列表推导式

列表推导式中的初始表达式可以是任何表达式,甚至可以是另一个列表推导式。

下面这个 3x4 矩阵,由 3 个长度为 4 的列表组成:

>>> matrix = [
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12],
... ]

下面的列表推导式可以转置行列:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

如上节所示,嵌套的列表推导式基于其后的 for 求值,所以这个例子等价于:

>>> transposed = []
>>> for i in range(4):
...     transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

反过来说,也等价于:

>>> transposed = []
>>> for i in range(4):
...     # the following 3 lines implement the nested listcomp
...     transposed_row = []
...     for row in matrix:
...         transposed_row.append(row[i])
...     transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

实际应用中,最好用内置函数替代复杂的流程语句。此时,zip() 函数更好用:

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

关于本行中星号的详细说明,参见 解包实参列表

5.2. del 语句

del 语句按索引,而不是值从列表中移除元素。与返回值的 pop() 方法不同, del 语句也可以从列表中移除切片,或清空整个列表(之前是将空列表赋值给切片)。 例如:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del 也可以用来删除整个变量:

>>> del a

此后,再引用 a 就会报错(直到为它赋与另一个值)。后文会介绍 del 的其他用法。

5.3. 元组和序列

列表和字符串有很多共性,例如,索引和切片操作。这两种数据类型是 序列 (参见 序列类型 --- list, tuple, range)。随着 Python 语言的发展,其他的序列类型也被加入其中。本节介绍另一种标准序列类型:元组

元组由多个用逗号隔开的值组成,例如:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

输出时,元组都要由圆括号标注,这样才能正确地解释嵌套元组。输入时,圆括号可有可无,不过经常是必须的(如果元组是更大的表达式的一部分)。不允许为元组中的单个元素赋值,当然,可以创建含列表等可变对象的元组。

虽然,元组与列表很像,但使用场景不同,用途也不同。元组是 immutable (不可变的),一般可包含异质元素序列,通过解包(见本节下文)或索引访问(如果是 namedtuples,可以属性访问)。列表是 mutable (可变的),列表元素一般为同质类型,可迭代访问。

构造 0 个或 1 个元素的元组比较特殊:为了适应这种情况,对句法有一些额外的改变。用一对空圆括号就可以创建空元组;只有一个元素的元组可以通过在这个元素后添加逗号来构建(圆括号里只有一个值的话不够明确)。丑陋,但是有效。例如:

>>> empty = ()
>>> singleton = 'hello',    # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

语句 t = 12345, 54321, 'hello!'元组打包 的例子:值 12345, 54321'hello!' 一起被打包进元组。逆操作也可以:

>>> x, y, z = t

称之为 序列解包 也是妥妥的,适用于右侧的任何序列。序列解包时,左侧变量与右侧序列元素的数量应相等。注意,多重赋值其实只是元组打包和序列解包的组合。

5.4. 集合

Python 还支持 集合 这种数据类型。集合是由不重复元素组成的无序容器。基本用法包括成员检测、消除重复元素。集合对象支持合集、交集、差集、对称差分等数学运算。

创建集合用花括号或 set() 函数。注意,创建空集合只能用 set(),不能用 {}{} 创建的是空字典,下一小节介绍数据结构:字典。

以下是一些简单的示例:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket)                      # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket                 # fast membership testing
True
>>> 'crabgrass' in basket
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a                                  # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b                              # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b                              # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b                              # letters in both a and b
{'a', 'c'}
>>> a ^ b                              # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

列表推导式 类似,集合也支持推导式:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}

5.5. 字典

字典 (参见 映射类型 --- dict) 也是一种常用的 Python 內置数据类型。其他语言可能把字典称为 联合内存联合数组。与以连续整数为索引的序列不同,字典以 关键字 为索引,关键字通常是字符串或数字,也可以是其他任意不可变类型。只包含字符串、数字、元组的元组,也可以用作关键字。但如果元组直接或间接地包含了可变对象,就不能用作关键字。列表不能当关键字,因为列表可以用索引、切片、append()extend() 等方法修改。

可以把字典理解为 键值对 的集合,但字典的键必须是唯一的。花括号 {} 用于创建空字典。另一种初始化字典的方式是,在花括号里输入逗号分隔的键值对,这也是字典的输出方式。

字典的主要用途是通过关键字存储、提取值。用 del 可以删除键值对。用已存在的关键字存储值,与该关键字关联的旧值会被取代。通过不存在的键提取值,则会报错。

对字典执行 list(d) 操作,返回该字典中所有键的列表,按插入次序排列(如需排序,请使用 sorted(d))。检查字典里是否存在某个键,使用关键字 in

以下是一些字典的简单示例:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

dict() 构造函数可以直接用键值对序列创建字典:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}

字典推导式可以用任意键值表达式创建字典:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

关键字是比较简单的字符串时,直接用关键字参数指定键值对更便捷:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}

5.6. 循环的技巧

在字典中循环时,用 items() 方法可同时取出键和对应的值:

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
...     print(k, v)
...
gallahad the pure
robin the brave

在序列中循环时,用 enumerate() 函数可以同时取出位置索引和对应的值:

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
...     print(i, v)
...
0 tic
1 tac
2 toe

同时循环两个或多个序列时,用 zip() 函数可以将其内的元素一一匹配:

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
...     print('What is your {0}?  It is {1}.'.format(q, a))
...
What is your name?  It is lancelot.
What is your quest?  It is the holy grail.
What is your favorite color?  It is blue.

逆向循环序列时,先正向定位序列,然后调用 reversed() 函数:

>>> for i in reversed(range(1, 10, 2)):
...     print(i)
...
9
7
5
3
1

按指定顺序循环序列,可以用 sorted() 函数,在不改动原序列的基础上,返回一个重新的序列:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for i in sorted(basket):
...     print(i)
...
apple
apple
banana
orange
orange
pear

使用 set() 去除序列中的重复元素。使用 sorted()set() 则按排序后的顺序,循环遍历序列中的唯一元素:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
...     print(f)
...
apple
banana
orange
pear

一般来说,在循环中修改列表的内容时,创建新列表比较简单,且安全:

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
...     if not math.isnan(value):
...         filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.7. 深入条件控制

whileif 条件句不只可以进行比较,还可以使用任意运算符。

比较运算符 innot in 校验序列里是否存在某个值。运算符 isis not 比较两个对象是否为同一个对象。所有比较运算符的优先级都一样,且低于数值运算符。

比较操作支持链式操作。例如,a < b == c 校验 a 是否小于 b,且 b 是否等于 c

比较操作可以用布尔运算符 andor 组合,并且,比较操作(或其他布尔运算)的结果都可以用 not 取反。这些操作符的优先级低于比较操作符;not 的优先级最高, or 的优先级最低,因此,A and not B or C 等价于 (A and (not B)) or C。与其他运算符操作一样,此处也可以用圆括号表示想要的组合。

布尔运算符 andor 也称为 短路 运算符:其参数从左至右解析,一旦可以确定结果,解析就会停止。例如,如果 AC 为真,B 为假,那么 A and B and C 不会解析 C。用作普通值而不是布尔值时,短路操作符返回的值通常是最后一个变量。

还可以把比较操作或逻辑表达式的结果赋值给变量,例如:

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

注意,Python 与 C 不同,在表达式内部赋值必须显式使用 海象运算符 :=。 这避免了 C 程序中常见的问题:要在表达式中写 == 时,却写成了 =

5.8. 序列和其他类型的比较

序列对象可以与相同序列类型的其他对象比较。这种比较使用 字典式 顺序:首先,比较前两个对应元素,如果不相等,则可确定比较结果;如果相等,则比较之后的两个元素,以此类推,直到其中一个序列结束。如果要比较的两个元素本身是相同类型的序列,则递归地执行字典式顺序比较。如果两个序列中所有的对应元素都相等,则两个序列相等。如果一个序列是另一个的初始子序列,则较短的序列可被视为较小(较少)的序列。 对于字符串来说,字典式顺序使用 Unicode 码位序号排序单个字符。下面列出了一些比较相同类型序列的例子:

(1, 2, 3)              < (1, 2, 4)
[1, 2, 3]              < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4)           < (1, 2, 4)
(1, 2)                 < (1, 2, -1)
(1, 2, 3)             == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab'))   < (1, 2, ('abc', 'a'), 4)

注意,对不同类型的对象来说,只要待比较的对象提供了合适的比较方法,就可以使用 <> 进行比较。例如,混合数值类型通过数值进行比较,所以,0 等于 0.0,等等。否则,解释器不会随便给出一个对比结果,而是触发 TypeError 异常。

脚注

1

别的语言可能会返回可变对象,允许方法连续执行,例如,d->insert("a")->remove("b")->sort();