The Python/C API
At 3.9.0a4

Guido van Rossum
and the Python development team

=A 23,2020

Python Software Foundation
Email: docs@python.org

Contents

1 Wk 3
L1 AREARIE © . 3

L2 AETSCHE e 3

13 BRI .« o e e 4

L4 X%, BRABIHTE . . . o 5
LA BIUFTEL .« . 6

R 9

I T = 9

1.6 HRAPYthOn e 11

L7 UHATEE . . e e 11

2 R RS kR 0 13
3 The Very High Level Layer 15
4 BN 21
5 SeiRabE 23
5.1 Printingand clearing L. e e e e e e e 24

52 HHH BB . e 24

5.3 ISSUINZ WAIMINGS .« « v v v v v e 26

5.4 Querying the error indicator L. e e e e e e e e e e 27

5.5 SignalHandling L e e e e e 29

5.6 Exception Classes e e 29

5.7 Exception Objects e e e 30

5.8 Unicode Exception Objects v i v v it e e e e e e e e e e e 30

5.9 Recursion Control L e e e 31
500 BRUESEHS . o 32
501 FRUEEEEZEGN . o 34

6 T.H 35
6.1 FERBILHTRT . o o o e 35
6.2 RBINEE . . . e 38

6.3 HRREER] . . e 39
6.4 AR L e 40

6.5 Datamarshalling SUPPOTt o i e e e e e e e e e e e e e e e 43
6.6 IEAIREIASEINE . e 44

6.6.1 RITSEL . . o 44

6.6.2 AR . 50
6.7 FREREEAEIEAL L 51
6.8 It e 53
6.9 GRRRLESIEMFS CEFIIAE . . . e 53
6.9.1 Codec BHL APL 54
6.9.2 T Unicode A5 BRI FIIEMZE APL . . . 54
MR 52 57
T4 R . 57
7.2 Call Protocol e e e e e e e 61
7.2.1 Thetp_call Protocol e e e e e 61
7.2.2 The Vectorcall Protocol e e 61
7.2.3 Object Calling APT e 63
7.2.4 Call Support APT e 66
T3 BN . o o e 66
T4 PN . o e 69
75 BRI . . o e 70
7.6 GEACEEEIL .o e 71
T RPN . e 72
TA1 ERIRGER . 73
7.7.2 Bufferrequesttypes oo e e e e e e e e e e e e 74
773 BIEE .. 77
7.7.4 Buffer-related functions e e e 78
7.8 THZEML . . o 79
HARA)2 81
8.1 HANIG . . 81
8.1 Type KT . o o o 81
8.1.2 None X . . . o 84
8.2 BUENIZL . . . e 84
8.2.1 EEBUAUNIG: . . 84
8.2.2 AHI/RATZL . e 87
8.2.3 FEABUNZ . 88
8.2.4 EHUNTE . . 88
8.3 JEAUNEGL . e 90
83.1 TR . e 90
8.3.2 FITEURTA . . . 92
8.3.3 Unicode Objectsand Codecs e 93
8.3.4 JUHHRTA . .. 112
8.3.5 StructSequence ObJects e e e e e e e e e e e e 113
8.3.6 FIFENFG . . . e 115
8.4 AN L e 116
8.4.1 FHLXTZL . . . e 116
8.4.2 EEARTE . e 119
8.5 BRBUNIZ . . . e 120
8.5.1 RBUNIG . . . e 120
8.5.2 SLBITYERTA . e 121
8.53 HYERTE . 122
8.5.4 Cell XIR e 122
8.5.5 ACHIRTE . . 123
8.6 HABRIG: . . . 124
8.6.1 LN . e 124
8.62 MEHXIZ . .. 125

11

8.63 ENERNIZL . . L
8.64 HIRFIRIG . .
8.6.5 HIHNIG .
8.6.6 EllipsisObject e e
8.6.7 MemoryView X2 e e e
8.6.8 HHTIFIRIG . . .
8.6.0 A . .. e e
8.6.10 ERZRRIZR
B.6.11 MIEXTA . . o
8.6.12 IR IASENTER . . e
8.6.13 DateTime X
9 Initialization, Finalization, and Threads
9.1 FEPython FIEALZHI . - o o o o e
9.2 AJHEIEATEL . .o
9.3 Initializing and finalizing the interpreter o e e e e e e e e
9.4 Process-wide parameters i it e
9.5 Thread State and the Global Interpreter Lock
9.5.1 Releasing the GIL from extensioncode
9.52 FEPython BIEEMIZRTE . . .
9.5.3 Cautions about fork() e e e e e
954 EEIAPL . e
955 Low-level APL o . o e e e
9.6 Sub-interpreter SUPpOrt L. e e e e e e e e e e
9.6.1 EERAIEELL
0.7 SEIHA . o e e
9.8 S HTAIIREE . .
9.9 BRI LE . .
9.10 Thread Local Storage Support L e e
9.10.1 Thread Specific Storage (TSS) API o .
9.10.2 Thread Local Storage (TLS) APT
10 Python F)4RTbACE
10.1 PyWideStringlList L e e e
10.2 PyStatus o e e e e e e e
10.3 PyPreConfig e e e e
10.4 Preinitialization with PyPreConfig e
10.5 PyConfig o o e e
10.6 Initialization with PyConfig
10.7 TIsolated Configuration ittt e e e e e e e e
10.8 Python Configuration e e e e e
109 BRERIEHE . . o o
10.10 Py_RunMain() o e e e e e e e e e e e e
10.11 Multi-Phase Initialization Private Provisional APT
AR B
P O 7
112 JBIEPIAEEETT .« o
113 PIAEEEID .« o o
L4 RIS . o o e e e e e
115 BRI AU TR « o o o e e e e e e
11.6 Customize Memory Allocators it e e e
11.7 The pymalloc allocator o o e e e e e e e e e e e
11.7.1 Customize pymalloc Arena Allocator

12

13

11.8 tracemalloc C API e e e
11.9 JRBI . o o e,

X RIS F
12,1 ZEREFANMEERTE © o
12.2 Common ObJect SIrUCIUTES o v v v v et e e e e e e e e e e e e e e e e e e e
12.2.1 Baseobjecttypesand macros ool e e e e
12.2.2 Implementing functions and methods L o oL
12.2.3 Accessing attributes of extension types Lo e
123 Type KR . o o
123.1 RIS . L e
12.3.2 PyTypeObject Definition 0 i i e e e e
1233 PyObject SIots L e e
12.3.4 PyVarObject SIots o L o o e e e e e e e e
12.3.5 PyTypeObject SIots o o e e e
12.3.6 Heap TYPES . . v v v v o e
12.4 Number Object StruCtures v v i v et e e e e e e e e e e e e e e
12.5 Mapping Object StrUCTUIES v o vttt e e e e e e e e e e e e e e e
12.6 Sequence ObJect SIIUCLUIES v v v v v v v e e i e e e e e e e e e e e e e e e e e
12.7 Buffer Object Structures o it e e e e e e e e
12.8 Async Object Structures v v v v e e e e e e e e e e e e e e e
12.9 Slot Type typedefs o e e e e e e
1210 fFlF- o e
1201 B S EAEFRBAR I . . o o o e e

API f1 ABI Jig A 25 Bp
NI YES

SCRBEW]
B.1 Python SCEYTTHRE o o e

P LRVFnE

C.l ZERFI T

C2 FHEGAFHA T] Python RUSSERAISAEE . . o o
C2.1 T PYTHON 3.9.0a4 [y PSFVFFI MY . . . o oo e
C2.2 T PYTHON 2.0 /) BEOPEN.COM ¥FHI /Mo oo
C23 JIF PYTHON 1.6.1 [y CNRIVFRI MY . . o o e
C24 MTPYTHONO09.0 & 12 ¥y CWI VRIS . . o oo oo oo

C3 RV T UE SN . . o
C.3.1 Mersenne TWIStET o o i ittt e e e e e e e e e e e e e e
C3.2 BIET e
C33 SJHEEREFME . . e
C34 Cookie BHE e
C3.5 PUTIBES . o o
C.3.6 UUencode 5 UUdecode FREL o o o i e
C3.7 XML mESIFER . .
C.3.8 test_epoll e e e e e
C.3.9 Selectkqueue e e e e e e e
C.3.10 SipHash24
C3.11 strtod Al dtoa o e
C.3.12 OpenSSL o e e e e e e
C3U13 exXpat. . v o o v e e e e e e e e e e e e e e e e
C3.14 Ibfh . . . e e e e e
C3.15 zIib . . . e

189
189
190
190
191
193
195
195
200
201
202
202
219
219
221
222
223
224
224
226
228

231

233

C3.16 cfuhash 262

C3.17 Hbmpdec e e e e e e e e e 262
C3.18 WACCHNMRREME « o o s, 263
D FL 265
#l 267

Vi

The Python/C API, %% 3.9.0a4

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, & 3.9.0a4

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

GG RIS AR R UL) T HYE, ATl Sl BB IR G. E TR A — A
JEE AR R B AT A T i A Python A R EA 2, {Hitk A Python [FE A 44 5
PRI R T B -

VFZ APT BUEAR IR A B & Python sX PR NARREAEIE . BN, KR A Python [1Y HIFE 7
WHRERALEE YR, A 2R S BRI H i A Python 2 B e B S TRV X &2 5

1.1 K4k

WARARAR B4 5] 45 T CPython) C UMY, 1R BAUEHRTE PEP 7 HE U H5 2 W AR, XL 45T
W3) AT AT R By 254 11 Python A4S . FEAM 5 4R H C ISR =07 I AN, al DU AR X LU AT, Rl
VRUESEAE H 5 1) Python TTRkIX LU .

1.2 8&XH

{1 J1} Python/C API Fr e SR A PReR . IR E SCRT TN AT TR B & B R AU 2 v -

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

X EWEM S AT ARk S0 <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
M <stdlib.h> (WERATH).

https://www.python.org/dev/peps/pep-0007

The Python/C API, & 3.9.0a4

1Ef#: T Python W] B L —LUREYESELE R G830 AR e K SRR TIAL BR AR E 5L, DAL A S AR T A e
2T, AR 54 RS Python . h,

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See i& &) i85 & T & 415
for a description of this macro.

Python.h 5 SCARYAHB M P m] WA AR (b B & bRk SCURBInE LFRAT) #RAT AT Py 50 _Py. DA _Py
TR A AR Python SCBLN ARG HIFY , AR TRA S E M o S5 24 PRI PR B R

{Efit: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

S &5 Python —E2 4% . FF Unix I, B/ TPATHSR: prefix/include/pythonversion/
Ml exec_prefix/include/pythonversion/, H H prefix Ml exec_prefix J& Hi [f] Python
configure I ARG AWXT N TE S FE X, T version Wk '$d.%$d' % sys.version_info[:2]. fE
Windows |, K324 T prefix/include, HW prefix @R RFIRERN LR H .

BRLE SISO, R E S (AR ERECEIRE F g it S R A . 1 R/ ACH S
RIEFERIGHA #include <pythonX.Y/Python.h>; XIHEHZ-FEHmIFAH, HHN prefix [
BIRIL R EAE R H exec_prefix TREEF-GHI 3.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 FHME

Python 3SR E SCT — 28 IR . VR RIESEITEA IR A f)y & i (B APy _RETURN_NONE) .

AR Ay A 00 SO L. X LB R AN R — S A 3R

Py_UNREACHABLE ()
Use this when you have a code path that cannot be reached by design. For example, in the default: clause in
a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert (0) or abort () call

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code.
For example, the macro is implemented with __builtin_unreachable () on GCC in release mode.

A use for Py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For
example, under low memory condition or if a system call returns a value out of the expected range. In this case,
it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError () can be
used.

3.7 BRI HE.

Py_ABS (X)

AR] x L .
3.3 B fE.

Py_MIN (X, y)
R x Fy MR IMAE .

4 Chapter 1. #}i

The Python/C API, %% 3.9.0a4

3.3 B EIfE.

Py_MAX (X,y)
R = Fy MR .
3.3 FrhR e

Py_STRINGIFY (X)
= A5l C 45 . Bl Py_STRINGIFY (123) j&[H] "123",

3.4 Bl Tge.
Py_MEMBER_SIZE (type, member)
R [Z5H) (type) member R/, PAFATERR
3.6 FrIIfE.
Py_CHARMASK (c)
SRR [-128, 127] B [0, 2551 JE R) FAF BB Y . XA 220 ¢ 5l #548 8 unsigned char
pIqCI
Py_GETENV (s)

Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

3.4 B fE.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

NV

’ Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

TE 3.8 MU #: MSVC support was added.

1.4 5. ERFSIATHE

KZ %L Python/C API pREERE — A Z NS HPASK— A Pyobject * KRIPREIME. IWRAE— M85, 8
] 78— ML & Python X R AFZHEIE R, B TFERZSEERT (FIam(E. 1EH NS 5tE
i#:) Python 155 #F < PARIAERG 7 AL BT Python X428 [EfTH — AN Baah i) C Ak TR 2R
WEHEI . JLFIrA Python X R ERAEFAESE b IR4EAR SR —APyobject KA H S LE, H
HPyobject * REIRYFGEH A E R AR I, ME—FIBI 72 type XT5; BT IUAI Gk i A BEROREI, BT A
BN REHESPy TypeObject X4,

JIi Python X% (% Python F4) #A —A> nype Fl—A> reference count. X500 5 © /2428841
X4 (BIAsEsc. s e LG AL, A types HATR) o XFFREAS AR FNRY AL, B A%
KA EX R ERETIZEE: filan, 24 (HAY) a FiEXT4 & Python 51|} PyList_Check (a) NH.

14. &, %EBF03| Bt 5

The Python/C API, & 3.9.0a4

1.4.1 S|V

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is "don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.
The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by calling Py_ DECREF () or Py_XDECREF () when it’s no longer needed---or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed

6 Chapter 1. #i&

The Python/C API, %% 3.9.0a4

to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)

t, 0, PyLong_FromLong(lL));
t, 1, PyLong_FromLong(2L));
t

(
(
(
(t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by Py Tuple_SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_Buildvalue(" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away ("have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
3

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the

14. &, %EBF03| Bt 7

The Python/C API, & 3.9.0a4

only reference to the object. Therefore, the generic functions that return object references, like PyObject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
--- the plumage (the type of the object passed as an argument to the function) doesn 't enter into it/ Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference --- but if you obtain the same item from
the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem/(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

(Rt

8 Chapter 1. #}i

The Python/C API, %% 3.9.0a4

(£ 50

}

return total;

1.4.2 #E

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.5 &

Python T2 51 75 AL PR & LT AR e RAEIR i & A aleid i i, RE i g i &
WA, WIS, ERIMITRA TGRS, AR LR E AR s 45 P PRl A 1ol 981

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should nor set another exception --- that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

1.5. B& 9

The Python/C API, & 3.9.0a4

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

10 Chapter 1. #}i

The Python/C API, %% 3.9.0a4

1.6 #& A Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py Initialize () doesnotsetthe ”scriptargumentlist” (sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix (), and Py_GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to "uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py FinalizeEx (). The function Py_IsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 RidHaE

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

B T AIE AT T RORZ A, AT A T B M A -
o BUOMEALRFUS N E X 0 Bl -
o BUNRRAF AN B AR AT A8 A1 4 162 7

1.6. #& A\ Python 11

The Python/C API, & 3.9.0a4

* Downcasts from wide types to narrow types are checked for loss of information.
s WZIWrE RSB FIAIR G L. 75h, REWRTGE test_c_api () Tk,
S ASBISE R A I B HE LR
o FEHE M TCRAARIIG A BE Bl , AR RAIR AR 15 1 T
o ISR JZE IR ERANES M) S AR A B R DL AT o
» Extra checks are added to the memory arena implementation.
o ISR A S 2 AERLR
X HUAT RESCA PR B AR G A

Defining Py_TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

HRELZHAEER, 15S 5 Python JEA IS H) Misc/SpecialBuilds.txt .

12 Chapter 1. #}i

CHAPTER 2

TR EH R B2 Fr — i O

&4 I, Python) C APLIFRfiRENUAN I ZE (b . KRB HCA S IR Az, % HAs i APL, I A2 B
BA APTEUMER AP (A28 5 0 2| Je i AR IR) .

RNEME, APTIREERA Y R i HIas I (ABL). JR R 32 2@ 8540 @ EAE , 78k BB Ing 7 Brak
WM F BRI BEAR SR APL, {HAJRESHER ABL, I, 44> Python fUASH T S B B iy etk (EP
e A AT A 32 52 R B2 AR LR, Unix BB RESHEILRH). BL4h, #E Windows I, ¥ EiH 5 4E
FE) pythonXY.dIl #5482, FFEEHH A B S5 pythonXY.dll £z .

M Python3.2 2, ELFEH] T4~ APLRY T4, PAWGPREER) ABL. WISR{AT L AP (Hhalfrhy “sZFR APTY)
9 AR BTG 2L X “Py_LIMITED_API*, -2 MR REAR 411 R M3 AR P IGRG: PR, AEARAT 3.x A
(x>=2) _F A ARSI AN TG 2 B 1

ERLEERT, FEARMIT R Y B E R ABL. 7 2 H] X 25 APL /Y 9 @ 11 B 95 228
Py_LIMITED_APT ik B A {148 35 & %5 1Y &% ik Python iR A< PY_VERSION_HEX {H (fi: Python 3.3
4 0x03030000) (SWAPI o ABI jp A 32) o WRBIHCREE T 0T J54¢ Python JiUAS, {HIGYEFEIHMRAS I
m#E (F R 0555) .

M Python 3.2 JF 41, 52 APL W] B HLAEICTAE PEP 384 . 5 C APLSCHYh, R T32 APL {1y APTIEH
FRiZh “RETZH AP,

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, & 3.9.0a4

14 Chapter 2. BENMAERF-#§EO

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
arge and argv parameters should be prepared exactly as those which are passed to a C program’s main () function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int Py_BytesMain (int argc, char **argv)
Similar to Py_Main () but argv is an array of bytes strings.

3.8 BRI HE.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

15

The Python/C API, & 3.9.0a4

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_ InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filename is NULL,
this function uses "2?27?" as the filename.

int PyRun_SimpleString (const char *command)

This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

{Ef#: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)

Can be set to point to a function with the prototype int func (void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is

16 Chapter 3. The Very High Level Layer

The Python/C API, %% 3.9.0a4

ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as done in
the Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE *, FILE *, const char *)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

T 3.4 iR P The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (), instead
of being allocated by PyMem Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to O.

struct _node* PyParser_SimpleParseStringFlags (const char *swr, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_ SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
Jp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from str in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit

17

The Python/C API, & 3.9.0a4

set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 B RE.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding (os . fsdecode ()).

3.2 B RE.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ EvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args,
int argcount, PyObject *const *kws, int kwcount, PyObject *const *defs,
int defcount, PyObject *kwdefs, PyObject *closure)
Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalua-
tion. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays of
arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure tuple
of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_FEvalFrameEx (), for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. The code object

18 Chapter 3. The Very High Level Layer

The Python/C API, %% 3.9.0a4

associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

T 3.4 WU EE P This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_ CompileString ().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to O, and any modification
dueto from _ future_ import is discarded.

int cf_flags
Compiler flags.

int cf_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
T 3.8 iR : Added cf_feature_version field.

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as "true division” according to PEP 238.

19

https://www.python.org/dev/peps/pep-0238

The Python/C API, & 3.9.0a4

20 Chapter 3. The Very High Level Layer

cHAPTER 4

51 AT

AT ZAR RN T HE Python R YT AL
void Py_ INCREF (PyObject *0)

BTG 0 BT, G N NULL; WSRARAHE B AN NULL, R[] Py _XINCREF ().
void Py_XINCREF (PyObject *0)

HEIR G 0 WIS, XPRATPASY NULL, FERUHEOL MR B A AT R -

void Py_DECREF (PyObject *0)
WK o WIS TR R UAUR A NULL; QURARAH € B AN NULL, WPy XDECREF (),
WIRE TR NE, B AR TR X5 8 2R B A R R £ (B L ZA A NULL),

Bl BOCR BT S EUE R Python (U AGEIAN (HIHANY— DA __del () kR RILHIHE
RO L2) o BIRIEIACRD H i S R e, (ARITI IS RERS B 7R A Python
GrJR AR, XA]l 4 R A B AR W RAEPy_DECREF () WAGETA N Z HI#PN. 24 AT
SERFARAS o BT, 50 r I I 6 G 14 AR 7 24 R 3o SR 1 5 1 P48 DL 38— ANl 22 2 e
SRR, SRS AR A R] Py _DECREF ()

void Py_XDECREF (PyObject *o)
WIS o 5 HTHE. XTI PACH NULL, ZESLIE L R A= EAR MR AR A 0 HAUR
5Py DECREF () #H[F], Fox M [RIBEME L

void Py_ CLEAR (PyObject *0)
DTSR o BFI AL, XA AIPAH NULL, FEBLIE O MR BT AEATAIROR . 7R A O~ HAUR
5py DECREF () #[F], RAFEFHSEW G A NULL, £MX Py _DECREF () BYEEAE HT %
IR, R R S 4Ol — AN AR AR D e | T 2 B S50k NULL,

i 24 B DA S TR) AT RE S0 I 0 G i 5 DR RO, % R — M 325

PATF B %0E BT Python HiafTH 8158k A: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o).
BB R Jg Py _XINCREF () MlPy_XDECREF () HTa] B-5 i BR B o

PA T BROBC B AL T FE R ORE AR % 0 W B 68 _Py_Dealloc(), _Py_ForgetReference (),
_Py_NewReference () PANERASHE Py _RefTotal.

21

The Python/C API, & 3.9.0a4

2 Chapter 4. 3|FHit#

CHAPTER D

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

{Ef#: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

23

The Python/C API, & 3.9.0a4

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the erroris a SystemExit, in
that case no traceback is printed and the Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obyj)
Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 &=

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut £-8’.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the "value”
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (),buttakingava_11st argument rather than a variable
number of arguments.

3.5 B fE.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

24 Chapter 5. RE4IE

The Python/C API, %% 3.9.0a4

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Similar to PyErr_SetFromErrno (), with the additional behavior that if file-
nameObject is not NULL, it is passed to the constructor of type as a third parameter. In the case of OSError
exception, this is used to define the £i1lename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Return value: Always NULL. Similarto PyErr_SetFromErrnoWithFilenameObject (), buttakes asec-
ond filename object, for raising errors when a function that takes two filenames fails.

3.4 BN RE.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnolWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

u] H 4 Windows.,

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromwindowsErr (), with an additional parameter spec-
ifying the exception type to be raised.

] M Windows.,

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

B] H 4 Windows .,

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), withan
additional parameter specifying the exception type to be raised.

u] H 4 Windows .,

52. H%&E 25

The Python/C API, & 3.9.0a4

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-
name?2)
Return value: Always NULL. Similarto PyErr_SetExcFromWindowsErrWithFilenameObject (),but

accepts a second filename object.
|] 4 Windows .,
3.4 B fE.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised.
B] H 4 Windows.,

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.

3.3 B .

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

3.4 B

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject (), but filenameis a byte string decoded from the filesystem encoding
(os.fsdecode ()).

3.2 B

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py. DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr_WarnEx (), 2 is the function above that, and so forth.

26 Chapter 5. RE4IE

The Python/C API, %% 3.9.0a4

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 7 /f 22 58 531,

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, Py-
Object *path)
Return value: Always NULL. Much like PyErr_SetImportError () but this function allows for specifying a
subclass of ImportError to raise.

3.6 B

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 B

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () except that message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASCII-encoded string.

3.2 B fE.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and it passes source to
warnings.WarningMessage ().

3.6 BRI HE.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

The caller must hold the GIL.

{Ef#: Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true

5.4. Querying the error indicator 27

The Python/C API, & 3.9.0a4

when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

{if#: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before
the call and after the call you no longer own these references. (If you don’t understand this, don’t use this function.
I warned you.)

{Ef#: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

{#f#: This function does nor implicitly set the __t raceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

{Efit: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_ SetExcInfo () to restore or clear

28

Chapter 5. RE4IE

The Python/C API, %% 3.9.0a4

the exception state.

3.3 B fE.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

{Ef#: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 Hge.

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
Simulate the effect of a STGINT signal arriving. The nexttime PyErr_CheckSignals () is called, the Python
signal handler for SIGINT will be called.

If SIGINT isn’t handled by Python (it was setto signal .SIG_DFLor signal.SIG_IGN), this function does
nothing.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

T 3.5 iR L On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base

5.5. Signal Handling 29

The Python/C API, & 3.9.0a4

classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_ NewException (),except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 BRI HE.

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was raised)
associated with the exception as a new reference, as accessible from Python through __context__. If there is
no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure that
ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, setby raise ... from
. . .) associated with the exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create aUnicodeDecodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

char *reason)
Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object, length,

start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,

start, end and reason. reason is a UTF-8 encoded string.

30 Chapter 5. RE4IE

The Python/C API, %% 3.9.0a4

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return O on success, —1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically). They are also not needed for #p_call implementations because the call protocol takes care of recursion
handling.

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

5.9. Recursion Control 31

The Python/C API, & 3.9.0a4

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

¥E 3.9 B P4 This function is now also available in the limited APL

void Py_LeaveRecursiveCall (void)
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py _EnterRecursiveCall ().

¥E 3.9 B P4 This function is now also available in the limited APL

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Called at the beginning of the t o repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the t p_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the ¢ p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Ends a Py_ReprEnter (). Must be called once for each invocation of Py_ReprEnter () that returns zero.

5.10 IrERE

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &% Python &R EXe
PyExc_BaseException BaseException (D
PyExc_Exception Exception Q)
PyExc_ArithmeticError ArithmeticError €))
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError

TTI4Rs:

The Python/C API, %% 3.9.0a4

33 P

PyExc_ChildProcessError,

R1-ZEW

C &R

Python ZFR

TR

PyExc_IndentationError

IndentationError

PyExc_IndexError

IndexError

PyExc_InterruptedError

InterruptedError

PyExc_IsADirectoryError

IsADirectoryError

PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedError

NotImplementedError

PyExc_OSError OSError (1)
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError

UnicodeError

PyExc_UnicodeTranslateError

UnicodeTranslateError

PyExc_ValueError

ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

M T fE

PyExc_BlockingIOError,
PyExc_ConnectionError,

PyExc_BrokenPipeError,

PyExc_ConnectionAbortedError,

PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,

PyExc_FileNotFoundError,
PyExc_NotADirectoryError,

PyExc_TimeoutError /T UIF PEP 3151.

3.5 Bk e
3.6 Bk e

: PyExc_ModuleNotFoundError

XL R R MER4 PyExc_OSError:

PyExc_InterruptedError,
PyExc_PermissionError,

PyExc_IsADirectoryError,

PyExc_ProcessLookupError and

: PyExc_StopAsyncIteration fil PyExc_RecursionError.

C &R

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

3

5.10. IRERE

33

https://www.python.org/dev/peps/pep-3151

The Python/C API, & 3.9.0a4

T 3.3 R K48 5 B 2 BN S 2R A

VR
(1) 3R AR A 1.

(2) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

5.11 FREEHZES

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C & Python &R EX s
PyExc_Warning Warning D
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

3.2 FiRIBE: PyExc_ResourceWarning
R
(1) 33K e Ho At 245 2 1] g B S

34

Chapter 5. RE4IE

CHAPTER O

ARFE PRI T S S] T RAR S, wdRAT) C AU SETHES -Gl B AR, 7E C P A Python A58, DA
L @R R B S HOT AR C (B4 7 Python HH (B AF4E

6.1 RIERFHER

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for parh. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

3.6 BRI HE.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
15901

void PyOS_BeforeFork ()
Function to prepare some internal state before a process fork. This should be called before calling fork () or any
similar function that clones the current process. Only available on systems where fork () is defined.

#eMe: The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same
is true for PyOS_BeforeFork ().

3.7 B RE.

void PyOS_AfterFork_Parent ()
Function to update some internal state after a process fork. This should be called from the parent process after

35

The Python/C API, & 3.9.0a4

calling fork () or any similar function that clones the current process, regardless of whether process cloning was
successful. Only available on systems where fork () is defined.

g fe: The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same
is true for PyOS_AfterFork_Parent ().

3.7 B

void PyOS_AfterFork_Child ()
Function to update internal interpreter state after a process fork. This must be called from the child process after
calling fork (), or any similar function that clones the current process, if there is any chance the process will call
back into the Python interpreter. Only available on systems where fork () is defined.

#e M. The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same
is true for PyOS_AfterFork_Child ().

3.7 B ge.
YR

=

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

3.7 i)G E#Z K4 This function is superseded by Py0OS _AfterFork_Child().

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py _DecodeLocale (const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
¢ UTF-8 on macOS, Android, and VxWorks;
e UTF-8 on Windows if Py_LegacyWindowsFSEncodingFlag is zero;
e UTF-8 if the Python UTF-8 mode is enabled;

36 Chapter6. TH

The Python/C API, %% 3.9.0a4

* ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
S

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

3.5 B Ise.
JE 3.7 IR The function now uses the UTF-8 encoding in the UTF-8 mode.

¥E 38 M FE MW The function now wuses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;

char* Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCEFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 on macOS, Android, and VxWorks;
e UTF-8 on Windows if Py_LegacyWindowsFSEncodingFlag is zero;
* UTF-8 if the Python UTF-8 mode is enabled;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
S W

The PyUnicode _EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
3.5 B IIHE.

T 3.7 Fit 5 2 The function now uses the UTF-8 encoding in the UTF-8 mode.

£ 3.8 it WO The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;

6.1. BIERGZRER 37

The Python/C API, & 3.9.0a4

6.2 RGiThAE

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list. This function may be called prior to Py Tnitialize ().

void PySys_AddWarnOption (const wchar_t *s)
Append s to sys .warnoptions. This function must be called prior to Py_ Tnitialize () inorder to affect
the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warningsin Py_Tnitialize () to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

void PySys_SetPath (const wchar_t *path)
Set sys.path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less -- after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted ”%s” formats should occur; these should be limited
using "% .<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for ”%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode FromFormatV () and
don’t truncate the message to an arbitrary length.

3.2 BRI HE.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys . stderr or stderr instead.

3.2 B

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py Initialize ().

3.2 B fE.

38 Chapter6. TH

The Python/C API, %% 3.9.0a4

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

3.2 B fE.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on failure.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_BuildValue () are available. If the built value is not a tuple, it
will be added into a single-element tuple. (The N format option consumes a reference, but since there is no way to
know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py_ssize_t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
3.8 B fE.

1 3.8.2 ilRE L Require Py_ssize_t for # format characters. Previously, an unavoidable deprecation warning
was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)
Append the callable hook to the list of active auditing hooks. Return zero for success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.

userData $55F 2 PUEN T RE T T RECTREM ARSI TR, %485 AN Y B 45 17 Python
RE.

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

The hook function is of type int (*) (const char *event, PyObject *args, void
*userData), where args is guaranteed to be a PyTupleObject. The hook function is always called
with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise events
are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises a auditing event sy s . addaudithook with no arguments. If
any existing hooks raise an exception derived from Except i on, the new hook will not be added and the exception
is cleared. As a result, callers cannot assume that their hook has been added unless they control all existing hooks.

3.8 B fE.

6.3 TR

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

6.3. TR 39

https://www.python.org/dev/peps/pep-0578

The Python/C API, & 3.9.0a4

TE 3.9 iR H 2 Log the function name automatically.

void Py_Exit (int status)

Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

TE 3.6 fit 5 2 Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 SR

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’t leave the module in sys .modules.

AR B X AR T

PyObject* PyImport_ImportModuleNoBlock (const char *name)

Return value: New reference. R E52PyImport_ImportModule () H— 5 M4 .

TE 3.3 MU L This function used to fail immediately when the import lock was held by another thread. In Python
3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special behaviour
isn’t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-

cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
3.3 Bl dise.

40

Chapter6. TH

The Python/C API, %% 3.9.0a4

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a

UTF-8 encoded string instead of a Unicode object.
TE 3.3 MU PR Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook function” (with an
explicit level of 0, meaning absolute import). It invokes the ___import__ () functionfromthe __builtins___
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

ZEREURR f R AT

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package .module. First check the modules dictionary if there’s one there, and if not, create
a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

{Ef#: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

3.3 B fE.

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Similar to Py Import_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sy s .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.

The module’s __spec___and __loader___ will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s _1oader_ _ (if set) and to an instance of SourceFileLoader otherwise.

The module’s ___file_ attribute will be set to the code object’s co_filename. If applicable,
will also be set.

cached_

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule (), butthe __ _file_ attribute of the
module object is set to pathname if it is non-NULL.

6.4. AR 41

The Python/C API, & 3.9.0a4

é%ﬂPyImport_ExecCodeModuleWithPathnames ()

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleEx (), butthe __cached___ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

3.3 B .

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpath-

name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.

3.2 BRI HE.

TE 3.3 it P Uses imp.source_from_cache () in calculating the source path if only the bytecode path
is provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

e 3.3 JCE S RIGIRHREE -1,

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

3.2 B RE.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetModule (PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not been
imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup failed.

3.7 B

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path__ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful load,
use PyImport_ImportModule (). (Note the misnomer --- this function would reload the module if it was
already imported.)

3.3 FriR e
TE 3.4 R : The __ file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

42 Chapter 6. TH

https://www.python.org/dev/peps/pep-3147

The Python/C API, %% 3.9.0a4

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h,is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py_Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

i

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

6.5. Data marshalling support 43

The Python/C API, & 3.9.0a4

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 EQMERTERNF

LR BB AR AR BRI AR O . S UL A K ST 2% i B SCRY Y extending-index /Ny

X B A R 0 El = A, PvArg ParseTuple (), PyArg ParseTupleAndKeywords (), DA
KpyArg pParse (), BEATHREH #& X AL F 45 B K K o6 FOW A7 09 2 805 700K . 3% 28 ok B50AR 87 A1
[AR A% A A R

6.6.1 fRITSH

— R PR A 0 B 2 M IT. — B ICH R A — 4> Python XF 45 Bl H 2 17
P MAE SRR R ITES . B T ARBISN, — AR5 7 51 RS 2 BTG 0 X 28 o K BAT
MR SR TR ORIRIA T, WG 5N ZEAREHIC: RS O WATZXT XM
Python X RFKM; Jrfis [Miefeidny C A8k (it J2.

44 Chapter 6. TH

The Python/C API, %% 3.9.0a4

FHENEBER

X B ARV S 45 BTS2) N AP A T 1) . RV DA BRI IR [F] Y unicode P4 508 775 X 1Y IR R
BlE A7 -

— R, MR B E N REE R X, XA R X AT AR B Y Python X445 8], I HaxX A~
SR X IS S AR . R TT BB RE T NAEZS 0] . [TiX4E es, es#, et and et #.
SR, Y{—Py_buffer GEMRIRIEL, HALSHZ 0 KGEEE, T DAV B EM S 6 X~ Zeh X, B
{EPy BEGIN_ALLOW_THREADS ¥eHr, AJ DA SR] AR B R A PR A/ INEl B s B oy R i KUBS: o TR,
AR PyBurfer Release () FEYREEREIHII A HERT (B AE 2 FAT A TR o)

AR AU, B X EARSPASS AR .

kg X TR 2 IS bytes-like object , FFREFGEN AN R Z 0 XG50 . AT B ARG pyBufferProcs.
bf_releasebuffer FR 2 A NULL RKIEEH, MFEA RN bytearray XA AT AEXT4E .

HfR: A # kWA (s#, v#, F%), KESHNEE R py_ssize_t) fEflH Python.h
S22 i PY_SSIZE_T_CLEAN 70 . WX 29 X, KEZ—1 Py_ssize_t Python
TCINRBIMARE—A int AL, FEARA) Python AR H#F & Ay, HSekF Py_ssize_t MiFF XHF int
$ R E X PY_SSIZE_T_CLEAN X4~%.

s (str) [const char *] }f—> Unicode X 45 ii— Mg m #4781 C f85t. — MR — P CEfEEm
TR XTI R R AL R AR A B C PR RO SRR . Python PR ABEML S
AR TCRURARRG S R e, — ValueError &5 & . Unicode X R, 'ut £-8" 4
1) C FAfe . RFEHR R, —4> UnicodeError PG K.

Wi XAFRIBAXAN B Zbytes-like objects . QAR Z U R BRI ENRAK C 455, @l
ffif] os Tk A PyUnicode FSConverter () {EN $10F3,

TE 3.5 MU e PATIT, 24 Python “AAFER Hi# 2 T i A null AR 552551 & TypeError .

s* (str or byfes-like object) [Py_buffer] iX AU H:5Z Unicode X R M2 JF A R A4 . & A HIEH
FiMER Py _buffer Z5HMRIE . X HEERA C FEAF T REM S i A NUL 775 . Unicode X423 it
"ut £-8" GBI C FAFHR

s# (stx, Hifkbytes-like object) [const char *, int or Py_ssize_t] 1 s*, BT ENEZHBMNS ., GfGE
ETEPIAS C A2 g, B—AS2F81 C FRFRMIEE, B MEEMKE. FAF TR S AR null
FH7. Unicode X LR E LT 'ut £-8" JhsE Ll C FAFH .

z (st or None) [const char *] 5 s 25{p), {H Python X} LA fighy None, FEXFHI T, C IeEHIKE N
NULL,

z* (str, bytes-like object or None) [Py_buffer] 5 s* J5{), {H Python X} Rt] §E°H None, FEXFFEMILT,
Py_buffer $5¥JH) buf il G E A NULL,

z# (stx, Hifbytes-like object B None) [const char *, int 0§ Py_ssize_t] 5 s# 240/, {H Python %5t] fig
A None, FERXMEOLT, CFaEHEE N NULL,

y (read-only bytes-like object) [const char *] X FkRF— D RFATREDS LEAL I — M8 1 P4 1Y C $5

Bt BEAEERZ Unicode X5, P A7 KAMIUAEL S A null 7475 QAR T null 5245, 5] %—
A~ ValueError B,

5 3.5 MU HC PART, 245 g XAl E] T AR null 775 25] % TypeError .

y* (bytes-like object) [Py_buffer] s* [{JA5=, &% Unicode X%, HIEZIegariiidi g, Xds ik
Biiti)ik

6.6. FOMBREERZF 45

The Python/C API, & 3.9.0a4

v# (Wifibytes-like object) [const char *, int o Py_ssize_t] s# 7550, AH3% Unicode 15, N4

S (bytes) [PyBytesObject *] Z3K Python Xf5jg—> bytes AR, B LIS . WA —
NFATRBIN G 5| & TypeError 4. CAARBMAIRER I NPyobject * FEAY,

Y (bytearray) [PyByteArrayObject *] #isk Python X4 & —/ bytearray KX 4, A 2R L 15
e, WRARR—A bytearray FEXRLF|% TypeError F#. C AR RN Pyobject *

u (stx) [const Py_UNICODE *] > Python Unicode Xf 4 F£ AL 1] PA%E 4 1L Unicode “p it X
(36%EE. ARAIE A —A~Py_UNTCODE F&EME Rt , FEM T 3510 2 ZAFAER Unicode it X
FO355F . TTERE—ANPy_UNTCODE JMA T4 S8 BE B T4 PRIEIT (16 (80 # 32 i), Python T4
AR REAL T AR null fURD 55 WRA, 5% —4 ValueError S,

TE 3.5 MCHE R PAFT, 24 Python TFAFER B % T ik AW null fR% 5 255]& TypeError .

Deprecated since version 3.3, will be removed in version 4.0: X J2 |H i £ z2\Py_UnNTCODE API; # iF %
ZPyUnicode AsWideCharString().

u# (str) [const Py_UNICODE *, int 0§ Py_ssize_t] u (U2, EMEH I C 2R, HE— MR m—4
Unicode {#HZAFIX, 5 MR EMWKE. Badr null 55,

Deprecated since version 3.3, will be removed in version 4.0: X J2 |H i £ z\Py_UnITCODE API; i iF #%
$PyUnicode AsWideCharString().

Z (str 5 None) [const Py_UNICODE *] 5 u 2% {1}, {H Python %f % i W] i€ & None, ¥& X Fi & It
TPy _uUNICODE 8411 & & NULL,

Deprecated since version 3.3, will be removed in version 4.0: X 2 |H iR £t z2\Py_UnITCODE API; % iT %%
Z$PyUnicode AsWideCharString ().

Z# (str of None) [const Py_UNICODE *, int 8 Py_ssize_t] 5 u# 24{tl, {H Python X}& 7] fEH None,
TEXFE LT Py_UNTCODE $85H N NULL,

Deprecated since version 3.3, will be removed in version 4.0: X J2 |H i £t z2\Py_UNICODE APIL; i iT #%
ZPyUnicode_AsWideCharString().

U (str) [PyObject *] ZI3K Python X5 &—> Unicode X5, A 2T MAIHA . WIRAE—A> Unicode Xf
Rk TypeError . CARMURERINryobject * JAL,
w* (W[5 bytes-like object) [Py_buffer] X />3 15 s He S AT 52 BT 525 G247 D3 IR & B TR &

PPt Py _buffer GEAMRIE. 220l DKW REAFAE R AR null 27450 9% o X 58 Je R 2 7 2R
FPyBuffer Release().

es (str) [const char *encoding, char **buffer] s {725, B R4 A5 5 Unicode FRAEAF M EZMTIX ., BH
A PRV A ik NUL 275 1) © gmbs 458

WA FERDNSE E—UER A, I HAUUZ const char*, %4 FRRH 5044 F1 45 1] NUL
L FAFERENULL”, ZEXAMER T, B 'utf-8" 4uid. Q1R Python NHLE M4 4iS, W5 AR
o BB ABEUNIUN char** B5| H G5 FMERFL E A WS SEOCAR NP IX . SCAREPASH
— SRR E A TR
PyArg_ParseTuple () &4 He— R RN IX, 455 5 D EX A~ o X B
“buffer 5| XA H 0 Be B NAEZS 0] . W EA TATEM H G PyMem_Free () EREE &5 Bl 2%
X,

et (str,bytes or bytearray) [const char *encoding, char **buffer] il es #[&], & T A EHRmLE AN
FRPEEXI S, M, BRI EARNSECE MGG AR 28,

es# (str) [const char *encoding, char **buffer, int 5§} Py_ssize_t *buffer_length] s# 17252, BFC 4L
[Unicode “FAFEATAFZ MK . MG es KB, BARFEAMEHE S NUL 47,

46 Chapter6. TH

The Python/C API, %% 3.9.0a4

ERE=ABHC HMUIERA, FFHRAUN const char, XGRS ATR, B
A PA NUL G5 A AR al NULL, FEJ5—FfF o0 MR " ut£-8" Zifdag . ARG N4 Ak
Tk Python RBIM &5 B 58 . 25 AR char*; EFrg | IR IER PO 52
BOCARNR G X . IR A — DS RO E A N TS . 5 =SB A 45 17—
RS B | AR B i e X A AR

AP

U2 *buffer 1717 NULL $56F, W eRECREMHC el R/NW i X, R g 0 Rcdle 2 I 2 st Zenb X, It
B *buffer VAG | IB 2 BLAA7 ik WEIE ST PyMem_Free () VAEREH R RERL T BL Sk IX o

ISR *buffer F109E NULL #5841 (0 BCHIZMIX), WPyArg ParseTuple () ¥ AL EAE Ry G
X, K *buffer_length FIFIIGIEMERE N ZMIX KN, SRG, BRHGmSREBIEE H B Z X, H&Ik
B WREHFXAELR, RFEE 4 ValueError,

XA BI T, *buffer_length RS B4 5 45 AN NUL i 8a i) K JEE

et# (str,bytes i bytearray) [const char *encoding, char **buffer, int f Py_ssize_t *buffer_length]
Mlest M, BTAMERDEANTHENE. MK, BEREEARNSECE 55 72,

e
b (int) [unsigned char] f—A~JE 1) Python B AEAY 1N — D TofF 5 B OB AL, fAETE—> C unsigned
char 258,

B (int) [unsigned char] §—~ Python #& B340 Bl — M B ARG A i 8T, (FfE#E—1 C unsigned
char A,

h (int) [short int] §—> Python B AL —4> C short int 437,

H (int) [unsigned short int] }—~ Python & AU%£4k ii—4> C unsigned short int TLAFSEEAL, HA
A) A

i (int) [int] $f—> Python FERIFLAL A —~ C int FEHL,
I (int) [unsigned int] *Rf—~ Python #H%:AL ii—/~ C unsigned int TEfFSEA | HAKER H)R,
1 (int) [long int] }§—> Python & #U# 4k jfi— 4 C long int KEEHI,

k (int) [unsigned long] f—> Python AL i{—> C unsigned long int JEfFSRKEEM, FFAkE
it AR

L (int) [long long] Kf—> Python BAULAY I—4> C long long KRB,

K (int) [unsigned long long] ¥—> Python #&%#£4k ili—4~> Cunsigned long long LS KIEEAL,
KA Y) I

n (int) [Py_ssize_t] —> Python 3&FI%E4k il —/~ C Py_ssize_t Python JGRK/NJEHL,

c (bytes s i bytearray KJ¥h 1) [char] X — > Python F{7 KM, f— K EH 1 1) bytes B #H
bytearray X%, FH—" Cchar FRFEAL.

1E 3.3 M i bytearray REIXTS .

C(str KIEA D) [int] £F—4> Python F4F, W—"PKEN LAY str FRFHXTR, A4 C int FAK
A,

£ (float) [float] $F—> Python 7 S BHE L —4~ C £loat F A 5.
d (float) [double] ¥/~ Python 7% S 86640 i—4 C double AU TR SEL.
D (complex) [Py_complex] — Python iZ 2B Il,— 1 C Py_complex Python &g 425,

6.6. FOMBREERZF 47

The Python/C API, & 3.9.0a4

HipxtR

O (object) [PyObject *] f Python Xf 5 (RNIEATAEMIHER) Frfifife C XIgasst . Mk, CRFRICiZiE
MSEBRXT g RTINS 8. fA# 5 A& NULL,

0! (object) [typeobject, PyObject *] f—~ Python X} %7 A—4> C $5%t. Fl 0 Kfl, (HE2FEM C S
5—A~& Python ZRAIXT L HhE, 28 AR AFENT S84 H) C A8 & (PyObject * Af) AL, AIoR
Python X} 5 RABURN}, &l TypeError .

0& (object) [converter, anything] @ iT—> converter FRECE—1> Python %} 64 ili— 1 C &, XFEWH A
SR BN R AR, BTN A CAR R L ((ER AN, FEboh void * KB, converter
PRI X R -

status = converter (object, address);

object* 7 1555 184 Python 3t %5 B *address ‘Zf5 N\PyArg _Parse* () RN void* KAISH., kM|
() status j2 1 ARG, O FOFEEARRIG . BFARIIG, converter™ F1 3 251 X —NF % BT A1E
7% *address [FNZ

G4 converter 1 [F] Py_CLEANUP_SUPPORTED, MIANSRSHENT 2R, B RES R HIZ R %L,
M 5 e 2 A5 HL SRR E A BE AT I AE . FESE AR, object ZH0CR 0 NULL; R, %S5
b NULL; HIL, Z%SEC-h NULL, G, S5 NULL S (#R1{E) & O NULL address [{E5
JELAIE Y HR AR]

1E 3.1 B #i: Py_CLEANUP_SUPPORTED #UR o

p (bool) [int] & APMERTE NE (— DR /REIN I HAFGE R AT R C true/false #EAU(E ., 4R
FKikANEE 1, BE 0. BEZTMETEN Python {. 2 truth ZREH £ 5&F Python 40{a] il i {E
HERIEE

3.3 B fE.

(items) (tuple) [matching-items] S|4 Vo/ii2 Python [#51, BRI E R items PAEXBAITCHIEE . C S5
IAXF Y. items HaE— AL AU TE . 8 AR U R BB i E

&1 long” A CREBUR (BB 15 Y TONG_MAX PR @I REAY, SR AT HEATIE 24 A FE AR ——2Y %
W7 BOR/IN I BSOS, R B2 A BT (6B b, C Il SAETE AR I BR Al _E 3) K 2 4%
Ho— WM ATRE S KAL) -

A AT R b A — LA) AT B RFIR IR L . XN B AR EAERE 5. BT

| SRHITE Python S84 K bR N i S HHR 2 ATk . C 28 50 I 1 W] 1 SRR S I A A BAA 24—
MAESHOATIRERS, PyArg ParseTuple () AREVFRIFIRI C A E (L EAE) HINZ .

$ PyArg ParseTupleAndKeywords () only: FEBAYE Python Z:404 3% th | R S BN m C EF S50
T, ARG TSR E RS, ST AR | U —EAE S B .

3.3 B .
o AR BICHIPIRE ARG B R TR T R A N R R P I BB (PyArg_ParseTuple () B
BEIRR) CREE” 5.
i AEERICHSIREAT AR 705 J5 I P AR BT N AR R I R BURERA R A R-IE . = A MIEHE .
TERALAT] 2 B2 3t Python XRG4 ka9 5115 AZLEBENHI5 HTHE

2 K L8 pR B RIS b AU A AL A H il) A R R bk s X e R A il A G, A
—LENEL N B REERITE R P TREA N, XS B s EXAMER T, AN IR ERCRE
IO iAo

N TN, arg XSV B 2O HAS AR . WG, PyArg parse~ () s¥LRIA true, X
ZENTRN false F HE| K— A E@i) R . YPyArg_Parse* () BB AR X BTCHE (L 2R M 25 K
I, RS R A DA K 5 S A% s B el A) AE SRR A g B

48 Chapter6. TH

The Python/C API, %% 3.9.0a4

API E#

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
AT — DR B S8, RRP SRR S B E NP R TS S b . iR [A] true; R (4] false
I HLBI A W 8

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
MpyArg ParseTuple ()], SR EHEZ > va_list BRI SELMA 2 AT B H R SHUE

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words[], ...)
I3 BRSO 5 B 7 S AR I e 4ok R e B R S 8. keywords 402 REF SHA R
NULL & F8EH . S8 FRFenpositional-only parameters, JIIR] true; %A TR, B4k [0 false F
SR S

TE 3.6 IREEW: ¥ T positional-only parameters Y 3 £5.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words(], va_list vargs)
MpyArg_parseTupleAndKeywords () MR, SR EHZ—A va_list R SHOM A vl 25w
SRS .

int PyArg_ValidateKeywordArguments (PyObject *)
BT S BT SRR SRR . AR T Pyarg ParseTupleandkeywords () R
PAEHREOLT, JEE SN FHEOXHE R .

3.2 B .

int PyArg_Parse (PyObject *args, const char *format, ...)
BT RATHY “IHZEAY B S R X LR Y METH_OLDARGS ZHUBHT I AT M
Python 3 "RES IR . XA HI TR AUE RIS B, T BAErs RS P R 2B E iz, B2
ANEHATZEW . BRI T, SRR REE XA~ H g4k s i A

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
— AR KA EARF SR E SHCR A RN S Ee R . (X R kA = S50 iR Y 1%
TERREECE IR P W ME TH _VARARGS. 5 SEPrn S8 ST V% LA args TEA AL A Blbdie—
ASEBRICH . TCH K BER 22 min H AR S max; min F1 max] REAHA] . BHMYSEL AL
AR, B SHAUR AR PyObject * RAUAR R FEE: AR args WIEH; &
TR EERNGIH . ATE args BRI ESECN IR 8 & 58 st . eRES) 3R =]
true H- AN args AN @ ToH a3 0 & R E R T R AR] false; WIERKRIG T 251 & —1 575 .

XA R B R B, BUE _weakref i BIAHTI R 5505 | A IR TR :

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef (object, callback);
}

return result;

}

EAM TR PyArg UnpackTuple () SEEZM T PyArg ParseTuple ():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6. FOMBREERZF 49

The Python/C API, & 3.9.0a4

6.6.2 SQIEETE

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. e T2 TF PyArg Parse* () AR — R FVERIAE PR 0 2 .
76 PR DR R A NULL; QiR 0] NULL, $5] & 5485 .

Py_BuildvValue () FA—HAIE ol HAYERARLTR RS 80E 2 e
ST R LA RS, Bk E Nones W B MG M HIT, BikE hgA
TCR AT X5 BHE S B 2R A A7 3 T DASE i Bk [] SR/ 0 803 1 iocd.

2 N AT G A7 DX B0 DA S 8008 A% 36 JH R A X 2 if, A s Al s# kSN0, &8 ISR Ag 5L
i P EPRAER Z b KMORERA 8 i Py_Buildvalue () QRN S5 . #A]JTEH, 40
BRI A malloc () I B ELHI N AE S (B L8245 Py_Buildvalue (), RIS HA TE
JEPy_BuildValue () IREBEA free () .

AE R THEA T, G 5 2R AT B35S O AYZA% U ICRF 28R (8] Python X 43¢ ;
TR 0 IR C A8 & (R REE) 12E8L,

TAREBIANZAS, BIRAF, BSHE SR TR o S 2m (B A s, W sh). X
PABAR AR A AL 45 5 FL A S P] e

s (str 3% None) [const char *] ffi ['ut£-8"' it 25 & LA C FRF 4440k Python str X4, Ul
R CFAFHR RS b NULL, W None.

s# (str B None) [const char *, int B Py_ssize_t] ffiff] 'utf-8" 4gfidff C F4FE e H K FiE N
Python str X4, W% C EFFH48E N NULL, WHEERF B2, IR 1] None,

y (bytes) [const char *] jXff C FARFHR AN Python bytes X4, AR C FAFERARE M NULL, Wik
[H] None,

y# (bytes) [const char *, int 8f Py_ssize_t] X & C FEAFEE M H K BN —> Python X4, Il
1% C 45484 NULL, NR[H] None,

z (str or None) [const char *] Fl s —F£.
z# (str 3§ None) [const char *, int 3f Py _ssize_ t] fl s# —Ff.

u (str) [const wehar_t *] $25 2% [) wchar_t [Unicode (UTF-16 5{ UCS-4) %t 2% v X 445K
Python Unicode %% . #I15R Unicode Z5i X F54F > NULL, NJiR[A] None,

u# (str) [const wchar_t *, int B¢ Py_ssize_t] ¥ Unicode (UTF-16 5{ UCS-4) %tigsn X L H K F
#:4%A Python Unicode %§4: . HI5R Unicode 21 X 35418 NULL, N R0 Z 0, FFiR] None,

U (str 3 None) [const char *] il s —kf.

U# (str 5§ None) [const char *, int 8; Py_ssize_t] il s# —#f.

i (int) [int] $f—> C int BERELLL Python BRI R .

b (int) [char] > C char FAFRFE LK Python FEAUXF 52 .

h (int) [short int] $—> C short int fGEAIEELY i Python B AINT 4

1 (int) [long int] Kf—4> C long int KEERULL)Y Python BEALN A

B (int) [unsigned char] J§—/~ C unsigned char LTS5 FAFEIELAY A Python BE A% 42
H (int) [unsigned short int] J—/ C unsigned long JoAF5-50 8 RUHEAk AT Python AN 42
I (int) [unsigned int] }f— C unsigned long JLAFS 3544k il Python B RIS 42 ,

k (int) [unsigned long] #f—/> C unsigned long LRS- KEEAILEAL Y, Python BRI} 4,
L (int) [long long] f—4> C long long KIKEEIEFEAL AL Python BIEXTR

50

Chapter6. TH

The Python/C API, %% 3.9.0a4

K (int) [unsigned long long] ¥—> C unsigned long long JLFF5KKIER LY B Python B}
%.

n (int) [Py_ssize_t] ¥ —14 CPy_ssize_t J5HI%E4k A Python 3&7Y

c (bytes K 1) [char] Ff—4> C int BEAU R FAFFE LN Python bytes KN T IFIX L.
C(str KEEH D) [int] Kf—4> C int BARRIYFAFEN Python str KN 1 IFAFHRXTL .

d (float) [double] f—4> C double YUK 7 m A4 Ay Python V7 s B BRI

£ (float) [float] Kf—1> C float HUNGHEEE MU LA Python i MACE BT

D (complex) [Py_complex *] Kf—> C Py_complex KRR L5 (L) Python S HRAL,

O (object) [PyObject *] Kf Python I R & i A4S (G| FHITERAN, %8 1 #3s) . LA
X402 NULL $84F, WMBE X2 T4 S E0 & e DT I E R m g M. B,
Py_BuildValue () ¥R NULL, (EAS5IKFE . WRM ARG K2, Wik SystemError,

S (object) [PyObject *] F1 o #H[A] .

N (object) [PyObject *] #1 O #H[F], SR EHARIMA RGN AN SEI R PR
i A AR ISR SE A -

0& (object) [converter, anything] E 1L converter R anything ¥4k Python %42 . XKL DA anything
(W5 void * 3e4%) YENHSEL, R[] "new” Python X4, WIS AEHTR, WNVIR[E NULL,

(items) (tuple) [matching-items] F— C A 1m JF 5645 il Python JGZH HAR-H+AH R T =K H0E

[items] (1ist) [HIDGRICE] K—A C AL HFH 4L Python 518 CRIFHH R 1) TC R AR .

{items} (dict) [MIRMICE] K1 C AR FH§5H L Python S, F—XF1ELR) C A8 BXHE R —
ANTCEBATFIA, 3 HIE R BRI

TSRS R PR P AR, N E SystemError IR [E] NULL,

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Return value: New reference. flPy_Buildvalue () #i[E], SR BEEZ—1 va_list BRI SEOMA 1]
TR S

6.7 FIREMSEAL

F TR S AR A 245 5 1) pR R
int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
RS X L7 formar FIFINSEL, S AL size FATE] str o 1520 Unix FM 1 snprintf (2)

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
R X FAF B formar FIAE B SHH)FE va , ANEEH L size 78] str o 52 L Unix -} 51
vsnprintf(2) .

PyOS_snprintf () MIPyOS_vsnprintf () 133 C}pEREREL snprint £ () Ml vsnprintf () « Bi1H
H B2 R AR s 15 00 TR —3BUA 7R, AR C R EUNARA .

AU SRR str[*size-1] TR BIHAEZLSE '\ o BAINAE AL size 77 (GFELEER) '\0") B F4FHR.
W R B S . str '= NULL,size > O fil format != NULL.

ARG BA venprint £() T H G2 o X K /N 75 22 30 G0 8 W) size 512 57717 DA |, Python £x PA—
NPy _FatalError () k.

SHEEREIE (v) BEAIEOA T U B RS
M0 <= rv < size, HIHEEBEINTTE v ATHEEA s (RAEER s 15 1\0 " F4)

6.7. FHBREMEEAL 51

The Python/C API, & 3.9.0a4

* Y rv >= size , FHFEHRPENIT HEIRE—DWH v + L FIREM XK. EXMELT,
str¥[*size-1] B "\0' .
* Yrv < 0, KRELERFRYFN . TEEXFEFOLT, str¥[*size-1] FEALZ "\0" , {E2 str B HARTFR
IIARBOE Lo SRR YR BT IRZE & .
PATR BRI B 5 1 5 PR T R Y A R B R e
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
FEFAFE s $e4ily double 2RM, RIGING| % Python 5. Hs2 77 H3 YL A% T4 Python
float () MIEREIEZHFARBRNES, BT s DAA A FEERZM . S AU T 24 Fir X
I
ISR endptr 2 NULL , BB 345, 5% valueError JHiR[E -1.0 WERFAFERARIF REL
AR RIE T3

W endptr AN NULL , RAEL B FAF R IR *endptr BB NG 55— R F47 .
WER AT R R 46 BOAS RSB A ik 5, HF *endptr WE AR I FAFRIIL, 51K
ValueError %%, FHikFH -1.0 .

W s FR—DRRTARREMEAE—DNF BT E (L, "1e500" EFZ 16 LR — T4
B SRIEUWE overflow_exception j& NULL 3R [H| Py HUGE_VAL (I3 M4M452) It B AR EAT
il 524 . ZEHA T, overflow_exception dhZif]—A> Python REEX 4 BIAKRHEIHRIR -1.0
o TEXPFMELL T, &E *endptr FEIHAREZ 58— F4F

WERAERE I 1) e AR AR T A A R (EC A — DN R RO R R) |, BB I 24 1Y) Python S 9 HR [l
-1.0,

3.1 B fE.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
e double val —AMf [T format_code, precision Fl flags [F4FER

W XA GEN R Z—, te', "B, "R, g, G B Tt XET et SRR A AR
0. 'r' A IDHEE TR %L repr O #530.
flags M DA Rl HiAth{ Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0 8{ Py_DTSF_ALT u{HH &

* Py_DTSF_SIGN FIR SRR MW FAFEf B I — AR5 545, JIE val SE %K.

* Py_DTSF_ADD_DOT_0 F/nffifrik o] () FAF R B KA G 2 — B

e Py DTSF_ALT FnMW " BB #=CAL N . #4155 S M PyOS_snprintf () "#' ¥ XX
4.

R ptype K NULL, W& 38 1 09 {8 5 #% % & Py_DTIST_FINITE, Py_DTST_INFINITE B}
Py_DTST_NAN W[J—A>, 5IFR val 2 —MERRET . TCRREF RS .

R B — 8) AL & 3 0 5 A4 B 1 buffer TR ER, ANSRFE A S WO SN NULL. 8 7 B A B
HpyMem Free () RREHGR B F4FE o

3.1 BRI RE.

int PyOS_stricmp (const char *s/, const char *s2)

TFAERARD KNG . R BILTS stremp O WA MR, AR2EZR T RN,

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)

TREAR D KNG . ZERBILFS strnemp O BT/ ME, R ER T RN,

52 Chapter6. TH

The Python/C API, %% 3.9.0a4

6.8 5

PyObject* PyEval_GetBuiltins (Void)
Return value: Borrowed reference. 3171 4 HiHRATIIH 4 B BB 7L, QY BT WOELESA T, AR [m]
LIRS ERERS -

PyObject* PyEval_GetLocals (void)
Return value: Borrowed reference. & 0] 24 Hi $0 A7 i A 51350748 & A0 72 i, Q01 SR V& 24w BAUA T A0 o D) %
NULL,

PyObject* PyEval_GetGlobals (Void)

Return value: Borrowed reference. iR [8] 24 B 4471 FH 4= 5728 S A0 ML QSR 24 B AT H it) 2%
NULL,

PyFrameObject* PyEval_GetFrame (void)
Return value: Borrowed reference. 12] 4 HiZFRIRAS ML, ANSRBEA 24 AT H MU (4] NULL,

See also PyThreadState_GetFrame ().

int PyFrame_GetLineNumber (PyFrameObject *frame)
R frame 4 H IEXERATIOATS

const char* PyEval_GetFuncName (PyObject *func)

WA func ZpRE. KBRS, WEREIERZAFR, BRI func FIZERLH 45K

const char* PyEval_GetFuncDesc (PyObject *func)
T4 func HZEBLR MIAGAFEAFH . R E{E@Tﬁuiﬁﬂﬁ% f)”()", 7 constructor”, ” instance” FI” object”.
YpryEval_ GetFuncName () WZEHRERE, 458K func WA

6.9 RARGLZET M 5I5ThEE

int PyCodec_Register (PyObject *search_function)
A8) G AR A 4 2R PR A
PEREIER, HElm#k encodings 40, WERMARTEMN, R ERA LT RRRKLIERF—L.

int PyCodec_KnownEncoding (const char *encoding)

WRIGEWH LA E encoding {2 iS4 25 EAFAEM IR] 1 50 0. MR LR BEIE .

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)

Return value: New reference. 17 BUnfiih a8 B AN 4wt APIL,

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)

Return value: New reference. 17 B nfiRtS o A ffRS AP,

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.8. R 53

The Python/C API, & 3.9.0a4

6.9.1 Codec &1k API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
Return value: New reference. Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Return value: New reference. Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. "% E W) encoding $BL—A~ StreamWriter L) KL,

6.9.2 FF Unicode RiB$EiRMBIEERFIEM = API

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
back must either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.

JEI MR IE <0, IR [a] 1%

PyObject* PyCodec_LookupError (const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special case
NULL can be passed, in which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Return value: New reference. Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Return value: New reference. Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)

Return value: New reference. Replace the unicode encode error with backslash escapes (\x, \u and \U).
PyObject* PyCodec_NameReplaceErrors (PyObject *exc)

Return value: New reference. Replace the unicode encode error with \N{ . . . } escapes.

54 Chapter6. TH

The Python/C API, %% 3.9.0a4

3.5 BRI HE.

6.9. JRARILSEEMEXISThEE 95

The Python/C API, & 3.9.0a4

56 Chapter6. TH

CHAPTER /

MERE

AF PRI Python XIRACH,, Fib HRM, LA Z RIS R (Flan, Prafuadesy, Sy
FIRR) . MR GRBIEATE I, 1474 —4 Python 54 .

XL R R AN AT B TR IE WAL AT B 0, In— B Ry List_New () A, (HH ARG H 3%
AWK E 2 “NULL“fA{E.

7.1 HRMY

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

57

The Python/C API, & 3.9.0a4

Note that exceptions which occur while calling _ getattr__ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an
attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference over
instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). Onsuccess, O is returned, otherwise an At t ributeError israised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a ___dict___ descriptor. It creates the
dictionary if necessary.

3.3 B fE.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
A generic implementation for the setter of a __dict___ descriptor. This implementation does not allow the
dictionary to be deleted.

3.3 B fE.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of o/ and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, != >, or >=

58 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

{Ef#: If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

TE 3.4 it ¥ This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

PyObject* PyObject_ASCII (PyObject *o)
Return value: New reference. As PyObject_Repr (),compute a string representation of object o, but escape the
non-ASCII characters in the string returned by PyObject_Repr () with \x, \u or \U escapes. This generates
a string similar to that returned by PyOb ject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and, therefore, by the print () function.

JE 3.4 Jiu B 2 This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

PyObject* PyObject_Bytes (PyObject *0)
Return value: New reference. Compute a bytes representation of object 0. NULL is returned on failure and a
bytes object on success. This is equivalent to the Python expression bytes (o), when o is not an integer. Unlike
bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1, &N 59

https://www.python.org/dev/peps/pep-3119

The Python/C API, & 3.9.0a4

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *o)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

T 3.2 fiUHE P The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression t ype (o).
This function increments the reference count of the return value. There’s really no reason to use this function instead
of the common expression o—>ob_type, which returns a pointer of type Py TypeOb ject *, except when the
incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of fype. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *o)
Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using

__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).
3.4 FriR e

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = v. This function does not steal a reference to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del ol[key].

PyObject* PyObject_Dir (PyObject *0)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)

60 Chapter 7. #HIRWRE

https://www.python.org/dev/peps/pep-3119

The Python/C API, %% 3.9.0a4

list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_ Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The ip_call Protocol

Instances of classes that set tp_call are callable. The signature of the slot is:

PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or other call API.

7.2.2 The Vectorcall Protocol

3.9 B fE.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not a hard
rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call ()). Therefore,
a class supporting vectorcall must also implement tp_ cal 1. Moreover, the callable must behave the same regardless of
which protocol is used. The recommended way to achieve this is by setting tp_call to PyVectorcall Call ().
This bears repeating:

fg M A class supporting vectorcall must also implement tp_ca 11 with the same semantics.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to convert
the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

PyObject * (*vectorcallfunc) (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kw-
names)

* callable is the object being called.

7.2. Call Protocol 61

https://www.python.org/dev/peps/pep-0590

The Python/C API, & 3.9.0a4

* args is a C array consisting of the positional arguments followed by the values of the keyword arguments.
This can be NULL if there are no arguments.

* nargsf is the number of positional arguments plus possibly the PY_VECTORCALL_ARGUMENTS_OFFSET
flag. To get the actual number of positional arguments from nargsf, use PyVectorcall NARGS ().

e kwnames is a tuple containing the names of the keyword arguments; in other words, the keys of the kwargs
dict. These names must be strings (instances of st r or a subclass) and they must be unique. If there are no
keyword arguments, then kwnames can instead be NULL.

PY_VECTORCALL_ARGUMENTS_OFFSET
If this flag is set in a vectorcall nargsf argument, the callee is allowed to temporarily change args [-1]. In other
words, args points to argument 1 (not 0) in the allocated vector. The callee must restore the value of args [-1]
before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

To call an object that implements vectorcall, use a call APl function as with any other -callable.
PyObject_Vectorcall () will usually be most efficient.

¥ R In CPython 3.8, the vectorcall API and related functions were available provisionally under
names with a leading underscore: _PyObject_Vectorcall, _Py_TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall_ Function, _PyObject_CallOneArg,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArgq. Additionally,

PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

Recursion Control

When using #p_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)
Given a vectorcall nargsf argument, return the actual number of arguments. Currently equivalent to:

(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
This function is not part of the limited API.
3.8 FriR e

vectorcallfunc PyVectorcall_Function (PyObject *op)
If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never raises
an exception.

62 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function (op) != NULL.

This function is not part of the limited API.
3.8 B

PyObject* PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)
Call callable’s vectorcall func with positional and keyword arguments given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py TPFLAGS_HAVE_VECTORCALL flag and it does not fall back to
tp_call.

This function is not part of the limited API.

3.8 B fE.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by the
called object —either #p_call or vectorcall. In order to do as litle conversion as possible, pick one that best fits the format
of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_Call () PyObject * | tuple dict/NULL
PyObject_CallNoArgs () PyObject * | --- -—
PyObject_CallOneArg () PyObject * | 1 object -
PyObject_CallObject () PyObject * | tuple/NULL | ---
PyObject_CallFunction () PyObject * | format -
PyObject_CallMethod () obj + char* format ---
PyObject_CallFunctionObjArgs () | PyObJject * | variadic ---
PyObject_CallMethodObjArgs () obj + name variadic ---
PyObject_CallMethodNoArgs () obj + name --- ---
PyObject_CallMethodOneArqg () obj + name 1 object -
PyObject_Vectorcall () PyObject * | vectorcall vectorcall
PyObject_VectorcallDict () PyObject * | vectorcall dict/NULL
PyObject_VectorcallMethod /() arg + name vectorcall vectorcall

PyObject* PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args, and
named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject* PyObject_CallNoArgs (PyObject *callable)
Call a callable Python object callable without any arguments. It is the most efficient way to call a callable Python
object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.

3.9 B fE.

7.2. Call Protocol 63

The Python/C API, & 3.9.0a4

PyObject* PyObject_CallOneArg (PyObject *callable, PyObject *arg)
Call a callable Python object callable with exactly 1 positional argument arg and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.
3.9 BRI HE.

PyObject* PyObject_CallObiject (PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If no
arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py BuildValue () style format string. The format can be NULL, indicating
that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyOb ject *args, PyObject_CallFunctionObjArgs () isafaster alternative.
T 3.4 WU PR The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call the method named name of object obj with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyOb ject *args, PyObject_CallMethodObjArgs () is a faster alternative.
T 3.4 JRFE L The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject* PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Call a method of the Python object obj, where the name of the method is given as a
Python string object in name. It is called with a variable number of PyOb ject * arguments. The arguments are
provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject* PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.

This function is not part of the limited API.

64 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

3.9 BRI HE.
PyObject* PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)
Call a method of the Python object obj with a single positional argument arg, where the name of the method is
given as a Python string object in name.
Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.
3.9 B fE.

PyObject* PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kw-

names)
Call a callable Python object callable. The arguments are the same as for vectorcallfunc. If callable supports

vectorcall, this directly calls the vectorcall function stored in callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.

3.9 FrihfE.

PyObject* PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyOb-
Ject *kwdict)
Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but not
a tuple for the positional arguments.

This function is not part of the limited API.

3.9 BRI HE.

PyObject* PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyOb-
Ject *kwnames)
Call a method using the vectorcall calling convention. The name of the method is given as a Python string name.

The object whose method is called is args/0], and the args array starting at args/ 1] represents the arguments of
the call. There must be at least one positional argument. nargsf is the number of positional arguments including
args[0], plus PY_VECTORCALL_ARGUMENTS_OFFSET if the value of args [0] may temporarily be changed.
Keyword arguments can be passed just like in PyObject_Vectorcall ().

If the object has the Py TPFLAGS_METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
This function is not part of the limited API.

3.9 FRIEE.

7.2. Call Protocol 65

The Python/C API, & 3.9.0a4

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

7.3 #>Fihil

int PyNumber_Check (PyObject *0)
WX R o FEAECFRIPIL, RIFTE 1, BNWREMER. XN 28 R

e 3.8 BUEHE: U2 o 22— RTIHEBR[] 1.

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting o2 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * 02.

PyObject* PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is
the equivalent of the Python expression o1 @ o2.

3.5 B fE.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
”classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o02.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

66 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression 01 << 02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is the
equivalent of the Python expression 01 & o02.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the "bitwise exclusive or” of ol by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Oxr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += o2.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement o1 —= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= o02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 @= o2.

3.5 B .

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 //= o02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate; it is
not possible to represent all real numbers in base two. This function can return a floating point value when passed
two integers. The operation is done in-place when ol supports it.

7.3. ¥l 67

The Python/C API, & 3.9.0a4

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 %= 02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 **= 02 wheno3is Py_None, or
an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass Py_ None in its place (passing
NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by o2 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= o02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the "bitwise and” of o/ and 02 on success and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= 02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the "bitwise exclusive or” of o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 ~= o2.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1oat (o).

PyObject* PyNumber_Index (PyObject *0)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Return value: New reference. 12 [A135 n #645 i DA base R E B FRF R IGHISEH . XA base ZH =
2, 8, 108 16 . X T HA2, 8, o 16 , RIFEFAFERRE 2 BIN EEE R " 0p, T00, or " 0x',
AR n A2 Python HRERS ine 2584, SiSEiRId PyNumber_ Tndex () Y5 E AR EAL.
Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
AR o0 2 —NEEFCRA R IR AL, R0 o Fedsii—A> Py_ssize_t (HXUGHOE5 R . MR RN, & [H]
-1 IR
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or

OverflowError). If excis NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *o)
W 0 E—RGEEL (F74 nb_index i E I A tp_as_number JAFLH) WHR[E 1, FHWRE 0 o X
A REON 2R R I

68 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

7.4 FR5IEY

int PySequence_Check (PyObject *0)
WX SLARMEF I, REORI] 1, HWERE 0. HEEERNAA __getitem () JyiAHY Python
FKaR 1, BRAFENTR dict B2, PRUNTE— g OL T JoiRsi e B B SCRi 8. IR B2 2l
A7,

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
FIWE AR MR M 51 o FRORFRAGECE:, RIINHR] -1 3 AH 24T Python #A3K len (o) .

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of 0, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
FERIGE v IR(EST 0 WU5R i e . RN 251 R E IR E -1; JRZhRHR[E 0, 5XAH4 T Python 1]
oli] = v. BLEREL & BB v 5.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_ti)
MIERXTSE 0 B95E i ZoeK . RIMEHRE] -1, XAH24 T Python iE/4] del olil.

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
RIS v IAEZE P A5 o BIM il B 2 Y]y XA T Python ififi] o[11:12] = v

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
BB FEFUAT 5 0 WM i1 3] i2 BYT R . RIGIHR] -1, XA 24F Python 141 del o[il:i2],

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)

R[] value £ o " BLAGIREL, BIREITS o [key] == value BYSEMIECE. RIGHHRE -1, XA
F Python ik 0. count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
i€ o R value, AR o "PIYIE—TTET value, MR 1, FHIGRIE 0o HIFEHS, &0 -1, XAH
4 F Python A, value in o.

7.4. FEHIYL 69

The Python/C API, & 3.9.0a4

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
RS —RG| *i*, o o[1] == value. B}, & [E] “-17 . #1124 T Python [“o.index(value)“Fik
E2v

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *o0)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError with
m as the message text. Returns NULL on failure.

PySequence_Fast* BRI Z T AX @M A, BHRNEMNSHE o & —NPyTupledbject
W pyListobject FH HEVIM o HEIETFEL.

Y2 CPython HYSEBRARY, W1 o CRR—NFAEER, B E RN .

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. ~ Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast () and
o is not NULL.

THVERE, WERBI I EE /IS, T 700 T AE 2 FH E (7 items $C4H. PG, (SU7E P81 Tk BB R S0
(R XA i

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. ~ Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

7.5 BREHHN

%N PyObject_GetItem()., PyObject_SetItem() 5PyObject_DelItem(),

int PyMapping_Check (PyObject *o)
AR GRS PP B SR R [E] 1, R GR[E] 0. R ER NEA __getitem () Jik
i Python J&iR[u] 1, PRATE— B DL T Tk d B I SO BRI, IR IUE 2 2 AT
Py_ssize_t PyMapping_Size (PyObject *0)
Py_ssize_t PyMapping_Length (PyObject *0)
IR IR o AR, RIEINTIR] -1, XA 4T Python #3A3 Len (o) .

PyObject* PyMapping_GetItemString (PyObject *o, const char *key)
Return value: New reference. 121 o %} N T4 E key BYTTE, B IR 7] NULL. 3X4H24F Python
FER olkey]l. HiFSE MW also Pyobject_GetItem().,

70 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
TEX G o MAFFAFHY key WL EIME ve RIGIIRE] -1, XAH4T Python i5/4) o [key] = v. HiFZS
WPyoObject_SetItem(). BLEEEL R&HEM* v 5 H.

int PyMapping_DelItem (PyObject *o, PyObject *key)
MXFG o PR BRI SR key HYWEGF. RIS R B -1, X AH 24T Python i /M) del olkeyl. iX

EPyobject_DelIltem() H— 5% .

int PyMapping_DelItemString (PyObject *o, const char *key)

MAIGE o PREERTFAFER key BB . RIMRIE] -1, XA F Python if4] del o[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
TERWS G A A B key WRME] 1, AIGRIE 0. XA 24T Python Kk key in o. HEKELE RS
2L/
HEBETE WA __getitem () VA E) A A0 S R & BB . SR IBORT R R 4 L

HPyObject_GetItem().

int PyMapping_HasKeyString (PyObject *o, const char *key)
TSRS G B B key DUIR[E] 1, TR [E 00 3XAH4 T Python FikHX key in o. HEKELE RS
ihdr.

VR R TE T __getitem () Jr ¥ M) KR B0 SO £ M B . T IR R O O K

}ﬂPyMapping_GetItemString ()o

PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. I}, 1R[EIXTE o HRJEMIFFE. JEEt, 1R\ NULL.

TE 3.7 BOE S FEZ mifAS 1 pR IOk 8] — A4 R BT .

PyObject* PyMapping_Values (PyObject *o)
Return value: New reference. {3}, 1R[FXFER o FHMEMIFFE. JIEH, 1R\ NULL,
TE 3.7 U R FEZ BilUA 1 pR 0K Bl — A4 R BT .

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. J{INW}, 1REIXT4 o w4 H WA, HbHANLH B2 — 05 8EXTH T
Ho KWW, 1&[F NULL,

TE 3.7 R R FEZ BRAH, BEeR ok [— a1 R sl

&R 2RI

BAEA T R AL
int PyIter_Check (PyObject *0)
R true , QRIS o SCRFIEAAS BTN -

PyObject* PyIter_Next (PyObject *0)
Return value: New reference. 3& [37:4L o EI’JF*/\{E KGRk (G R 38 ok 0) o
%&ﬁf?ﬂ:ﬂ’ﬂﬁ W3R] NULL Ff HANBCE 55 . AR IEIRIA EHT%ZET%’*%, 3R] NULL I HA%

B 5

BNk ﬁ%%ﬁ H—A—EER, C UM% EEARG X

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {

(R gksh)

7.6. XMW 4

The Python/C API, & 3.9.0a4

(£ 50

/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
3

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

}

7.7 il

7 Python H RJ i1 Ji] — L8501 5o A0 R0 IR 2 N A7 B AL BORR 2% o DT 1), BEIEXT LA FR N EL 1Y) bytes Fl
bytearray AM—2Ul array.array AR KA. =7 FEW A RES R THRHARY H T E SCENTH
CRAL, BT B AL BB T4«

ARSI P B — R B ORI SC, (BEATRA W T BEROR M AT et IX SRS L AL . AR L
DT, A BEIEVT R Zem IXi Jo s e A .

Python PAZZ /7 #i BIEATE C)2 AR EXFERIIRE . BL M EL 387 T

o AEAFHRX—T7H, RRBEAIATAF I —A G XN, REATTERRIZZ M IXE . %%
H B (5 B AEBuffer Object Structures —35H1;

o TEBE M, A JUR VAT TR X R i UG 2 B p ettt (BIan—Inkmigz) .
fi

— LB AR R BIU bytes Ml bytearray SPATAIFIHIER AT ENRIRIZ S0 IX . il 2 HAb
B Bl array.array i AFFHITCE AT DAEZ FEATH.

SR IR ORI 2) — MO 2 SO 4 write () s AR m] DA - — B9 5 R i v 4 o] DA
BAME. SR write () i RTGEENFAEARZE AR, HAR 7, W readinto () FRESEN
EE AR . Gerh X2 AT G m DA R b Fei/r el b 440 52 5 ul H g vp X S o

XTGP E AT S, AW 2ORIREC—A B iR i o :
o [IEMMSECRIE PyOb ject_GetBuffer () %K
» JflpyArg ParseTuple () (BIHFEHFNIG 2 —) BN yv*, wr or s* & X KD HET—A>,

TEXPFFOL T, YA T E G b I] PyBuf fer_Release () o HRBLEAFRIN, WHESFEA
PR, B PR

72 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

7.71 ZhRXEE

L h X ZE AL (BCH TR B HPR R “buffers”) XofT1F ZZE B 5 — N XTZR AT 45 Python #F B AER A M. B
R A] URAES# D R L. SEREAT5H NAERIIRE T, T AR 2 MR Ao 50805 2 FF 45 Python £ 7
B WAFAPAE C PRI — Ry E E A, Wl DURTEE B BB E RGP Z wil T HAE R G Ak,
B T DA R AR 1 AL N FAAS) S e Bt «

55 Python fERERS AT R Z EBEHREBIANN], Gop XA R Pyobject FREFTTZ M BLAY C £549. X EA]
AT PAAEES T B B RN A i . TR DN iz BRI, W DA —AN I AL RS .
AXMMBEEHFFHNROEEEIN, ES 0% 7R3 2880, ERPZHMRYER, HS
RPyObject_GetBuffer (),

Py _buffer

void *buf
T8 1) H v [X 7 BE A 1 2 S 25 A TR RO 4845 . X T DASE S5 R IS 2 W PR N A7 B v AT A 07 B
Filan, AR st rides {H]BEFS 1A IAFHRBI A 2 o
Xt Fcontiguous |, AR KU, (EF8HNAEBRITk.

void *obj
AR EEEI . ZGI A HE NS, HHPyBuffer Release () HBEMIF R E N
NULL. &FBSE AL FRIME C-APT s [nl{H .
VEN—MaRE L, ST HPyMemoryView FromBuffer () B{PyBuffer FillInfo () fi3%
I temporary ZIX |, B NULL, ilH, SR AEM I TE.

Py_ssize_t 1en
product (shape) * itemsize. X TS, X EERMNFHAKE . XFIEESHA, W
R ENE R BEESF R, WiKEREAEZKE.
24 2% op IX 2 il o O IR % 25 PR A 3 oK B BURE, A D5 [((char *)buf) [0] up to

((char *)buf) [len-1] B A H M. FERZEWE LT, WEW KK HPyBUF_SIMPLE
B PyBUF_WRITABLE.,

int readonly
Zh X o N R fe e . W FBL PyBUF_WRITABLE FrEdatil

Py_ssize_t itemsize

BASTERMIRN (PAFATNEAL) . 5 struct.calesize () M AE NULL format W(EAAA .

HEGIA: R AE B K B g v X G PyBUF_FORMAT FRak, format $§i% ¥4 NULL,
{Hitemsize {hHAFEIHHEMIME.

MR shape f£4E, MIAHZEN) product (shape) * itemsize == len {JRTEAE, FHE LA
fifflitemsize S EMIX.

W shape J& NULL, W5 WPyBUF SIMPLE 8§ PyBUF _WRITABLE 53K, WI{H & 554
Mgitemsize, HRIX itemsize ==

const char *format
1E struct BHFERTEE S NUL P55, fHRBRATNZ . X2 NuLL, ey B ™

1 2 e

(571 -
MW Bt PyBUF_FORMAT Fr&das il

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu £ points to a single
item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

7.7. ZEHihiY 73

The Python/C API, & 3.9.0a4

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape

An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsize MUST be equalto Ien.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides [n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyOb ject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

74

Chapter 7. S HRE

The Python/C API, %% 3.9.0a4

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be I'd to any of the flags in the next section. Since PyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I'd to any of the flags except PyBUF_STMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

HK K | DB | FIRBE
= = UNR R A I

PyBUF_INDIRECT

=] =
PyBUF_STRIDES = = NULL

pPyBUF_ND ys NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

ELEMRIER

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

7.7. ZEHihiY 75

The Python/C API, & 3.9.0a4

LES R | 5k | TRBE | 5
H =]
PyBUF_C_CONTIGUOUS 7E v NULL C
H =]
PyBUF_F_CONTIGUOUS = = NULL F
= =] >
PyBUF_ANY CONTIGUOUS = = NULL Cui F
[=]
PyBUF_ND & NULL | NULL C

By

BT AT RERY T RAR i _E— P REBAR G A A e e o AT BRI, Gnp XM ERBEH IR E 1R B

v

In the following table U stands for undefined contiguity.
PyBuffer IsContiguous () todetermine contiguity.

The consumer would have to call

TEK Bk | e | FhoE W | RiE | Bk
PyBUF_FULL e |2 WARFERGE | U 0 f=1
PyBUF_FULL_RO | WRFERIE | U 150 [2

=] =] =
PyBUF_RECORDS = = NULL §] 0 B
PyBUF_RECORDS_RO 2 = NULL [§) 150 | 2

= = NULL U 0 NULL
PyBUF_STRIDED = e
PyBUF_STRIDED_RO 2 = NULL [§] 15,0 | NULL
PyBUF_CONTIG /& | NULL | NULL C 0 NULL
PyBUF_CONTIG_RO /& | NULL | NULL C 15 0 | NULL

76

Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

7.7.3 SZH4A
NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both
shape and st rides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
o
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v $ itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+titemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. Insuboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

7.7. ZEHihiY 77

The Python/C API, & 3.9.0a4

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>0bj to NULL and return —1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

void PyBuffer_ Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (const char *format)
Return the implied i temsize from format. On error, raise an exception and return -1.

3.9 B RE.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ') or Fortran-style (order is 'F ') contiguous or
either one (order is 'A"). Return 0 otherwise. This function always succeeds.

void* PyBuf fer_GetPointer (Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of view->ndim
indices.

int PyBuffer FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for C-style or Fortran-style ordering). 0 is
returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A"' (for C-style or
Fortran-style ordering or either one). 0O is returned on success, —1 on error.

This function fails if len != src->len.

78 Chapter 7. #HIRWRE

The Python/C API, %% 3.9.0a4

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
Fill the strides array with byte-strides of a contiguous (C-style if orderis ' C' or Fortran-style if order is 'F ') array

of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,

int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to readonly.

buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporter and return O. Otherwise, raise
PyExc_BufferError, set view—>0b]j to NULL and return —1;

R B R B A getbufferproc ()—ER45 . W exporter W E R T A5, I HbWAER BT
1&358 flags. TN, exporter Wojis& NULL,

7.8 1B il

3.0 i E R Ex.
IXLERR K2 Python 2 Ht “IHZEm " APL (UZH AR . 75 Python 3w, BUPRE AL, (HiX Ll H1/)
SR AFFLAERSAE 2.x BOAAED . BT AR 22 o Prsl IR LRSS, (BB IEARTEZ P S i 1] R
PRASEXT T SR T YR A i Jo] S92
B, HEFARE Pyobject GetBuffer () (SERLEPyArg ParseTuple () MEURMER y* 8 w* #4X
) R — MR G, FAEG L E AT PR pyBuf fer_Release ().
int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
1R[] A8) 0] VRS T A5 A B LS N AF L O F8 4T . obj SEULII LR B BEF AT Gop 42 11 .
SRR] O, K buffer ¥R WAFHINE T buffer_len Bk G KA. AE IR] -1 FF i EE—A
TypeError,
int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
AR 1] — A4) B B AT TR B A B N AP R 35 obj SHROLIFSCRF BT e i 1 o iR [E]
0, K buffer A WAFHIHETTHF buffer_len B Zem XA . RIS IR] -1 IFRE—> TypeError,
int PyObject_CheckReadBuffer (PyObject *0)
WA o SCRFFB G LR] 10 FIERIE 0. R AR IE 2 AT .
TR R B S SR BOF R — N Zen X, I LRI X 1 e B0) A A) S B il . SRR
FRIR SN M PyOb ject_GetBuffer ().
int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
AR [a]—ANHE)] 5 N AR R ST obj AT RF R B AT et 11 o JRCEIR] O, K buffer BN
AAHNEIE R buffer_len V5 M2 XK. AR E] -1 Hf5 8 —> TypeError,

7.8. |BZ Y 79

The Python/C API, & 3.9.0a4

80 Chapter 7. #HIRHWRE

CHAPTER 8

BEFRXRE

A I BRI BURR 2 TR 28 Python X 4 388, IR BB SAL A EADEAR B — N s R EM
Python & FH2IE]— X%, (HAHE T B4 BA IEMAERL, WM e a8 88 B, Baxt
SRAERNTH, EHHPyDict_Check (), ARIEAYLEMIZET Python X5 IERIM) “ Kt

e BORARTE TR Y BB S AT AR A AL AR G288, (HRH P42 MR SR E L AN R 2R
A NULL, Feiff& A NULL 0] G858 N 477) S8 MR 2R 1) 37 BN 24 1 o

8.1 BEAMR

Atk Python ZERUNS A FA—SLBIN 4t 5 None.

8.1.1 Type &

PyTypeObject
WG C 4544 H T4A built-in 2854,
PyObject* PyType_Type
BT type XF41 type object, T 7E Python il type AFHIN S .

int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type object.
Return O in all other cases.

int PyType_CheckExact (PyObject *o)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return O in all other
cases.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

81

The Python/C API, & 3.9.0a4

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not part
of the limited API.

3.2 B fE.
Tr 3.4 MU PR The return type is now unsigned long rather than long.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the t p_new slot of a type object. Create a new instance using
the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return —1 and sets an
exception on error.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.

See PyType_Slot.slot for possible values of the slot argument.

An exception is raised if fype is not a heap type.

3.4 B fE.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Return value: New reference. Creates and returns a heap type object from the spec (Py_ TPFLAGS_HEAPTYPE).

If bases is a tuple, the created heap type contains all types contained in it as base types.
If bases is NULL, the Py_tp_base slot is used instead. If that also is NULL, the new type derives from object.

This function calls Py Type_Ready () on the new type.

82 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

3.3 BRI HE.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. Equivalent to PyType_FromSpecWithBases (spec, NULL).

PyType_Spec
Structure defining a type’s behavior.

const char* PyType_Spec . name
Name of the type, used to set Py TypeObject . tp_name.

int PyType_Spec.basicsize

int PyType_Spec.itemsize
Size of the instance in bytes, used to set PyTypeObject.tp_basicsize and PyTypeObject.
tp_itemsize.

int PyType_Spec. flags
Type flags, used to set Py TypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, PyType FromSpecWithBases () sets it automati-
cally.

PyType_Slot *PyType_Spec.slots
Array of PyType_S1ot structures. Terminated by the special slot value {0, NULL}.

PyType_Slot
Structure defining optional functionality of a type, containing a slot ID and a value pointer.

int PyType_Slot.slot
A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject, PyNumberMethods,
PySequenceMethods, PyMappingMethodsand PyAsyncMet hods with an added Py__ prefix. For
example, use:

* Py _tp_dealloctoset PyTypeObject.tp dealloc
e Py_nb_addtoset PyNumberMethods.nb_add
* Py_sqg_lengthtoset PySequenceMethods.sq_length
The following fields cannot be set using Py Type_Spec and PyType_Slot:
e tp dict
* tp_mro
* tp_cache
* tp_subclasses
* tp weaklist
* tp_vectorcall

* tp_weaklistoffset (see PyMemberDef)

tp_dictoffset (see PyMemberDef)

* tp_vectorcall_ offset

bf_getbuffer

bf_releasebuffer

8.1. EFIR 83

The Python/C API, & 3.9.0a4

Setting Py_tp_bases may be problematic on some platforms. To avoid issues, use the bases argument of
PyType_FromSpecWithBases () instead.

void *PyType_Slot .pfunc
The desired value of the slot. In most cases, this is a pointer to a function.

May not be NULL.

8.1.2 None Y&

TR, None [Py TypeObject N HAZAE Python/ C AP HH/AFF, BT None ;2 Bfl, MHAXSARN (18
CHiH ==) MAE® T. ATFEAENER, %4 PyNone_Check () MR%L.

PyObject* Py_None
Python None Xf4, FRitZ(H. XMW REATE. BEREGT VA FEACPATATH AR5 .

Py_RETURN_NONE
IERAL R B C BN Py_None &[] (HELZUL, 30 None W5 | HITHEOF R E.)

8.2 F{EMR

8.2.1 ERBMR
Jiv A BRI R IR RO G 3

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.

PyLongObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of Py TypeOb ject represents the Python integer type. This is the same object as int in the Python
layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongOb ject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create
an int in that range you actually just get back a reference to the existing object.

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_t v)
Return value: New reference. Return anew PyLongOb ject objectfroma CPy_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongOb ject object from a C size_t, or NULL on failure.

The Python/C API, %% 3.9.0a4

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongOb ject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in st which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value. The
Unicode string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted
using PyLong_FromString ().

3.3 BRI HE.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved from
the resulting value using PyLong_AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, firstcallits __index__ ()
or __int__ () method (if present) to convert it to a PyLongOb ject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

1 3.8 CEHC: AR RN __index_ ().

3.8 G ELFEHE: Using __int_ () is deprecated.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, firstcallits __index__ ()
or __int__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
1E 3.8 CHE B WA AT PR __index_ ().
3.8 G ELREHE: Using __int_ () is deprecated.

8.2. HEMR 85

The Python/C API, & 3.9.0a4

long long PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convertitto a PyLongObject.

Raise OverflowError if the value of obj is out of range for a long long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

15 3.8 R AR AT R __index_ ().

3.8 G ELREHE: Using __int_ () is deprecated.

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or __int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to O and return —1 as
usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
3.2 Fi e

TE 3.8 U AR R __index__ ().

3.8 S EL M Using __int__ () is deprecated.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t) -1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Returna Cunsigned long long representation of pylong. pylong must be an instance of PyLongOb ject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
IE 3.1 JRFE YL A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
__index__ () or__int__ () method (if present) to convert it to a PyLongOb ject.

If the value of 0bj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.

86 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

15 3.8 B AR W R __index_ ().
3.8 MG A8H8: Using __int_ () is deprecated.

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject, first
callits __index__ () or __int__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.
1 3.8 MR AR W AR __index_ ().
3.8 iUGE RIS Using __int__ () is deprecated.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2.2 f/RMER

Python H I /R(EL@ A W BE BN TR . R Py_False #ll Py_True WM/RIE. BIL, IEHEMEIE
AR DI REANE TR . (H2, FAER.
int PyBool_Check (PyObject *0)

Wk o [ZEAH PyBool_Type, IR true,
PyObject* Py_False

Python [] False XMREAIEMITEL, BFFEMHAXSR—FEE0HT] T4
PyObject* Py_True

Python [True X GEAEATI, BT EFHAXS G —HEEIE5] L
Py_RETURN_FALSE

MR BREl Py_False W, FHEIEIERTIHTTEL.
Py_RETURN_TRUE

MEREGR] Py_True B, FFEHMERTHITEL

PyObject* PyBool_FromLong (long v)
Return value: New reference. 1R v ISEPR(E, 1R[El—4> Py_True B{(F Py_False H#H5|H.

8.2. HEMR 87

The Python/C API, & 3.9.0a4

8.2.3 FREMR

PyFloatObject
XA CEAPyobject HTIAAEK—> Python 7 %A 42 .
PyTypeObject PyFloat_Type
XRNMNET CHRMpyTypeobject B Python iF RSB, 7 Python ZTHIFZEAL float 2]
—RT
int PyFloat_Check (PyObject *p)
Yty SH0e—A C KM pyFloatobject BF & C KA PyFloatobject WFHAN, RIEH,
int PyFloat_CheckExact (PyObject *p)
Y ZHoe—A C KApyFloatobject HAR CEMPyFloatobject K TRANS, RI[PIH.

PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. My 475 str (HAIHE - PyFloatobject, RIEHFRFE NULL,

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. 1R v f|f#t—APyFloatObject X4, RIKHHE[H NULL,

double PyFloat_AsDouble (PyObject *pyfloat)
iz [a] — A~ C double fG3 pyfloar 1) N %F. IR pyfloat A J& — 4~ Python i mi U 3f G {H j& B Ay
__float_ () J5ik, WITHRF & S8R, XF pyfloat FEHUN— AU E AR __float_ () AR
PR S __index_ () o WERAKRM, BEI5ERFRIE 1.0, WIS RE N Y MH pyErr_Occurred ()
KA
A 3.8 R AR AT AR __index_ ().

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
iR 1l —A~ pyfloat W) C double Fow, (HECAHHHRALE .
PyObject* PyFloat_GetInfo (void)
Return value: New reference. iR [a]—~ structseq SZf], Hiv 4o &4 2% float kS . e/ MBI 5 RAB I (E
B BRI float . h — MR AL
double PyFloat_GetMax ()
AR 1] 5 KT 7N A B R % DBL_MAX 2y C double
double PyFloat_GetMin ()
AR 1] 5/ NAT R R H— AR IR 3 S8 DBL_MIN *}y C double .

int PyFloat_ClearFreeList ()

ERERE IR € ClIE AT PN 9 GRS B 4@

8.2.4 FHMR

M CAPLZE , Python BB 52 th P AR AT 2» SEBL: —N@7E Python A2 5 il) Python X5, 75 4hiY
MR EIEE R C 45H1k . APTHRAL T s 5k M AR

88 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

FTREHH C &HHak

it LT R AR IR X LG R A S ROT UM RIR R A, AR “(H” A ZS s el
T A APL

Py_complex
X — W], Python 2 BOW R IEER 43 19 C A A . 2873 Ak B AR HONS S 14 R B3CHTS T ik S AU 4544
AR ABCE R A, BRI E O

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
REIHANEEF, H CHBlpy complex FIiR.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
RS R 2, H C2RBPy complex iR,

Py_complex _Py_c_neg (Py_complex complex)
R ISZHL complex FIT(E, H CRALPy complex iR,

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
RPN E AR,] C R BPy_ complex FiR,

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

REPAZ R, H CEBpy complex Fin.
W divisor %z, I EIREIZEHKE errno S5 EDOM,

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
R[5 num §) exp R, H C2Hipy complex FiR.,

ISR num h7s H exp AR IESLEL, XA R IZE I E errno A EDOM,

FREHE Python 35k

PyComplexObject
XA C2MPpyobject BT —> Python HHHR .

PyTypeObject PyComplex_Type
XEANET CEMPpyTypeobject HFE Python B EZRAIAG L], il Python ZTHIATZE complex J&
[l — X5

int PyComplex_Check (PyObject *p)
MR EMSEe—1A CEMpyComplexObject B @& C KMpyComplexObject ¥R, &[]
H.

int PyComplex_CheckExact (PyObject *p)

WREMSEGE 1 C EKHlrycomplexObject (HAE C FAPyComplexObject 1AL, kA
=

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. ¥4t C 2581Py complex HIEAE K— A7 Python & 5% 4 .

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. 1R real Fll imag 12 [0]—/ Nl C 5B pyComplexObject R4 .

double PyComplex_RealAsDouble (PyObject *op)
PA C 257 double iR] op HISEHER.

8.2. HEMR 89

The Python/C API, & 3.9.0a4

double PyComplex__ ImagAsDouble (PyObject *op)
PA C K% double &[4 op 1Y BB

Py_complex PyComplex_AsCComplex (PyObject *op)
RBIEH op 1) C 2Py complexH.

W op Rj2—A> Python ZHxt %, HRRHA __complex_ () ik, WHEFEILWRHM, ¥
op ik —> Python E %, MR __complex_ () K& XMKFFHLHEE _ float_ (), WIHE
__float__ () REXNPEELEEZE __index__ (). W, 7 ERRRE] -1.0 VERSe%(E.

TE 3.8 RS AR W APRRE __index_ ().

3 FIIMR

FEHR G —FRAEBAAE B — R e 2957148 Python i 5 AT AU RRE R F IR

8.3.1 FHMR

BT RS EAN N IE S PO R, XA 5K TypeError,

PyBytesObject
XFhPyobject HFHRAFEIR—4> Python FATXIR.

PyTypeObject PyBytes_Type
PyTypeObject HSEHIZE—A Python FH7 A, 7E Python RHIE 5 bytes @MFEIHIXR .

int PyBytes_Check (PyObject *0)
MRG0 RFATRRECF RN T RA P SLBI, WHR[E true.

int PyBytes_CheckExact (PyObject *0)
WA 0 BT IWNR, (AR TR THRARSLH], IR N true,

PyObject* PyBytes_FromString (const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
Return value: New reference. Take a C printf ()-style format string and a variable number of arguments,
calculate the size of the resulting Python bytes object and return a bytes object with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the format string.
The following format characters are allowed:

90 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

%% RiE A LF% FAF

sc int —T, ?ﬁi‘%i‘ﬁﬂ*A CifignyHa

5d int 4T printf ("°/d")

5u TFFSEA | A4 T printf ("su") .

$1d KER 4T printf("’/ dm.!

$1lu TAFZKHEEA | H4 T printf ("s1u") !

$zd Py_ssize_t MX4T printf ("szd").!

$zu size_t YT printf ("$zu").!

%1 int M4 T printf ("sim) .t

$x int MY T printf ("sx") T

%s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly equivalent to printf ("%p")
except that it is guaranteed to start with the literal 0x regardless of what the
platform’s print £ yields.

;gﬁiﬂ%ﬂE‘Ji‘%iﬁ?ﬁ%ﬁﬁﬁﬁ%ﬁ?ﬁ%E@E%%ﬁﬂﬁ%ﬁﬁfﬁﬂ ISR S, HEFIAZRNZS

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
Return value: New reference. 5 PyBytes_FromFormat () 5S¢, BT EFENINSE.

PyObject* PyBytes_FromObject (PyObject *o0)
Return value: New reference. 12 [A| 537~ SEILZE i X PSR X 42 *0*,

Py_ssize_t PyBytes_Size (PyObject *0)
R EIFATR G *o* FhEE TR

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Macro form of PyBytes_Size () but without error checking.

char* PyBytes_AsString (PyObject *o)
Return a pointer to the contents of 0. The pointer refers to the internal buffer of o, which consists of 1en (o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
Macro form of PyBytes_AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object 0bj through the output variables buffer and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It mustnot be deallocated. If obj is not a bytes object at
all, PyBytes_ AsStringAndSize () returns —1 and raises TypeError.

TE 3.5 iR B Previously, TypeError was raised when embedded null bytes were encountered in the bytes
object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own the

URTRBAAE (d, u, 1d, Lo, zd, zu, 0, x): SEYHORTEERE, O BEARERA AN .

3. FIINR 91

The Python/C API, & 3.9.0a4

new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old
reference to bytes will still be discarded and the value of *byfes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)

Create a new bytes object in *byfes containing the contents of newpart appended to bytes. This version decrements
the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an Ivalue (it may
be written into), and the new size desired. On success, *byfes holds the resized bytes object and O is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 FIRAMR

PyByteArrayObject

XANPyobject PFRAFIR—> Python “FHr4ZHX 4 .

PyTypeObject PyByteArray_Type

3]

TE

Python bytearray 2384 /R NPy TypeObject WSEHI; X5 Python 2] bytearray setHEIXTE

M}

int PyByteArray_Check (PyObject *o)

BRIGE 0 B ATV SN Fo— A B R T IS, R [.

int PyByteArray_CheckExact (PyObject *0)

YRG0 BT RMAN G, (BRI RN TIBLBINS, R,

E## APl BE

PyObject* PyByteArray FromObject (PyObject *0)

Return value: New reference. FRIBAFATSEI T 4% iF R W30 BN o, 3R [— BT 4 .

PyObject* PyByteArray_ FromStringAndSize (const char *string, Py_ssize_t len)

Return value: New reference. {24l string I} FAKJE len G E— 1311 bytearray ¥4 . 244 iR [7] NULL.

PyObject* PyByteArray Concat (PyObject *a, PyObject *b)

Return value: New reference. JEREFT5H a F1 b IR Bl — A 45 R HH 0 504 .

Py_ssize_t PyByteArray_Size (PyObject *bytearray)

{EAS A NULL 841 53R] bytearray BR /)N,

char* PyByteArray_AsString (PyObject *bytearray)

FERAE NULL $88 R 1K bytearray iR B2 — 7 AFRAL . R TR RCALE /& S FEIN— N8I 2571

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)

Bt bytearray 1] NFBZE I XA K/ INJEEE A len.

92

Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

M

XEETARGE A TE DA IUERE , AT A RS .
char* PyByteArray_AS_STRING (PyObject *bytearray)
C pKipyByteArray AsString() WZERZAR,

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
C ¥ (PyByteArray Size () WZERA .

8.3.3 Unicode Objects and Codecs

Unicode Y&

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

 “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient
representation allowed by the implementation.

e "legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_ READY () on them before calling any other APL

Unicode 3 #Y

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

3.3 B .

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

7£ 3.3 IlRF I In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected a
“narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

3.3 BRI HE.

8.3. FFIIMZR 93

https://www.python.org/dev/peps/pep-0393

The Python/C API, & 3.9.0a4

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *0)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

3.3 BRI HE.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” represen-
tation (not checked).

3.3 BRI HE.

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* pyUnicode_2BYTE_DATA (PyObject *o)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *o)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_ KIND () to select the right macro. Make sure PyUnicode READY () has been called before
accessing this.

3.3 Fge.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

3.3 BRI HE.

int PyUnicode_KIND (PyObject *0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

3.3 B .

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).

3.3 B .

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

The Python/C API, %% 3.9.0a4

3.3 BRI HE.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

3.3 B IIHE.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the ”canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

3.3 B .

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
”canonical” representation. This is always an approximation but more efficient than iterating over the string.

3.3 B

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_ GET_LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNTCODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

JE 3.3 R P: This macro is now inefficient -- because in many cases the Py UNICODE representation does not
exist and needs to be created -- and can fail (return NULL with an exception set). Try to port the code to use the
new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

int PyUnicode_IsIdentifier (PyObject *o)
Return 1 if the string is a valid identifier according to the language definition, section identifiers. Return 0 otherwise.

TE 3.9 i HE 2 The function does not call Py_FatalError () anymore if the string is not ready.

8.3. FIIFtg 95

The Python/C API, & 3.9.0a4

Unicode =&

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether c/ is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py _UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether c#/ is an alphabetic character.

int Py _UNICODE_ISALNUM (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as "Other” or "Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py UNICODE ch)
Return the character ¢ converted to lower case.

3.3 s E.#8%: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

3.3 iR J5 E#5%: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

3.3 {5 EL #8048 This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

96 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return -1 .0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py _UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py _UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC0O0 <= ch <= O0xDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to
be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
3.3 BRI HE.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. ~Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

3.3 B RE.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value might be a
shared object, i.e. modification of the data is not allowed.

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Return value: New reference. Take a C printf ()-style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format ASCII-
encoded string. The following format characters are allowed:

8.3. FRIINigR 97

The Python/C API, & 3.9.0a4

5% TiER ¥ % AT o

$c B AT, Fh C i%%é’ﬂi@%ﬂo

%d FE 4T printf("gd")

su Toffo B ST printf ("su") .

$1d KA % T printf ("s1d") .

$1i IS il MY T printf ("s1in) .t

s1lu TAF S KRR H4T printf ("slu") .’

$11d long long MY T printf("s11d") .t

$11i long long M4 T printf("s11im).]

$1lu JCAF5 long long 4T printf ("$1lu”).!

$zd Py_ssize_t M4 T printf ("szd").!

$z1i Py_ssize_t M4 T printf ("szi") .t

$zu size_t M4T printf ("szu").!

$i] YT printf ("si") I

$x A AT printf ("sx"

%s const char* A null-terminated C character array.

%p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the literal
Ox regardless of what the platform’s print f yields.

$A PyObject* ascii () JEHSEHE.

$U PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and a null-terminated C
character array as a second parameter (which will be used, if the first
parameter is NULL).

%S PyObject* The result of calling PyObject_Str ().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

{Ef#: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for "$A",
"$U", "$S", "$R" and "$V" (if the PyObject* argument is not NULL).

TE 3.2 iR HE PR Support for "$11d" and "$11u" added.
TE 3.3 fRHE 2 Support for "$14", "$11i" and "$zi" added.
JE 3.4 JRFEPL: Support width and precision formatter for "$s™", "$A", "SU", "$V", "$S", "$R" added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode_FromFormat () except that it takes exactly two argu-
ments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.

! For integer specifiers (d, u, 1d, 1i, lu, 1id, 11i, Ilu, zd, zi, zu, i, X): the O-conversion flag has effect even when a precision is given.

98 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

3.3 B

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from,

Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary

and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

3.3 Fri e
Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.

Return the number of written character, or return —1 and raise an exception on error.
3.3 FrhR e

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

3.3 BRI HE.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode READ_CHAR ().

3.3 BRI HE.

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index end
(excluded). Negative indices are not supported.

3.3 B .

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned on
success.

3.3 BRI HE.

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem_Malloc (). If this fails, NULL is returned
with a MemoryError set. The returned buffer always has an extra null code point appended.

3.3 BRI HE.

8.3. FIIFtg 99

The Python/C API, & 3.9.0a4

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_ FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_ UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_ AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Create a Unicode object by replacing all decimal digits in Py UNICODE buffer of
the given size by ASCII digits 0--9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py_ UNTCODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

3.3 BRI HE.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free the
buffer). Note that the resulting Py_ UNICODE * string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.

3.2 FriR e
Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

100 Chapter 8. A#FHMMRE

https://www.python.org/dev/peps/pep-0393

The Python/C API, %% 3.9.0a4

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Return value: New reference. Decode a string from UTF-8 on Android and VxWorks, or from the current locale
encoding on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP
383). The decoder uses "strict" error handler if errors is NULL. str must end with a null character but cannot
contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
S

The Py_DecodeLocale () function.

3.3 B IhE.

15 3.7 JiUE : The function now also uses the current locale encoding for the surrogateescape error handler,
except on Android. Previously, Py_DecodeLocale () was used for the surrogateescape, and the current
locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string
length using strlen ().

3.3 Hge.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android and VxWorks, or to the current locale
encoding on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP
383). The encoder uses "strict" error handler if errors is NULL. Return a bytes object. unicode cannot
contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

This function ignores the Python UTF-8 mode.
YR

=

The Py _EncodeLocale () function.
3.3 B Uge.

JE 3.7 i 2 The function now also uses the current locale encoding for the surrogateescape error handler,
except on Android. Previously, Py_ EncodeLocale () wasused for the surrogateescape, and the current
locale encoding was used for strict.

8.3. FIINtgR 101

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, & 3.9.0a4

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects -- obtained directly or through the os.PathLike interface --
to bytes using PyUnicode_FEncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

3.1 BTk,
TE 3.6 R M 2 — AR b2 £

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)
ParseTuple converter: decode bytes objects -- obtained either directly or indirectly through the os .PathLike
interface -- to st r using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result
must be a PyUnicodeOb ject * which must be released when it is no longer used.

3.2 Fi e
TE 3.6 MU B 52—k vb 2] %

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Return value: New reference. ~Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

S
The Py_DecodeLocale () function.
T 3.6 iR : Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Return value: New reference. Decode a null-terminated string using Py_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
JE 3.6 R Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting bytes
object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding isinitialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

102 Chapter 8. A#FHMMRE

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, %% 3.9.0a4

S
The Py_EncodeLocale () function.
3.2 FrhRE.

£ 3.6 iU : Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing —1
as the size indicates that the function must itself compute the length, using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size is
not NULL, write the number of wide characters (excluding the trailing null termination character) into *size. Note
that the resulting wchar_t string might contain null characters, which would cause the string to be truncated when
used with most C functions. If size is NULL and the wchar_t* string contains null characters a ValueError
is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_Free () to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

3.2 B RE.

TE 3.7 fR B PR : Raises a ValueError if sizeis NULL and the wchar_t * string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file sys-
tem calls should use PyUnicode_FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some systems,
it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is "strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

8.3. FRIINigR 103

The Python/C API, & 3.9.0a4

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_UNTCODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_ UNTCODE API,; please
migrate to using PyUnicode_AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is "strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

3.3 Frihfe.
JE 3.7 IR B PR The return type is now const char * rather of char *.

const char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

3.3 BRI HE.

104 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

TE 3.7 2 The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_ AsEncodedString ().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32 (). If consumed

is not NULL, PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte se-
quences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.

8.3. FRIINigR 105

The Python/C API, & 3.9.0a4

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTICODE API; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byfteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)

Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is O, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode AsEncodedString ().

106

Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7 (). If consumed

is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,

int base64 WhiteSpace, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using UTF-7 and return a Python

bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python "utf-7”
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTICODE API; please
migrate to using PyUnicode AsEncodedString ().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is "strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the "Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. FRIINigR 107

The Python/C API, & 3.9.0a4

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsLatinlString () or PyUnicode_ AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCITI (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsASCIIString () or PyUnicode_AsEncodedString ().

108 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes -- ones which cause a LookupError, as well as ones which get mapped to None, OXxFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is "strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as "undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API,; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. FIIMR 109

The Python/C API, & 3.9.0a4

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed
is not NULL, PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python bytes
object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

3.3 B fE.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

110 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] at the given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), O otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

3.3 FrhR e
TE 3.7 BUHE UK start and end are now adjusted to behave like str [start:end].

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively.
It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_ LE.

8.3. FRIINigR 111

The Python/C API, & 3.9.0a4

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
Return value: New reference. A combination of PyUnicode FromString() and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned,
or a new ("owned”) reference to an earlier interned string object with the same value.

8.3.4 TTHIMR

PyTupleObject
XAPyobject I TRAMAFK—4 Python KTCHNR

PyTypeObject PyTuple_Type
PyTypeObject HSLHIAFE—1 Python ST ML, X5 Python JZTH Y tuple 2 HFEIAYXIER

int PyTuple_Check (PyObject *p)
R p s — D ICAIN R BT TeH AU TR A S, 3 e LA

int PyTuple_CheckExact (PyObject *p)
R p @—AICHN G, AR — DI FRAR B, R A

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_Buildvalue (" (0O)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on

112 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

failure. This is the equivalent of the Python expression p [low:high]. Indexing from the end of the list is not
supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return -1 and set an IndexError exception.

{:fi#: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_SetItem (), but does no error checking, and should only be used to fill in brand new tuples.

{:f#t: This macro “steals” a reference to o, and, unlike Py Tuple_SetItem (), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList ()
R R IR B R 4% H AL

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Return value: New reference. Create a new struct sequence type from the data in desc, described below. Instances
of the resulting type can be created with Py St ruct Sequence_New ().
void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

3.4 B fE.

PyStructSequence_Desc
A E ARSI P R LE B

8.3. FIINtgR 113

The Python/C API, & 3.9.0a4

1 C & BX
name const char * ZEFE e 9 2R B 44 FR
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as

PyObject*. The index in the fields array of the PySt ruct Sequence_Desc determines which field
of the struct sequence is described.

B | CZxA BX

nameg const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed

doc | const field docstring or NULL to omit
char *

const char * const PyStruct Sequence_UnnamedField
Special value for a field name to leave it unnamed.

TE 3.9 iR H: The type was changed from char *.

PyObject* PyStruct Sequence_New (PyTypeObject *type)
Return value: ~ New reference. Creates an instance of fype, which must have been created with
PyStructSequence_NewIype ().

PyObject* PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the struct sequence pointed to by p. No
bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of Py St ructSequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)

Sets the field at index pos of the struct sequence p to value o. Like PyTuple_SET_TITEM (), this should only be
used to fill in brand new instances.

{:f#: This function "steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of Py St ructSequence_SetItem().

{:f#: This function "steals” a reference to o.

114 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

8.3.6 FIRIMK

PyListObject
XA CEAPyobject HTIAAEK—> Python F X R .
PyTypeObject PyList_Type
XM E T PyTypeobject K3 Python 51| KA SLHBI. 7 Python JZMIAIZEAL 1ist 2 [F—Xf
%o
int PyList_Check (PyObject *p)
MR p e —DINRM R & — P RLERN) T IHB LI, REEH.
int PyList_CheckExact (PyObject *p)
Y p @ —MINIRNG, ER AN RdRERN 7RG, RIE
PyObject* PyList_New (Py_ssize_t len)
Return value: New reference. B} [0 — /KR len FTF 3%, JeHtR [B] NULL.

Wi 24 len KT ZH, #R B A F) RS0 H B NULL. ARG 25 C R
B pPysequence_SetTtem() W% APl 5iE] C lEkPyList_SetItem () YA W H & E N E
SRS HN Python AR A FFiX X4

Py_ssize_t PyList_Size (PyObject *list)
AR list PAVFR RS XETAETN RN R Llen (1ist) .

Py_ssize_t PyList_GET_SIZE (PyObject *list)
FRAN C Py List Size () , TATHNRAI.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. iR |7| list 5 153 index P8 FIX 2. MNEELFTCRIEREG A
S'ZTT/\AEIJ%@K% 47225, WR index #8 HHFE (<0 or >=len(list)), Wi [1] NULL % IndexError
S

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_ti)
Return value: Borrowed reference. 72MANH) C BREPyList_GetItem () , A EEIRKEM .,

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
IHEJ%%'?%:%IjJ index [TRE A item IR [E] 0, WA index #8 H 5 & [B] —1 Fi%5E IndexError
.

TEfR: Mg Ml — AR ilem BT EFE— MR P22 AL E EREA A EH G

void PyList_SET_ITEM (PyObject *list, Py_ssize_t 1, PyObject *0)
AR N I A Py List_SetItem (). RXEH AP T HHIR P Z HIBCA WA A BV TIH
Fe

Wi %ES Mk —AxFiem WBIH, H5PyList_SetTtem() RENEE & 4&ZE AT
B ok HE’J%IH@ AE list 1 i A2 FRAEATS | IR Dl R -

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
K54 H item 30 AFNF 3K list B51%5 index ZHIMIALE . QARRHFRE] 05 QAR TR 1] -1 H%
B— PR, ST list.insert (index, item),

8.3. FFIIMZR 115

The Python/C API, & 3.9.0a4

int PyList_Append (PyObject *list, PyObject *item)
FEXFG item PSIMBNGZ list WA . QERBIFFRIE 05 WA BEZNMGRE] -1 FH&E 5. Y
F list.append(item).
PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. iR [8|—/ X253, W4 list 245000 T low Fl high Z 8 [RIXTE . W1 BT
MR B NULL HE S M4 T list [low:highl. ACRpMIIFAKREHITRE],
int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
W list 240 low 5 high 2 [8)/Y)] F K itemlist (I INZ FH24 T 1ist [low:high] = itemlist.itemlist
FPAH NULL, FORMEN—D250% (MERDIR) . mhmfRm o, KMinRE -1, X BA SRR
FREITREI.
int PyList_Sort (PyObject *list)
X list i) 2% H AT)RR . BEEIIRNR] 0, RIMIRHR [-1, XSEMT 1ist.sort ().
int PyList_Reverse (PyObject *list)
Xf list WA H AT IR SORS . biR] O, RIKEFIRE] -1, XAEHT 1ist.reverse ().
PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. 320l —A~FiB oA 5, HA S list BINE; ST tuple (list).
int PyList_ClearFreelist ()
HEREE K. IR FrRE 2% H 4.
3.3 B InE.

8.4 FHMR

8.4.1 FHMITR

PyDictObject
XAPyobject M RBIMEE—1 Python FHAFE
PyTypeObject PyDict_Type
Python “FHLR AL IR N Py TypeObject LM, iX 5 Python ZHIH dict ZAHF X4 .
int PyDict_Check (PyObject *p)
W p R T R ECE MR FRB R SL], R
int PyDict_CheckExact (PyObject *p)
IR p R F I RAEAN S F MR FRA RSB, MR b .
PyObject* PyDict_New ()
Return value: New reference. 1 [l — AN 23 20, JR AR [B] NULL,
PyObject* PyDictProxy_New (PyObject *mapping)
Return value: New reference. & [8] types .MappingProxyType %4, T iRE AT Bt 0 mme g,
XA T A E PARG IEE MRS AR P
void PyDict_Clear (PyObject *p)
T 25 P - H) i A B E 0
int PyDict_Contains (PyObject *p, PyObject *key)
Wi key 2R ETETFI p o MR key PERC F p (HE—300, k(] 1, FRWGRE 0 o SR [E] -1 R
£, X% [H]T Python #6355 key in p.
PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. 1R [R5 p 8 AH [8B XT) 5T 2 L

116 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
T key M9 BT val ST I po key WA Nhashable; QIRAGE, W5 % TypeError. MIHfRH
0, RMGmRE -1, BeREL R val 151 H .

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
60 key fF N #EKF val 6 A B F M p. key [V 24§ const char*. X R 2 i A
PyUnicode_FromString (key) Q. WMIAFRE 0, KIGHLRE] -1, HEE RS val 1)
1.

int PyDict_DelItem (PyObject *p, PyObject *key)
TG key BT p WIS H o key MAUZ TSGR WRAZ, WILH TypeError S, I
BE O, RIMHRE -1,

int PyDict_DelItemString (PyObject *p, const char *key)
MR p A2, HAP RS T key FEERIE . JMENINRE] ©0, JRIMRHRIE] “-17,

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. M FH p rPiR [B] DA key “MERIINTE . TR key NFEAEH XA K E—
AR R [B] NULL,

FEEEMWRE, MAH _hash. () Ml _eq () FEFTEMEEASHM B, &

HPyDict_GetItemWithError () HFISEHRRAE .

PyObject* PyDict_GetItemWithError (PyObject *p, PyObject *key)
Return value: Borrowed reference. PyDict_GetItem () AR, BASFEM ST . Y55 &4 R b
NULL Jf Hi& 8 — 7w . WREAFLENR [NULL JF EAZ R E— 575 .

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. IX5PyDict_GetItem () —Ff, {HE key FZEFEE—> const char*
, MAZPyObject* ,
WEWEREMZ, WA _hash__ () . _eq__ () HFEMEIE—MEE A BRI A2
Wit . SWHPyDict_GetItemWithError () PEEHRERE .

PyObject* PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. iX it Python JZ1H[{] dict .setdefault () —Fkf. IR key F7E, B
RIAEFHL p BRI S OB AR . B FUE defaultob — il AJFIR 18] defaultoby o« X/ R4
HHE key WSy eREL—IK, A AR ANE AR 301 HE .
3.4 B RE.

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. 1 [B]— AN & g fr g S {H I Py ListObject,

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. 12 [Bl— A& g g 58 (keys) i PyListObject,

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. 12 [n]— AN & F it i {H (values) [PyListObject,

Py_ssize_t PyDict_Size (PyObject *p)
R E I H AL, ST p] 1en (p) .

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
AT p PRYPTA S . RS — VR R BOT R Z AT, i ppos FT5 I) Py_ssize_t W/
IR 05 %R BCRE A 7 b B A S BN R I B, — B B 4 A5 se SR R Il R . T2
pkey Fl pvalue [24487 pyObject * A& &, ENTRF 3 B AAEFIE RIS, B ta] DAY NULL,
AR BTG A BRI . ppos TEIE UM A BACHE M. B RERR T B854 i)
i, FFHMTEMe My, HIms AL,

4n:

8.4. BE}IIR 117

The Python/C API, & 3.9.0a4

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, s&pos, &key, &value)) {
/* do something interesting with the values... */

}

T p AN ZAE M P A R R A A P Ly, R (R A, EAURTRINE A K
AEE . Bl

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (1 == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;
}
Py_DECREF (o) ;
}

int PyDict_Merge (PyObject *a, PyObject *b, int override)
XX b HATIEA, RSB E) P a. b ATPAR— A, BUEMT S R pyMapping Keys ()
Mpyobject_GetItem () XIR. WA override JyFLfE, WANRAE b FpHBIMIE AN a HEAFAER)
FHRZ SO R B e, A AR a A R) B0 2 S B (AT o Y Bl it ak [l 0 B3 245 &
SRR -1,

int PyDict_Update (PyObject *a, PyObject *b)
X5 C H) PyDict_Merge(a, b, 1) —#F, WA MT Python H) a.update (b), 2 HIFE
TryDict_Update () TEEH “ASHBAT " keys” JEERA 2 [HHR E B ACEAEX A P51 24 IR HR
[0 =i 45| K E ik ml -1,

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
K seq2 HEAEN SEREAFH BN F UM ao seq2 WA 2 1 JAVEBEEDN R TR A PR AR
MAFAE RS ST, Q2R override BN i 5 i AR SERE Y o 4TI R B] O B 2475 | K S Ik B
—1. Zrity Python fURD (GRIEEERSM)

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

int PyDict_ClearFreelist ()

RN R R 4% H AL
3.3 BRI HE.

118 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

8.4.2 FEWMR

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor(),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and
PyNumber_InPlaceXor ()).

PySetObject
This subtype of PyOb ject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype.

int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype.

int PyAnySet_Check (PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true if pis a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iferable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-
able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

8.4. BE}IIR 119

The Python/C API, & 3.9.0a4

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and —1 if an error is encountered. Unlike the Python __contains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple SetItem () it can be used
to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success or —1 on
failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise
a SystemError if set is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, O if not found (no action taken), and —1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if sef is not an instance of set or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)
T 25 B - B BT A BN

int PySet_ClearFreeList ()
TE RN . IR [T REC Y 2% H £L.
3.3 Fri e

8.5 EHFMR
8.5.1 BEMR

A — L84 E T Python bR %K) B L.

PyFunctionObject
FT R C 25k 1A

PyTypeObject PyFunction_Type
XR— 1 PyTypeObject SEHFf3FE /R Python BEZEEL., EfEN types.FunctionType [a] Python £
FFRATE

int PyFunction_Check (PyObject *0)
2R o e B R CRA Ny pyFunction_ Type) WERIE(H. BZULA N NULL,

PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. 32 [0 S5CAEXT 4 code TRV BB % . globals Wil /&—A ML, ZRER]
DAV)4 Ry 8
MACHG St G Fr L BRI SCRY AT ER N FR . __module_ 43 M\ globals FA3EEL . 24 defaults, annotations
F1 closure &5 NULL. __ qualname__ &5 R4 FRAH R E

120 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

PyObject* PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. 23{l)PyFunction_New (), {HfR VFRBERET SN _ _qualname_ &
VE. qualname [V 2452 unicode ¥4 8{ NULL; {52 NULL] _ qualname_ J@E NS5 _ name
JE VA R B4
33 WM TE.

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. 32 [9] 5 BB op FEERIIACID R4 .

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. 1205 pREUT A *op* A L BeHY 4 /i,

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. 32 [0 BB op W) __module_ JE, WH H— 8 TR RIS
FRER, {HAT DA Python AURS 4 Ay 3R o] FHAMAR B 42

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. 32 [9] BT op IS EEAE . XA AR —DSH0c4 8 NULL,

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
J B G op W EBBEIA. defaults 55 Py_None Bi—4~J041.

RIGETS | % SystemError S IfiRE 1 o

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. R [n] =B 3 pRECT 52 op BIMA . XA PAE NULL B cell XRG4 .

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
W IR RO G op L. closure Wh252R Py_None B cell X4 IT4H

RG] % systemError RHHIRE -1 .

PyObject *PyFunction_GetAnnotations (PyObject *op)
Return value: Borrowed reference. 327 BRI op IARTE . X] DA — 0] A8 el NULL,

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
BCEPREON G op WIARHE. annotations W/FU— A7 HE Py_None.

KIGHIG % systemError FgifaRE] -1 .

8.5.2 BT EMR

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunct ion to a class object. It
replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of Py TypeObject represents the Python instance method type. It is not exposed to Python pro-
grams.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New (PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object func is the
function that will be called when the instance method is called.

PyObject* PyInstanceMethod_Function (PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

8.5. HEIIR 121

The Python/C API, & 3.9.0a4

PyObject* PyInstanceMethod_GET_FUNCTION (PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_Function () which avoids error
checking.

8.5.3 FHEMR

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMet hod_Type). The parameter must not be NULL.
PyObject* PyMethod_New (PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the instance

the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject* PyMethod_Function (PyObject *meth)

Return value: Borrowed reference. Return the function object associated with the method meth.
PyObject* PyMethod_GET_FUNCTION (PyObject *meth)

Return value: Borrowed reference. Macro version of PyMethod_Function () which avoids error checking.
PyObject* PyMethod_Sel€£ (PyObject *meth)

Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self () which avoids error checking.

int PyMethod_ClearFreeList ()

R R] R 2% H 4L

8.5.4 Cell X5

“Cell” MM T LB ZAMEMNEG IR XTI ZRE, —4 “Cell” RGN T AFM#IZ B
R0 A R HE R 2) 8 P15 R MR BRI “Cell” 311 il i
1, ST “Cell” i g 2 HUTRA S A SCRE “Cell” XFRIIE SIS | IR B3
AT VIR E BRSSPI . “Cell” RGeSy T AEAACH i
PyCellObject

T Cell %44:14) C %l
PyTypeObject PyCell_Type

5 Cell XfRXTM AN £,
int PyCell_Check (ob)

ISR ob 22—~ cell RRWAREFAL; ob /A NULL.
PyObject* PyCell_New (PyObject *ob)

Return value: New reference. B3 H:1% [0 —/ NS (H ob HIHT cell %4, JEZS T PAN NULL,
PyObject* PyCell_Get (PyObject *cell)

Return value: New reference. 1&[9] cell %}4 cell FNZ -

122 Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. 18] cell 3F4 cell IRINZS, (HRAKM cell 275 1F NULL 1 Hh— cell
POE

int PyCell_Set (PyObject *cell, PyObject *value)
«]é} cell X5 cell WINA N value, TERFREHATATXS cell X524/ AZHIT] o value EIW&@ NULL. cell
WA AE NULL; QIS EAN A cell XFMPRFR I -1, Qi B s) Rfi

void PyCell_SET (PyObject *cell, PyObject *value)
K cell W5 cell (INIEIH value, ALVEEG TR, H BASIATR I APRIEZE 45 cell WhZUN A NULL
FHHA—A> cell X542,

8.5.5 LR

RABXF5 2 CPython SCBLAYIRIANTT o AU B AR5 2 ek B b iy m] AT AU

PyCodeObject
TR S G2/ C G54 . L8 B B nT Bl Bl

PyTypeObject PyCode_Type
XsE—PyTypeObject SLfj], HFIR Python [f) code LA,

int PyCode_Check (PyObject *co)
M co J2—A4 code XFZ MK A true,

int PyCode GetNumFree (PyCodeObject *co)
IR [H] co HEY H AR AL

PyCodeObject* PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
Ject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyOb-
Ject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int first-
lineno, PyObject *Inotab)
Return value: New reference. &[]l — i AURS XI5 AIRAR %’%*’Wﬁlﬁﬁ%ﬁ%%ﬁﬂi*"ﬁﬂ'PJ\,
W PyCode_NewEmpty (). WHPyCode_New () BHWT LAZEE FIMERHY Python MiUA, P
T LA HA .

PyCodeObject* PyCode_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int kwonlyargcount,
int nlocals, int stacksize, int flags, PyObject *code, PyOb-
Ject *consts, PyObject *names, PyObject *varnames, Py-
Object *freevars, PyObject *cellvars, PyObject *filename,
PyObject *name, int firstlineno, PyObject *Inotab)
Return value: New reference. Z3{lJF PyCode_New (), {BM7H — 457 posonlyargcount” L fRAv &

3.8 BRI e

PyCodeObject* PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return value: New reference. 1R 0| BAHEE U144 . BRELAFNE 1T 5B S ARXE . X T exec () B
eval () ARG ZAEER .

8.5. HBPMR 123

The Python/C API, & 3.9.0a4

8.6 Hfhxts

8.6.1 KR

X4 AP A SCIEATAR 1 Python 2 C APL i/ MITEL, B K KHT C ARifEER Zent /O (FILE*) (4.
F£ Python 3 w1, SCPERIGLAMETIY 1o B, XBURAESRAE R FMRPIC T VO FE SCTILAZE. Rl
TR PR AR XX LT APT Y(ESE C sy, T2 TMRER Py P aRed iR s R BCR =7 U T 1o

API,

PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const char *er-

rors, const char *newline, int closefd)

Return value: New reference. fR¥E T FT I S0 fd 1) SCAAHE AR5 6] 8 — > Python U4 . S50 name,
encoding, errors 1 newline W] PA°K NULL FER il I BRANE s buffering W] PAK -1 FOREEHERNE . name &
B 2SR F 1o P A . RIMHR] NULL. 6 XSEIWE 2T, S0 i0.open () REH
PR

Wit: 1T Python JLELA LI, RBCHIE 115 OS ZSCPEHIARRI G &7k 4 T R (1
HIHHEH RS)

¥E 3.2 lUE M ZWg name &1 .

int PyObject_AsFileDescriptor (PyObject *p)

55 p RSO SR L int . ARSI R, MR A, WA, DA X S
Fileno () Jrik (HURAF(E) 3 D Heib UG I —MEHL, REBVEN SRR RS R . B T
TERIOTEN] 1.,

PyObject* PyFile_GetLine (PyObject *p, int n)

Return value: New reference. %y F p.readline ([n]) , XPHEEMIS p Fi2EB—4T. p RIPAE U
MR HEA readline () FERAEMATGR . R 02 0, WICRRITRRK B, #SER— 7.
Sn AT 0%, WG RBOR BT n A5 W DURIIFAD 655 iRt . s s
RCHRE, MEREIZFERFR . B2, W a0, WIRIRKEEWME S B —4T, B2 a7/
LSRR, W5k EOFError.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)

H 2 1o.open_code () WIEHATH, FFHIES ML Pridfitn db B e L .

MAPRFR R B — 2Kl PyObject * (*) (PyObject *path, void *userData) BJpKZ%R, H
path Hi{# N PyUnicodeObject.,

userData $55F 2 PUEN T8 T T RECTRE M AR TR, %485 AN Y B 45 17 Python
RIS

BT EAET LI HER AR, R TSRS T) AT S AR, BRIEC e RS
RS H BAE sys.modules FA[.

—H#TB0E, EMARBRBIREUER, ZRXPyFile SetOpenCodeHook () WY IABARFRIN,
IR R SR D 2P iate, sRECRRR R -1 i E—

MR DA APy _Tnitialize () Z IV .
3.8 Fri e,

b=

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)

FIXTG obj B ARG p o flags ME—ZLHFRFRE R Py_PRINT_RAW; WA E, WBAXRE str ()
MASE repr () o WIUIHFRE 0, ZRMHFRIE] -1, FF5 S 24 BI5k

124

Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

int PyFile_WriteString (const char *s, PyObject *p)
FEFRFE s BASUHX G po EIIRI] O SR] 15 RF45 A I I 555

8.6.2 {RIRNMR

PyTypeObject PyModule_Type
This instance of PyTypeOb ject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.
int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule Type.
PyObject* PyModule_NewObject (PyObject *name)
Return value: New reference. Return a new module object with the ___name___ attribute set to name. The module’s

_ _name_ ,_ _doc_ ,_ _package_ ,and __ loader___ attributes are filled in (all but __name___ are set
to None); the caller is responsible for providinga ___file__ attribute.

3.3 Frhi k.
JE 3.4 JR¥EEL: _ _package_ _and _ loader_ are set to None.

PyObject* PyModule_New (const char *name)
Return value: New reference. Similar to PyModule NewObject (), but the name is a UTF-8 encoded string
instead of a Unicode object.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this object
is the same as the __dict___ attribute of the module object. If module is not a module object (or a subtype of a
module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* () and PyObject_* () functions rather than directly
manipulate a module’s __dict__.

PyObject* PyModule_GetNameObject (PyObject *module)
Return value: New reference. Return module’s __name___ value. If the module does not provide one, or if it is
not a string, SystemError is raised and NULL is returned.

3.3 B fE.

const char* PyModule_GetName (PyObject *module)
Similar to PyModule_GetNameObject () but return the name encoded to 'ut £-8"'.

void* PyModule_GetState (PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m size.

PyModuleDef* PyModule_GetDef (PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’t
created from a definition.

PyObject* PyModule_GetFilenameObject (PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s __file_
attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return NULL; otherwise
return a reference to a Unicode object.

3.2 B fE.

8.6. Hihytsk 125

The Python/C API, & 3.9.0a4

const char* PyModule_GetFilename (PyObject *module)
Similar to PyModule GetFilenameObject () butreturn the filename encoded to "utf-8’.

32)G EMH: PyModule_GetFilename () raises UnicodeEncodeError on unencodable filenames,
use PyModule GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_Create (), and return the re-
sulting module object, or request “multi-phase initialization” by returning the definition struct itself.

PyModuleDef
The module definition struct, which holds all information needed to create a module object. There is usually only
one statically initialized variable of this type for each module.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR () is used.

Py_ssize_tm_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_ GetState (), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ f ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_size is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMet hodDe f values. Can be NULL if no
functions are present.

PyModuleDef _Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

TE 3.5 TP Prior to version 3.5, this member was always set to NULL, and was defined as:
inquirym_reload

fraverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than O and the module state (as returned by
PyModule_ GetState ())is NULL.

126 Chapter 8. A#FHMMRE

https://www.python.org/dev/peps/pep-3121

The Python/C API, %% 3.9.0a4

TE 3.9 fH 2 No longer called before the module state is allocated.

inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than O and the module state (as returned by
PyModule_ GetState ())is NULL.

TE 3.9 R No longer called before the module state is allocated.

Jfreefunc m_£free
A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than O and the module state (as returned by
PyModule_ GetState ())is NULL.

7 3.9 Mt B 2 No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as "single-phase
initialization”, and uses one of the following two module creation functions:

PyObject* PyModule_Create (PyModuleDef *def)
Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create?l () with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2 (PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the API version
module_api_version. If that version does not match the version of the running interpreter, a Runt imeWarning
is emitted.

{Ef#: Most uses of this function should be using PyModule_Create () instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObject ().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way behave
more like Python modules: the initialization is split between the creation phase, when the module object is created, and
the execution phase, when it is populated. The distinction is similar to the __new__ () and __init__ () methods of
classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection -- as with Python modules. By default, multiple modules created from the same definition should be indepen-
dent: changes to one should not affect the others. This means that all state should be specific to the module object (using
e.g. using PyModule GetState ()), or its contents (such as the module’s __dict___ or individual classes created
with Py Type_FromSpec ()).

8.6. Hihytsk 127

The Python/C API, & 3.9.0a4

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef instance
with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

PyObject* PyModuleDef_Init (PyModuleDef *def)

Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that correctly
reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.

3.5 BRI HE.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

3.5 BRI HE.

The m_slots array must be terminated by a slot with id 0.

The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject* create_module (PyObject *spec, PyModuleDef *def’)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject* module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

128

Chapter 8. EFRIMRE

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, %% 3.9.0a4

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject * PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Return value: New reference. ~ Create a new module object, given the definition in module and the
ModuleSpec spec. This behaves like PyModule_ FromDefAndSpec?2 () with module_api_version set to
PYTHON_API_VERSION.

3.5 B RE.

PyObject * PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec spec,
assuming the API version module_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

{Efiit: Most uses of this function should be using PyModule_ FromDefAndSpec () instead; only use this if
you are sure you need it.

3.5 B RE.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def’)
Process any execution slots (Py_mod_exec) given in def.

3.5 BRI HE.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

3.5 BRI HE.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef documen-
tation for details on individual entries (due to the lack of a shared module namespace, module level “functions”
implemented in C typically receive the module as their first parameter, making them similar to instance methods
on Python classes). This function is called automatically when creating a module from PyModuleDef, using
either PyModule_Create or PyModule_FromDefAndSpec.

3.5 B fE.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value on success. Return —1 on error, O on success.

{Ef#: Unlike other functions that steal references, PyModule_AddObject () only decrements the reference
count of value on success.

This means that its return value must be checked, and calling code must Py DECREF () value manually on error.
Example usage:

8.6. Hih¥R 129

The Python/C API, & 3.9.0a4

Py_INCREF (spam) ;

if (PyModule_AddObject (module, "spam", spam) < 0) {
Py_DECREF (module) ;
Py_DECREF (spam) ;
return NULL;

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initialization
function. Return —1 on error, 0 on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be NULL-terminated. Return —1 on error, O on success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

int PyModule_AddType (PyObject *module, PyTypeObject *type)
Add a type object to module. The type object is finalized by calling internally Py Type_Ready (). The name of
the type object is taken from the last component of tp_name after dot. Return -1 on error, O on success.

3.9 B fE.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.

PyObject* PyState_FindModule (PyModuleDef *def’)
Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule () beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_ FindModule ().
Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).

Return O on success or -1 on failure.

3.3 B RE.

130 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

int PyState_RemoveModule (PyModuleDef *def)
Removes the module object created from def from the interpreter state. Return O on success or -1 on failure.

3.3 B fE

8.6.3 XM IBIXK

Python $2{1L T U gt 4. 55— T) HE Eif?ﬁ']
B8 AN A E FA XS AN —A> sentinel {8, HF4 EI’Jt/\Iﬁﬁ F] Hﬂ X5, R IEI sentlnel EEDES
o

PyTypeObject PySeqIlter_Type
pySeqlter_New () &I (UREATGIGITIAT G E 7 FIZR N B AL iter () M9HBHOBA.

int PySeqIter_Check (0p)
s op RSPy SeqIter. Type NER[H] true,

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. & IE*A ST S G— R i L ARR seq.)TN R ERAET] &
IndexError B}, E45R

PyTypeObject PyCallIter_Type

M $pycalliter New () fil iter () WEBREINSEOV AR B IE AL R LTS .
int PyCallIter_Check (op)

WM op RFHPycalllter Type Wk [H true.,

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. 3 [B]— " ECHE ’“~/\7”%§5Z callable 7] DA ATA0] v] DAXE VA S 50001
3L 1R FH Y Python w] i FH X4 5 AR E AN %R FLER AT — AN H o 24 callable 12 712 sentinel
AR, EARFLIE

8.6.4 HIRFFIER

CHDRTTT AR R R RS B TR Ry i
PyTypeObject PyProperty_Type
PR IAFT B RN 4

PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData (PyObject *descr)
WA G deser FEAEHREM:, WER[E true; ARG, Wk ME] false, descr o/ &4 AR %
% WHIRRA .

8.6. Hihytsk 131

The Python/C API, & 3.9.0a4

PyObject* PyWrapper_New (PyObject *, PyObject *)

Return value: New reference.

8.6.5 YR XgR

PyTypeObject PySlice_Type

The type object for slice objects. This is the same as s1ice in the Python layer.

int PySlice_Check (PyObject *ob)

Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)

Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case —1 is returned with an exception set).

You probably do not want to use this function.

JE 3.2 iR FE PR The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

{:fiR: This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySIlice_Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) < 0) {
// return error

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error
}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

F£ 3.2 WU PR The parameter type for the slice parameter was PyS1iceObject * before.

J£3.6.1 fREE P If Py_LIMITED_APT is not set or set to the value between 0x03050400 and 0x03060000
(not including) or 0x03060100 or higher PySlice_GetIndicesEx () is implemented as a macro using
PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are evaluated
more than once.

132

Chapter 8. EFRIMRE

The Python/C API, %% 3.9.0a4

3.6.1 G E A4S If Py_LIMITED_APT is set to the value less than 0203050400 or between 0x03060000
and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Extract the start, stop and step data members from a slice object as C integers. Silently reduce values
larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start and stop values less than
PY_SSIZE_T_MINtoPY_SSIZE_T_MIN, and silently boost the step values less than -PY_SSIZE_T_MAX
to —-PY_SSIZE_T_MAX.

Return —1 on error, O on success.
3.6.1 B IIRE.

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t “*start, Py_ssize_t *stop,

Py_ssize_t step)
Adjust start/end slice indices assuming a sequence of the specified length. Out of bounds indices are clipped in a

manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.

3.6.1 FrH I EE.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py None it is a singleton object.

8.6.7 MemoryView %

— A memoryview XR CHRHIAL A Kix 0 Fie — A ABAT AL R — 4L 31 Python X542,
PyObject *PyMemoryView_FromObject (PyObject *obj)
Return value: New reference. MAE At G2 X2 1 H) X R A memoryview XF 5. W obj SCFF A5 Gt X
i, W memoryview XFGUR AT AREE/ S, I AT g L BERY, AT AR S as BATIE R .«
PyObject *PyMemoryView_ FromMemory (char *mem, Py_ssize_t size, int flags)

Return value: New reference. 1§ Jfl mem 1F - Ji)2 2% op X)] 7 — 1 memoryview % 4. flags 7] DA 2
PyBUF_READ B{3# PyBUF_WRITE & —.

3.3 B InE.
PyObject *PyMemoryView_FromBuffer (Py_buffer *view)

Return value: New reference. B — 005 45 € 2t X G544 view 1) memoryview X252 . X fa] B 25 2%
WX, PyMemoryView FromMemory () s& LR EL.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Return value: New reference. M X 25 X3 11 1% 42 A1) @t — memoryview X} 4 contiguous WNIES: (X£°C
Bi’Fortran order W), {15 NTE-EIELEH , W memoryview X} 445 [a] JFL4A N AE . A), 52 191 H. memoryview
FEIFTAY bytes XF 4.

int PyMemoryView_Check (PyObject *obj)
WRAT S obj F& memoryview %152, R [A] true . HHIA AP memoryview)3,

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
iR 0] 5] memoryview -5t G IXFAA BIAS (U465 mview @502 —1> memoryview SLH; XA A
A ERIRAL, JRUATA CAA, 75 ARRE T I A 15 UK o

8.6. Hih¥R 133

The Python/C API, & 3.9.0a4

Py_buffer *PyMemoryView_GET_BASE (PyObject *mview)
i& B memoryview ff 3 TR S X & W F5 £, s FH W R memoryview B OH MR
¥ pyMemoryView FromMemory () BiPyMemoryView FromBuffer () 7 N iR [A] NULL., mview
MAE—A~ memoryview S5

8.6.8 555|HM&R

Python 3§ “S951M” AEA—IMR . BARYL, APIFEHESIHIT I HBIXISR . R a5 X
G, AR REHAR IO — N R R AU

int PyWeakref_Check (ob)
W “ob” Jg—AFIHEEE —MUBEXTS, MR [E]—4> true.,

int PyWeakref_CheckRef (ob)
TR “ob” Z—AgIH, WE true.

int PyWeakref_CheckProxy (ob)
W “ob” Jg—AMUBEXR, WR M true.

PyObject* PyWeakref_ NewRef (PyObject *ob, PyObject *callback)
Return value: New reference. iR 5 ob f— 5551 XS . ZREUS 2B Bl —ASF51 1, EALR
WERTH— RS BEA AR M — A5 XS . £ ATES callback H— AT AXS,
2AE ob YA ABIR BTIHGE S BWIZHEZ M RMIES:, RIS5IHXRAL . callback 1,7] DA
A None B, NULL, U ob AN@&— 535 XS, B0E R callback @] J# X4, None B NULL,
ZBRBCRHR [F] NULL 3 H5| & TypeError,

PyObject* PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Return value: New reference. 12 [FIX} 52 ob [{]—/ 555 | FIACEEXT S . % RECRESZ R Bl — N H5 1, =
AMRUERE— D FXT S EA W RER B — I AR S . 8 ANIES callback “h—A> T HIX)
%, EXTE ob YAF B B B EEGE RN BN N MBS, W5 XN R AR . callback
W PAA None B¢ NULL. IR ob AN@— 555 NS, BUE MR callback A@nJE X4, None B
NULL, ZERECH& B NULL 3 H5| % TypeError,

PyObject* PyWeakref_GetObject (PyObject *ref)
Return value: Borrowed reference. 12 [B]555 | FI X4 ref #55 | N4 . WR4E 5| XS ATAEAE, Wz E

Py_None,

T ZRBOR FHEE | X R B ** R G . X REMWE R IERA 1E AL AR A 3 1) 5 A%
SORTTRERR AN S, RN IZ IR AR HZ N 48 Py INCREF ()

PyObject* PyWeakref_ GET_OBJECT (PyObject *ref)
Return value: Borrowed reference. 23l PyWeakref_GetObject (), {HIEMH—PABEEEGER T .

8.6.9 IXFE

A A X BE X} G) B 25 B 217 using-capsules.
3.1 Frhi I ge.

PyCapsule
XAPyobject B TRMAFIE —MER(E, HFEEL Python RIPRHERME (VA void* HREMIIE
) M C P it as Hofl C SRR A M. Bl w N TR e — b & L) C i 5 ks
FiAf i g FARBEE, DASERT ANGIB ELE HBAT] . 3k Fev/rid ik TR RS AR S AL 7 170 2 25 2 A A e
) C APL,

134 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

PyCapsule_Destructor

AR — T faR [— e s, s LT

typedef void (*PyCapsule_Destructor) (PyObject *);

S PyCapsule_New () F3H PyCapsule_Destructor 2 [A|{E fHiE X .

int PyCapsule_CheckExact (PyObject *p)
WARSHGE—APyCapsule iR [H True

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr Occurred () to disambiguate.

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as inmodule.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using Py Import_ImportModuleNoBlock ()). If
no_block is false, import the module conventionally (using Py Import_ImportModule ()).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

8.6. Hih¥R 135

The Python/C API, & 3.9.0a4

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 AR BEXR
A AR AT G2 Python FI SR SEIUAL LR SR AR XT 4 . BATTE F @S R A LR RECR B2, A2 B

i HPyGen_New () B{PyGen_NewWithQualName ().

PyGenObject
T A AR AT R I C ZE5H 1k
PyTypeObject PyGen_Type
5 AR RS AN 4.
int PyGen_Check (PyObject *ob)
W2 ob Z— A SR B E(E; ob WA NULL,
int PyGen_CheckExact (PyObject *ob)
MR ob KA K PyGen_Type MR EAE; ob AR A NULL.
PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. 3£ frame Xt GBI R Bl — A9 AE AR XS o ILPR B BUE — % frame
5. SRR NULL,
PyObject* PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. £:T frame 3T 6| @ H & W — A RES LR, Hf _ name_ #

__qualname__ N name F qualname. YRS BGE — X frame W5 H . frame ZELTA Ry
NULL,

136 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

8.6.11 {hiZ¥sR

3.5 B IhE.
IR RIZ I async SBE P B R £l a1 Y .
PyCoroObject
TN G C S5H 1A
PyTypeObject PyCoro_Type
SRR AR 42
int PyCoro_CheckExact (PyObject *ob)
2R ob M Z Py Coro_Type WERIEEE; ob /AN NULL.

PyObject* PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. F:T frame X R4 B IR Bl — MRS, HF _ name I
__qualname__ ¥ N name F qualname. W& 82 WAG— AR frame B)51 . frame SR K
NULL,

8.6.12 F T TEMR

TEff: 75 3.7.1 BOEW: 7 Python 3.7.1 1, Ay TR 3 E C AP 2S48 WBCA R Pyobject fREFTIA

B PyContext, PyContextVar PA K PyContextToken, fiHl:

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void);

PE IS S 5] issue: * 347627,

3.7 B EE.
This section details the public C API for the contextvars module.

PyContext
The C structure used to represent a contextvars.Context object.

PyContextVar
The C structure used to represent a contextvars.ContextVar object.

PyContextToken
The C structure used to represent a contextvars . Token object.

PyTypeObject PyContext_Type
The type object representing the context type.

PyTypeObject PyContextVar_Type
The type object representing the context variable type.

PyTypeObject PyContextToken_Type
The type object representing the context variable token type.

KRG ATR

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

8.6. Hihytsk 137

The Python/C API, & 3.9.0a4

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_ Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_ Type. o must not be NULL. This function always succeeds.

Context object management functions:

PyObject *PyContext_New (void)
Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)
Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error has
occurred.

PyObject *PyContext_CopyCurrent (void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns O on success, and —1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns 0
on success, and —1 on error.

int PyContext_ClearFreeList ()
Clear the context variable free list. Return the total number of freed items. This function always succeeds.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Return value: New reference. f|##—A~##)’ > ContextVar ’ X% . % *name* T H ?ﬁﬁﬁ*ﬂiﬁl WHHM.
FEIES *def* fy BF SR RIREMINE. WRA AR, XA HuR M NULL

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
AR R SR B WSRAE A R R T A AR AR, R -1, WIERECE KRR, LIt ARENE,
R0,
WA B RS &, value ¥H2 381 EIFREN . Q2R B SR &R RA KRB, value R4 -
o default_value, {1F-AE “NULL®;
o var PERIME, QAR 2 NULL;
* NULL
WEARRENZAE, RECRREXT BRI .

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Return value: New reference. ¥4 _FF U var B{ERN value, IR $8 M| Pyobject Xt MFaEr,
A AR IR [B] NULL.

int PyContextVar_Reset (PyObject *var, PyObject *token)
B SR var E’J«U(%}\Eﬁﬁ ETEIRIA] token fjPyContextVar_Set () HIMZ BIHPRE . BeeR%L
JRTEFRIE 0, HHAES R

138 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

8.6.13 DateTime %5

datetime FEHLFRMEL T4 Fh H HAFI S (B X5 o FE (5 F AT] 3K 2 pR 4502 1, 0 ZHE AR IR TR A 4 Sk S
datetime.h (3 MRS TE Python. h /1), 3 H%2 PyDateTime_IMPORT D4 ¥k &ALl , il
T RANE AT BRE — 8B« XK 48 R C G5 FEE I — #8548 & PyDateTimeAPT
Bl IR

Zia) UTC B

PyObject* PyDateTime_TimeZone_UTC
Rl FEoR UTC PR IX B, 5 datetime.timezone.utc NFE—XT4£.,
3.7 Bl Hie.
FAURG AT
int PyDate_Check (PyObject *ob)
IR ob °f PyDateTime_DateType Al PyDateTime_DateType I TRANR [ElEH. ob
ANEEN NULL,

int PyDate_CheckExact (PyObject *ob)
S ob i PyDateTime_DateType ZEHIMIR [B{H. ob AFEN NULL,

int PyDateTime_Check (PyObject *ob)
IR ob A PyDateTime_DateTimeType Hlnf PyDateTime_DateTimeType [1HAT-2 AN &
Bl . ob ANHEHN NULL,

int PyDateTime_CheckExact (PyObject *ob)
IR ob 2}y PyDateTime_DateTimeType ZKHNIRAIEH. ob ANFEN NULL,

int PyTime_Check (PyObject *ob)
IR ob P)2KRFL R PyDateTime_TimeType B{j& PyDateTime_TimeType [TRAENR[EBElH. ob
WK NULL,

int PyTime_CheckExact (PyObject *ob)
5 ob [ZEFL R PyDateTime_TimeType MR F B H. ob WA A NULL,

int PyDelta_Check (PyObject *ob)
W ob 5 PyDateTime_DeltaType FKAlnl PyDateTime_DeltaType HYIEAST-2E N1k [v] BAH .
ob NFE K NULL,

int PyDelta_CheckExact (PyObject *ob)
ISR ob * PyDateTime_DeltaType KAEINR M EfH. ob ANFEN NULL,

int PyTZInfo_Check (PyObject *ob)
N ob °f PyDateTime_TZInfoType ZKAal PyDateTime_TZInfoType FYHA T2 AN & 7] B
{H. ob AfiE} NULL,

int PyTZInfo_CheckExact (PyObject *ob)
IR ob (T2 PyDateTime_TZInfoType MIR[EI B H. ob AHEA NULL,
T RIEX R %

PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. 12 [R|35E4E. H. HHJ datetime.date N4,

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datet ime . datet ime object with the specified year, month, day, hour,

minute, second and microsecond.

8.6. Hih¥R 139

The Python/C API, & 3.9.0a4

PyObject* PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,
int second, int usecond, int fold)
Return value: New reference. Return a datet ime . datet ime object with the specified year, month, day, hour,

minute, second, microsecond and fold.
3.6 FrhR e

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second, mi-
crosecond and fold.

3.6 BN HE.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.

PyObject* PyTimeZone_FromOffset (PyDateTime_DeltaType* offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset represented
by the offset argument.

3.7 BRI HE.

PyObject* PyTimeZone_FromOf fsetAndName (PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. Return a datetime .t imezone object with a fixed offset represented by the offser
argument and with tzname name.

3.7 B

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
RMEH, M0 F] 12 (%L

int PyDateTime_GET_DAY (PyDateTime_Date *0)
R EHBT, A0 31 L.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o)
IR[EV/INEE, MO B 23 [REEL

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)
ARE A3, AN O F 59 HEEEL

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *o)
WREED, A0 F 59 f AL

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
R EED, A0] 999999 f AL .

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

140 Chapter 8. A#FHMMRE

The Python/C API, %% 3.9.0a4

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
ARENEE, A0 2 23 FREEL

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)

A B NN IS

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
RMEFE, MO F| 59 HEEEL

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
R IED, A0 2] 999999 R4 .

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
IR AR, M-999999999 FI| 999999999 L%

3.3 B .

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
R EFPEL, A O 3] 86399 [rE&L%K

3.3 BrRIIHE.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
R EIENE A0 F] 999999 FYEEEL
3.3 B IE.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datet ime . date object given an argument tuple suitable
for passing to datetime.date. fromtimestamp ().

8.6. Hth¥tsx 141

The Python/C API, & 3.9.0a4

142 Chapter 8. B{FHIHRE

CHAPTER 9

Initialization, Finalization, and Threads

1S [Python #1456 1LECH o

9.1 # Python #ig{t 280

In an application embedding Python, the Py Tnitialize () function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.

LERTHA L Python 2 17, ATLAZEAxHI I DA F B
o WE A

PyImport_AppendInittab ()
PyImport_ExtendInittab ()
PyInitFrozenExtensions ()
PyMem_SetAllocator ()

PyMem_ SetupDebugHooks ()
PyObject_SetArenaAllocator ()
Py_SetPath()

Py _SetProgramName ()

Py _SetPythonHome ()
Py_SetStandardStreamEncoding ()
PySys_AddWarnOption ()
PySys_AddXOption ()

PySys_ResetWarnOptions ()

ERSEE &

143

The Python/C API, & 3.9.0a4

— Py _IsInitialized()
— PyMem _GetAllocator()
— PyObject_GetArenaAllocator ()
— Py _GetBuildInfo/()
— Py _GetCompiler()
— Py_GetCopyright ()
— Py _GetPlatform()
— Py _GetVersion ()
. I/\
— Py _DecodeLocale ()
o WAFM s :
— PyMem_RawMalloc ()
— PyMem_RawRealloc ()

— PyMem RawCalloc ()

PyMem_ RawFree ()

o it LR B8 A W % fFfPy_Initialize(): Py _EncodeLocale(), Py_GetPath(),
Py GetPrefix (), Py_GetExecPrefix(), Py_GetProgramFullPath (), Py_GetPythonHome (),
Py_GetProgramName () MlPyEval_InitThreads () BiVHHH.

9.2 £REETE

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b sets
Py_BytesWarningFlagtoland —bbsets Py_BytesWarningFlag to 2.

Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

T —o I

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

Py _DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

144 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
ZWE T PYTHON* MEAr &, vl fEE 13 E) PYTHONPATH F1 PYTHONHOME,

H-E M -1 JEE .

Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1 option and the PYTHONINSPECT environment variable.
Py_InteractiveFlag

EB -1 iﬁIﬁﬁﬁo
Py_TIsolatedFlag

Run Python in isolated mode. In isolated mode sys .path contains neither the script’s directory nor the user’s
site-packages directory.

B - PETREE .
3.4 T AE

Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.

Set to 1 if the PYTHONLEGACYWINDOWSEFSENCODING environment variable is set to a non-empty string.
HREZHAGEL,, iS5 PEP 529,
A i PE: Windows.,

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use 10.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
AREZIMEE, WS PEP 528,
T P4 Windows.

Py_NoSiteFlag
S site BALLPTPHA B BT 5 X sys . path BERAE. WIR site RAERMEHIREAMFAL
AR SR (SRR B BT site.main ().

H —-S PETIAEE .

Py_NoUserSiteDirectory
KRB FH P site-packages H ZHRME sys.path,

Set by the —s and - I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMI ZE environment variable.

Py_QuietFlag
RIEEAE AL H AR A s BRI AR B

HI —q BEIBLE .
3.2 B fE

9.2. £REETE 145

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, & 3.9.0a4

Py_UnbufferedStdioFlag

Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any other
Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

;. On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

This function works like Py, Tnitialize () if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()

Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

intPy_FinalizeEx ()

Undo all initializations made by Py Tnitialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
call to Py_Tnitialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Tnitialize () again first). Normally the return value is O.
If there were errors during finalization (flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py FinalizeEx () more than once.

Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.

146

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

3.6 BRI HE.

void Py_Finalize ()
This is a backwards-compatible version of Py_FinalizeEx () that disregards the return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding and
error handling to use with standard 1O, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sy s . stderr always uses the “backslashreplace” error handler, regardless of this (or any other) setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
3.4 HiRIEE.

void Py__SetProgramName (const wchar_t *name)
This function should be called before Py Initialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar* Py_GetProgramName ()
Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix ()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py SetProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefix is ' /usr/local"'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys . prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix ()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_ Set ProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’, the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec—prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

9.4. Process-wide parameters 147

The Python/C API, & 3.9.0a4

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

wchar_t* Py_GetPath ()

Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

void Py_SetPath (const wchar_t *)

Set the default module search path. If this function is called before Py Tnitialize (),then Py_GetPath ()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, whichis ' : ' on Unix and Mac OS X, ' ; ' on Windows.

This also causes sys.executable to be set to the program full path (see Py_GetProgramFullPath ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

TE 3.8 iR FE P : The program full path is now used for sys.executable, instead of the program name.

const char* Py_GetVersion ()

Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform ()

Return the platform identifier for the current platform. On Unix, this is formed from the ”official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()

Return the official copyright string for the current Python version, for example

148

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'’

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()

Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argvy, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

* Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

{EfR: It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sy s . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

3.1.3 B e,

void PySys_SetArgv (int argc, wchar_t **argv)
This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —T.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
JE 3.4 R FE YL : The updatepath value depends on —1I.

void Py__SetPythonHome (const wchar_t *home)
Set the default "home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.

9.4. Process-wide parameters 149

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, & 3.9.0a4

The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

w_char* Py_GetPythonHome ()
Return the default "home”, that is, the value set by a previous call to Py_SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the G/L has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_sSaveThread();
Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is

150 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

{Ef##: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z1ib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 3k Python glE&a9%k 12

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState _Ensure () and PyGILState Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py _TInitialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on how
locks must be handled and on all stored state in CPython’s runtime.

The fact that only the "current” thread remains means any locks held by other threads will never be released. Python solves
this for os . fork () byacquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it
resets any lock-objects in the child. When extending or embedding Python, there is no way to inform Python of additional
(non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork ()
would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling fork ()
directly rather than through os. fork () (and returning to or calling into Python) may result in a deadlock by one of
Python’s internal locks being held by a thread that is defunct after the fork. PyOS AfterFork Child() tries to
reset the necessary locks, but is not always able to.

9.5. Thread State and the Global Interpreter Lock 151

The Python/C API, & 3.9.0a4

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly, which
os.fork () does. This means finalizing all other Py ThreadState objects belonging to the current interpreter and
allother PyInterpreterState objects. Due to this and the special nature of the “main” interpreter, fork () should

only be called in that interpreter’s “main” thread, where the CPython global runtime was originally initialized. The only
exception is if exec () will be called immediately after.

9.5.4 E API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads ()
Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.

T 3.9 JiRFE P The function now does nothing.

FE 3.7 i 2 This function is now called by Py Tnitialize (), soyoudon't have to call it yourself anymore.
TE 3.2 iR #e: This function cannot be called before Py Tnitialize () anymore.

Deprecated since version 3.9, will be removed in version 3.11.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_ TInitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.

T 3.7 RSB The GIL is now initialized by Py _Tnitialize ().
Deprecated since version 3.9, will be removed in version 3.11.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created) and reset the thread state to NULL, returning the previous
thread state (which is not NULL). If the lock has been created, the current thread must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created) and set the thread state to tstate, which must not be
NULL. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.

{#fft: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

152 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument #state, which may be NULL. The global
interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release (). In general, other thread-related APIs may be used be-
tween PyGILState_Ensure () and PyGILState_Release () calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and must
be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure () must save the handle
foritscall to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

{#fft: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

3.4 B fE.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expandsto { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that

9.5. Thread State and the Global Interpreter Lock 153

The Python/C API, & 3.9.0a4

it contains an opening brace; it must be matched with a following Py_ END_ALLOW_THREADS macro. See above
for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note thatit contains a closing brace; it must
be matched with an earlier Py_ BEGIN_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread() ;: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.5 Low-level API

All of the following functions must be called after Py_ITnitialize ().
JE 3.7 iUEM: Py_Initialize () now initializes the GIL.

PylnterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

Raises an auditing event coython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

TE 3.9 { H ¥ This function now calls the PyThreadState.on_delete callback. Previously, that happened
in PyThreadState_Delete ().

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

void PyThreadState_DeleteCurrent (void)
Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject* PyThreadState_GetFrame (PyThreadState *tstate)
Get the current frame of the Python thread state #state. It can be NULL if no frame is currently executing.

See also PyEval_ GetFrame ().

tstate must not be NULL.

154 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

3.9 BRI HE.

PylnterpreterState* PyThreadState_GetInterpreter (PyThreadState *tstate)
Get the interpreter of the Python thread state fstate.

tstate must not be NULL.
3.9 Bl Hie.

PylnterpreterState* PyInterpreterState_Get (void)
Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
3.9 Hi e

PY_INT64_T PyInterpreterState_GetID (PylnterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.

3.7 FrR I HE.

PyObject* PyInterpreterState_GetDict (PylnterpreterState *interp)
Return a dictionary in which interpreter-specific data may be stored. If this function returns NULL then no exception
has been raised and the caller should assume no interpreter-specific dict is available.

This is not a replacement for PyModule_GetState (), which extensions should use to store interpreter-specific
state information.

3.8 Bl e
PyObject* (*_PyFrameEvalFunction) (PyThreadState *tstate, PyFrameObject *frame, int throwflag)
Type of a frame evaluation function.
The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current exception.
TE 3.9 JiR B R The function now takes a fstate parameter.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)
Get the frame evaluation function.

See the PEP 523 ”Adding a frame evaluation API to CPython”.
3.9 Hi e

void _PyInterpreterState_SetEvalFrameFunc (PyInterpreterState *interp, _PyFrameEvalFunction
Set the frame evaluation function.

See the PEP 523 ”Adding a frame evaluation API to CPython”.
3.9 Hi e

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

9.5. Thread State and the Global Interpreter Lock 155

https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523

The Python/C API, & 3.9.0a4

TE 3.7 R The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Acquire the global interpreter lock and set the current thread state to tstate, which must not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

{I:ff: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

¥ 3.8 fw W O Updated to be consistent with PyEval_ RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_ Ensure (), and terminate the current thread if
called while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)

Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state --- if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquirelLock ()

Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

32 WU J5 © # & This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

{Ef#: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

¥E 38 R E Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_Ensure (), and terminate the current thread if
called while the interpreter is finalizing.

void PyEval_ReleaseLock ()

Release the global interpreter lock. The lock must have been created earlier.

3.2 {5 EL#4 % This function does not update the current thread state. Please use PyEval_SaveThread ()
or PyEval_ReleaseThread () instead.

156

Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.

The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in a
process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling. It is
also responsible for execution during runtime initialization and is usually the active interpreter during runtime finalization.
The PyInterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the Py ThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys. stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows:

» For modules using multi-phase initialization, e.g. PyModule_FromDefAndSpec (), a separate mod-
ule object is created and initialized for each interpreter. Only C-level static and global variables are shared
between these module objects.

» For modules using single-phase initialization, e.g. PyModule_Create (), the first time a particular exten-
sion is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away.
When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with
the contents of this copy; the extension’s init function is not called. Objects in the module’s dictionary thus
end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx () and Py_Tnitialize ();in that case, the ex-
tension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py FinalizeEx () will destroy all sub-interpreters that haven’t
been explicitly destroyed at that point.

9.6. Sub-interpreter support 157

The Python/C API, & 3.9.0a4

9.6.1 HRFIE S

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
--- for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when using single-phase initialization or (static) global variables. It is possible to insert objects
created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 L &EA

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won't be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be scheduled
to be called from the wrong interpreter.

g e: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

JE 3.9 W EE B If this function is called in a subinterpreter, the function func is now scheduled to be called from
the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list of
scheduled calls.

3.1 BRI HE.

158 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

9.8 SHTFOERER

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_ SetProfile () and PyEval_SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

what #I{E arg la X

PyTrace_CALL E\%Py_None.

PyTrace_EXCEPTION sys.exc_info () RMEHREE L.

PyTrace_LINE E‘\%Py_l\ione.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL IEFEYR RO 42

PyTrace C_EXCEPTION | IEAEVE T A BN 2.

PyTrace_C_RETURN TETEYE H BRSO 42

PyTrace_OPCODE mEpy None.

int PyTrace_CALL
The value of the what parameter to a Py_ t race func function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t racefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_t racefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_t race func functions when a C function has returned.

9.8. FHTFIRRER 159

The Python/C API, & 3.9.0a4

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

The caller must hold the GIL.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

The caller must hold the GIL.

9.9 ERIA LS ZHF

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylnterpreterState* PyInterpreterState_Main ()
Return the main interpreter state object.

PyInterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after #state from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading. local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

{Ef#: None of these API functions handle memory management on behalf of the void* values. You need to allo-
cate and deallocate them yourself. If the void* values happen to be PyObject *, these functions don’t do refcount

160 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, %% 3.9.0a4

operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS APl is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.

3.7 B IE.
W
”A New C-API for Thread-Local Storage in CPython” (PEP 539)
Py tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS

implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT
This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py _LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_ tss_ t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.

Py_tss_t* PyThread_tss_alloc ()
Return a value which is the same state as a value initialized with Py _tss NEEDS TNIT, or NULL in the case
of dynamic allocation failure.

void PyThread_tss_free (Py_tss_t *key)
Free the given key allocated by PyThread_tss_alloc (), after first calling PyThread_tss_delete ()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument is NULL.

Wf#: A freed key becomes a dangling pointer, you should reset the key to NULL.

Kk

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread_tss_get () are undefined if the given Py tss_t has not been initialized by
PyThread_ tss_create().

int PyThread_tss_is_created (Py_1ss_t *key)
Return a non-zero value if the given Py_tss_ t has been initialized by PyThread_tss_create ().

int PyThread_tss_create (Py_fss_t *key)
Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Py_ t ss_NEEDS_INIT. This function can be called repeatedly on the
same key -- calling it on an already initialized key is a no-op and immediately returns success.

9.10. Thread Local Storage Support 161

https://www.python.org/dev/peps/pep-0539

The Python/C API, & 3.9.0a4

void PyThread_tss_delete (Py_tss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initialization
state to uninitialized. A destroyed key is able to be initialized again by PyThread tss_create (). This
function can be called repeatedly on the same key -- calling it on an already destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each
thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get (Py_fss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is associated
with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

3.7 B G EL A% R4 This API is superseded by Thread Specific Storage (TSS) API.

{Efiit: This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread create_key () will return immediately with a failure status, and
the other TLS functions will all be no-ops on such platforms.

1T R 2 AR, N RAE B ARG T AR 1Y) AP
int PyThread_create_key ()

void PyThread_delete_key (int key)

int PyThread_set_key_value (int key, void *value)

void* PyThread_get_key_value (int key)

void PyThread_delete_key_value (int key)

void PyThread_ReInitTLS ()

162 Chapter 9. Initialization, Finalization, and Threads

cHAPTER 10

Python #1%&{L Bt &

3.8 B fE.

&k

PyConfig
PyPreConfig
PyStatus

PyWideStringList

PyConfig Clear()

PyConfig InitIsolatedConfig/()
PyConfig _InitPythonConfig()
PyConfig_Read/()

PyConfig _SetArgv ()

PyConfig SetBytesArgv()
PyConfig_SetBytesString ()
PyConfig_SetString()

PyConfig SetWideStringList ()
PyPreConfig _InitIsolatedConfig/()
PyPreConfig InitPythonConfig()
PyStatus_Error ()
PyStatus_Exception ()
PyStatus_Exit ()

PyStatus_IsError()

163

The Python/C API, & 3.9.0a4

e PyStatus_IsExit ()

e PyStatus_NoMemory ()

e PyStatus_O0Ok ()

e PyWideStringList_Append()
e PyWideStringList_Insert ()
e Py _ExitStatusException()

e Py InitializeFromConfig/()
* Py PrelInitialize()

e Py PrelInitializeFromArgs ()
* Py PrelInitializeFromBytesArgs ()
* Py RunMain /()

The preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig and the configuration
(PyConfigtype)isstoredin PyInterpreterState.config.

See also Initialization, Finalization, and Threads.
S YL:
PEP 587 "Python] 4G4 &

10.1 PyWideStringList

PyWideStringList
List of wchar_t* strings.

If length is non-zero, items must be non-NULL and all strings must be non-NULL.

ik

PyStatus PyWideStringList_Append (PyWideStringList *list, const wchar_t *item)
Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.

If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.

Structure fields:

Py_ssize_t length
List ¥ JiF,
wchar_t** items

FIETH -

164 Chapter 10. Python #ig{tEE

https://www.python.org/dev/peps/pep-0587

The Python/C API, %% 3.9.0a4

10.2 PyStatus

PyStatus

Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:

int exitcode
Exit code. Argument passed to exit ().

const char *err_msg
HiRER
const char *funec
Name of the function which created an error, can be NULL.
Functions to create a status:
PyStatus PyStatus_Ok (void)
N
7[352 °
PyStatus PyStatus_Error (const char *err_msg)

Initialization error with a message.

PyStatus PyStatus_NoMemory (void)
Memory allocation failure (out of memory).

PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)
Is the status an error or an exit? If true, the exception must be handled,;
Py_ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
SRR IRNG?

int PyStatus_IsExit (PyStatus status)
AR IR

void Py_ExitStatusException (PyStatus status)

by calling

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if

status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

TEfiR:

NULL.

Internally, Python uses macros which set PyStatus. func, whereas functions to create a status set func to

Il

PyStatus alloc(void **ptr, size_t size)

{

*ptr = PyMem_RawMalloc (size);
if (*ptr == NULL) {

return PyStatus_NoMemory () ;
}
return PyStatus_Ok () ;

(Rt

10.2. PyStatus

165

The Python/C API, & 3.9.0a4

(£ 50

}

int main(int argc, char **argv)

{

void *ptr;

PyStatus status = alloc (&ptr, 16);

if (PyStatus_Exception(status)) A
Py_ExitStatusException (status);

}

PyMem_Free (ptr);

return 0;

10.3 PyPreConfig

PyPreConfig

Structure used to preinitialize Python:
¢ Set the Python memory allocator
* Configure the LC_CTYPE locale
* Set the UTF-8 mode

Function to initialize a preconfiguration:

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.

void PyPreConfig_ InitPythonConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Isolated Configuration.

Structure fields:

intallocator
Name of the memory allocator:

e PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults)

e PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators

e PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks

e PYMEM_ALLOCATOR_MALLOC (3): force usage of malloc ()

e PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks

¢ PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator

e PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug hooks

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if

Python is configured using ——without-pymalloc

See Memory Management.

int configure_locale

Set the LC_CTYPE locale to the user preferred locale? If equals to 0, set coerce_c_locale and

coerce_c_locale_warntoO.

166

Chapter 10. Python #ig{ticE

The Python/C API, %% 3.9.0a4

int coerce_c_locale
If equals to 2, coerce the C locale; if equals to 1, read the LC_CTYPE locale to decide if it should be coerced.

int coerce_c_locale_warn
If non-zero, emit a warning if the C locale is coerced.

int dev_mode
Z:lPyConfig.dev_mode.

int isolated
%)l PyConfig.isolated.

int legacy_windows_fs_encoding (Windows only)
If non-zero, disable UTF-8 Mode, set the Python filesystem encoding to mbcs, set the filesystem error handler
to replace.

Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.

int parse_argv
If non-zero, Py_PrelnitializeFromArgs () and Py _PrelnitializeFromBytesArgs ()
parse their argv argument the same way the regular Python parses command line arguments: see Com-
mand Line Arguments.

int use_environment
Z W PyConfig.use_environment.

int ut £8_mode
If non-zero, enable the UTF-8 mode.

10.4 Preinitialization with PyPreConfig

Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int argc, char * const *argv)
Preinitialize Python from preconfig preconfiguration and command line arguments (bytes strings).

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int argc, wchar_t * const * argv)
Preinitialize Python from preconfig preconfiguration and command line arguments (wide strings).

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception () and
Py ExitStatusException().

For Python Configuration (PyPreConfig_InitPythonConfig ()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the —X ut £8 command line option enables the UTF-8 Mode.

PyMem_SetAllocator () can be called after Py _PreInitialize() and before
Py _InitializeFromConfig() to install a custom memory allocator. It can be called before
Py_PrelInitialize () if PyPreConfig.allocatorissetto PYMEM_ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem_ RawMalloc () must not be used before Python preinitialization,
whereas calling directly malloc () and free () is always safe. Py_DecodeLocale () must not be called before
the preinitialization.

Example using the preinitialization to enable the UTF-8 Mode:

10.4. Preinitialization with PyPreConfig 167

The Python/C API, & 3.9.0a4

PyStatus status;
PyPreConfig preconfig;
PyPreConfig_InitPythonConfig (&preconfiqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfiqg);

if (PyStatus_Exception(status)) A
Py_ExitStatusException(status);

3

/* at this point, Python will speak UTF-8 */
Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.5 PyConfig

PyConfig
Structure containing most parameters to configure Python.

Structure methods:

void PyConfig_InitPythonConfig (PyConfig *config)
Initialize configuration with Python Configuration.

void PyConfig InitIsolatedConfig (PyConfig *config)
Initialize configuration with Isolated Configuration.

PyStatus PyConfig_SetString (PyConfig *config, wchar_t * const *config_str, const wchar_t *str)
Copy the wide character string str into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t * const *config_str, const char *str)
Decode str using Py_DecodeLocale () and set the result into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetArgv (PyConfig *config, int argc, wchar_t * const *argv)
Set command line arguments from wide character strings.

Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int argc, char * const *argv)
Set command line arguments: decode bytes using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, PyWideStringList *[ist,
Py_ssize_t length, wchar_t **items)
Set the list of wide strings /ist to length and items.

Preinitialize Python if needed.

PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.

Fields which are already initialized are left unchanged.

168 Chapter 10. Python #)i&{tE =S

The Python/C API, %% 3.9.0a4

Preinitialize Python if needed.

void PyConfig_Clear (PyConfig *config)
Release configuration memory.

Most PyConfig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
in based on the PyConfig. If configuration fields which are in common with PyPreConfig are tuned, they
must be set before calling a PyConfig method:

e dev_mode

e isolated

* parse_argv

* use_environment

Moreover, if PyConfig SetArgv () or PyConfig_SetBytesArgv () isused, this method must be called
first, before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).

The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception ()
and Py_ExitStatusException ().

Structure fields:

PyWideStringList axrgv
Command line arguments, sys .argv. See parse_argv to parse a rgv the same way the regular Python
parses Python command line arguments. If argv is empty, an empty string is added to ensure that sys.
argv always exists and is never empty.

wchar_t* base_exec_prefix
sys.base_exec_prefix.

wchar_t* base_executable
sys._base_executable: _ PYVENV_LAUNCHER___ environment variable value, or copy of
PyConfig.executable.

wchar_t* base_prefix
sys.base_prefix.

int buffered_stdio
If equals to 0, enable unbuffered mode, making the stdout and stderr streams unbuffered.

stdin is always opened in buffered mode.

int bytes_warning
If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int. If equal or greater to 2, raise a BytesWarning exception.

wchar_t* check_hash_pycs_mode
Control the validation behavior of hash-based . pyc files (see PEP 552): ——check—-hash-based-pycs
command line option value.

Valid values: always, never and default.

BRMME R default.

int configure_c_stdio
If non-zero, configure C standard streams (stdio, stdout, stdout). For example, set their mode to
O_BINARY on Windows.

int dev_mode
If non-zero, enable the Python Development Mode.

10.5. PyConfig 169

https://www.python.org/dev/peps/pep-0552

The Python/C API, & 3.9.0a4

int dump_refs
If non-zero, dump all objects which are still alive at exit.

Py_TRACE_REFS macro must be defined in build.

wchar_t* exec_prefix
sys.exec_prefix.

wchar_t* executable
sys.executable.

int faulthandler
If non-zero, call faulthandler.enable () atstartup.

wchar_t* filesystem_encoding
Filesystem encoding, sys.getfilesystemencoding ().

wchar_t* filesystem_errors
Filesystem encoding errors, sys.getfilesystemencodeerrors ().

unsigned long hash_seed

int use_hash_seed
Randomized hash function seed.

If use_hash_seed is zero, a seed is chosen randomly at Pythonstartup, and hash_ seed is ignored.

wchar_t* home
Python home directory.

Initialized from PYTHONHOME environment variable value by default.

int import_time
If non-zero, profile import time.

int inspect
Enter interactive mode after executing a script or a command.

int install_signal_handlers
Install signal handlers?

int interactive
T HE
int isolated

If greater than 0, enable isolated mode:

* sys.path contains neither the script’s directory (computed from argv [0] or the current directory)
nor the user’s site-packages directory.

e Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

e Set use_environment and user_site_directoryto0.

int legacy_windows_stdio
If non-zero,use io.FileIOinstead of io.WindowsConsoleIOfor sys.stdin, sys.stdout and
sys.stderr.

Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.

intmalloc_stats
If non-zero, dump statistics on Python pymalloc memory allocator at exit.

The option is ignored if Python is built using ——without-pymalloc.

170 Chapter 10. Python #)i&{tE =S

The Python/C API, %% 3.9.0a4

wchar_t* pythonpath_env
Module search paths as a string separated by DELIM (os.path.pathsep).

Initialized from PYTHONPATH environment variable value by default.
PyWideStringList module_search_paths

intmodule_search_paths_set
sys.path. If module_search_paths_set is equal to 0, the module search_paths is over-
ridden by the function calculating the Path Configuration.

int optimization_level
Compilation optimization level:

¢ 0: Peephole optimizer (and __debug___is setto True)
¢ 1: Remove assertions, set ___debug__ to False
 2: Strip docstrings

int parse_argv
If non-zero, parse argv the same way the regular Python command line arguments, and strip Python argu-
ments from argv: see Command Line Arguments.

int parser_debug
If non-zero, turn on parser debugging output (for expert only, depending on compilation options).

int pathconfig_warnings
If equal to 0, suppress warnings when calculating the Path Configuration (Unix only, Windows does not log
any warning). Otherwise, warnings are written into stderr.

wchar_t* prefix
sys.prefix.

wchar_t* program_name
Program name. Used to initialize executable, and in early error messages.

wchar_t* pycache_prefix
sys.pycache_prefix: .pyc cache prefix.

If NULL, sys.pycache_prefixissetto None.

int quiet
Quiet mode. For example, don’t display the copyright and version messages in interactive mode.

wchar_t* run_command
python3 —c COMMAND argument. Used by Py_ RunMain ().

wchar_t* run_filename
python3 FILENAME argument. Used by Py RunMain ().

wchar_t* run_module
python3 -m MODULE argument. Used by Py RunMain ().

int show_ref_ count
Show total reference count at exit?

Setto 1 by -X showrefcount command line option.
Need a debug build of Python (Py_REF_DEBUG macro must be defined).

int site_import
Import the site module at startup?

10.5. PyConfig 171

The Python/C API, & 3.9.0a4

int skip_source_first_line
Skip the first line of the source?

wchar_t* stdio_encoding

wchar_t* stdio_errors
Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr.

int tracemalloc
If non-zero, call tracemalloc.start () atstartup.

int use_environment
If greater than 0, use environment variables.

intuser_site_directory
If non-zero, add user site directory to sys.path.

int verbose
If non-zero, enable verbose mode.

PyWideStringList warnoptions
sys.warnoptions: options of the warnings module to build warnings filters: lowest to highest priority.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings. filters which is checked first (highest pri-
ority).

intwrite_bytecode
If non-zero, write . pyc files.

sys.dont_write_bytecode is initialized to the inverted value of write_ bytecode.

PyWideStringList xoptions
sys._xoptions.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line argu-
ments, and Python arguments are stripped from argv: see Command Line Arguments.

The xoptions options are parsed to set other options: see —X option.

¥E 3.9 fii s ik The show_alloc_count field has been removed.

10.6 Initialization with PyConfig

Function to initialize Python:

PyStatus Py_InitializeFromConfig (const PyConfig *config)
Initialize Python from config configuration.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException ().

If PyImport_FrozenModules, PyImport_AppendInittab () or PyImport_ExtendInittab () are
used, they must be set or called after Python preinitialization and before the Python initialization.

Example setting the program name:

void init_python (void)
{
PyStatus status;

(Rt

172 Chapter 10. Python #)i&{tE =S

The Python/C API, %% 3.9.0a4

(£ 50

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);

/* Set the program name. Implicitly preinitialize Python. */

status = PyConfig_SetString(&config, &config.program_name,
L"/path/to/my_program") ;

if (PyStatus_Exception(status)) A

goto fail;
}
status = Py_InitializeFromConfig (&confiqg);
if (PyStatus_Exception (status)) {

goto fail;

}
PyConfig_Clear (&configqg);
return;

fail:

PyConfig_Clear (&configqg);
Py_ExitStatusException(status);

More complete example modifying the default configuration, read the configuration, and then override some parameters:

PyStatus init_python (const char *program_name)

{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) A
goto done;

/* Read all configuration at once */

status = PyConfig_Read(&config);

if (PyStatus_Exception(status)) {
goto done;

/* Append our custom search path to sys.path */
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception(status)) {
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,

(N IUERED)

10.6. Initialization with PyConfig 173

The Python/C API, & 3.9.0a4

(£ 50

L"/path/to/my_executable");
if (PyStatus_Exception(status)) {
goto done;

status = Py_InitializeFromConfig(&confiqg);
done:

PyConfig_Clear (&configqg);
return status;

10.7 Isolated Configuration

PyPreConfig_InitIsolatedConfig() and PyConfig InitIsolatedConfig() functions create a
configuration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environments variables, command line arguments (PyConfig.
argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE locale are left
unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration. Set the Parh Configuration (output fields”) to ignore these
configuration files and avoid the function computing the default path configuration.

10.8 Python Configuration

PyPreConfig_InitPythonConfig () and PyConfig_InitPythonConfig () functions create a configu-
ration to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration variables
are ignored.

This function enables C locale coercion (PEP 538) and UTF-8 Mode (PEP 540) depending on the LC_CTYPE locale,
PYTHONUTF8 and PYTHONCOERCECLOCALE environment variables.

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);
config.isolated = 1;

/* Decode command line arguments.

Implicitly preinitialize Python (in isolated mode). */
status = PyConfig_SetBytesArgv (&config, argc, argv);
if (PyStatus_Exception(status)) {

goto fail;

status = Py_InitializeFromConfig(&confiqg);

(Rt

174 Chapter 10. Python #)i&{tE =S

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540

The Python/C API, %% 3.9.0a4

(£ 50

if (PyStatus_Exception(status)) {
goto fail;

}

PyConfig_Clear (&configqg);

return Py_RunMain () ;

fail:

PyConfig_Clear (&configqg);

if (PyStatus_IsExit (status)) {
return status.exitcode;

3

/* Display the error message and exit the process with
non-zero exit code */

Py_ExitStatusException (status);

10.9 BEEHE

PyConfig contains multiple fields for the path configuration:
 BAEHCERA
PyConfig.home

PyConfig.pathconfig warnings

PyConfig.program_name

PyConfig.pythonpath_env

current working directory: to get absolute paths
— PATH environment variable to get the program full path (from PyConfig. program name)

— _ PYVENV_LAUNCHER___ environment variable

(Windows only) Application paths in the registry under “SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

* Path configuration output fields:

PyConfig.base_exec_prefix

PyConfig.base_executable

PyConfig.base_prefix

PyConfig.exec_prefix

PyConfig.executable

PyConfig.module_search_paths_set, PyConfig.module_search_paths

PyConfig.prefix

If at least one ~output field” is not set, Python calculates the path configuration to fill unset fields.
If module search_paths_set is equal to 0, module_search_paths is overridden and
module_search_paths_setissetto 1.

10.9. BEREE 175

The Python/C API, & 3.9.0a4

It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as setif module_search_paths_set issetto 1. In this case, path configuration input fields are ignored
as well.

Set pathconfig_warnings to 0 to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

If base prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefix respectively.

Py_RunMain () and Py_Main () modify sys.path:

e If run_filenameis setand is a directory which contains a __main__ .py script, prepend run_filename
to sys.path.

e If isolatedis zero:

— If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

— If run_ filename is set, prepend the directory of the filename to sys.path.
— Otherwise, prepend an empty string to sys . path.

If site_import is non-zero, sys.path can be modified by the site module. If user_site_directory
is non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory to
sys.path.

The following configuration files are used by the path configuration:
* pyvenv.cfg
e python._pth (¥ Windows)
¢ pybuilddir.txt ({{ Unix)

The _ PYVENV_LAUNCHER___ environment variable is used to set PyConfig.base_executable

10.10 Py_RunMain()

int Py_RunMain (void)
Execute the command (PyConfig. run_command), thescript(PyConfig. run_filename)orthe module
(PyConfig.run_module) specified on the command line or in the configuration.

By default and when if -1 option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit () function.

See Python Configuration for an example of customized Python always running in isolated mode using Py RunMain ().

176 Chapter 10. Python #)i&{tE =S

The Python/C API, %% 3.9.0a4

10.11 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of the PEP 432:

» ”Core” initialization phase, “bare minimum Python™:

Builtin types;

Builtin exceptions;

Builtin and frozen modules;

— The sys module is only partially initialized (ex: sys.path doesn’t exist yet).
¢ ”"Main” initialization phase, Python is fully initialized:

— Install and configure importlib;

Apply the Path Configuration;

Install signal handlers;

Finish sys module initialization (ex: create sys.stdout and sys.path);

Enable optional features like faulthandler and tracemalloc;

Import the site module;
- G4
Private provisional API:

e PyConfig._init_main:ifsetto0, Py _InitializeFromConfig () stops at the ”Core” initialization
phase.

PyStatus _Py_InitializeMain (void)
Move to the "Main” initialization phase, finish the Python initialization.

No module is imported during the "Core” phase and the import1ib module is not configured: the Path Configuration
is only applied during the "Main” phase. It may allow to customize Python in Python to override or tune the Path
Configuration, maybe install a custom sys .meta_path importer or an import hook, etc.

It may become possible to calculatin the Path Configuration in Python, after the Core phase and before the Main phase,
which is one of the PEP 432 motivation.

The ”Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.

Example running Python code between "Core” and "Main” initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&configqg);

config._init_main = 0;
/* ... customize 'config' configuration ... */
status = Py_InitializeFromConfig(&confiqg);

PyConfig_Clear (&configqg);
if (PyStatus_Exception(status)) {

(Rt

10.11. Multi-Phase Initialization Private Provisional API 177

https://www.python.org/dev/peps/pep-0432
https://www.python.org/dev/peps/pep-0432

The Python/C API, & 3.9.0a4

Py_ExitStatusException (status);

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */
int res = PyRun_SimpleString(
"import sys; "
"print ('Run Python code before _Py_InitializeMain',

n

"file=sys.stderr)");
if (res < 0) {
exit (1);
}
/* ... put more configuration code here ... */
status = _Py_InitializeMain();

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

178 Chapter 10. Python #)i&{tE =S

cHAPTER 11

11.1 #hid

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);

(Rt

179

The Python/C API, & 3.9.0a4

(£ 50

free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.

Z W
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

1.2 [RigAFEED

PAF BB R T RS ilas . XL REUR AR L, AHREFAGIL,

default raw memory allocator ffi JJ3X25pE%L: malloc (). calloc (). realloc() Fl free(); HiFEFT
BIUYE A malloc (1) °° (& " “calloc(1, 1))

3.4 B

void* PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

3.5 B RE.

void* PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

180 Chapter 11. NEER

The Python/C API, %% 3.9.0a4

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_RawRealloc () or PyMem RawCalloc(). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.3 J#EED

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

#%Mie: The GIL must be held when using these functions.

7r 3.6 MU B 2 : The default allocator is now pymalloc instead of system malloc ().

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

3.5 B fE.

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc (),
PyMem_Realloc () or PyMem_ Calloc (). Otherwise, or if PyMem_Free (p) has been called before, un-
defined behavior occurs.

If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

11.3. AHEED 181

The Python/C API, & 3.9.0a4

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)
YpyMem_Free ()]

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

¢ PyMem_MALLOC (size)

e PyMem_NEW (type, size)

e PyMem_REALLOC (ptr, size)

* PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

¢ PyMem_DEL (ptr)

11.4 HRIEC 2R

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default object allocator uses the pymalloc memory allocator.

#xfie: The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

3.5 B RE.

void* PyObject_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

182 Chapter 11. NEER

The Python/C API, %% 3.9.0a4

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to

PyObject_Malloc (), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.
11.5 RIAAESBC2E
CNNGEEZ e
[iT=1 AR PyMem_RawMalldcPyMem_Malloc | PyOb-
ject_Malloc
KA A "pymalloc" malloc pymalloc pymalloc
WA "pymalloc_debug™malloc + debug pymalloc+de- | pymalloc +de-
bug bug
Release build, without py- | "malloc" malloc malloc malloc
malloc
Debug build, without py- | "malloc_debug" | malloc +debug | malloc +debug | malloc + debug
malloc

R

e Name: value for PYTHONMALLOC environment variable

* malloc: system allocators from the standard C library, C functions:

and free ()

* pymalloc: pymalloc memory allocator

malloc (), calloc (), realloc ()

* 7+ debug”: with debug hooks installed by PyMem SetupDebugHooks ()

11.6 Customize Memory Allocators

3.4 B IIRE.

PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has four fields:

11.5. BARESECRE

183

The Python/C API, & 3.9.0a4

13 aX

void *ctx user context passed as first argument
void* malloc (void *ctx, size_t size) allocate a memory block

void* calloc(void *ctx, size_t nelem, size_t | allocateamemory block initialized with
elsize) ZEeros

void* realloc(void *ctx, void *ptr, size_t allocate or resize a memory block
new_size)

void free(void *ctx, void *ptr) BEi— A~

TE 3.5 MUH L The PyMemAllocator structure was renamed to PyMemAllocatorEx and anew calloc
field was added.

PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:

PYMEM_DOMAIN_RAW
* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()
PYMEM_DOMAIN_ MEM
* PyMem Malloc(),
* PyMem Realloc()
* PyMem_ Calloc ()
* PyMem Free/()
PYMEM_DOMAIN_OBJ
* PyObject_Malloc ()
e PyObject_Realloc ()
e PyObject_Calloc/()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_ SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

184 Chapter 11. NEER

The Python/C API, %% 3.9.0a4

void PyMem_SetupDebugHooks (void)
Setup hooks to detect bugs in the Python memory allocator functions.

Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte 0xDD
(DEADBYTE). Memory blocks are surrounded by “forbidden bytes” (FORBIDDENBYTE: byte 0xFD).

Runtime checks:
e Detect API violations, ex: PyObject_Free () called on a buffer allocated by PyMem Malloc ()
¢ Detect write before the start of the buffer (buffer underflow)
¢ Detect write after the end of the buffer (buffer overflow)

e Check that the GIL is held when allocator functions of PYMEM DOMAIN_OBJ (ex:
PyObject_Malloc ())and PYMEM DOMAIN_MEM (ex: PyMem Malloc ()) domains are called

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allo-
cated. The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory
block was traced.

These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.

TE 3.6 Jit BE : This function now also works on Python compiled in release mode. On error, the debug hooks now
use tracemalloc to get the traceback where a memory block was allocated. The debug hooks now also check
if the GIL is held when functions of PYMEM DOMAIN_OBJ and PYME!M DOMAIN_MEM domains are called.

TE 3.8 /i B i: Byte patterns 0xCB (CLEANBYTE), 0xDB (DEADBYTE) and 0xFB (FORBIDDENBYTE) have
been replaced with 0xCD, 0xDD and OxFD to use the same values than Windows CRT debug malloc () and
free().

11.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem_RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMENM_DOMAIN_MEM (ex: PyMem Malloc ())and PYMEM DOMAIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,

e malloc () and free () otherwise.

11.7.1 Customize pymalloc Arena Allocator

3.4 B RE.

PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

11.7. The pymalloc allocator 185

The Python/C API, & 3.9.0a4

i ‘X

void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void *ptr) free an arena

PyObject_GetArenalAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.8 tracemalloc C API

3.7 B RE.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)
Track an allocated memory block in the t racemal loc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is
disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

11.9 Rl

Here is the example from section ## 34, rewritten so that the I/O buffer is allocated from the Python heap by using the
first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf);
PyMem_Del (buf); /* allocated with PyMem New */
return res;

186 Chapter 11. NEER

The Python/C API, %% 3.9.0a4

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);

char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —-— should be PyMem Free() */
free (buf2); /* Right —- allocated via malloc() */
free (bufl); /* Fatal should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

11.9. =Bl 187

The Python/C API, & 3.9.0a4

188 Chapter 11. NEER

CHAPTER 12

R

AFAIR TR SPGB i i i . BRI

121 fEHPHEMR

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. i/} FLHIXR op WAL ERIZEBUANG] AT IR MBI AL S AR 5. A
R type FRUIX AR R S HOGIABIRAGI , B 23X AR GBI AL AG I R R R . XL
HoAt 7 BN 20

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. ‘&I EEMPyObject_Init () —FE, I HRTIEAS B R /NN R
K.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. i [l C 25442551 TYPE 1 Python 25X} % rype 43 Bi—1~31 11 Python X4 .
KA Python XF 43k fg L F BRI XSRS RTHECR A —. WAEAELR/INE type X4
Mtp_basicsize FERME

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. i J}] C RS54 25FL TYPE 11 Python 2B 42 type 4B —4~3F1 1) Python
X5 o Python X5 3 SC A & LI F BN BRI IR . B BLI ARSI T B T TYPE 54410 type
Mg tp_itemsize FEARLN size FEAME . XX T L AR AL PR FE S E B OOK
?E@Xﬁf‘?%%ﬁiﬂﬂ (o REF BB He A B AH R 04 A2 B b i] DA AR B 8, X8 T
T ECRIRCR

void PyObject_Del (void *op)
Rl Pyobject _New () B PyObject NewVar () SrBCNAFIIN G, X I H HIXT AR type FBUE

189

The Python/C API, & 3.9.0a4

iy tp_dealloc ALPRRRBORIEM o XA e ELLAS op XA 7 BERRAN T AR, PR 73
4 A7 25 8] AN o — A R Python X 42

PyObject _Py_NoneStruct
4 None —#£#Y Python Xf 4R . X AXGALAT AR Py_None ZLUiIH], XA ISR A& MRS TRE

S W
PyModule_Create () 4rBLIAFFIEIEY EEH.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyObject, but every pointer
to a Python object can be cast to a PyObject *. Access to the members must be done by using the macros
Py _REFCNT and Py_ TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done by
using the macros Py REFCNT, Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVaroOb ject above.

Py_TYPE (0)
This macro is used to access the ob_t ype member of a Python object. It expands to:

(((PyObject*) (o)) ->ob_type)

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is fype. Return zero otherwise. Equivalent to: Py_ TYPE (o) == type.

190 Chapter 12. JREIMXHF

The Python/C API, %% 3.9.0a4

3.9 BRI HE.

void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to type.
3.9 Fii T EE.

Py_REFCNT (0)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*) (o)) ->ob_refcnt)

void Py_SET_REFCNT (PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

3.9 B TigE.

Py_SIZE (0)
This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject™*) (0))-—>ob_size)

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.

3.9 B

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new PyVaroObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

12.2. Common Object Structures 191

The Python/C API, & 3.9.0a4

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

] Cx# BX

ml_name const char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | int flag bits indicating how the call should be constructed
ml_doc const char * | points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type Py CFunct ion. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () or PyArg_UnpackTuple ().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctioniWithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are no
keyword arguments. The parameters are typically processed using PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type _PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyOb ject * values indicating the arguments and
the third parameter is the number of arguments (the length of the array).

This is not part of the limited API.
3.7 B RE.

METH_FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vector-
call protocol: there is an additional fourth PyObject * parameter which is a tuple representing the names of the
keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The values
of the keyword arguments are stored in the args array, after the positional arguments.

This is not part of the limited API.
3.7 BRI HE.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking

192 Chapter 12. &St $F

The Python/C API, %% 3.9.0a4

PyArg_ParseTuple () with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyOb ject * parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named ___contains__ () and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper