Argument

Clinic Y

7%

At 3.9.11

Guido van Rossum
and the Python development team

Contents

1 Argument Clinic)% |- H bx
2 JEARREERNE
3 BN

4 Advanced Topics

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

=5l

Symbolic default values,
Renaming the C functions and variables generated by Argument Clinic
Converting functions using PyArg_UnpackTuple
Optional Groups« o vt e
Using real Argument Clinic converters, instead of “legacy converters”
Py buffer
Advanced converters
Parameter defaultvalues
The NULL defaultvalue
Expressions specified as default values
Using areturn CONVEIter« v v v v v v v v it e e
Cloning existing functions
Calling Pythoncode
Using a "self converter”
Writing a custom converter e ...
Writing a custom return converter
METH_O and METH_NOARGS
tp_new and tp_init functions
Changing and redirecting Clinic’s output
The #ifdef trick
Using Argument Clinic in Pythonfiles

=A 23, 2022

Python Software Foundation
Email: docs@python.org

10
10
11
14
14
14
15
15
16
16
17
17
18
19
19
20
20
23
24

25

% Larry Hastings

T %

Argument Clinic 52 CPython fj—/> C SCFHlAbHg: . BIE AR S “NE” SBIEITE XrAD.
ARICRER T C BB B 5 Argument Clinic TAERIMGE, B4 1728 5% T Argument Clinic ¥4
BTN

H i Argument Clinic BL{E{L{IE CPython PN . A SZH5AE CPython Z AN SCIF AR, tAPRUEAR KA
AR R AR . B AR 4E Y2 CPython YN C i 9 R, WGUAE H CAYAUE i Argument
Clinic, {H Argument Clinic 53t CPython HRAS T absE e AAfeE, HAFTHLaiii.

1 Argument Clinic 8Ji%it B#r

Argument Clinic i 3222 H b, J23% CPython H1 [T A SHRITARS . XERE, WIREIEREA RE N
By Argument Clinic —& TAF, WX RO BFFAEATAT S Z0AT T4 Argument Clinic A& G QRS Y %2
A “HAE”, CPython £7E IR, JIKHBMIE M B CriY, Pyobject *args (HiFifA PyObject
*kwargs) SMHAHIEHNTHR N C B RMZAL,

Argument Clinic 2y T RE5E B2 A AR, HERDLAUTTHE. FHAT, {1 CPython (SRR 2 — 11 &S,
T BAERZ W ITTAREE . R Argument Clinic, NIRMFFER AR T

2%, BrAE Argument Clinic fi# ok 7 F 509 F08, HSA 7 LB 00 F8, A NS EERE. Bk,
Argument Clinic #5752 1) S 0@ A2 OER AURD . AR BB AR BT 24 R0 4, (HERW G| AR &
AR . (fc Argument Clinic &2 3% A] PASEIURCRE SR TH—— RIS AE AR AT A S — 1, PAP AR B 5E
RS EPRITC, A28 38 9 CPython ST . X XIS HURHTIA Bl R)

Itsh, Argument Clinic WAZ0 205 R{E, REWS SATMISEUBNTH i TAE, Python 45 —SLpg# H 45— 2Lk
PRI ARATAT A s Argument Clinic 1 [H A58 3 15 AT 1 26 56 5 .

)5, Argument Clinic fJ#] % /&4 CPython N EFEFIRHLNE “&47. PABTUIERME A — D INERE, NEE
B 559 . A T Argument Clinic, FEANS: & A X)8 T !

1E5 Argument Clinic A ER}, WiZZEi0— LS BAENEEME | EMEMS . Wk, Argument Clinic
PIAEIR LR i BA . (AR HORBUE 2%, WAZRENS BT 45 i 4305 8 TR S BB i A R A 251

2 BEXMETTORE

Argument Clinic 5 CPython —E#2fit, {7F Tools/clinic/clinic.py . HEBITE, WHWHE T C X
GRIB 218

’$ python3 Tools/clinic/clinic.py foo.c ‘

Argument Clinic 24534 C S0, FEAAT AT

/*[clinic input]

— BB KA, MSERTANE, HEBE AT

[clinic start generated code]*/ ‘

XMATZ IR BT A N 282 Argument Clinic BT A . FrA1T, WAETHIRMISS R AYTERTT, SEFR Argument
Clinic “Ht”,

Argument Clinic FEfFSTHE—HUN, S HER . W EESBREZREGA C XM, Rt iE R
ERIE AR . BAAE Argument Clinic SR E RN AT BrR -

/*[clinic input]
. clinic input goes here ...
[clinic start generated code]*/
. clinic output goes here ...
/*[clinic end generated code: checksum=...]*/

USR] —SCF5S —Kiz4T Argument Clinic, WEXEFZAINHEIILER, 5 AT T 5 S
AR A B A, W A &R

ARE 5l Argument Clinic BREHS AR5 MV B8 A, BRI AERTFRHHER. (XA
Mg A NS T E R, BOATE Argument Clinic "NRE AR, XS Eh#ESEK).

M T VEMGE L, RIS T Argument Clinic] 2 ARTE
s HRME—1T /* [clinic input] J& A24E1T.
 H® (Iclinic start generated codel*/) WG —1T/& 4 RIT.
e J)5—4T (/*[clinic end generated code: checksum=...]*/) & &3 FfoiT.
* TERIRFTFIEE RAT Z)2 40 N33 .
o TEGHRATFIRI AT Z]2 4 o B3 .

o MWITURATEIRIRANA T I A 3OS, #/2 #k. (Argument Clinic i A4b BRI B, A7 % Hh sloRe s AT
AL E—) o

3 EHBRYTEIR

SE T % Argument Clinic 52 A{af TAERY, Sl i)y SO Rl — RS Z A4, H i/ 2 s i i i 2 A
PR WER, A ERMERSTE CPython HUbfTHG A, MM HFTHERAR AR, HH—SAEZL MBI
RS (Hen “RMIAR” F1CAHEAR") . HLAT O R4ERARIR, DAL

Nl s}
0. LR CPython & Hf i V45 H A

1. $&|— 1A PyArg_ParseTuple () B{ PyArg_ParseTupleAndKeywords () , HAE#EEH MK
J Argument Clinic) Python N B 2. XHH T _pickle.Pickler.dump ().

2. GnARX} PyArg_Parse BREHI IR T PA R A&

o0&
0!
es
es#
et
et#

BEH LR PyArg_ParseTuple (), W FHiE—4 K%, Argument Clinic # 5 3735 [iR SR,
HAX SEER 2 R B 258 — IR (T gt] H— e
A, R ZIRIH A PyArg_ParseTuple () 8 PyArg_ParseTupleAndKeywords () HI[{—Z%k
T LRI ZERY, 55 H 3| PyArg_Parse DASMY BRI ECEMENT S50, W] BEANIE & 5440 4 Argument
Clinic. Argument Clinic /A 3 538 H B3k £ 52450

3

3. AERRBCETTUS LA IR, A

/*[clinic input]
[clinic start generated code]*/

4. RS FATAR PRI R (clinic] T2 0E, KERFFARIEHTA, (EHACH G C F4F
o I %A B NI MR SR, BATSEAR KT 80 M FAF. (S4L Clinic 1508 B SCRY 74 £f
SRIbE i)

WER SR FAFER SR — AT AR R QR B 524, IR — A7 A48, (COR AR ZMEIE—
KRS EBRECOA T help () W, SE—A7RAARE R B 2540 A Shidar.)

ERIE

/*[clinic input]
Write a pickled representation of obj to the open file.
[clinic start generated code]*/

5. WERSCRY PR AT “Fi2E” 47, Argument Clinic 244 . FrCANER R AT EAT. “HED 1700
TESCREFAFERIT SR — A Ba 1> 80 SR EAF T Ao

ORBIR SR P AF s ARG — MR 2T, BrbARBI DX — A sl) .

6. TESCRI AT EJ7, M ARRBIIAFR, JEHE 2T, XN K& Python 44K, i HLW A1) ki3 Y
SERBRAE—— DABERI A RO, A& A TR, RO R N Y 524

ZNGIE

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

7. QAR — AR C SCFH] 2] Argument Clinic FREIHREE, 0N HEFTAE W] . T Y Argument
Clinic 58T C SCPFTRARPR LAY IEA Bl e rp AR X 28 | 301R include SCIAN statics C7E TR —HE . (75
X HLAR B KX PRI AR .)

MBI 24 FRLY. 5 285 47 Python (A] i I 6 AE PyModuleDef B PyTypeObject HiiE)
R

TEFE AR, G H C I RBMPATR: THE %2 B R A RIS, Fids
612K PyTypeObject fift.

ZNGIE

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

8. FAHIREII T A S BAOSEIRN IR 4T, FrA ISR TR 55 bR K0 R SRS P A5 e A T 40t
XEESHATI R AR

10.

’name_of_parameter: converter

WERSHCH A BOME, WIER St)5

’name_of_parameter: converter = default_value

Argument Clinic Xf “BRE{E” PSR AMAE A B2EEES L T8 a8 o
ESRAT R A —A247.
What'’s a “converter”? It establishes both the type of the variable used in C, and the method to convert the Python

value into a C value at runtime. For now you’re going to use what’s called a “legacy converter’—a convenience
syntax intended to make porting old code into Argument Clinic easier.

BASHHE “PyArg_Parse(* #E XS HP I “AxaCoT”, FH A5 1S PR Ry I i Hife e
fro (BRI J2 format A 1-3 NFAFRIEAAAR, T IES BT BN %748 B A 3
Feftgdith. RTHAXBAHEL(EE, W25 arg-parsing).

TR z# RN Z FAFARIC, B 2-3 DAL A TR
ERIE

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "g¢Pickler_ Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

IR RS AT AT |, RIRE A LS RO A A E, XTI PAZNE . Argument Clinic iR-EESHE
A B EARAERTR L S RO T e o

IR BRSPS, B R i 7 280, S — I R SR A s il —
1+, A SSEATH T

(_pickle.Pickler.dump PRMHEFAFEEREA . B LA HLR BIA ekgl.)

W5 C REE & PyArg_ParseTuple () (A& PyArg_ParseTupleAndKeywords ()), HFA4
HFTA SH 2 AR B S5

i AE Argument Clinic I SECEARC R NG E, WTERG— N SEEH—1TMA— /, 4
PEREE S S HATHFT

E%ﬁﬁﬁﬁ%@%iﬁ;%z%ﬁﬁﬁﬂ%H%ﬁﬁ,%Z%K%oOWEMWWMCMEﬂ%%W
FE X —FRH o

ZNIIE

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic input]

(FItakss)

11.

12.

13.

(£ 50

_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

NEANSHERE — DI T, SRAE S (HX R nesi; nf DAk —2.

TG INE S B SO T . BEHOR AT AT UM S BOE L2 gt 2. 5
AT LRI E T T A B SECCR AT I 2B s BT SCRY A R SCARER B R S5 4t . SOART]
USEEZREICE

il

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

PRAFH K PAZ SO, SRJGI81T Tools/clinic/clinic.py o B IFATHIET FR T —FL/F B ise
ATMER, HFHERT A o h SUF! FESCRGRIEAS H EBTT 2300, WARE:

/*[clinic input]
_pickle.Pickler.dump

obj: 'O’
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

static PyObject *
_pickle_Pickler_dump (PicklerObject *self, PyObject *obj)
/*[clinic end generated code: output=87ecadl2é6lel02ac? input=552eblc0f52260d9]*/

AR, AN Argument Clinic KP=AALA i, AR ATER AfG EHR A THIR. HEEIERRIFE
i, HZE Argument Clinic 1FAf{HIAE PR T 04

N TEF RS, Ky K RIBESA .c.h X, FTEEE . o U EIXA S, #H 2T
clinic Bk J5:

#include '"clinic/_pickle.c.h"

74N Argument Clinic 2E A SEURTES, 554 RASREAMIA

14.

T, ORI AR ACRD B A) S OB AT R . A RIS AT] PyArg_ParseTuple () B
PyArg_ParseTupleAndKeywords () ; Haff Argument Clinic 4 i iAASTE T 7 A R i ek 5.

Hk, €45 PyArg_ParseTuple () B PyArg_ParseTupleAndKeywords () HIENFLA LN IZ 7
A 5EARECR IR, BB E S8 A1k,

(Argument Clinic always generates its format strings with a : followed by the name of the function. If the existing
code’s format string ends with ; , to provide usage help, this change is harmless—don’t worry about it.)

Third, for parameters whose format units require two arguments (like a length variable, or an encoding string, or a
pointer to a conversion function), ensure that the second argument is exactly the same between the two invocations.

Fourth, inside the output portion of the block you’ll find a preprocessor macro defining the appropriate static
PyMethodDef structure for this builtin:

#define _ PICKLE_PICKLER DUMP_METHODDEF \
{"dump", (PyCFunction)__pickle_Pickler dump, METH_O, __pickle_Pickler_dump__doc__}

—,

This static structure should be exactly the same as the existing static PyMethodDe £ structure for this builtin.

If any of these items differ in any way, adjust your Argument Clinic function specification and rerun Tools/
clinic/clinic.py until they are the same.

Notice that the last line of its output is the declaration of your "impl” function. This is where the builtin’s imple-
mentation goes. Delete the existing prototype of the function you’re modifying, but leave the opening curly brace.
Now delete its argument parsing code and the declarations of all the variables it dumps the arguments into. Notice
how the Python arguments are now arguments to this impl function; if the implementation used different names
for these variables, fix it.

Let’s reiterate, just because it’s kind of weird. Your code should now look like this:

static return_type
your_function_impl(...)
/*[clinic end generated code: checksum=...]*/

{

Argument Clinic generated the checksum line and the function prototype just above it. You should write the opening
(and closing) curly braces for the function, and the implementation inside.

ZNITE

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"

[clinic start generated code]*/

/*[clinic end generated code: checksum=da39a3eeb5e6b4b0d3255bfef95601890afd80709]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O'

The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

PyDoc_STRVAR(__pickle_Pickler_dump__doc__,

(Rt

"Write a pickled representation of obj to the open file.\n"
u\nn

static PyObject *

_pickle_Pickler_dump_impl (PicklerObject *self, PyObject *obj)

/*[clinic end generated code: checksum=3bd30745bf206a48f8b576alda3d90f55a0a4187]*/
{

/* Check whether the Pickler was initialized correctly (issue3664).

Developers often forget to call __init__ () in their subclasses, which
would trigger a segfault without this check. */
if (self->write == NULL) {
PyErr_Format (PicklingError,
"Pickler.__init__ () was not called by %s.__init__ ()",

Py_TYPE (self)->tp_name);
return NULL;

if (_Pickler_ClearBuffer (self) < 0)
return NULL;

15. Remember the macro with the PyMethodDef structure for this function? Find the existing PyMethodDef
structure for this function and replace it with a reference to the macro. (If the builtin is at module scope, this will
probably be very near the end of the file; if the builtin is a class method, this will probably be below but relatively
near to the implementation.)

Note that the body of the macro contains a trailing comma. So when you replace the existing static PyMethodDef
structure with the macro, don’t add a comma to the end.

il

static struct PyMethodDef Pickler_methods[] = {
__ PICKLE_PICKLER_DUMP_METHODDEF
_ PICKLE_PICKLER_CLEAR_MEMO_METHODDEF
{NULL, NULL} /* sentinel */
bi

16. Compile, then run the relevant portions of the regression-test suite. This change should not introduce any new
compile-time warnings or errors, and there should be no externally-visible change to Python’s behavior.

Well, except for one difference: inspect.signature () run on your function should now provide a valid
signature!

Congratulations, you’ve ported your first function to work with Argument Clinic!

4 Advanced Topics

Now that you’ve had some experience working with Argument Clinic, it’s time for some advanced topics.

4.1 Symbolic default values
The default value you provide for a parameter can’t be any arbitrary expression. Currently the following are explicitly
supported:
¢ Numeric constants (integer and float)
. PR
e True, False, and None
» Simple symbolic constants like sy s .maxs1ize, which must start with the name of the module
In case you’re curious, this is implemented in from_builtin () in Lib/inspect.py.

(In the future, this may need to get even more elaborate, to allow full expressions like CONSTANT - 1.)

4.2 Renaming the C functions and variables generated by Argument Clinic

Argument Clinic automatically names the functions it generates for you. Occasionally this may cause a problem, if the
generated name collides with the name of an existing C function. There’s an easy solution: override the names used for
the C functions. Just add the keyword "as" to your function declaration line, followed by the function name you wish to
use. Argument Clinic will use that function name for the base (generated) function, then add "_imp1l" to the end and
use that for the name of the impl function.

For example, if we wanted to rename the C function names generated for pickle.Pickler.dump, it'd look like this:

/*[clinic input]
pickle.Pickler.dump as pickler_dumper

The base function would now be named pickler_dumper (), and the impl function would now be named
pickler_dumper_impl ().

Similarly, you may have a problem where you want to give a parameter a specific Python name, but that name may be
inconvenient in C. Argument Clinic allows you to give a parameter different names in Python and in C, using the same
"as" syntax:

/*[clinic input]
pickle.Pickler.dump

obj: object
file as file_obj: object
protocol: object = NULL

*

fix_imports: bool = True

Here, the name used in Python (in the signature and the keywords array) would be £1i1e, but the C variable would be
named file_obj.

You can use this to rename the self parameter too!

4.3 Converting functions using PyArg_UnpackTuple

To convert a function parsing its arguments with PyArg_UnpackTuple (), simply write out all the arguments, spec-
ifying each as an object. You may specify the t ype argument to cast the type as appropriate. All arguments should
be marked positional-only (add a / on a line by itself after the last argument).

Currently the generated code will use PyArg_ParseTuple (), but this will change soon.

4.4 Optional Groups

Some legacy functions have a tricky approach to parsing their arguments: they count the number of positional arguments,
then use a switch statement to call one of several different PyArg_ParseTuple () calls depending on how many
positional arguments there are. (These functions cannot accept keyword-only arguments.) This approach was used to
simulate optional arguments back before PyArg_ParseTupleAndKeywords () was created.

While functions using this approach can often be converted to use PyArg_ParseTupleAndKeywords (), op-
tional arguments, and default values, it’s not always possible. Some of these legacy functions have behaviors
PyArg ParseTupleAndKeywords () doesn’t directly support. The most obvious example is the builtin function
range (), which has an optional argument on the left side of its required argument! Another example is curses.
window.addch (), which has a group of two arguments that must always be specified together. (The arguments are
called x and vy; if you call the function passing in x, you must also pass in y—and if you don’t pass in x you may not pass
in y either.)

In any case, the goal of Argument Clinic is to support argument parsing for all existing CPython builtins without changing
their semantics. Therefore Argument Clinic supports this alternate approach to parsing, using what are called opfional
groups. Optional groups are groups of arguments that must all be passed in together. They can be to the left or the right
of the required arguments. They can only be used with positional-only parameters.

1k it Optional groups are only intended for use when converting functions that make multiple calls to
PyArg_ParseTuple () ! Functions that use any other approach for parsing arguments should almost never be con-
verted to Argument Clinic using optional groups. Functions using optional groups currently cannot have accurate sig-
natures in Python, because Python just doesn’t understand the concept. Please avoid using optional groups wherever
possible.

To specify an optional group, add a [on a line by itself before the parameters you wish to group together, and a] on
a line by itself after these parameters. As an example, here’s how curses.window.addch uses optional groups to
make the first two parameters and the last parameter optional:

/*[clinic input]
curses.window.addch

[

x: int
X—-coordinate.

y: int
Y-coordinate.

]

ch: object
Character to add.

[
attr: long

(Rt

10

(£ 50

Attributes for the character.

* For every optional group, one additional parameter will be passed into the impl function representing the group. The
parameter will be an int named group_{direction}_{number}, where {direction} is either right
or left depending on whether the group is before or after the required parameters, and { number } is a monoton-
ically increasing number (starting at 1) indicating how far away the group is from the required parameters. When
the impl is called, this parameter will be set to zero if this group was unused, and set to non-zero if this group was
used. (By used or unused, I mean whether or not the parameters received arguments in this invocation.)

* If there are no required arguments, the optional groups will behave as if they’re to the right of the required argu-
ments.

¢ In the case of ambiguity, the argument parsing code favors parameters on the left (before the required parameters).
¢ Optional groups can only contain positional-only parameters.

» Optional groups are only intended for legacy code. Please do not use optional groups for new code.

4.5 Using real Argument Clinic converters, instead of “legacy converters”

To save time, and to minimize how much you need to learn to achieve your first port to Argument Clinic, the walkthrough
above tells you to use “legacy converters”. “Legacy converters” are a convenience, designed explicitly to make porting
existing code to Argument Clinic easier. And to be clear, their use is acceptable when porting code for Python 3.4.

However, in the long term we probably want all our blocks to use Argument Clinic’s real syntax for converters. Why? A
couple reasons:

» The proper converters are far easier to read and clearer in their intent.

 There are some format units that are unsupported as “legacy converters”, because they require arguments, and the
legacy converter syntax doesn’t support specifying arguments.

¢ In the future we may have a new argument parsing library that isn’t restricted to what PyArg_ParseTuple ()
supports; this flexibility won’t be available to parameters using legacy converters.

Therefore, if you don’t mind a little extra effort, please use the normal converters instead of legacy converters.

In a nutshell, the syntax for Argument Clinic (non-legacy) converters looks like a Python function call. However, if there
are no explicit arguments to the function (all functions take their default values), you may omit the parentheses. Thus
bool and bool () are exactly the same converters.

All arguments to Argument Clinic converters are keyword-only. All Argument Clinic converters accept the following
arguments:

c_default The default value for this parameter when defined in C. Specifically, this will be the initializer
for the variable declared in the “parse function”. See the section on default values for how to use this.
Specified as a string.

annotation The annotation value for this parameter. Not currently supported, because PEP 8 mandates
that the Python library may not use annotations.

In addition, some converters accept additional arguments. Here is a list of these arguments, along with their meanings:

11

https://www.python.org/dev/peps/pep-0008

accept A set of Python types (and possibly pseudo-types); this restricts the allowable Python argument to
values of these types. (This is not a general-purpose facility; as a rule it only supports specific lists of
types as shown in the legacy converter table.)

To accept None, add NoneType to this set.

bitwise Only supported for unsigned integers. The native integer value of this Python argument will be
written to the parameter without any range checking, even for negative values.

converter Only supported by the object converter. Specifies the name of a C “converter function” to
use to convert this object to a native type.

encoding Only supported for strings. Specifies the encoding to use when converting this string from a
Python str (Unicode) value into a C char * value.

subclass_of Only supported for the object converter. Requires that the Python value be a subclass
of a Python type, as expressed in C.

type Only supported for the object and self converters. Specifies the C type that will be used to
declare the variable. Default value is "PyObject *".

zeroes Only supported for strings. If true, embedded NUL bytes (' \\0 ') are permitted inside the value.
The length of the string will be passed in to the impl function, just after the string parameter, as a
parameter named <parameter_name>_length.

Please note, not every possible combination of arguments will work. Usually these arguments are implemented
by specific PyArg_ParseTuple format units, with specific behavior. For example, currently you cannot call
unsigned_short without also specifying bitwise=True. Although it’s perfectly reasonable to think this would
work, these semantics don’t map to any existing format unit. So Argument Clinic doesn’t support it. (Or, at least, not
yet.)

RN TGRS B LSRR A R G 0L . e R ARG, R IR ERISOR .

'B' unsigned_char (bitwise=True)

'b! unsigned_char

'c! char

'C' int (accept={str})

'a’ double

'D' Py_complex

'es' str (encoding="'name_of_encoding"')

'es#' | str(encoding="name_of_encoding', zeroes=True)
'et' str (encoding="name_of_encoding', accept={bytes, bytearray, str})
'et#' | str(encoding="'name_of_encoding', accept={bytes, bytearray, str}, zeroes=True)
'£! float

'h' short

'H' unsigned_short (bitwise=True)

it int

T unsigned_int (bitwise=True)

k! unsigned_long (bitwise=True)

'K! unsigned_long_long (bitwise=True)

'l long

'L’ long long

'n' Py_ssize_t

'o" object

‘ol object (subclass_of="'&PySomething_Type')

'os! object (converter="name_of_c_function')

12

£1-5LER

'p' bool

'S’ PyBytesObject

's' str

's#' str (zeroes=True)

's*! Py_buffer (accept={buffer, str})

'u’ unicode

'u' Py_UNICODE

‘uf! Py_UNICODE (zeroes=True)

wx! Py_buffer (accept={rwbuffer})

'Yy' PyByteArrayObject

'y! str (accept={bytes})

'y str (accept={robuffer}, zeroes=True)

ty*! Py_buffer

'z Py_UNICODE (accept={str, NoneType})

'Z4! Py_UNICODE (accept={str, NoneType}, zeroes=True)
'z! str (accept={str, NoneType})

'z str (accept={str, NoneType}, zeroes=True)
tzx! Py_buffer (accept={buffer, str, NoneType})

As an example, here’s our sample pickle.Pickler.dump using the proper converter:

/*[clinic input]
pickle.Pickler.dump

obj: object
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

One advantage of real converters is that they’re more flexible than legacy converters. For example, the unsigned_int
converter (and all the unsigned_ converters) can be specified without bitwise=True. Their default behavior per-
forms range checking on the value, and they won’t accept negative numbers. You just can’t do that with a legacy converter!

Argument Clinic will show you all the converters it has available. For each converter it’ll show you all the parameters it
accepts, along with the default value for each parameter. Just run Tools/clinic/clinic.py —--converters
to see the full list.

13

4.6 Py_buffer

When using the Py_buffer converter (or the 's*', '"w*', "*y' or 'z*' legacy converters), you must not call
PyBuffer_Release () on the provided buffer. Argument Clinic generates code that does it for you (in the parsing
function).

4.7 Advanced converters

Remember those format units you skipped for your first time because they were advanced? Here’s how to handle those
too.

The trick is, all those format units take arguments—either conversion functions, or types, or strings specifying an encoding.
(But "legacy converters” don’t support arguments. That’s why we skipped them for your first function.) The argument
you specified to the format unit is now an argument to the converter; this argument is either converter (for 0&),
subclass_of (for O!), or encoding (for all the format units that start with e).

When using subclass_of, you may also want to use the other custom argument for object (): type, which
lets you set the type actually used for the parameter. For example, if you want to ensure that the object is a sub-
class of PyUnicode_Type, you probably want to use the converter object (type='PyUnicodeObject *',
subclass_of='&PyUnicode_Type').

One possible problem with using Argument Clinic: it takes away some possible flexibility for the format units starting
with e. When writing a PyArg_Parse call by hand, you could theoretically decide at runtime what encoding string to
passinto PyArg ParseTuple (). But now this string must be hard-coded at Argument-Clinic-preprocessing-time.
This limitation is deliberate; it made supporting this format unit much easier, and may allow for future optimizations. This
restriction doesn’t seem unreasonable; CPython itself always passes in static hard-coded encoding strings for parameters
whose format units start with e.

4.8 Parameter default values

Default values for parameters can be any of a number of values. At their simplest, they can be string, int, or float literals:

foo: str = "abc"
bar: int = 123
bat: float = 45.6

They can also use any of Python’s built-in constants:

yep: bool = True
nope: bool = False
nada: object = None

There’s also special support for a default value of NULL, and for simple expressions, documented in the following sections.

14

4.9 The NULL default value

For string and object parameters, you can set them to None to indicate that there’s no default. However, that means the C
variable will be initialized to Py_None. For convenience’s sakes, there’s a special value called NULL for just this reason:
from Python’s perspective it behaves like a default value of None, but the C variable is initialized with NULL.

4.10 Expressions specified as default values

The default value for a parameter can be more than just a literal value. It can be an entire expression, using math operators
and looking up attributes on objects. However, this support isn’t exactly simple, because of some non-obvious semantics.

Consider the following example:

foo: Py_ssize_t = sys.maxsize - 1

sys.maxsize can have different values on different platforms. Therefore Argument Clinic can’t simply evaluate that
expression locally and hard-code it in C. So it stores the default in such a way that it will get evaluated at runtime, when
the user asks for the function’s signature.

What namespace is available when the expression is evaluated? It’s evaluated in the context of the module the builtin
came from. So, if your module has an attribute called "max_widgets”, you may simply use it:

foo: Py_ssize_t = max_widgets

If the symbol isn’t found in the current module, it fails over to looking in sys.modules. That’s how it can find sys.
maxsize for example. (Since you don’t know in advance what modules the user will load into their interpreter, it’s best
to restrict yourself to modules that are preloaded by Python itself.)

Evaluating default values only at runtime means Argument Clinic can’t compute the correct equivalent C default value.
So you need to tell it explicitly. When you use an expression, you must also specify the equivalent expression in C, using
the c_default parameter to the converter:

foo: Py_ssize_t (c_default="PY_SSIZE_T_MAX - 1") = sys.maxsize - 1

Another complication: Argument Clinic can’t know in advance whether or not the expression you supply is valid. It parses
it to make sure it looks legal, but it can’t actually know. You must be very careful when using expressions to specify values
that are guaranteed to be valid at runtime!

Finally, because expressions must be representable as static C values, there are many restrictions on legal expressions.
Here’s a list of Python features you're not permitted to use:

* Function calls.

e Inline if statements (3 if foo else 5).

¢ Automatic sequence unpacking (* [1, 2, 3]).

* List/set/dict comprehensions and generator expressions.

 Tuple/list/set/dict literals.

15

4.11 Using a return converter

By default the impl function Argument Clinic generates for you returns PyObject *. But your C function often
computes some C type, then converts it into the PyObject * at the last moment. Argument Clinic handles converting
your inputs from Python types into native C types—why not have it convert your return value from a native C type into a
Python type too?

That’s what a “return converter” does. It changes your impl function to return some C type, then adds code to the generated
(non-impl) function to handle converting that value into the appropriate PyObject *.

The syntax for return converters is similar to that of parameter converters. You specify the return converter like it was
a return annotation on the function itself. Return converters behave much the same as parameter converters; they take
arguments, the arguments are all keyword-only, and if you’re not changing any of the default arguments you can omit the
parentheses.

(If you use both "as" and a return converter for your function, the "as" should come before the return converter.)

There’s one additional complication when using return converters: how do you indicate an error has occurred? Normally,
a function returns a valid (non-NULL) pointer for success, and NULL for failure. But if you use an integer return converter,
all integers are valid. How can Argument Clinic detect an error? Its solution: each return converter implicitly looks for a
special value that indicates an error. If you return that value, and an error has been set (PyErr_Occurred () returns
a true value), then the generated code will propagate the error. Otherwise it will encode the value you return like normal.

Currently Argument Clinic supports only a few return converters:

bool

int

unsigned int
long

unsigned int
size_t
Py_ssize_t
float

double
DecodeFSDefault

None of these take parameters. For the first three, return -1 to indicate error. For DecodeFSDefault, the return type
is const char *;return a NULL pointer to indicate an error.

(There’s also an experimental NoneType converter, which lets you return Py_None on success or NULL on failure,
without having to increment the reference count on Py_None. I'm not sure it adds enough clarity to be worth using.)

To see all the return converters Argument Clinic supports, along with their parameters (if any), just run Tools/
clinic/clinic.py ——-converters for the full list.

4.12 Cloning existing functions
If you have a number of functions that look similar, you may be able to use Clinic’s ”clone” feature. When you clone an
existing function, you reuse:

* its parameters, including

— their names,

their converters, with all parameters,

their default values,

their per-parameter docstrings,

16

— their kind (whether they’re positional only, positional or keyword, or keyword only), and
* its return converter.
The only thing not copied from the original function is its docstring; the syntax allows you to specify a new docstring.

Here’s the syntax for cloning a function:

/*[clinic input]
module.class.new_function [as c_basename] = module.class.existing function

Docstring for new_function goes here.
[clinic start generated code]*/

(The functions can be in different modules or classes. I wrote module.class in the sample just to illustrate that you
must use the full path to both functions.)

Sorry, there’s no syntax for partially-cloning a function, or cloning a function then modifying it. Cloning is an all-or
nothing proposition.

Also, the function you are cloning from must have been previously defined in the current file.

4.13 Calling Python code

The rest of the advanced topics require you to write Python code which lives inside your C file and modifies Argument
Clinic’s runtime state. This is simple: you simply define a Python block.

A Python block uses different delimiter lines than an Argument Clinic function block. It looks like this:

/*[python input]
python code goes here
[python start generated code]*/

All the code inside the Python block is executed at the time it’s parsed. All text written to stdout inside the block is
redirected into the “output” after the block.

As an example, here’s a Python block that adds a static integer variable to the C code:

/*[python input]

print ('static int __ignored_unused_variable _ = 0;"')
[python start generated code]*/

static int __ignored_unused_variable__ = 0;
/*[python checksum:...]*/

4.14 Using a "self converter”

Argument Clinic automatically adds a "self” parameter for you using a default converter. It automatically sets the type
of this parameter to the “pointer to an instance” you specified when you declared the type. However, you can override
Argument Clinic’s converter and specify one yourself. Just add your own self parameter as the first parameter in a
block, and ensure that its converter is an instance of self_converter or a subclass thereof.

What's the point? This lets you override the type of self, or give it a different default name.

How do you specify the custom type you want to cast se1f to? If you only have one or two functions with the same type
for self, you can directly use Argument Clinic’s existing self converter, passing in the type you want to use as the
type parameter:

17

/*[clinic input]
_pickle.Pickler.dump
self: self(type="PicklerObject *")

obj: object
/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

On the other hand, if you have a lot of functions that will use the same type for self, it’s best to create your own
converter, subclassing self_converter but overwriting the t ype member:

/*[python input]

class PicklerObject_converter (self_converter):
type = "PicklerObject *"

[python start generated code]*/

/*[clinic input]

_pickle.Pickler.dump
self: PicklerObject
obj: object

/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

4.15 Writing a custom converter

As we hinted at in the previous section... you can write your own converters! A converter is simply a Python class that
inherits from CConverter. The main purpose of a custom converter is if you have a parameter using the O& format
unit—parsing this parameter means calling a PyArg_ParseTuple () “converter function”.

Your converter class should be named *something*_converter. If the name follows this convention, then your
converter class will be automatically registered with Argument Clinic; its name will be the name of your class with the
_converter suffix stripped off. (This is accomplished with a metaclass.)

You shouldn’t subclass CConverter.__init__. Instead, you should write a converter_init () function.
converter_init () always accepts a self parameter; after that, all additional parameters must be keyword-only.
Any arguments passed in to the converter in Argument Clinic will be passed along to your converter_init ().

There are some additional members of CConverter you may wish to specify in your subclass. Here’s the current list:

type The C type to use for this variable. type should be a Python string specifying the type, e.g. int. If thisis a
pointer type, the type string should end with ' *'.

default The Python default value for this parameter, as a Python value. Or the magic value unspecified if there
is no default.

py_default default as it should appear in Python code, as a string. Or None if there is no default.
c_default default as it should appear in C code, as a string. Or None if there is no default.

c_ignored_default The default value used to initialize the C variable when there is no default, but not specifying
a default may result in an “uninitialized variable” warning. This can easily happen when using option groups—

18

although properly-written code will never actually use this value, the variable does get passed in to the impl, and
the C compiler will complain about the "use” of the uninitialized value. This value should always be a non-empty
string.

converter The name of the C converter function, as a string.

impl_by_ reference A boolean value. If true, Argument Clinic will add a & in front of the name of the variable
when passing it into the impl function.

parse_by_reference A boolean value. If true, Argument Clinic will add a & in front of the name of the variable
when passing it into PyArg_ParseTuple ().

Here’s the simplest example of a custom converter, from Modules/zlibmodule.c:

/*[python input]

class ssize_t_converter (CConverter) :
type = 'Py_ssize_t'
converter = 'ssize_ t_converter'

[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=35521e4e733823c7]*/

This block adds a converter to Argument Clinic named ssize_t. Parameters declared as ssize_t will be declared as
type Py_ssize_t, and will be parsed by the ' O& ' format unit, which will call the ssize_t_converter converter
function. ssize_t variables automatically support default values.

More sophisticated custom converters can insert custom C code to handle initialization and cleanup. You can see more
examples of custom converters in the CPython source tree; grep the C files for the string CConverter.

4.16 Writing a custom return converter
Writing a custom return converter is much like writing a custom converter. Except it’s somewhat simpler, because return
converters are themselves much simpler.

Return converters must subclass CReturnConverter. There are no examples yet of custom return converters, because
they are not widely used yet. If you wish to write your own return converter, please read Tools/clinic/clinic.py,
specifically the implementation of CReturnConverter and all its subclasses.

4.17 METH_O and METH_NOARGS

To convert a function using METH_ O, make sure the function’s single argument is using the object converter, and mark
the arguments as positional-only:

/*[clinic input]
meth_o_sample

argument: object
/

[clinic start generated code]*/

To convert a function using METH_NOARGS, just don’t specify any arguments.

You can still use a self converter, a return converter, and specify a t ype argument to the object converter for METH_O.

19

4.18 tp_new and tp_init functions

You can convert tp_new and tp_init functions. Just name them __new___or __init___ as appropriate. Notes:

 The function name generated for __new___ doesn’t end in ___new___like it would by default. It’s just the name
of the class, converted into a valid C identifier.

* No PyMethodDef #define is generated for these functions.
e _ init__ functions return int, not PyObject *.
 Use the docstring as the class docstring.

e Although _ new___and __init__ functions must always accept both the args and kwargs objects, when
converting you may specify any signature for these functions that you like. (If your function doesn’t support key-
words, the parsing function generated will throw an exception if it receives any.)

4.19 Changing and redirecting Clinic’s output

It can be inconvenient to have Clinic’s output interspersed with your conventional hand-edited C code. Luckily, Clinic is
configurable: you can buffer up its output for printing later (or earlier!), or write its output to a separate file. You can also
add a prefix or suffix to every line of Clinic’s generated output.

While changing Clinic’s output in this manner can be a boon to readability, it may result in Clinic code using types before
they are defined, or your code attempting to use Clinic-generated code before it is defined. These problems can be easily
solved by rearranging the declarations in your file, or moving where Clinic’s generated code goes. (This is why the default
behavior of Clinic is to output everything into the current block; while many people consider this hampers readability, it
will never require rearranging your code to fix definition-before-use problems.)

Let’s start with defining some terminology:

field A field, in this context, is a subsection of Clinic’s output. For example, the #define for the PyMethodDef
structure is a field, called methoddef_define. Clinic has seven different fields it can output per function
definition:

docstring_prototype
docstring_definition
methoddef_define
impl_prototype
parser_prototype
parser_definition
impl_definition

All the names are of the form " <a>_", where "<a>" is the semantic object represented (the parsing function,
the impl function, the docstring, or the methoddef structure) and " " represents what kind of statement the
field is. Field names that end in "_prototype" represent forward declarations of that thing, without the actual
body/data of the thing; field names thatend in "_definition" represent the actual definition of the thing, with
the body/data of the thing. ("methoddef" is special, it’s the only one that ends with "_define", representing
that it’s a preprocessor #define.)

destination A destination is a place Clinic can write output to. There are five built-in destinations:
block The default destination: printed in the output section of the current Clinic block.

buffer A text buffer where you can save text for later. Text sent here is appended to the end of any existing text.
It’s an error to have any text left in the buffer when Clinic finishes processing a file.

file A separate “clinic file” that will be created automatically by Clinic. The filename chosen for the file is
{basename}.clinic{extension}, where basename and extension were assigned the output

20

from os.path.splitext () run on the current file. (Example: the £ile destination for _pickle.c
would be written to _pickle.clinic.c.)

Important: When using a £i1le destination, you must check in the generated file!

two-pass A buffer like buffer. However, a two-pass buffer can only be dumped once, and it prints out all
text sent to it during all processing, even from Clinic blocks affer the dumping point.

suppress The text is suppressed—thrown away.
Clinic defines five new directives that let you reconfigure its output.

The first new directive is dump:

dump <destination>

This dumps the current contents of the named destination into the output of the current block, and empties it. This only
works with buf fer and two—pass destinations.

The second new directive is output. The most basic form of output is like this:

output <field> <destination>

This tells Clinic to output field to destination. output also supports a special meta-destination, called everything,
which tells Clinic to output all fields to that destination.

output has a number of other functions:

output push
output pop
output preset <preset>

output pushand output pop allow you to push and pop configurations on an internal configuration stack, so that
you can temporarily modify the output configuration, then easily restore the previous configuration. Simply push before
your change to save the current configuration, then pop when you wish to restore the previous configuration.

output preset sets Clinic’s output to one of several built-in preset configurations, as follows:
block Clinic’s original starting configuration. Writes everything immediately after the input block.

Suppress the parser_prototype and docstring_prototype, write everything else to
block.

file Designed to write everything to the “clinic file” that it can. You then #include this file near the
top of your file. You may need to rearrange your file to make this work, though usually this just means
creating forward declarations for various t ypedef and PyTypeObject definitions.

Suppress the parser_prototype and docstring_prototype, write the
impl_definition toblock, and write everything else to file.

The default filename is " {dirname}/clinic/{basename}.h".

buffer Save up most of the output from Clinic, to be written into your file near the end. For Python
files implementing modules or builtin types, it’s recommended that you dump the buffer just above the
static structures for your module or builtin type; these are normally very near the end. Using buf fer
may require even more editing than £1i 1e, if your file has static PyMethodDef arrays defined in the
middle of the file.

Suppress the parser_prototype, impl_prototype, and docstring_prototype, write
the impl_definition to block, and write everything else to file.

two—-pass Similar to the buf fer preset, but writes forward declarations to the two-pass buffer, and
definitions to the buffer. This is similar to the buf fer preset, but may require less editing than

21

buffer. Dump the two-pass buffer near the top of your file, and dump the buf fer near the end
just like you would when using the buf fer preset.

Suppresses the impl_prototype, write the impl_definition to block, write
docstring_prototype, methoddef_define, and parser_prototype to two-pass,
write everything else to buffer.

partial-buffer Similar to the buffer preset, but writes more things to block, only writing the
really big chunks of generated code to buffer. This avoids the definition-before-use problem of
buffer completely, at the small cost of having slightly more stuff in the block’s output. Dump the
buf fer near the end, just like you would when using the buf fer preset.

Suppresses the impl_prototype, write the docstring_definition and
parser_definition to buffer, write everything else to block.

The third new directive is destination:

destination <name> <command> [...]

This performs an operation on the destination named name.
There are two defined subcommands: new and clear.

The new subcommand works like this:

destination <name> new <type>

This creates a new destination with name <name> and type <type>.

There are five destination types:
suppress Throws the text away.
block Writes the text to the current block. This is what Clinic originally did.
buffer A simple text buffer, like the “buffer” builtin destination above.

file A textfile. The file destination takes an extra argument, a template to use for building the filename,
like so:

destination <name> new <type> <file_template>
The template can use three strings internally that will be replaced by bits of the filename:
{path} The full path to the file, including directory and full filename.
{dirname} The name of the directory the file is in.
{basename} Just the name of the file, not including the directory.

{basename_root} Basename with the extension clipped off (everything up to but not includ-
ing the last ’.’).

{basename_extension} The last’.” and everything after it. If the basename does not contain
a period, this will be the empty string.

If there are no periods in the filename, {basename} and {filename} are the same, and {extension} is

empty. ”{basename}{extension}” is always exactly the same as ”{filename}”.
two—pass A two-pass buffer, like the "two-pass” builtin destination above.

The clear subcommand works like this:

destination <name> clear

22

It removes all the accumulated text up to this point in the destination. (I don’t know what you’d need this for, but I thought
maybe it’d be useful while someone’s experimenting.)

The fourth new directive is set:

set line_prefix "string"
set line_suffix "string"

set lets you set two internal variables in Clinic. 1ine_prefix is a string that will be prepended to every line of
Clinic’s output; 1ine_suffix is a string that will be appended to every line of Clinic’s output.

Both of these support two format strings:
{block comment start} Turns into the string /*, the start-comment text sequence for C files.
{block comment end} Turns into the string * /, the end-comment text sequence for C files.

The final new directive is one you shouldn’t need to use directly, called preserve:

preserve

This tells Clinic that the current contents of the output should be kept, unmodified. This is used internally by Clinic when
dumping output into £1i1e files; wrapping it in a Clinic block lets Clinic use its existing checksum functionality to ensure
the file was not modified by hand before it gets overwritten.

4.20 The #ifdef trick

If you're converting a function that isn’t available on all platforms, there’s a trick you can use to make life a little easier.
The existing code probably looks like this:

#ifdef HAVE_FUNCTIONNAME
static module_functionname (...)

{

i
#endif /* HAVE_FUNCTIONNAME */

And then in the PyMethodDef structure at the bottom the existing code will have:

#ifdef HAVE_FUNCTIONNAME
{'functionname', ... },
#endif /* HAVE_FUNCTIONNAME */

In this scenario, you should enclose the body of your impl function inside the #1i fdef, like so:

#1ifdef HAVE_FUNCTIONNAME
/*[clinic input]
module. functionname

[clinic start generated code]*/
static module_functionname (...)

{

}
#endif /* HAVE_FUNCTIONNAME */

Then, remove those three lines from the PyMethodDef structure, replacing them with the macro Argument Clinic
generated:

23

MODULE_FUNCTIONNAME_METHODDEF

(You can find the real name for this macro inside the generated code. Or you can calculate it yourself: it’s the name
of your function as defined on the first line of your block, but with periods changed to underscores, uppercased, and
" _METHODDEF" added to the end.)

Perhaps ~ youre wondering: what if HAVE_FUNCTIONNAME isn't defined? The
MODULE_FUNCTIONNAME_METHODDEF macro won't be defined either!

Here’s where Argument Clinic gets very clever. It actually detects that the Argument Clinic block might be deactivated
by the #1ifdef. When that happens, it generates a little extra code that looks like this:

#ifndef MODULE_FUNCTIONNAME_METHODDEF
#define MODULE_FUNCTIONNAME_METHODDEF
#endif /* !defined (MODULE_FUNCTIONNAME_METHODDEF) */

That means the macro always works. If the function is defined, this turns into the correct structure, including the trailing
comma. If the function is undefined, this turns into nothing.

However, this causes one ticklish problem: where should Argument Clinic put this extra code when using the “block”
output preset? It can’t go in the output block, because that could be deactivated by the #1 fde f. (That’s the whole point!)

In this situation, Argument Clinic writes the extra code to the "buffer” destination. This may mean that you get a complaint
from Argument Clinic:

Warning in file "Modules/posixmodule.c" on line 12357:
Destination buffer 'buffer' not empty at end of file, emptying.

When this happens, just open your file, find the dump buf fer block that Argument Clinic added to your file (it'll be
at the very bottom), then move it above the PyMethodDef structure where that macro is used.

4.21 Using Argument Clinic in Python files

It’s actually possible to use Argument Clinic to preprocess Python files. There’s no point to using Argument Clinic blocks,
of course, as the output wouldn’t make any sense to the Python interpreter. But using Argument Clinic to run Python
blocks lets you use Python as a Python preprocessor!

Since Python comments are different from C comments, Argument Clinic blocks embedded in Python files look slightly
different. They look like this:

#/* [python input]

#print ("def foo(): pass")
#[python start generated code]*/
def foo(): pass

#/*[python checksum:...]*/

24

#5l

P

Python #EFEN
PEP 8,11

25

	Argument Clinic 的设计目标
	基本概念和用法
	函数的转换
	Advanced Topics
	Symbolic default values
	Renaming the C functions and variables generated by Argument Clinic
	Converting functions using PyArg_UnpackTuple
	Optional Groups
	Using real Argument Clinic converters, instead of "legacy converters"
	Py_buffer
	Advanced converters
	Parameter default values
	The NULL default value
	Expressions specified as default values
	Using a return converter
	Cloning existing functions
	Calling Python code
	Using a "self converter"
	Writing a custom converter
	Writing a custom return converter
	METH_O and METH_NOARGS
	tp_new and tp_init functions
	Changing and redirecting Clinic's output
	The #ifdef trick
	Using Argument Clinic in Python files

	索引

