
What’s New in Python
发布 3.9.0a4

A. M. Kuchling

三月 23, 2020
Python Software Foundation

Email: docs@python.org

Contents

1 Summary -- Release highlights 2

2 You should check for DeprecationWarning in your code 2

3 New Features 3
3.1 Dictionary Merge & Update Operators . 3

4 Other Language Changes 3

5 New Modules 3

6 Improved Modules 3
6.1 ast . 3
6.2 asyncio . 4
6.3 concurrent.futures . 4
6.4 curses . 4
6.5 fcntl . 4
6.6 ftplib . 4
6.7 functools . 4
6.8 gc . 5
6.9 http . 5
6.10 imaplib . 5
6.11 importlib . 5
6.12 inspect . 5
6.13 ipaddress . 5
6.14 math . 5
6.15 nntplib . 6
6.16 os . 6
6.17 pathlib . 6
6.18 poplib . 6
6.19 pprint . 6
6.20 signal . 6
6.21 smtplib . 6
6.22 threading . 7

1

6.23 sys . 7
6.24 typing . 7
6.25 unicodedata . 7
6.26 venv . 7

7 Optimizations 7

8 Build and C API Changes 8

9 Deprecated 9

10 Removed 10

11 Porting to Python 3.9 11
11.1 Changes in the Python API . 12
11.2 CPython bytecode changes . 12

索引 13

Release 3.9.0a4
Date 三月 23, 2020

This article explains the new features in Python 3.9, compared to 3.8.
For full details, see the changelog.

注解: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.9 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary -- Release highlights

2 You should check for DeprecationWarning in your code

When Python 2.7 was still supported, many functions were kept for backward compatibility with Python 2.7. With the
end of Python 2.7 support, these backward compatibility layers have been removed, or will be removed soon. Most of
them emitted a DeprecationWarning warning for several years. For example, using collections.Mapping
instead of collections.abc.Mapping emits a DeprecationWarning since Python 3.3, released in 2012.
Test your application with the -W default command-line option to see DeprecationWarning and
PendingDeprecationWarning, or even with -W error to treat them as errors. Warnings Filter can be used
to ignore warnings from third-party code.
It has been decided to keep a few backward compatibility layers for one last release, to give more time to Python projects
maintainers to organize the removal of the Python 2 support and add support for Python 3.9.
Aliases to Abstract Base Classes in the collections module, like collections.Mapping alias to
collections.abc.Mapping, are kept for one last release for backward compatibility. They will be removed from
Python 3.10.
More generally, try to run your tests in the Python Development Mode which helps to prepare your code to make it
compatible with the next Python version.

2

3 New Features

3.1 Dictionary Merge & Update Operators

Merge (|) and update (|=) operators have been added to the built-in dict class. See PEP 584 for a full description.
(Contributed by Brandt Bucher in bpo-36144.)

4 Other Language Changes

• __import__() now raises ImportError instead of ValueError, which used to occur when a relative
import went past its top-level package. (Contributed by Ngalim Siregar in bpo-37444.)

• Python now gets the absolute path of the script filename specified on the command line (ex: python3 script.
py): the __file__ attribute of the __main__ module became an absolute path, rather than a relative path.
These paths now remain valid after the current directory is changed by os.chdir(). As a side effect, the
traceback also displays the absolute path for __main__ module frames in this case. (Contributed by Victor
Stinner in bpo-20443.)

• In the Python Development Mode and in debug build, the encoding and errors arguments are now checked for string
encoding and decoding operations. Examples: open(), str.encode() and bytes.decode().
By default, for best performance, the errors argument is only checked at the first encoding/decoding error and the
encoding argument is sometimes ignored for empty strings. (Contributed by Victor Stinner in bpo-37388.)

• "".replace("", s, n) now returns s instead of an empty string for all non-zero n. It is now consistent
with "".replace("", s). There are similar changes for bytes and bytearray objects. (Contributed by
Serhiy Storchaka in bpo-28029.)

• Any valid expression can now be used as a decorator. Previously, the grammar was much more restrictive. See
PEP 614 for details. (Contributed by Brandt Bucher in bpo-39702.)

5 New Modules

• None yet.

6 Improved Modules

6.1 ast

Added the indent option to dump() which allows it to produce a multiline indented output. (Contributed by Serhiy
Storchaka in bpo-37995.)
Added ast.unparse() as a function in the astmodule that can be used to unparse an ast.AST object and produce
a string with code that would produce an equivalent ast.AST object when parsed. (Contributed by Pablo Galindo and
Batuhan Taskaya in bpo-38870.)
Added docstrings to AST nodes that contains the ASDL signature used to construct that node. (Contributed by Batuhan
Taskaya in bpo-39638.)

3

https://www.python.org/dev/peps/pep-0584
https://bugs.python.org/issue36144
https://bugs.python.org/issue37444
https://bugs.python.org/issue20443
https://bugs.python.org/issue37388
https://bugs.python.org/issue28029
https://www.python.org/dev/peps/pep-0614
https://bugs.python.org/issue39702
https://bugs.python.org/issue37995
https://bugs.python.org/issue38870
https://bugs.python.org/issue39638

6.2 asyncio

Due to significant security concerns, the reuse_address parameter of asyncio.loop.
create_datagram_endpoint() is no longer supported. This is because of the behavior of the socket option
SO_REUSEADDR in UDP. For more details, see the documentation for loop.create_datagram_endpoint().
(Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov in bpo-37228.)
Added a new coroutine shutdown_default_executor() that schedules a shutdown for the default executor that
waits on the ThreadPoolExecutor to finish closing. Also, asyncio.run() has been updated to use the new
coroutine. (Contributed by Kyle Stanley in bpo-34037.)
Added asyncio.PidfdChildWatcher, a Linux-specific child watcher implementation that polls process file de-
scriptors. (bpo-38692)

6.3 concurrent.futures

Added a new cancel_futures parameter to concurrent.futures.Executor.shutdown() that cancels all
pending futures which have not started running, instead of waiting for them to complete before shutting down the executor.
(Contributed by Kyle Stanley in bpo-39349.)

6.4 curses

Add curses.get_escdelay(), curses.set_escdelay(), curses.get_tabsize(), and curses.
set_tabsize() functions. (Contributed by Anthony Sottile in bpo-38312.)

6.5 fcntl

Added constants F_OFD_GETLK, F_OFD_SETLK and F_OFD_SETLKW. (Contributed by Dong-hee Na in bpo-
38602.)

6.6 ftplib

FTP and FTP_TLS now raise a ValueError if the given timeout for their constructor is zero to prevent the creation
of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

6.7 functools

Add the functools.TopologicalSorter class to offer functionality to perform topological sorting of graphs.
(Contributed by Pablo Galindo, Tim Peters and Larry Hastings in bpo-17005.)

4

https://bugs.python.org/issue37228
https://bugs.python.org/issue34037
https://bugs.python.org/issue38692
https://bugs.python.org/issue39349
https://bugs.python.org/issue38312
https://bugs.python.org/issue38602
https://bugs.python.org/issue38602
https://bugs.python.org/issue39259
https://bugs.python.org/issue17005

6.8 gc

When the garbage collector makes a collection in which some objects resurrect (they are reachable from outside the
isolated cycles after the finalizers have been executed), do not block the collection of all objects that are still unreachable.
(Contributed by Pablo Galindo and Tim Peters in bpo-38379.)
Added a new function gc.is_finalized() to check if an object has been finalized by the garbage collector. (Con-
tributed by Pablo Galindo in bpo-39322.)

6.9 http

HTTP status codes 103 EARLY_HINTS, 418 IM_A_TEAPOT and 425 TOO_EARLY are added to http.
HTTPStatus. (Contributed by Dong-hee Na in bpo-39509 and Ross Rhodes in bpo-39507.)

6.10 imaplib

IMAP4 and IMAP4_SSL now have an optional timeout parameter for their constructors. Also, the open()method now
has an optional timeout parameter with this change. The overriddenmethods ofIMAP4_SSL andIMAP4_streamwere
applied to this change. (Contributed by Dong-hee Na in bpo-38615.)

6.11 importlib

To improve consistency with import statements, importlib.util.resolve_name() now raises ImportError
instead of ValueError for invalid relative import attempts. (Contributed by Ngalim Siregar in bpo-37444.)

6.12 inspect

inspect.BoundArguments.arguments is changed from OrderedDict to regular dict. (Contributed by Inada
Naoki in bpo-36350 and bpo-39775.)

6.13 ipaddress

ipaddress now supports IPv6 Scoped Addresses (IPv6 address with suffix %<scope_id>).
Scoped IPv6 addresses can be parsed usingipaddress.IPv6Address. If present, scope zone ID is available through
the scope_id attribute. (Contributed by Oleksandr Pavliuk in bpo-34788.)

6.14 math

Expanded the math.gcd() function to handle multiple arguments. Formerly, it only supported two arguments. (Con-
tributed by Serhiy Storchaka in bpo-39648.)
Add math.lcm(): return the least common multiple of specified arguments. (Contributed by Mark Dickinson, Anan-
thakrishnan and Serhiy Storchaka in bpo-39479 and bpo-39648.)
Add math.nextafter(): return the next floating-point value after x towards y. (Contributed by Victor Stinner in
bpo-39288.)
Add math.ulp(): return the value of the least significant bit of a float. (Contributed by Victor Stinner in bpo-39310.)

5

https://bugs.python.org/issue38379
https://bugs.python.org/issue39322
https://bugs.python.org/issue39509
https://bugs.python.org/issue39507
https://bugs.python.org/issue38615
https://bugs.python.org/issue37444
https://bugs.python.org/issue36350
https://bugs.python.org/issue39775
https://bugs.python.org/issue34788
https://bugs.python.org/issue39648
https://bugs.python.org/issue39479
https://bugs.python.org/issue39648
https://bugs.python.org/issue39288
https://bugs.python.org/issue39310

6.15 nntplib

NNTP and NNTP_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the creation
of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

6.16 os

Added CLD_KILLED and CLD_STOPPED for si_code. (Contributed by Dong-hee Na in bpo-38493.)
Exposed the Linux-specific os.pidfd_open() (bpo-38692) and os.P_PIDFD (bpo-38713) for process manage-
ment with file descriptors.
The os.unsetenv() function is now also available on Windows. (Contributed by Victor Stinner in bpo-39413.)
The os.putenv() and os.unsetenv() functions are now always available. (Contributed by Victor Stinner in
bpo-39395.)

6.17 pathlib

Added pathlib.Path.readlink() which acts similarly to os.readlink(). (Contributed by Girts Folkmanis
in bpo-30618)

6.18 poplib

POP3 and POP3_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the creation
of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

6.19 pprint

pprint can now pretty-print types.SimpleNamespace. (Contributed by Carl Bordum Hansen in bpo-37376.)

6.20 signal

Exposed the Linux-specific signal.pidfd_send_signal() for sending to signals to a process using a file de-
scriptor instead of a pid. (bpo-38712)

6.21 smtplib

SMTP and SMTP_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the creation
of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)
LMTP constructor now has an optional timeout parameter. (Contributed by Dong-hee Na in bpo-39329.)

6

https://bugs.python.org/issue39259
https://bugs.python.org/issue38493
https://bugs.python.org/issue38692
https://bugs.python.org/issue38713
https://bugs.python.org/issue39413
https://bugs.python.org/issue39395
https://bugs.python.org/issue30618
https://bugs.python.org/issue39259
https://bugs.python.org/issue37376
https://bugs.python.org/issue38712
https://bugs.python.org/issue39259
https://bugs.python.org/issue39329

6.22 threading

In a subinterpreter, spawning a daemon thread now raises a RuntimeError. Daemon threads were never supported in
subinterpreters. Previously, the subinterpreter finalization crashed with a Python fatal error if a daemon thread was still
running. (Contributed by Victor Stinner in bpo-37266.)

6.23 sys

Add a new sys.platlibdir attribute: name of the platform-specific library directory. It is used to build the path
of platform-specific dynamic libraries and the path of the standard library. It is equal to "lib" on most platforms. On
Fedora and SuSE, it is equal to "lib64" on 64-bit platforms. (Contributed by Jan Matějek, Matěj Cepl, Charalampos
Stratakis and Victor Stinner in bpo-1294959.)

6.24 typing

PEP 593 introduced an typing.Annotated type to decorate existing types with context-specific metadata and new
include_extras parameter to typing.get_type_hints() to access the metadata at runtime. (Contributed
by Till Varoquaux and Konstantin Kashin.)

6.25 unicodedata

The Unicode database has been updated to version 13.0.0. (bpo-39926).

6.26 venv

The activation scripts provided by venv now all specify their prompt customization consistently by always using the
value specified by __VENV_PROMPT__. Previously some scripts unconditionally used __VENV_PROMPT__, others
only if it happened to be set (which was the default case), and one used __VENV_NAME__ instead. (Contributed by
Brett Cannon in bpo-37663.)

7 Optimizations

• Optimized the idiom for assignment a temporary variable in comprehensions. Now for y in [expr] in
comprehensions is as fast as a simple assignment y = expr. For example:

sums = [s for s in [0] for x in data for s in [s + x]]
Unlike to the := operator this idiom does not leak a variable to the outer scope.
(Contributed by Serhiy Storchaka in bpo-32856.)

• Optimize signal handling in multithreaded applications. If a thread different than the main thread gets a signal, the
bytecode evaluation loop is no longer interrupted at each bytecode instruction to check for pending signals which
cannot be handled. Only the main thread of the main interpreter can handle signals.
Previously, the bytecode evaluation loop was interrupted at each instruction until the main thread handles signals.
(Contributed by Victor Stinner in bpo-40010.)

7

https://bugs.python.org/issue37266
https://bugs.python.org/issue1294959
https://www.python.org/dev/peps/pep-0593
https://bugs.python.org/issue39926
https://bugs.python.org/issue37663
https://bugs.python.org/issue32856
https://bugs.python.org/issue40010

8 Build and C API Changes

• New PyThreadState_GetInterpreter() and PyInterpreterState_Get() functions to get the
interpreter. New PyThreadState_GetFrame() function to get the current frame of a Python thread state.
(Contributed by Victor Stinner in bpo-39947.)

• Add --with-platlibdir option to the configure script: name of the platform-specific library direc-
tory, stored in the new sys.platlibdir attribute. See sys.platlibdir attribute for more information.
(Contributed by Jan Matějek, Matěj Cepl, Charalampos Stratakis and Victor Stinner in bpo-1294959.)

• Add a new public PyObject_CallNoArgs() function to the C API, which calls a callable Python object with-
out any arguments. It is the most efficient way to call a callable Python object without any argument. (Contributed
by Victor Stinner in bpo-37194.)

• The global variable PyStructSequence_UnnamedField is now a constant and refers to a constant string.
(Contributed by Serhiy Storchaka in bpo-38650.)

• Exclude PyFPE_START_PROTECT() and PyFPE_END_PROTECT() macros of pyfpe.h from
Py_LIMITED_API (stable API). (Contributed by Victor Stinner in bpo-38835.)

• Remove PyMethod_ClearFreeList() and PyCFunction_ClearFreeList() functions: the free
lists of bound method objects have been removed. (Contributed by Inada Naoki and Victor Stinner in bpo-37340.)

• Remove PyUnicode_ClearFreeList() function: the Unicode free list has been removed in Python 3.3.
(Contributed by Victor Stinner in bpo-38896.)

• The tp_print slot of PyTypeObject has been removed. It was used for printing objects to files in Python 2.7
and before. Since Python 3.0, it has been ignored and unused. (Contributed by Jeroen Demeyer in bpo-36974.)

• On non-Windows platforms, the setenv() and unsetenv() functions are now required to build Python.
(Contributed by Victor Stinner in bpo-39395.)

• The COUNT_ALLOCS special build macro has been removed. (Contributed by Victor Stinner in bpo-39489.)
• Changes in the limited C API (if Py_LIMITED_API macro is defined):

– Provide Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() as regular functions for
the limited API. Previously, there were defined as macros, but these macros didn’t compile with the limited
C API which cannot access PyThreadState.recursion_depth field (the structure is opaque in the
limited C API).

– Exclude the following functions from the limited C API:
* _Py_CheckRecursionLimit

* _Py_NewReference()

* _Py_ForgetReference()

* _PyTraceMalloc_NewReference()

* _Py_GetRefTotal()

* The trashcan mechanism which never worked in the limited C API.
* PyTrash_UNWIND_LEVEL

* Py_TRASHCAN_BEGIN_CONDITION

* Py_TRASHCAN_BEGIN

* Py_TRASHCAN_END

* Py_TRASHCAN_SAFE_BEGIN

8

https://bugs.python.org/issue39947
https://bugs.python.org/issue1294959
https://bugs.python.org/issue37194
https://bugs.python.org/issue38650
https://bugs.python.org/issue38835
https://bugs.python.org/issue37340
https://bugs.python.org/issue38896
https://bugs.python.org/issue36974
https://bugs.python.org/issue39395
https://bugs.python.org/issue39489

* Py_TRASHCAN_SAFE_END

– The following static inline functions or macros become regular ”opaque” function to hide implementation
details:
* _Py_NewReference()

* PyObject_INIT() and PyObject_INIT_VAR() become aliases to PyObject_Init() and
PyObject_InitVar() in the limited C API, but are overriden with static inline function otherwise.
Thanks to that, it was possible to exclude _Py_NewReference() from the limited C API.

– Move following functions and definitions to the internal C API:
* _PyDebug_PrintTotalRefs()

* _Py_PrintReferences()

* _Py_PrintReferenceAddresses()

* _Py_tracemalloc_config

* _Py_AddToAllObjects() (specific to Py_TRACE_REFS build)
(Contributed by Victor Stinner in bpo-38644 and bpo-39542.)

• PyInterpreterState.eval_frame (PEP 523) now requires a new mandatory tstate parameter
(PyThreadState*). (Contributed by Victor Stinner in bpo-38500.)

• Extension modules: m_traverse, m_clear and m_free functions of PyModuleDef are no longer called
if the module state was requested but is not allocated yet. This is the case immediately after the module is created
and before the module is executed (Py_mod_exec function). More precisely, these functions are not called if
m_size is greater than 0 and the module state (as returned by PyModule_GetState()) is NULL.
Extension modules without module state (m_size <= 0) are not affected.

• If Py_AddPendingCall() is called in a subinterpreter, the function is now scheduled to be called from the
subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list of
scheduled calls. (Contributed by Victor Stinner in bpo-39984.)

• Remove _PyRuntime.getframe hook and remove _PyThreadState_GetFrame macro which was
an alias to _PyRuntime.getframe. They were only exposed by the internal C API. Remove also
PyThreadFrameGetter type. (Contributed by Victor Stinner in bpo-39946.)

• The PyModule_AddType() function is added to help adding a type to a module. (Contributed by Dong-hee
Na in bpo-40024.)

9 Deprecated

• The distutils bdist_msi command is now deprecated, use bdist_wheel (wheel packages) instead. (Con-
tributed by Hugo van Kemenade in bpo-39586.)

• Currently math.factorial() accepts float instances with non-negative integer values (like 5.0). It raises
a ValueError for non-integral and negative floats. It is now deprecated. In future Python versions it will raise
a TypeError for all floats. (Contributed by Serhiy Storchaka in bpo-37315.)

• The parser module is deprecated and will be removed in future versions of Python. For the majority of use
cases, users can leverage the Abstract Syntax Tree (AST) generation and compilation stage, using the astmodule.

• Using NotImplemented in a boolean context has been deprecated, as it is almost exclusively the result of incor-
rect rich comparator implementations. It will be made a TypeError in a future version of Python. (Contributed
by Josh Rosenberg in bpo-35712.)

9

https://bugs.python.org/issue38644
https://bugs.python.org/issue39542
https://www.python.org/dev/peps/pep-0523
https://bugs.python.org/issue38500
https://bugs.python.org/issue39984
https://bugs.python.org/issue39946
https://bugs.python.org/issue40024
https://bugs.python.org/issue39586
https://bugs.python.org/issue37315
https://bugs.python.org/issue35712

• The random module currently accepts any hashable type as a possible seed value. Unfortunately, some of those
types are not guaranteed to have a deterministic hash value. After Python 3.9, the module will restrict its seeds to
None, int, float, str, bytes, and bytearray.

• Opening the GzipFile file for writing without specifying the mode argument is deprecated. In future Python
versions it will always be opened for reading by default. Specify the mode argument for opening it for writing and
silencing a warning. (Contributed by Serhiy Storchaka in bpo-28286.)

• Deprecated the split()method of _tkinter.TkappType in favour of the splitlist()method which
has more consistent and predicable behavior. (Contributed by Serhiy Storchaka in bpo-38371.)

• The explicit passing of coroutine objects to asyncio.wait() has been deprecated and will be removed in
version 3.11. (Contributed by Yury Selivanov and Kyle Stanley in bpo-34790.)

• binhex4 and hexbin4 standards are now deprecated. The :binhex module and the following binascii functions
are now deprecated:

– b2a_hqx(), a2b_hqx()
– rlecode_hqx(), rledecode_hqx()

(Contributed by Victor Stinner in bpo-39353.)
• ast classes slice, Index and ExtSlice are considered deprecated and will be removed in future Python
versions. value itself should be used instead of Index(value). Tuple(slices, Load()) should be
used instead of ExtSlice(slices). (Contributed by Serhiy Storchaka in bpo-32892.)

• ast classes Suite, Param, AugLoad and AugStore are considered deprecated and will be removed in future
Python versions. They were not generated by the parser and not accepted by the code generator in Python 3.
(Contributed by Batuhan Taskaya in bpo-39639 and bpo-39969 and Serhiy Storchaka in bpo-39988.)

• The PyEval_InitThreads() and PyEval_ThreadsInitialized() functions are now deprecated
and will be removed in Python 3.11. Calling PyEval_InitThreads() now does nothing. The GIL is initial-
ized by Py_Initialize() since Python 3.7. (Contributed by Victor Stinner in bpo-39877.)

10 Removed

• The erroneous version at unittest.mock.__version__ has been removed.
• nntplib.NNTP: xpath() and xgtitle() methods have been removed. These methods are deprecated
since Python 3.3. Generally, these extensions are not supported or not enabled by NNTP server administrators.
For xgtitle(), please use nntplib.NNTP.descriptions() or nntplib.NNTP.description()
instead. (Contributed by Dong-hee Na in bpo-39366.)

• array.array: tostring() and fromstring() methods have been removed. They were aliases to
tobytes() and frombytes(), deprecated since Python 3.2. (Contributed by Victor Stinner in bpo-38916.)

• The undocumented sys.callstats() function has been removed. Since Python 3.7, it was deprecated and
always returned None. It required a special build option CALL_PROFILE which was already removed in Python
3.7. (Contributed by Victor Stinner in bpo-37414.)

• The sys.getcheckinterval() and sys.setcheckinterval() functions have been removed. They
were deprecated since Python 3.2. Usesys.getswitchinterval() andsys.setswitchinterval()
instead. (Contributed by Victor Stinner in bpo-37392.)

• The C function PyImport_Cleanup() has been removed. It was documented as: ”Empty the module table.
For internal use only.” (Contributed by Victor Stinner in bpo-36710.)

• _dummy_thread and dummy_threading modules have been removed. These modules were deprecated
since Python 3.7 which requires threading support. (Contributed by Victor Stinner in bpo-37312.)

10

https://bugs.python.org/issue28286
https://bugs.python.org/issue38371
https://bugs.python.org/issue34790
https://bugs.python.org/issue39353
https://bugs.python.org/issue32892
https://bugs.python.org/issue39639
https://bugs.python.org/issue39969
https://bugs.python.org/issue39988
https://bugs.python.org/issue39877
https://bugs.python.org/issue39366
https://bugs.python.org/issue38916
https://bugs.python.org/issue37414
https://bugs.python.org/issue37392
https://bugs.python.org/issue36710
https://bugs.python.org/issue37312

• aifc.openfp() alias to aifc.open(), sunau.openfp() alias to sunau.open(), and wave.
openfp() alias to wave.open() have been removed. They were deprecated since Python 3.7. (Contributed
by Victor Stinner in bpo-37320.)

• The isAlive()method of threading.Thread has been removed. It was deprecated since Python 3.8. Use
is_alive() instead. (Contributed by Dong-hee Na in bpo-37804.)

• Methods getchildren() and getiterator() of classes ElementTree and Element in the
ElementTree module have been removed. They were deprecated in Python 3.2. Use iter(x) or list(x)
instead of x.getchildren() and x.iter() or list(x.iter()) instead of x.getiterator(). The
xml.etree.cElementTree module has been removed. (Contributed by Serhiy Storchaka in bpo-36543.)

• The old plistlib API has been removed, it was deprecated since Python 3.4. Use the load(), loads(),
dump(), and dumps() functions. Additionally, the use_builtin_types parameter was removed, standard bytes
objects are always used instead. (Contributed by Jon Janzen in bpo-36409.)

• The C function PyThreadState_DeleteCurrent() has been removed. It was not documented. (Con-
tributed by Joannah Nanjekye in bpo-37878.)

• The C function PyGen_NeedsFinalizing has been removed. It was not documented, tested, or used any-
where within CPython after the implementation of PEP 442. Patch by Joannah Nanjekye. (Contributed by Joan-
nah Nanjekye in bpo-15088)

• base64.encodestring() and base64.decodestring(), aliases deprecated since Python 3.1, have
been removed: use base64.encodebytes() and base64.decodebytes() instead. (Contributed by
Victor Stinner in bpo-39351.)

• fractions.gcd() function has been removed, it was deprecated since Python 3.5 (bpo-22486): use math.
gcd() instead. (Contributed by Victor Stinner in bpo-39350.)

• The buffering parameter of bz2.BZ2File has been removed. Since Python 3.0, it was ignored and using it
emitted a DeprecationWarning. Pass an open file object to control how the file is opened. (Contributed by
Victor Stinner in bpo-39357.)

• The encoding parameter of json.loads() has been removed. As of Python 3.1, it was deprecated and ignored;
using it has emitted a DeprecationWarning since Python 3.8. (Contributed by Inada Naoki in bpo-39377)

• with (await asyncio.lock): and with (yield from asyncio.lock): statements are not
longer supported, use async with lock instead. The same is correct for asyncio.Condition and
asyncio.Semaphore. (Contributed by Andrew Svetlov in bpo-34793.)

• The sys.getcounts() function, the -X showalloccount command line option and the
show_alloc_count field of the C structure PyConfig have been removed. They required a special
Python build by defining COUNT_ALLOCS macro. (Contributed by Victor Stinner in bpo-39489.)

11 Porting to Python 3.9

This section lists previously described changes and other bugfixes that may require changes to your code.

11

https://bugs.python.org/issue37320
https://bugs.python.org/issue37804
https://bugs.python.org/issue36543
https://bugs.python.org/issue36409
https://bugs.python.org/issue37878
https://www.python.org/dev/peps/pep-0442
https://bugs.python.org/issue15088
https://bugs.python.org/issue39351
https://bugs.python.org/issue22486
https://bugs.python.org/issue39350
https://bugs.python.org/issue39357
https://bugs.python.org/issue39377
https://bugs.python.org/issue34793
https://bugs.python.org/issue39489

11.1 Changes in the Python API

• __import__() and importlib.util.resolve_name() now raise ImportErrorwhere it previously
raised ValueError. Callers catching the specific exception type and supporting both Python 3.9 and earlier
versions will need to catch both using except (ImportError, ValueError):.

• The venv activation scripts no longer special-case when __VENV_PROMPT__ is set to "".
• The select.epoll.unregister() method no longer ignores the EBADF error. (Contributed by Victor
Stinner in bpo-39239.)

• The compresslevel parameter of bz2.BZ2File became keyword-only, since the buffering parameter has been
removed. (Contributed by Victor Stinner in bpo-39357.)

• Simplified AST for subscription. Simple indices will be represented by their value, extended slices will
be represented as tuples. Index(value) will return a value itself, ExtSlice(slices) will return
Tuple(slices, Load()). (Contributed by Serhiy Storchaka in bpo-34822.)

• The importlib module now ignores the PYTHONCASEOK environment variable when the -E or -I command
line options are being used.

11.2 CPython bytecode changes

• The LOAD_ASSERTION_ERROR opcode was added for handling the assert statement. Previously, the assert
statement would not work correctly if the AssertionError exception was being shadowed. (Contributed by
Zackery Spytz in bpo-34880.)

12

https://bugs.python.org/issue39239
https://bugs.python.org/issue39357
https://bugs.python.org/issue34822
https://bugs.python.org/issue34880

索引

非字母
环境变量

PYTHONCASEOK, 12

P
Python 提高建议

PEP 442, 11
PEP 523, 9
PEP 584, 3
PEP 593, 7
PEP 614, 3

PYTHONCASEOK, 12

13

	Summary -- Release highlights
	You should check for DeprecationWarning in your code
	New Features
	Dictionary Merge & Update Operators

	Other Language Changes
	New Modules
	Improved Modules
	ast
	asyncio
	concurrent.futures
	curses
	fcntl
	ftplib
	functools
	gc
	http
	imaplib
	importlib
	inspect
	ipaddress
	math
	nntplib
	os
	pathlib
	poplib
	pprint
	signal
	smtplib
	threading
	sys
	typing
	unicodedata
	venv

	Optimizations
	Build and C API Changes
	Deprecated
	Removed
	Porting to Python 3.9
	Changes in the Python API
	CPython bytecode changes

	索引

